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Assay The analysis performed in this case to determine the MIC

Convolution The addition of two random variables

Prevalence Prevalence is defined as the proportion of the bacterium that are

susceptible to a particular antimicrobial agent at a specific time.

In some other sources, prevalence may refer to the proportion of

a bacterium demonstrating resistance. In that case, the amount

is one minus the stated prevalence

Wild-Type Organisms devoid of acquired resistance mechanisms. Non-Wild-

Type is the opposite.
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ABSTRACT

Eagan, Will A. Ph.D., Purdue University, December 2020. A Bayesian Semiparamet-
ric Approach to Estimating a Bacterium’s Wild-Type Distribution and Prevalence:
Accounting for Contamination and Measurement Error. Major Professor: Bruce A.
Craig.

Antimicrobial resistance (AMR) is a major challenge to modern medicine and of

grave concern to public health. To monitor AMR, researchers analyze “drug/bug”

collections of clinical assay results to estimate AMR prevalence and the distribution

of susceptible (wild-type) strains. This estimation is challenging because (a) the

collection of assay results is a mixture of susceptible and resistant (non-wild-type)

strains and (b) the most commonly used dilution assay produces interval-censored

readings. To limit the effects of contamination from non-wild-type strains, methods

have focused on using the counts in the K left-most bins, with K based on different

heuristics. This limited use of the available data can result in the loss of precision and

accuracy of model parameters. More recent methods have fit all the bin counts using

a mixture model. These methods, however, struggle with identifiability and rely on

penalization or informative priors to obtain reasonable estimates. In addition, none

of the methods specifically account for the inherent assay variability, which has been

shown to encompass a three-fold dilution range.

To account for this measurement error and utilize the full data set of bin counts, we

propose a Bayesian semiparametric method to handle both single-year and multiyear

studies. Similar to the previous mixture model methods, we model the wild-type dis-

tribution parametrically. Because less is known about the non-wild-type distribution,

the proposed method uses a Dirichlet Process mixture model for the non-wild-type

distribution. By accounting for measurement error we are able to impose biological

constraints on the degree of overlap between the two underlying true distributions.
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In doing this, we maintain identifiability. The feasibility of this approach and its

improved precision and accuracy are demonstrated through simulation studies and

an application to a real data set.
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1. INTRODUCTION: ASSESSING THE PREVALENCE OF
ANTIMICROBIAL RESISTANCE

1.1 Background

Antimicrobial resistance (AMR) is a natural phenomenon that has been acceler-

ated through the overuse and misuse of antimicrobials in both humans and animals.

AMR is now a major threat to the effective prevention and treatment of bacterial

infections. In fact, the World Health Organization (WHO) recently predicted that

the number of deaths from AMR will increase from 700,000 to 10 million by the year

2050 [Freedman, 2019]. If correct, AMR would become the leading cause of death

among humans surpassing cancer, heart disease, and diabetes.

Relative to higher level organisms, bacteria evolve at a very fast rate. Each bac-

terium is made up of many different genetic variations, or strains. As these strains

evolve through mutations, they develop resistance to various antibiotics. In fact,

some strains of Staphyloccus aureus, Escherichia coli, and Clostridium difficle show

resistance to virtually all tolerable antibiotic treatments.

The increase in AMR is due in part to the limited development of novel antimi-

crobials. According to Jinks [2017], the last new class of antibiotic was developed

in 1984, with all “new” antibiotics since then just variations of previously developed

drugs. Much of this can be attributed to the economic challenges that discourage

the development of novel antibiotics. In a recent podcast, comparative pathobiologist

Mohammed Seleem claimed that it can cost up to $2 billion and require as many as

15 years of research to produce a new antibiotic. Given that patients typically only

take an antibiotic for a short amount of time, usually in intervals of 5, 10, or 15 days,

recouping these development costs is slow. In contrast to therapies treating long-term

chronic conditions, the economic model for antibiotics is not lucrative [Seleem, 2020].
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Because novel antibiotic development lacks the economic incentives found in other

areas of drug development, other approaches have been considered. For example,

antibiotic “cocktails” have emerged as an effective treatment approach [Nield, 2018].

With this approach, a clinician prescribes several different antibiotics simultaneously

to combat a single infection. Unfortunately this strategy can backfire. A recent study

involving a two-drug cocktail revealed an increased chance of resistance to the second

drug when already resistant to the first [Liu et al., 2020, Weintraub, 2020].

Given the dire predictions and the relative shortage of novel antibiotics, AMR

monitoring is paramount. According to Fuhrmeister and Jones [2019], the three

motivations for AMR monitoring are to (1) define the scope of AMR, (2) develop

interventions to improve antimicrobial use, and (3) decrease the resistance selection

pressure. Each of these motivations relies on there being adequate methods to mea-

sure AMR. That is the focus of this dissertation.

1.2 Monitoring AMR

When a patient arrives at a clinic or hospital suffering from an unknown bacterial

illness, an antimicrobial assay is typically performed. This assay determines the

potency levels of a variety of drugs needed to kill off or deter the growth of the cultured

microorganism, or isolate. The smallest concentration of a drug that will deter the

growth of the isolate is known as the minimum inhibitory concentration, or MIC.

Some assays directly estimate this concentration, while others provide a proxy for

this concentration. This general process is called antimicrobial susceptibility testing

(AST).

There are two general goals of AST: (1) to predict the outcome of treatment

using common dose levels of antimicrobial agents and (2) to guide the clinician in the

selection of the most appropriate agent for a particular clinical problem [Turnidge,

2015]. In turn, collectively monitoring the growth of resistance among the isolates

tested helps to assess the effectiveness of certain treatment policies and decide whether
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additional mitigation measures need to be taken. It also provides information to

the government and could be used to enhance incentives. The Centers for Disease

Control and Prevention (CDC), for example, uses lab results collected from hospitals

and clinics to detect new infectious threats, to track trends, and to collaborate with

appropriate responders [CDC, 2020].

Figure 1.1 is an example of one such collection of assay results for E. coli treated

with Ampicillin. The assay summarized here considers two-fold dilutions of the drug

so the results are usually summarized on the log base 2 scale as integers. Each bar

in Figure 1.1 represents the count of isolates whose growth was first inhibited at

this concentration (i.e., the observed MIC). It is very common for this collection of

observed MICs to be multimodal.

Source: EUCAST (03−19−2020)
log2(MIC)
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Figure 1.1. Clinical results from the European Committee on An-
timicrobial Susceptibilty Testing (EUCAST) for E. coli treated with
Ampicillin up until 2020. The vertical axis displays the count and the
horizontal axis corresponds with the observed log2(MIC) results.

When studying AMR, the underlying distribution of observed MIC results is con-

sidered a mixture of two subpopulations. On the left, is the wild-type (WT) subpop-
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ulation, which is a collection of isolates made up of those strains with no acquired

resistance mechanisms (i.e., the natural population). The non-wild-type (NWT) sub-

population is a collection of isolates on the right, which represent the mutant strains

that have developed antibiotic resistance.

If we denote the probability distribution function for the wild-type as fWT (Y ) and

the non-wild-type probability distribution function fNWT (Y ). The mixture distribu-

tion is

f(Y ) = πfWT (Y ) + (1− π)fNWT (Y )

where π represents the prevalence of the WT isolates. The goals of AMR monitoring

depend on the accurate estimation of π and fWT .

Over time, mutations cause phenotypic changes, thereby altering this mixture of

observed assay results. The natural (WT) distribution remains the same [Kahlmeter

et al., 2003], but the WT prevalence likely decreases. This, in turn, means that

the NWT distribution gains new isolates that may alter its shape. We will use this

description of evolution in Chapter 4 when we consider methods for monitoring AMR

over time.

Note that these evolutionary changes occur on two levels: Genotypic and phe-

notypic. Our focus is on phenotypic changes detected by the assay. Results may

appear identical phenotypically, even though the strains differ genetically. Also note

that this mixture model is not appropriate for a species that is intrinsically resistant

to a drug or shows “hypersusceptibility” creating a subpopulation to the left of the

WT distribution [Harrison et al., 2019, Roemhild et al., 2020]. Discussion on how to

handle the latter, albeit rare, situation can be found in the concluding chapter.

1.3 Minimum Inhibitory Concentration (MIC) Assay

To model a collection of assay results, we must first understand the properties of

the assay being used. This dissertation focuses on the most common AST assay, the

dilution assay. This assay considers several drugs at once and for each assesses the
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inhibitory strength of a set of two-fold drug concentrations. The result of the assay

is the smallest two-fold dilution that visibly inhibits growth. This is an estimate of

the MIC, explaining why it is often called the MIC assay [Zhou et al., 2009].

