ANALYSIS OF POWDER-GAS FLOW IN NOZZLES OF SPRAY-BASED ADDITIVE MANUFACTURING TECHNOLOGIES
Powder Sprays such as Direct Energy Deposition and Cold Spray are rapidly growing and promising manufacturing methods in the Additive Manufacturing field, as they allow easy and localized delivery of powder to be fused to a substrate and consecutive layers. The relatively small size of nozzles allows for these methods to be mounted on CNC machines and Robotic Arms for the creation of complex shapes. However, these manufacturing methods are inherently stochastic, and therefore differences in powder size, shape, trajectory, and velocity can drastically affect whether they will deposit on a substrate. This variation results in an inherent reduction of deposition efficiency, leading to waste and the need for powder collection or recycling systems. The design of the nozzles can drastically affect the variation of powder trajectory and velocity on a holistic level, and thus understanding the gas-powder flow of these nozzles in respect to the features of said nozzles is crucial. This paper proposes and examines how changes in the nozzle geometry affect gas-powder flow and powder focusing for Direct Energy Deposition and Cold Spray. In addition, a new Pulsed Cold Spray nozzle design is proposed that will control the amount of gas and powder used by the nozzle via solenoid actuation. By making these changes to the nozzle, it is possible to improve deposition efficiency and reduce powder/gas waste in these processes, while also allowing for improved coating density. Furthermore, the research done in this thesis will also focus on novel applications to powder spray manufacturing methods, focusing on polymer metallization and part identification.
Funding
Development of hybrid manufacturing systems for high melting point alloy - Korea Institute of Machinery & Materials
History
Degree Type
- Doctor of Philosophy
Department
- Mechanical Engineering
Campus location
- West Lafayette
Advisor/Supervisor/Committee Chair
Martin Byung Guk JunAdditional Committee Member 2
Benxin WuAdditional Committee Member 3
Jun ChenAdditional Committee Member 4
Chi Hwan LeeUsage metrics
Categories
- Manufacturing processes and technologies (excl. textiles)
- Additive manufacturing
- Computational methods in fluid flow, heat and mass transfer (incl. computational fluid dynamics)
- Powder and particle technology
- Multiphysics flows (incl. multiphase and reacting flows)
- Turbulent flows
- Electronic device and system performance evaluation, testing and simulation