APPLICATIONS OF ACOUSTIC RADIATION MODES IN ACOUSTIC HOLOGRAPHY AND STRUCTURAL OPTIMIZATION FOR NOISE REDUCTION
Acoustic holography is a powerful tool in the visualization of sound fields and sound sources. It provides engineers and researchers clear insights into sound fields as well as their sound sources. Some widely-used methods include Nearfield Acoustical Holography (NAH), Statistically Optimized Nearfield Acoustic Holography (SONAH) and the Equivalent Source Method (ESM). SONAH and ESM were developed specifically to tackle the intrinsic deficiency of the Fourier-based NAH which requires that the sound field fall to negligible levels at the edges of the measurement aperture, a requirement rarely met in practice. Besides the aforementioned methods, the Inverse Boundary Element Method (IBEM) can be used, given sufficient measurements and computational resources. As useful as they are in visualizing the sound field, none of these methods can provide direct guidance on potential design modifications of the observed structure in order to unequivocally reduce sound power radiation. Acoustic radiation mode analysis has previously been primarily associated with active noise control applications. Since the radiation modes radiate sound power independently, it is only necessary to modify the surface vibration patterns so that they do not couple well with the radiation modes in order to guarantee a reduction of the radiated sound power. Since the radiation modes are orthogonal and complete, they can be used as the basis functions through which the source surface vibration can be described. Therefore, an acoustic holography method based on the acoustic radiation modes will enable the sound power ranking of the modal components of the surface vibration pattern, and in turn, point out the component(s) which should be targeted in order to reduce the overall sound power. However, use of the acoustic radiation modes in the inverse procedure comes with a price: the detailed geometry of the object to be measured must be obtained, thus enabling the calculation of acoustic radiation modes and the modal pressures. But this is not an issue for original equipment manufacturers given that almost all prototypes are now designed with CAD, as is the case with the engine example to be described next.
In modern engine design, downsizing and reducing weight while still providing an increased amount of power has been a general trend in recent decades. Traditionally, an engine design with superior NVH performance usually comes with a heavier, thus sturdier structure. Therefore, modern engine design requires that NVH be considered in the very early design stage to avoid modifications of engine structures at the last minute, when very few changes can be made. NVH design optimization of engine components has become more practical due to the development of computer software and hardware. However, there is still a need for smarter algorithms to draw a direct relationship between the design and the radiated sound power. At the moment, techniques based on modal acoustic transfer vectors (MATVs) have gained popularity in design optimization for their good performance in sound pressure prediction. Since MATVs are derived based on structural modes, they are not independent with respect to radiated sound power. In contrast, as noted, acoustic radiation modes are an orthogonal set of velocity distributions on the structure’s surface that contribute to the radiated sound power independently. As a result, it is beneficial to describe structural vibration in terms of acoustic radiation modes in order to identify the velocity distributions that contribute the majority of the radiated sound power. Measures can then be taken to modify the identified vibration patterns to reduce their magnitudes, which will in turn result in an unequivocal reduction of the radiated sound power. A workflow of the structural optimization procedure is proposed in this dissertation.
While acoustic radiation modes have great efficiencies in describing radiated acoustic power, the computation of acoustic radiation modes can be time consuming. In the last chapter of this thesis, a novel way of calculating acoustic radiation modes is proposed, which differs from the traditional singular value decomposition of the power radiation resistance matrix, and which is more efficient than previously proposed procedures.
History
Degree Type
- Doctor of Philosophy
Department
- Mechanical Engineering
Campus location
- West Lafayette