The assay is performed using a 96-well plate (Figure 1.2). Each well contains the

isolate and some broth for sustenance. The wells in each row are serially diluted with

a specific drug and then the plate is incubated for 16-20 hours in a temperature of

35◦ − 37◦C. Afterward, each row in the plate is read by a clinician or machine to

determine the dilution with the first non-cloudy well in the row. This is the dilution

that has hindered growth.

Figure 1.2. In the figure above, each row represents a different
“drug/bug” combination. The first non-cloudy well in the row (read
right to left in the figure) is declared the MIC.

There are two types of panels for the MIC assay: “limited” and “broad.” This

dissertation only focuses on results from the “broad” panel. Vendors offer “limited”

panels that consider a smaller number of concentrations (i.e., 2 to 5) in order to look at

more antimicrobials at once. The “broad” panel typically considers 12 concentrations;

the same as the number of columns of a 96-well plate.
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1.3.1 Assay Properties: Interval Censoring

For each tested isolate, we can consider there being an underlying, continuous con-

centration X∗ that will hinder growth. Because only 12 concentrations, C1, C2, ..., C12,

are used in the assay, the first concentration greater than this value of X∗ is the assay

result Y . Thus, the observed MIC value is linked to this continuous concentration as

follows:

Y =


C1 if X∗ ≤ C1

Cj if Cj−1 < X∗ ≤ Cj for j = 2, ..., 11

C12 if X∗ > C11

Except for the two extreme bins, the relationship is simply

Y = dX∗e

where d·e denotes the ceiling function.

1.3.2 Assay Properties: Variability

To further understand Figure 1.1, we must consider the inherent variability of the

MIC assay. Table 1.1 is an example of quality control (QC) data collected by the

National Committee on Clinical Laboratory Standards (NCCLS), a precursor to the

Clinical and Laboratory Standards Institute (CLSI). It summarizes the assay results

of the same isolate analyzed 50 times in each of 10 labs around the United States.

There is a common three-fold dilution range within a lab and comparable, but not

identical, results across labs.

This three-fold range of results suggests that measurement error (ME) is a non-

ignorable component of the MIC assay. Its incorporation into MIC analyses traces

back to Craig [2000] and its impacts are discussed in Annis and Craig [2005a,b]. They

consider X∗ to be the sum of a true MIC value X and a Normal random variable δ
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Table 1.1.
Repeated measurements of the same quality control isolate of E. coli
ATCC 25922 at 10 different laboratories. This table from Annis and
Craig [2005b] illustrates the existence of assay variability. There is
both within-lab (within row) and between-lab (within column) vari-
ability.

Observed MIC
Lab −8 −7 −6 −5
I 8 36 6 −
II 6 41 3 −
III 7 32 11 −
IV − 48 2 −
V 2 48 − −
V I − 33 17 −
V II 7 41 2 −
V III − 15 35 −
IX − 33 16 1
X 1 35 14 −

Combined 31 362 106 1

that represents this within-lab variability. The observed MIC can then be expressed

as

Y = dX + δe

where δ ∼ N(0, σδ). Current monitoring methods focus on the mixture distribution

in terms of X∗. The inclusion of ME and describing the mixture distribution in terms

of X is a major motivator for this work.

The results of Table 1.1 also suggest that there is between-lab variability. At this

time, however, MIC collections do not identify the lab so this and other sources of

variability (e.g., technician and day) are all confounded with the within-lab effect.

Because of this, we treat the collected results as if they are from one lab in this

dissertation.
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1.4 Semiparametric Mixture Model

In Section 1.2, we described the mixture distribution under consideration on the

observed MIC (integer) scale. Having now linked a latent variable X∗ to each Y , we

can also describe the mixture model in terms of continuous densities. Specifically,

f(X∗) = πfWT (X∗|θWT ) + (1− π)fNWT (X∗|θNWT )

For the remainder of this dissertation, we use θWT , θNWT , and π to represent the

WT distribution parameters, NWT distribution parameters, and WT distribution

prevalence, respectively. It is on this scale that all current methods fit their models.

Given that X∗ = X + δ, we describe the mixture density on the true latent scale

as

f(X) = πfWT (X | θWT , σδ) + (1− π)fNWT (X | θNWT , σδ)

Notice that the ME standard deviation σδ is now an additional parameter of both

the observed WT and observed NWT distributions. We conclude this section with

a brief discussion on the difference modelling the mixture on the X∗ and X scales

but first provide some details on the models used to represent the two subpopulation

distributions.

1.4.1 Wild-Type Distribution

On the concentration scale, the observed WT distribution is typically modeled

using a logNormal distribution. The distribution’s flexibility is described in both Lee

and Whitmore [1999] and Craig [2000]. More recently, other distributions have been

proposed, specifically the gamma distribution [Jaspers et al., 2014a]. This distribution

can be justified as the selective sampling from a logNormal where those infected with

low MIC isolates are less likely to get tested.
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Because we will focus our analysis on the log base 2 scale, we will consider the

Normal and log2gamma distributions for the WT distribution. Properties of each

distribution that we use in this research are detailed in Appendix A.

1.4.2 Non-Wild-Type Distribution

The first modelling of the true latent MIC distribution was done as part of a

diagnostic test calibration method [Craig, 2000, DePalma and Craig, 2018]. They used

a mixture of Normals, where the number of components was an additional unknown

parameter. Later Qi [2008] considered modeling this distribution using M-splines.

These two versions of nonparametric modeling were used because the researchers had

little a priori knowledge of the distribution shape and wanted a flexible approach to

describe the multimodal distribution.

Although none of these methods specifically considered the true latent MIC dis-

tribution as a mixture of a WT and NWT distribution, the reasoning and approaches

for modelling the NWT distribution in the context of monitoring AMR are similar.

Both Jaspers et al. [2014b] and Grazian [2019] use a mixture of Normals with an un-

known number of components to describe the NWT distribution of X∗. Jaspers et al.

[2016a] use penalized B-splines (i.e., P-splines). In our approach will also consider

the true NWT distribution as a mixture of Normals. Details of this model can be

found in Chapter 3.

1.4.3 Inclusion of Measurement Error

As mentioned in the beginning of this subsection, current methods focus on es-

timating the WT distribution and its prevalence on the X∗ scale. We, on the other

hand, separate out ME and model the WT distribution on the X scale. The im-

pact that this deconvolution has on the resulting estimates depends on the choice of

distribution for the WT.
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When the true WT distribution is Normal or X ∼ N(µWT , σWT ), X∗ becomes

a Normal with mean µWT and standard deviation
√
σ2
WT + σ2

δ . There is no change

in distributional form but the variance of the resulting Normal distribution is larger.

Estimation of π and µWT are therefore unaffected.

When the true WT distribution is log2gamma or X ∼ log2gamma(α, β), inclusion

of Normal ME means that the resulting distribution of X∗ is neither log2gamma nor

Normal. It is an example of a convolution whose density function is an intractable

integral where gX is the latent true WT density and h is the ME density:

fX∗(z) =

∫ ∞
−∞

gX(s)h(z − s)ds

This means accounting for ME is necessary to estimate θWT accurately. Approxi-

mating f(X∗) as a log2gamma will lead to biased results. In Figure 1.3, densities of

the convolution of a log2gamma with various levels of measurement error show that

the distribution becomes increasingly Normal with larger σδ.
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Figure 1.3. This figure shows how the pdf of a log2gamma with α =
2.9686 and β = 4.0526 becomes convolved with Normal ME. The
different densities correspond with increasing values of σδ. As σδ
grows the distribution becomes more Normal.
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1.5 The Epidemiological Cut-Off Value

In addition to monitoring changes in prevalence over time, microbiologists are in-

terested in determining a value that effectively distinguishes the WT isolates on the

left from the NWT isolates on the right. Initial efforts to establish this breakpoint

resulted in different organizations and experts proposing competing values that par-

titioned the range of observed MIC values. These “eye-balled” partitions demarcated

where the WT distribution ended and the NWT distribution began. In 2003, Kahl-

meter et al. discussed the need for a unified value that was better suited for AMR

monitoring. They proposed the Epidemiological Cut-off value (ECOFF) to be the

threshold MIC value for declaring an isolate as phenotypically resistant [Kahlmeter

et al., 2003]. It has become the standard, although in the CLSI documentation is

often abbreviated as ECV.

It is important to distinguish the ECOFF from what is known as a clinical break-

point. Clinical breakpoints divide the MIC distribution into regions of susceptible

and resistant isolates. They take into account how the human body handles the drug

(i.e., the pharmacodynamics). ECOFFs are used to detect emerging resistance mech-

anisms but do not necessarily imply resistance. In the EUCAST system, for example,

a clinical breakpoint is a concentration that is at least an ECOFF. Monitoring of

resistance can use either or both values, depending on the purpose of surveillance. As

this dissertation is concerned with statistical estimation of the mixture distribution,

its focus is on the ECOFF.

The development of the ECOFF marks a movement away from eye-balling his-

tograms to one of modelling a distribution. For example, Turnidge et al. [2006]

proposed the ECOFF as the 99.9th percentile of the observed WT distribution. De-

termining this quantity provides motivation for statistical estimation of the WT dis-

tribution [Turnidge et al., 2006]. Thus the observed ECOFF is a function of θWT

and σδ. This is a scientific improvement over visual inspection of histograms as it is

more reproducible and less subjective.
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There is a model-based alternative to the ECOFF [Jaspers et al., 2014b, 2016a].

It relies on an estimate of the entire mixture distribution rather than just the WT

distribution. Denoting the observed continuous WT distribution cumulative distri-

bution function (cdf) as FWT and the cdf of the overall mixture as F , the probability

that isolate i with an observed MIC value of Cj is WT is

P (WT | Yi = Cj) =
π[FWT (Cj)− FWT (Cj−1)]

F (Cj)− F (Cj−1)

Through a threshold probability, such as 0.5, an isolate with observed MIC can be

classified as WT or NWT.

1.6 Layout of dissertation

In Chapter 1, the importance and challenge of monitoring AMR using the MIC

assay has been explained along with a description of the underlying mixture model. In

Chapter 2, we describe the monitoring methods currently in the literature, discussing

both their strengths and weaknesses. This is followed by a detailed description of

our proposed method for both single-year (Chapter 3) and multiyear (Chapter 4)

analyses. Each chapter outlines the model and estimation algorithm. Each chapter

also includes a simulation study to compare our approach with those described in

Chapter 2. We conclude with a summary of the research contributions along with

some future research in Chapter 5.
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2. OVERVIEW OF EXISTING METHODS

In this chapter, we detail the current AMR monitoring methods. We start with subset

methods, which use only a fraction of the bin counts to estimate the parameters of

interest. This is followed by a discussion of methods that use all the bin counts and

estimate an entire mixture distribution. These latter methods all consider a semi-

parametric mixture model like the one outlined in Chapter 1. The differences in the

methods are the estimation and the approach to nonparametric density estimation.

When describing all methods, we denote the collection of clinical results as the bin

counts, m1,m2, ...,mJ (
∑

jmj = Ntot) for concentrations C1, C2, ..., CJ , respectively.

It is assumed that these counts result from the censoring of a continuous observed

MIC mixture distribution, f(X∗), with the WT distribution on the left. The goal is

to estimate the parameters for the WT distribution and the WT prevalence.

2.1 Subset Methods

The subset methods take advantage of the fact that the left-most bin counts are

almost entirely from the WT distribution. By focusing on these bins, these methods

avoid the contamination by the NWT distribution on the right. The key differences in

the two approaches are the method of estimation and the heuristic used to determine

how many bins on the left to include.

2.1.1 Turnidge et al. Method

This method is by far the most straightforward and widely-used AMR monitoring

approach, largely because it is available for download as an EXCEL macro on the

European Committee on Antimicrobial Susceptibility Testing (EUCAST) and Clin-
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ical Laboratory and Standards Institute (CLSI) websites. The method fits a scaled

continuous WT distribution to the cumulative counts of the K left-most bins using

non-linear least squares. Denoting Bj =
∑j

j′=1mj′ as the cumulative count from the

left for bin j, this approach finds θWT and N (rather than π) that minimizes:

h(N,θWT ) =
K∑
j=1

[Bj −N · FWT (Cj;θWT )]2

where FWT is the cdf of the continuous WT distribution. The prevalence estimate

is π̂ = N̂
Ntot

. The Excel macro, ECOFFfinder, uses the Solver function available in

the Excel Analysis add-on to do this estimation/minimization. We, instead use the

R programming language and a constrained BFGS optimization procedure.

The heuristic for determining K is to search over incremental subsets of bins

and choose the subset that minimizes |BK − N̂ |. Turnidge et al. [2006] mention that

typically, but not always, the K that minimizes |BK−N̂ | corresponds with the subset

that maximizes the absolute values of the standardized WT parameter estimates.

When this was not the case, it was argued that differences in the estimated θWT are

minimal.

The method starts with those bins on the left up to the first bin to the right of

the mode. It then iteratively adds a bin on the right and reestimates. For example,

Figure 2.1 highlights the bins in green that are used in the first subset. The additional
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Figure 2.1. The shaded green area denotes the selected bins used in
estimation of the wild-type parameters and prevalence.
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bin highlighted in blue is added for the second subset, and so on. All remaining bins

on the right are omitted from estimation.

Because N is an estimate of the number of isolates that are WT, this heuristic

does very well when the WT and NWT distributions do not overlap and struggles

when there is overlap. An alternative heuristic we consider in our simulation study

is to always choose K to be the first bin after the first mode. This heuristic is less

susceptible to contamination.

2.1.2 Jaspers et al. Method

This subset method cleverly converts the subset selection problem into a model

selection problem. It selects among a series of multinomial models where the underly-

ing bin probabilities depend on the WT and NWT distributions. Similar to Turnidge

et al. [2006], the probabilities for the first K bins are based on the WT distribution

and prevalence. The remaining bin probabilities have no restrictions. Maximum like-

lihood estimation is used to fit each model and the one with the lowest AIC is selected

[Akaike, 1974]. Jaspers et al. [2014a] also use the AIC to choose between the Nor-

mal and log2gamma distributions. Once the distribution is chosen, they recommend

averaging models for different values of K using AIC weights to better estimate θWT .

For each model, the log-likelihood to maximize is

K∑
j=1

mj log(p̃j) +
J∑

j=K+1

mj log(pj) + λ(1−
K∑
j=1

p̃j −
J∑

j=K+1

pj) (2.1)

where the first K probabilities p̃j are

p̃j =

πFWT (Cj;θWT ) j = 1

π [FWT (Cj;θWT )− FWT (Cj−1;θWT )] j = 2, 3, ..., K

(2.2)

and the remaining pj have no constraints except
∑K

j=1 p̃j +
∑J

j=K+1 pj = 1. The full

details of the derivation of the maximum likelihood estimates are in Appendix B.
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Unlike the Turnidge et al. [2006] subset method, this approach also uses the total

count in the bins to the right of K in its estimate of π.

In our simulation study, we alter the starting value of K to be the maximum

of four bins and the number of bins that include the left-most mode. Without this

modification, there is a chance of considering subsets that only use bins to the left of

the first mode.

NWT Density Estimation

Motivated by the desire to use a model-based alternative to the ECOFF, Jaspers

et al. [2014b] also propose a second step that utilizes the remaining J − K bins to

estimate a continuous, observed NWT distribution. This is done using a penalized

mixture of Normals. This approach considers a large number of Normal densities

centered at equidistant locations µq between CK and CJ , each with standard deviation

σq = 2
3
(µq − µq−1). To avoid overfitting, they introduce a penalty term based on the

finite (mth-order) differences of adjacent coefficients. The estimated observed MIC

density is then

f̂(x) = π̂fWT (x | θ̂WT ) + (1− π̂)fNWT (x | θ̂NWT )

2.1.3 Uncertainty Quantification of Estimates

Both subset methods rely upon asymptotic theory or bootstrapping for uncer-

tainty quantification. Bootstrapping is likely to be preferred in practice [Efron, 1981].

In fact, Jaspers et al. [2014a] quantify uncertainty in a simulation study using boot-

strapping.

Bootstrapping would involve resampling with replacement L data sets of size Ntot

and estimating the WT parameters. This is very easy to implement and makes quan-

tification of the observed ECOFF straightforward. While one may be comfortable

relying on asymptotic theory to obtain standard errors of the WT parameters, ob-



5

taining a standard error for the observed ECOFF would require implementing the

delta method.

2.1.4 Limitations of Subset Methodologies

Both subset methods address NWT contamination by trying to avoid it. In

Turnidge et al. [2006], that is literally what they do. In Jaspers et al. [2014a] they

include the last J−K bins, but without any distributional constraints. We argue that

these approaches under-utilize the data, resulting in a loss of precision and possibly

increased bias. In fact, Jaspers et al. [2014a] makes this same point arguing their

approach is best implemented when the WT and NWT distributions have “clear

separation.”

Another crucial omission is that neither of these methods addresses measurement

error. Both methods focus estimation on the latent observed MIC distribution as-

suming this distribution is either Normal or log2gamma. Outside of the Normal case,

the inclusion of Normal measurement error alters the resulting latent observed MIC

distribution. Not taking this into account will likely lead to biased estimates of θWT .

2.2 Semiparametric Mixture Model Methods

The remaining methods all consider fitting the mixture model

f(X∗) = πfWT (X∗ | θWT ) + (1− π)fNWT (X∗ | θNWT )

to the collections of observed MIC results. In each approach, fNWT is modelled

nonparametrically and fWT is considered Normal. The approaches again differ in

terms of estimation approach and choice of nonparametric model.
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2.2.1 Frequentist Mixture Model

Recognizing the limitations of their earlier work where separate bin regions were

used to estimate the WT and NWT distributions, Jaspers et al. [2016b] consider joint

estimation. The joint estimation is accomplished through an iterative algorithm of

updating the estimates for θWT and the weights (including π) for the NWT distri-

bution.

Similar to Jaspers et al. [2014b], they consider a “generous” number of equidis-

tant Normal components to describe the NWT distribution, but this time they span

the entire range of concentrations. Nonparametric maximum likelihood estimation

(NPMLE) is used to determine the mixing weights and WT prevalence given the es-

timates for θWT . Standard maximum likelihood is used to estimate θWT given the

mixing weights. They recommend using the Jaspers et al. subset method to obtain

initial values of θWT and start with the estimation of WT prevalence and the NWT

mixing weights.

Limitations

From the paper discussion, it appears identifiability is a key issue with this method.

Jaspers et al. [2016b] write that “...upon convergence, [WT prevalence] was occasion-

ally decreased to zero and replaced with several nonparametric components.” An ad

hoc remedy is proposed that uses the knowledge of σ̂obs (the observed WT standard

deviation) from the subset method to add a penalization term. It is not clear how well

their recommended penalization weight generalizes beyond the scope of the examples

they discuss in their paper.

Currently, this approach is only described for the Normal WT distribution case.

While measurement error does not impact the estimation of π and µWT and the ob-

served ECOFF in the Normal setting, it would in other cases. Finally, the means and

standard deviations in the components for the NWT distribution are pre-specified.
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To offer more flexible modelling these parameters should be estimated jointly with

the mixture weights.

2.2.2 Bayesian Mixture Models

Stijn Jaspers also led the development of a Bayesian semiparametric mixture

model method. Following a similar set-up to the frequentist approach, this method

focuses on a Normal WT distribution. Instead of considering a mixture of Normals for

the NWT distribution, this method uses penalized B-splines (i.e., P-splines). They

create a finer grid on the interval of C1 to CJ , where each subinterval goes from χi−1 to

χi, i = 1 to I (e.g., I = 100). While the probability of the observed WT distribution

in each subinterval is known, the probability associated with the NWT distribution

is not. Thus, they use equally-spaced B-splines to fit a smoothed distribution over

this grid. These bin probabilities are:

π[Φ(χi;µWT , σobs)− Φ(χi−1;µWT , σobs)] + (1− π)
exp(ηi)∑I
i=1 exp(ηi)

where the ηi are a product of the B-splines evaluated at the midpoints of the finer

grid and the spline coefficient for subinterval i denoted φi. A penalty is placed on

the vector of spline coefficients, φ, to have a smoothing effect on adjacent spline

coefficients. Following the literature of Lang and Brezger [2004], the P-spline penalty

is based on the rth order differences of the spline coefficients, ∆rφ ∼ N(0, τ−1/2). For

the NWT distribution a Gamma prior placed on τ and an improper prior is specified

for φ | τ .

Similar to the frequentist mixture model, this model has an identifiability problem

in regards to ensuring that the WT distribution accounts for almost all the density

on the left. As a remedy, they consider “relatively” informative priors on µWT , σobs,

and π. Specifically,

µWT ∼ N(µµ, σµ)
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σobs ∼ InvGamma(ασ, βσ)

π ∼ Beta(απ, βπ)

where each of these prior parameters are based on the estimates obtained from the

Jaspers et al. [2014a] subset method. The point estimates determine the mean of the

corresponding prior distribution and the standard deviations were set to be slightly

larger than the estimates of the standard errors at a sample size of 500.

The computation uses a Langevin-Hastings algorithm within Gibbs scheme. A

Langevin-Hastings algorithm is akin to a Metropolis-Hastings algorithm, but brings in

gradient information about the target posterior with the hopes of improving efficiency

[Liang et al., 2011]. Jaspers et al. [2016a] direct the specific computational details to

Atchadé et al. [2005], Haario et al. [2001], Lambert and Eilers [2009].

For illustration, an example is shown in Figure 2.2. This example involved 5000

MIC values from a mixture of three Normals with mean vector, µ = (2.0, 4.5, 7.5),

standard deviation vector, σ = (0.8, 0.7, 0.6), and weights w = (0.6, 0.2, 0.2).
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Figure 2.2. This histogram produced using from Simulation 1 of
Jaspers et al. [2016a] at size 5000 with estimated density curves.

The first component in each of the three vectors refers to the WT distribution. In

Figure 2.2, the blue dashed curve is the posterior mean for the WT distribution. The

black dashed curve is the estimate of the mixture density. The green curve is the true

density.
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There are other Bayesian mixture models, but the approaches are fully nonpara-

metric. The general idea is to fit the distribution with a finite Normal mixture model

first proposed in Craig [2000] where the number of components was either known or

estimated. Grazian [2019] places a default prior on the number of components to

allow for a “flexible parametric” model. Thus, it follows the framework of modelling

the NWT distribution as a mixture of Normals. As this method is described in a

pre-print, the details of this method are likely to change. It does use a different prior

than is required in other set-ups [DePalma and Craig, 2018].

Limitations

Others have noted that the use of P-splines can struggle to fit in a mixture with a

peaked long tail. In that case, it may require additional smoothing parameters [Jullion

and Lambert, 2007, Lambert and Eilers, 2009]. Similar to the other methods, this

approach ignores ME. Because it only considers a Normal WT distribution, ME has

no effect but the approach cannot be easily generalized.

There is an identifiability issue with the location of the WT and NWT distribu-

tions. This method makes the identifiablility of the WT component dependent solely

on the priors for π and θWT . There is no condition preventing a spurious NWT

component from forming to the left of the observed WT distribution.

Given that the NWT distribution is only defined on a finite grid, the WT dis-

tribution should be as well. This means they ought to consider a truncated Normal

between C1 and CJ . This is not done in the current algorithm so this method will

struggle if the WT distribution left tail goes considerably off the grid.

2.3 Summary

The methods available for AMR monitoring can be broken into two groups: subset

methods and mixture model methods. Subset methods, while simple and easy to

implement, do not take full use of the data and are focused solely on estimation of the
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WT distribution and its prevalence. These approaches work very well when the two

subpopulations are clearly separated, but may struggle when there is contamination.

Mixture models, on the other hand, attempt to fit the entire distribution. Thus,

they are better equipped to handle NWT contamination. The hopes are in that fitting

the entire distribution, there can also be improvements in the estimation of the WT

distribution and the ability to make comparisons across the two subpopulations.

Modelling this mixture, however, is complicated by the discrete nature of the data

and current methods all have issues with identifiability. In fact, Jaspers et al. [2016a]

discuss this issue for their two semiparametric approaches. Current workarounds

require penalties and informative priors.

Finally, all the approaches described in this chapter focus on modelling the latent

observed MIC distribution X∗. Given that ME is present in this assay, it makes more

sense to deconvolve this ME from the true latent WT distribution. This guarantees

a proper modelling of the distribution of X∗ when X is non-Normal.
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3. WILD-TYPE DISTRIBUTION AND PREVALENCE
ESTIMATION VIA A BAYESIAN SEMIPARAMETRIC

MODEL: ACCOUNTING FOR CONTAMINATION AND
MEASUREMENT ERROR (BAYESACME)

In this chapter, we discuss our novel Bayesian semiparametric approach to single-

year AST monitoring. We begin with a description of the model, followed by an

outline of our estimation approach and a description of our WT distribution selection

method. We then summarize an extensive simulation study comparing the perfor-

mance of our method with the methods described in Chapter 2. The study considers

various combinations of sample size, degree of measurement error, and amount of

overlap between the latent true wild-type (WT) and non-wild-type (NWT) distribu-

tions. We conclude the chapter with an application to a real data set.

3.1 BayesACME: The Motivation

Similar to the mixture model approaches in Chapter 2, we consider there to be

a latent continuous mixture distribution of observed MICs. Unlike these previous

methods, we directly account for measurement error (ME), thereby allowing us to

deconvolve this observed distribution into a latent true MIC distribution and a con-

tinuous ME distribution.

This deconvolution is important because it allows us to (1) properly model the

continuous observed MIC distribution when the true WT distribution is non-Normal

and (2) incorporate biological information into the prior of the mixture model. Specif-

ically, we can maintain the proper ordering of the WT and NWT distributions, with

overlap only occurring in their right and left tails, respectively. We can also limit the

amount of overlap. We do this through the prior of the NWT distribution, thereby al-

lowing us to maintain weak prior information on θWT and π; something the Bayesian

method proposed in Jaspers et al. [2016a] could not do.
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3.2 Model

As with the other mixture model approaches, the observed bin counts, m1, ...,mJ

are assumed to arise from a multinomial distribution:

m1, ...,mJ ∼Multinomial(Ntot, p1, ..., pJ)

where

pj =

∫ Cj

Cj−1

(πfWT (s) + (1− π)fNWT (s))ds

The Cj represent the assay concentrations with C0 = −∞ and CJ =∞.

As with other methods, the densities fWT and fNWT represent the continuous ob-

served MIC distributions that have been convolved with measurement error. The sub-

set methods described in Chapter 2 assume fWT is either Normal or log2gamma. The

mixture model methods assume fWT is Normal with the NWT distribution described

nonparametrically as either a mixture of Normals or a combination of P-splines.

We, however, deconvolve this observed continuous response into a combination of

signal and noise, specifically X∗ = X + δ. This deconvolution means the observed

distribution f(·) is now convolution of a ME density h(·) and true MIC distribution

g(·). In other words,

f(X∗) =

∫ ∞
−∞

h(s)g(X∗ − s)ds

Thus, the θWT and the θNWT in our approach represent the parameters of the true

MIC distributions. We consider both the Normal and log2gamma distributions for

gWT and assume gNWT is a mixture of Normals.

This decomposition also motivates an alternative expression of the model. For

computational convenience, instead of X∗i we introduce latent values Xi and δi to

correspond with each Yi. We also consider an indicator ci, which denotes if isolate i

is WT or not.
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This allows us to specify the model as follows:

ci ∼ Bernoulli(π)

Xi ∼ (gWT (Xi))
ci(gNWT (Xi))

1−ci

δi ∼ N(0, σδ)

Yi = dXi + δie

The benefit of this model specification is that it makes working with non-Normal

WT distributions far more straightforward. The likelihood can be expressed as

Ntot∏
i=1

h∗(Yi | Xi, σδ)g(Xi | θWT ,θNWT , ci)p(ci | π)

where p is the Bernoulli pmf, g is either the Normal or log2gamma pdf, and h∗ is

a truncated Normal density. Because the truncated Normal is awkward to work

with, we include the latent δ (with the restrictions Yi = dXi + δie) in our estimation

approach. As a result, the set of unknowns, {X, c, δ, π,θWT ,θNWT , σ
2
δ}, is large but

estimation is much more computationally straightforward.

3.3 Estimation

For estimation, we take a Bayesian approach. The hierarchical structure of our

model naturally fits this paradigm and the use of priors allows us to ensure biological

realism, such as the WT distribution is to the left of the NWT distribution. We

are also able to utilize quality control data to set an informative prior for σ2
δ . The

other advantage of a Bayesian approach is that the uncertainty of the parameters and

functions of parameters (i.e., the observed ECOFF) is readily available.
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3.3.1 Priors for the WT Parameters

For the WT distribution, we consider the Normal and log2gamma distributions.

In both cases, we consider the use of Jeffreys priors. For the Normal distribution,

this means

p(µWT ) ∝ 1

and

p(σ2
WT ) ∝ 1

σ2
WT

For the log2gamma distribution, this means

p(α) ∝
√
ψ(1)(α)

and

p(β) ∝ 1

β

where ψ(1) is the trigamma function.

For the prior on the WT prevalence, π, we consider

π ∼ Unif(0.5, 1.0)

The lower limit of 0.5 was chosen because all the species considered in this dissertation

are majority WT. The prior, however, can be generalized to π ∼ Unif(0.0, 1.0).

3.3.2 Prior on σ2
δ

As discussed in Chapter 1, the variance for the latent true WT distribution and

the ME variance are confounded when the true WT distribution is Normal. The

skewness of the log2gamma distribution and symmetry of the Normal measurement

error enables a nonparametric deconvolution, but the information about the latent

true distribution is rather weak [Delaigle et al., 2016]. One strategy for modelling ME
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is treating σδ as an additional unknown parameter. Thus, it requires an appropriate

prior.

The method detailed in van de Kassteele et al. [2012] proposes non-informative

priors on the two variance components, but identifiability issues will emerge between

the two components. Quality control data, like that in Table 1.1, provide information

on the between-lab and within-lab variabilities one might expect to see in a study.

By leveraging QC data, an informative prior for σ2
δ is justifiable.

For the purposes of a realistic simulation study, plausible values of σδ must be

considered. The first example of QC data is E. coli ATCC 25922 and they produce

an estimated value of σ̂2
δ = 0.19. The second example of QC data is S. aureus ATCC

29213 and they produce an estimated value of σ̂2
δ = 0.32. Thus, we consider the prior

σ2
δ ∼ InvGamma(αδ = 17, βδ = 4). This distribution has a mode at 0.25. A value

of 0.16 corresponds roughly with the 30th percentile and a value of 0.36 is the 86th

percentile. In contrast, the prior proposed in Craig [1999] was σδ ∼ Gamma(α =

6.007, β = 12.015). These two densities for σδ are displayed in Figure 3.1. The density

for the prior from Craig [1999] has a mode slightly to the left of the proposed prior’s

mode and much heavier tails.

σδ

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Proposed Prior
Craig (1999) Prior

Figure 3.1. Proposed prior density and the previous prior from Craig
[1999] used to describe the ME standard deviation σδ.
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3.3.3 Prior for the NWT Parameters

The NWT distribution is often multimodal with an unknown number of com-

ponents. We address this by using a mixture of an unknown number of Normals.

Specifically, we use a Dirichlet Process Mixture Model (DPMM) for the NWT dis-

tribution [Escobar and West, 1995]. There are, however, modifications made for this

particular application. We discuss these as they arise in our description of the DPMM.

A DPMM with a Normal kernel denoted as N(· | θi) can be expressed as [Ross

and Markwick, 2018]

Xi ∼ F

F =
k∑
i=1

wiN(Xi | θi)

θi ∼ G

G ∼ DP (αconc, G0)

αconc ∼ Gamma(α0, β0)

G0 = N(µB | µG0 , σ0)InvGamma(σ2
B | α1, β1)

Here θi represents the mean and variance of mixture component i. The collection

of these k θi’s and their associated weights comprise the parameters in θNWT . To

implement a DPMM, one must choose a suitable base distribution G0 and either a

set value or prior for the concentration parameter αconc. For the base distribution, we

utilize a semi-conjugate Normal-Inverse Gamma distribution. This allows for greater

flexibility than the fully-conjugate Normal-Inverse Gamma distribution by allowing

the variance of µB to be independent of the variance σ2
B [Görür and Rasmussen, 2010].

To ensure the NWT distribution is to the right of the WT distribution and to

address the non-identifiability of components within a mixture model, conditions are

built into the base distribution. First, we set a lower limit, referred to as A, for the

means of these components. In doing so, this guarantees that the NWT distribution

is to the right of the WT distribution. Second we provide some control on how large
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the variances of these components can be through the prior on σ2
B. Thus our base

distribution is

G0 = TrN(µB | A,∞, µG0 , σ0)InvGamma(σ2
B | α1, β1)

We build in these constraints because we assume that most of the apparent overlap

between the WT and NWT distributions is due to ME and censoring. For this reason,

we choose a value for A that is far in the WT right tail. Currently, we use the ECOFF

of the true WT distribution. For the Normal case this means

A = µWT + Φ−1(0.999)σWT ≈ µWT + 3.09σWT

and in the log2gamma case with gamma distribution cdf F ,

A = log2(F
−1(0.999;α, β))

We also restrict the variances of the Normal components through their prior to

limit the degree of overlap. Specifically, we restrict the overlap to primarily occur

in the left tail beyond one standard deviation from the mean. These restrictions are

displayed graphically in Figure 3.2 using a single Normal distribution for the NWT

distribution. Only 1% of the Normal component is within one standard deviation of

the WT mean.
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Figure 3.2. This figure demonstrates the worst case contamination
occurring on a latent true level in the Normal case.
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In the Normal case, we can determine this upper limit for the variance by finding

σ such that
µWT + σWT − A

σ
= Φ(0.01)

This turns out to be

σ =

(
Φ−1(0.999)− 1

Φ−1(0.99)

)
σWT ≈ 0.9σWT

which we set as the 97.5th percentile of the prior.

The log2gamma case adheres to the same approach but considers the 84th per-

centile Q rather than one standard deviation from the mean. Thus, the upper limit

for the variance is the solution to the equation

Q− A
σ

= Φ(0.01)

and the prior for variance can be set accordingly.

In both WT distribution cases, we also want to ensure these variances from being

too small. Although this to some degree is controlled by the concentration parameter

αconc, we also set the 7.5th percentile of the variance prior to be roughly σδ/2.

Both of these restrictions on G0 require knowledge of the WT distribution and

σδ, unknowns we are trying to estimate. As a result, we use the data to obtain

estimates that are then held fixed in our algorithm. Our current estimation procedure

is described in the next section.

A gamma prior for the concentration parameter αconc is common. Balancing a

low level of certainty in the base distribution with a desire to avoid having too many

NWT mixture components (for computational efficiency), a gamma prior with mean

1.250 and standard deviation 0.559 is currently recommended.
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3.4 Computation

The general computational strategy for updating the parameters is a Metropolis-

within-Gibbs scheme. First, initial values are determined for θWT , c, σ2
δ , X, and δ.

We then apply our heuristic to set the base distribution of the DPMM. Then we run

through the updates of our MCMC scheme.

3.4.1 Setting Initial Values

For the starting value of σδ, the prior mode is used. For initial values of π and θWT ,

we desire a method that is computationally efficient and robust to contamination. For

this purpose, we consider our modification of the Turnidge et al. method that uses

only the bins on the left up to the mode plus one as the subset for estimation. The

initial values for the WT parameters are denoted as π(0) and θ(0)
WT

. For the variance in

the Normal case, we take the modified Turnidge et al. estimate and subtract our initial

estimate of σ2
δ from it. In the log2gamma case, measurement error is ignored in the

initial values of α and β because any adjustment to α requires an updated estimate of

β. It is possible to modify these estimates for ME, but the computationally affordable

approach is favored for setting initial values that will be later discarded.

We then generate starting values for δ from a N(0, σ
(0)
δ ). The Y are ordered from

smallest to largest and the first dNtotπ
(0)e values are designated as WT (ci = 1) and

the remainder are NWT (ci = 0). The initial values of X for those designated as WT

are generated from a truncated WT distribution using the corresponding values of

δ(0) and Y with parameters θ
(0)
WT .

For the NWT distribution, we start with a single Normal component. The initial

estimates for the NWT X are generated from a truncated Normal using the corre-

sponding values of δ and Y. The parameters for this generation are the sample mean

of the NWT identified Y minus 0.5 and their standard deviation. For the NWT

distribution, there is no adjustment based on σδ because the number of components

will likely increase.
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3.4.2 Setting the Base Distribution

Because the information we need for these restrictions depends on the deconvo-

lution of X∗ into X + δ, we estimate the restriction parameters using the observed

distribution X∗. While the modified Turnidge et al. approach provides adequate es-

timates of µWT and σobs, we need σWT to compute the limit A. Based on our prior for

σδ and estimates of σobs found in the literature, the observed WT standard deviation

σobs is typically 7.5% to 15.5% larger than σWT . Thus, we would want to multiply our

estimate of σobs by a number between 2.61 and 2.86 to estimate A adequately. We

decided on 2.75 so

Â = µ̂
(0)
WT + 2.75σ̂

(0)
obs

Similarly, for the variance prior, we set the 97.5th percentile equal to 0.9 σ̂
(0)
WT

and the 7.5th percentile roughly equal to σδ/2. To eliminate the dependency on the

starting values, we run a 5000 iteration burn-in with BayesACME. This enables a

re-calculation of Â and the prior for the variance components using

ˆ̂
A = µ̂WT + 2.75

√
σ̂2
WT + σ̂2

δ

We then use the updated estimates of θWT , σδ, and
ˆ̂
A to determine updated values

of α1 and β1.

An analogous process exists for the log2gamma distribution. Using the modified

Turnidge et al. approach, we obtain initial estimates of α and β that ignore mea-

surement error. Now we use estimates of the WT mode and standard deviation to

calculate A. The WT mode plus 2.5 times the WT standard deviation roughly ap-

proximates the latent true ECOFF (i.e., the 99.9th percentile). We replace Â above

with

Â = log2(
α̂(0)

β̂(0)
) + 2.5

√
Ψ(1)(α̂(0))

ln(2)2
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Then run a burn-in to use estimates from BayesACME to reduce the potential

impact from contamination. Then

ˆ̂
A = log2(

α̂

β̂
) + 2.5

√
Ψ(1)(α̂)

ln(2)2
+ σ̂2

δ

and again we update our choice for the prior of the component variances.

3.4.3 Overview of MCMC Algorithm

Details of each step of our algorithm are presented in Appendix C. Here we provide

a general outline. In the Normal case, µWT and σ2
WT are each updated in separate

Gibbs steps. In the log2gamma case, α is updated in a Metropolis step and β is

updated in a Gibbs step. Beyond those updates the algorithms for the Normal and

log2gamma case are very similar. The DPMM is updated using Algorithm 8 from

Neal [2000] and αconc is updated in a Gibbs step using West [1992].

Steps in the Algorithm

1. Set initial values for parameters

2. Determine the base distribution of DPMM

3. Update the Model Parameters for a Set Number of Iterations

• Update θWT | X, c (this varies for choice of WT distribution)

– Normal

∗ Update µWT | σ2
WT ,X, c

∗ Update σ2
WT | µWT ,X, c

– log2gamma

∗ Update α | β,X, c

∗ Update β | α,X, c



22

• Update π | c

• Update σ2
δ | δ

• Update θNWT | X, c

• Update X | Y, c, δ

• Update δ | X, c,Y, σ2
δ

• Update c | X, π,θWT ,θNWT

4. Discard burn-in

3.5 Choosing Between WT Models

In the Bayesian paradigm, a popular model selection approach is using a Bayes

Factor [Jeffreys, 1998, Kass and Raftery, 1995]. Our use of Jeffreys priors renders the

Bayes Factor directly inapplicable. It is possible that Intrinsic or Fractional Bayes

Factors could be applied [Berger and Pericchi, 1996a,b, O’Hagan, 1995]. The major

drawback to their use are the non-straightforward computations. There are MCMC

approximations to Bayes Factors available [Carlin and Chib, 1995, Newton et al.,

1999], but they may not work well in practice.

The AST data in their crudest form are modelled by a multinomial distribution.

One straightforward approach to assessing fit is a goodness-of-fit test to this multino-

mial distribution. We propose using the MCMC results for each model to assess how

well they fit the observed counts. For each iteration of the Normal and log2gamma

MCMC chains, we calculate the goodness-of-fit of the fitted multinomial model

J∑
j=1

mj −Ntotpj(θ̃)√
Ntotpj(θ̃)

2

where θ̃ = (θWT ,θNWT , π, σδ). This gives us approximations to the posterior distri-

butions of goodness-of-fit. Johnson et al. [2004] proved under mild conditions that

the asymptotic posterior distribution has a χ2(J−1) distribution so each model could
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be assessed for fit. In terms of selecting the model, we choose the distribution that

has the smaller posterior median.

The chief benefit of this goodness-of-fit approach is that it enables clever use of

the MCMC chain and avoids additional computation. One drawback of this approach

is it may be sensitive to low bin counts; a problem especially for small data sets. In

that case, combining bins may be required. Typically, this means combining bins on

the right together as the counts are typically lower there and places a greater focus

on the WT distribution. In the concluding chapter, an alternative model selection

approach is discussed.

3.6 Single-Year Simulation Study

This section summarizes the relative performance of BayesACME and the methods

described in Chapter 2, specifically Turnidge et al. [2006] and Jaspers et al. [2014a].

We chose these two methods because of their popularity and flexibility to handle

both the Normal and log2gamma WT distributions. In addition to these approaches,

we consider our modification of the Turnidge et al. method. The other Bayesian

approach [Jaspers et al., 2016a] is also considered but only for a subset of the Normal

WT distribution scenarios.

We investigate both the Normal and log2gamma WT distributions using a full

factorial design involving the following three levels for each of three factors:

• Sample size: Ntot = 300, 600, 1200

• Measurement error: σδ = 0.4, 0.5, 0.6

• Levels of contamination: Low, Medium, and High

The sample sizes are much smaller than those considered in the simulation study

of Jaspers et al. [2014a]. These sample sizes were based on the sizes of clinical results

from a single lab provided by Professor John Turnidge. The levels of measurement

error were chosen to represent the range we observe in QC data.
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To quantify the amount of overlap between the WT and NWT distributions, we

use the the Bhattacharyya coefficient [Bhattacharyya, 1943]. The Bhattacharyya

coefficient for distributions p and q is defined for both continuous and discrete distri-

butions. Thus, we can quantify our contamination at the true MIC distribution scale,

at the observed continuous MIC distribution scale, or at the observed MIC scale.

In the continuous case,

BC(p, q) =

∫ ∞
−∞

√
p(x)q(x)dx

In the discrete case,

BC(p, q) =
∑
x

√
p(x)q(x)

Note that 0 ≤ BC(p, q) ≤ 1 where a value of 1 implies complete overlap and a value

of 0 implies no overlap. The exact values of the Bhattacharyya coefficients that make

up our different contamination levels are discussed in the following subsection.

The Bhattacharyya coefficient is intended to describe the overlap between two

distributions. We are using this for the two components of a mixture model that

introduces a mixture weight π. A limitation of Bhattacharyya coefficient is it does

not account for π and its practical importance in the overlap between the components.

For example, for the same Bhattacharyya coefficient it is much harder to estimate

the WT distribution when π = 0.65 compared to π = 0.85.

3.6.1 Study Settings

For each of the 33 = 27 combinations, we simulated 1000 data sets and analyzed

each data set using the various methods. For the Normal distribution case, the latent

WT distribution parameters are µWT = −1.0 and σWT = 1.0. The parameters for the

log2gamma distribution are α = 2.9686 and β = 4.0526 (rate). This distribution was

based on approximating a Normal distribution with selection probability Φ( (x−(−2))
.6

).
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For the NWT distribution, we consider a mixture of two Normals, with compo-

nents that change so that the contamination in the right tail of the WT distribution

varies. For the NWT distribution, the weight vector, mean vector, and standard

deviation vector are denoted wNWT, µNWT , and σNWT , respectively.

• Low Contamination:

wNWT = ( 5
37
, 32
37

) µNWT = (4.60, 5.10) σNWT = (0.95, 1.10)

• Medium Contamination:

wNWT = (0.60, 0.40) µNWT = (2.60, 5.00) σNWT = (0.80, 1.10)

• High Contamination:

wNWT = (0.80, 0.20) µNWT = (2.20, 5.00) σNWT = (0.70, 1.00)

Figure 3.3 is a stacked histogram showing the contributions of the latent true WT

(in blue) and latent true NWT (in red) distributions in each bin. The left column is

the Normal case and the right column is the log2gamma case. Each successive row
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Figure 3.3. Stacked histogram for contamination by bin where each
row corresponds to a level of contamination.
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is an increase in contamination. While the amount of overlap is relatively small, it is

increasing over the levels.

Table 3.1 summarizes the Bhattacharrya coefficients for the different contamina-

tion levels and values of σδ in the Normal setting. The inclusion of measurement

error (ME) serves as an “amplifier” of contamination because it increases the ob-

served WT distribution variance. Table 3.2 reports the Bhattacharyya coefficients for

the observed MIC distribution. The censoring also increases the degree of overlap.

Table 3.1.
Contamination for the Continuous Normal Case

Contamination No ME σδ = 0.4 σδ = 0.5 σδ = 0.6

Low 0.0150 0.0259 0.0332 0.0430

Medium 0.1070 0.1489 0.1717 0.1987

High 0.1554 0.2137 0.2440 0.2785

Table 3.2.
Contamination for the Censored Normal Case

Contamination No ME σδ = 0.4 σδ = 0.5 σδ = 0.6

Low 0.0201 0.0323 0.0403 0.0509

Medium 0.1282 0.1695 0.1918 0.2179

High 0.1855 0.2411 0.2699 0.3025

Table 3.3 is similar to Table 3.1, but for the log2gamma distribution. The Bhat-

tacharyya coefficients are generally lower because the right tail of the log2gamma

decays at a faster rate than the Normal. Similar to the Normal case, the censoring

increases the degree of overlap (Table 3.4).

For the simulation studies only A is updated, and the prior for the NWT vari-

ances is fixed. In future work, both A and the prior for the NWT variances will be

automatically updated. In the Normal case, σ2
B ∼ InvGamma(α1 = 6, β1 = 2). In

the log2gamma case, σ2
B ∼ InvGamma(α1 = 9, β1 = 2.5). In the Normal case, 0.9

corresponds with the 97.4th percentile and the 7.5th percentile is around 0.204. For

the log2gamma case, the true values of α and β correspond roughly to the 95.9th per-
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Table 3.3.
Contamination for the Continuous log2gamma Case

Contamination No ME σδ = 0.4 σδ = 0.5 σδ = 0.6

Low 0.0071 0.0178 0.0257 0.0368

Medium 0.0788 0.1373 0.1677 0.2026

High 0.1204 0.2051 0.2463 0.2913

Table 3.4.
Contamination for the Censored log2gamma Case

Contamination No ME σδ = 0.4 σδ = 0.5 σδ = 0.6

Low 0.0113 0.0238 0.0324 0.0443

Medium 0.1070 0.1627 0.1915 0.2241

High 0.1629 0.2406 0.2782 0.3193

centile and 0.184 is near the 7.6th percentile. This selection allows for a larger range of

variances than in the Normal case, but helps the variances of the NWT components

to be generally larger than ME variance. For the analysis of the real data set, they

are re-set each time the estimate of A is updated.

3.7 Single-Year Results

The quantities of interest for microbiologists are the prevalence π and the WT

distribution parameters θWT . Because the WT distribution is primarily used to

calculate the ECOFF, we focus the simulation results on the accuracy and precision

of the estimates for prevalence and the observed ECOFF. For the Bayesian methods

we use the posterior mean as the estimate. In the interest of brevity, only a small

number of results are presented. More results are available in Appendix D.

As the different methods are compared frequently the following names are used

as reference. The methods are also color-coded in the figures.

TURN (green): The method of Turnidge et al. [2006]



28

TURNM (orange): A modification to TURN where the subset selection is always

the bins on the left up to the mode plus one

JASP (brown): The method of Jaspers et al. [2014a], but with the modification

of using at least four bins or more to ensure the WT mode is included in the

subset

JASPB (pink): The method of Jaspers et al. [2016a] where the priors for the WT

parameters are determined using estimates from JASP

BayesACME (blue): Our proposed method

The results are presented using side-by-side modified boxplots and numerical sum-

maries. In some cases, the results are highly skewed. For that reason, we use numerical

summaries that are resistant to outliers. They are

• Median

• Median Absolute Deviation (MAD)

• Median Absolute Deviation from the True Value (MADT)

• Interquartile Range (IQR)

The median is an outlier resistant measure of central tendency. We can compare

it to the true value to obtain a measure of bias. MAD, MADT, and IQR are resistant

measures of precision. MADT is akin to the mean squared error (MSE), which is a

popular quantity to describe the quality of an estimator. In the numerical summaries,

the best two results are in boldface for each main factor level.

3.7.1 Normal Case

Figure 3.4 summarizes the observed ECOFF results for Ntot = 600 and σδ = 0.5.

The three panels represent the three levels of contamination. At low contamination
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Figure 3.4. This set of boxplots contrasts the results of the ECOFF
values of the discussed methods at size 600 and σδ = 0.5.

the different methods are very comparable. This is anticipated as all methods are

basically using the same data to fit the Normal WT distribution. The two subset

methods produce nearly unbiased estimates, but TURN is a bit more precise. This is

due to JASP at times selecting too few bins and thus under-estimating the variance

and mean. The precision of BayesACME is slightly better than TURN, most likely

due to the use of a little more data on the right side of the Normal distribution.

Consequently, BayesACME has a lower MADT (Table 3.5). Because the TURNM

approach does not use as much data as TURN in this setting, the precision is poorer.

JASPB incorporates the estimates from JASP into their priors for θWT and π so the

results roughly mimic that method at this sample size.

In the second and third panels of Figure 3.4, we see that TURN is very sensitive

to contamination. This is due to the choice of subset selection heuristic. Notice

that TURNM handles contamination much better. TURNM’s considerably smaller

values of MADT in Table 3.5 than TURN at medium and high contamination reflect

this improvement. In using the AIC to select the number of bins, JASP tends to
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Table 3.5.
Numerical Summaries for Figure 3.4

Method Cont. Median-Truth MAD MADT IQR

TURN Low 0.0074 0.1309 0.1323 0.2614

TURNM Low −0.1020 0.2031 0.2187 0.4079

JASP Low −0.0704 0.1173 0.1166 0.2360

JASPB Low −0.0904 0.1349 0.1509 0.2728

BayesACME Low −0.0291 0.1204 0.1248 0.2423

TURN Medium 0.5778 0.1685 0.5778 0.3389

TURNM Medium −0.0527 0.2400 0.2477 0.4488

JASP Medium −0.3734 0.0824 0.3988 0.1652

JASPB Medium −0.1480 0.1487 0.2094 0.2964

BayesACME Medium 0.0072 0.1803 0.1801 0.3600

TURN High 2.6422 1.1503 2.6422 2.0438

TURNM High 0.0495 0.3200 0.3215 0.6395

JASP High −0.3059 0.0784 0.3067 0.1578

JASPB High −0.0590 0.1436 0.1449 0.2831

BayesACME High −0.0395 0.2890 0.3113 0.7488

have “packs” of estimates that are associated with a particular bin choice. JASPB

produces very similar results to JASP, but it does a better job handling contamination

by modelling the NWT distribution. BayesACME is quite good at avoiding bias, but

a long right tail emerges when there is high contamination. This tail, however, does

dissipate with increased sample size. At high contamination and low sample size,

the estimate of A is often estimated to be too large and thus the estimated WT

distribution absorbed some of the NWT distribution. The informative priors used

in JASPB produce smaller variability in the estimates of σobs. This avoids the long

right tail of BayesACME, but it still struggles sometimes on the left with poor prior

distributions.

While TURN’s relative performance to BayesACME worsens with increases in

contamination and TURNM’s relative performance improves, JASP and JASPB fol-

low a different pattern. BayesACME has a very strong relative performance over

the two methods at medium contamination, but high contamination JASPB domi-
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nates. JASPB restricts the WT distribution with “relatively” informative priors and

BayesACME is the opposite restricting the NWT distribution. Based on these results,

BayesACME needs restrictions on both the NWT and WT distributions to be more

competitive with JASPB at high contamination for the sample sizes considered.

In terms of prevalence (Figure 3.5), the results from the different methods are more

comparable. BayesACME tends to be the least biased between data sets as the level

of contamination increases. TURN struggles the most with contamination. However,
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Figure 3.5. This set of boxplots contrasts the results of the prevalence
values of the discussed methods at size 600 and σδ = 0.5.

TURNM is the least impacted by high contamination in terms of bias (Table 3.6). At

high contamination, note the long tails of JASPB and BayesACME. Recall similar

tails developed for estimates of the observed ECOFF in Figure 3.4. The side of the

tail indicates limitations in the way these two approaches handle contamination. The

left tail of JASP indicates it is, at times, taking on too few bins. At this sample size,

JASPB mimics JASP and has a long left tail. The long right tail of BayesACME

indicates part of the NWT distribution is spuriously treated as the WT distribution.

In terms of within-data set comparison, the relative accuracy of both JASP and
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Table 3.6.
Numerical Summaries for Figure 3.5

Method Cont. Median-Truth MAD MADT IQR

TURN Low 0.0024 0.0138 0.1400 0.0277

TURNM Low −0.0077 0.0215 0.0214 0.0425

JASP Low 0.0000 0.0145 0.0145 0.0289

JASPB Low −0.0027 0.0148 0.0149 0.0297

BayesACME Low −0.0029 0.0141 0.0138 0.0285

TURN Medium 0.0536 0.0135 0.0536 0.0268

TURNM Medium 0.0018 0.0250 0.0253 0.0504

JASP Medium 0.0010 0.0160 0.0157 0.0323

JASPB Medium −0.0012 0.0161 0.0164 0.0328

BayesACME Medium −0.0016 0.0177 0.0179 0.0356

TURN High 0.2336 0.0808 0.2336 0.1479

TURNM High 0.0175 0.0323 0.0359 0.0661

JASP High 0.0156 0.0146 0.0208 0.0294

JASPB High 0.0127 0.0156 0.0192 0.0310

BayesACME High 0.0042 0.0355 0.0341 0.0764

JASPB over BayesACME improves with increases in contamination. This was not

the pattern with the corresponding observed ECOFF estimates. In future work, we

will investigate how to best determine and to use informative restrictions on the WT

and NWT distributions. Both the general pattern of restricting π and it is likely a

quantity where external information is available makes it a starting place for future

inquiry in adopting additional restrictions.

Figure 3.6 summarizes the results of increased sample size on the observed ECOFF.

This boxplot is for medium contamination and σδ = 0.5. TURNM is good at produc-

ing nearly unbiased estimates, and has the best MADT among the subset methods.

At sample sizes 600 and 1200, the mixture models have smaller MADT values. Al-

though BayesACME only beats TURMN in terms of the bias between-data sets at

size 600, Table 3.7 shows that BayesACME has better precision in terms of lower

MAD, MADT, and IQR at all three sample sizes over TURNM. The other subset

methods struggle.
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Figure 3.6. The boxplots show the results of the obs. ECOFF esti-
mates of the methods at medium contamination and σδ = 0.5.

TURN takes on too many bins and JASP takes only too few bins with the hopes of

avoiding contamination. The results are then biased. With increases in sample size,

JASPB is better able to overcome the priors centered around the biased estimates

of JASP. Here BayesACME is able to best this method in accuracy and precision

between data sets. For within-data set comparisons, JASPB’s relative performance

regarding accuracy with BayesACME improves as sample size increases. It is unique

among the compared methods suggesting both the benefit of mixture models over

subset methods and superiority over BayesACME in terms increases in sample sizes.

Although TURNM is the least biased method here, Table 3.7 allows for direct com-

parison using MADT. The values for MADT from TURNM typically require almost

twice as much data in terms of MADT at the examined sample sizes to be comparable

to BayesACME. This certainly highlights an advantage of using the full data set with

mixture modelling.
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Table 3.7.
Numerical Summaries for Figure 3.6

Method Sample Size Median-Truth MAD MADT IQR

TURN 300 0.5704 0.2416 0.5820 0.4838

TURNM 300 −0.0730 0.3238 0.3272 0.6435

JASP 300 −0.3783 0.1438 0.4472 0.3239

JASPB 300 −0.2202 0.2157 0.3470 0.4629

BayesACME 300 0.0958 0.2762 0.2625 0.5544

TURN 600 0.5778 0.1685 0.5778 0.3389

TURNM 600 −0.0527 0.2400 0.2477 0.4788

JASP 600 −0.3734 0.0824 0.3988 0.1652

JASPB 600 −0.1480 0.1487 0.2094 0.2964

BayesACME 600 0.0073 0.1803 0.1801 0.3600

TURN 1200 0.6034 0.1230 0.6034 0.2486

TURNM 1200 −0.0010 0.1879 0.1874 0.3747

JASP 1200 −0.3688 0.0595 0.3772 0.1169

JASPB 1200 −0.0949 0.1045 0.1266 0.2074

BayesACME 1200 −0.0669 0.1379 0.1425 0.2777

Figure 3.7 summarizes the results of increased sample size on the prevalence at

medium contamination and σδ = 0.5. The increases in sample size reduce the po-

tential outliers for TURN and TURNM. TURNM is far better at avoiding bias from

contamination than TURN. Both JASP and JASPB still struggle to some degree

with under-estimation in the long left tails even at Ntot = 1200, but the majority of

estimates from both methods are approaching the truth.

Interestingly the bias of both BayesACME and JASPB follow the same pattern as

Ntot increases. It suggests that as the sample size grows, the NWT left tail becomes

over-estimated. JASP is the most successful method at avoiding contamination for

estimating π. The majority of the time, it uses a subset to the left of 1.0, which

happens to be two standard deviations to the left of the closest component in the

NWT distribution, for WT estimation. This demonstrates that subset methods such

as JASP may poorly estimate the observed ECOFF, but may produce good estimates

of π.
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Figure 3.7. These boxplots display the results of the prevalence values
of the discussed methods at medium contamination and σδ = 0.5.

Table 3.8.
Numerical Summaries for Figure 3.7

Method Ntot Median-Truth MAD MADT IQR
TURN 300 0.0527 0.0212 0.0531 0.0419

TURNM 300 −0.0018 0.0321 0.0315 0.0645
JASP 300 0.0045 0.0282 0.0277 0.0574

JASPB 300 0.0030 0.0284 0.0278 0.0581
BayesACME 300 0.0068 0.0241 0.0246 0.0482

TURN 600 0.0536 0.0135 0.0536 0.0268
TURNM 600 0.0018 0.0250 0.0253 0.0504

JASP 600 0.0010 0.0160 0.0157 0.0323
JASPB 600 −0.0012 0.0161 0.0164 0.0328

BayesACME 600 −0.0016 0.0177 0.0179 0.0356

TURN 1200 0.0537 0.0099 0.0537 0.0197
TURNM 1200 0.0035 0.0190 0.0201 0.0392

JASP 1200 0.0006 0.0108 0.0109 0.0216
JASPB 1200 −0.0025 0.0122 0.0125 0.0245

BayesACME 1200 −0.0120 0.0145 0.0168 0.0293



36

Even in the Normal case, BayesACME demonstrates sensitivity to the prior for

σ2
δ . Figure 3.8 shows the biases for the latent true WT variance, the ME variance,

the observed standard deviation, and the observed ECOFF at low contamination for

sample size 600. The left panel shows anticipated bias in the estimate of σ2
δ decreases

as σ2
δ increases. The apparent bias at σδ = 0.5 is from the skewness of the posterior

distribution. The posterior mode is nearly unbiased at σδ = 0.5. Consequently, the

next panel on the right shows that the bias increases as σδ increases. These results

are part of the weakly identifiable nature of the variance components [Gelman, 2014].

The third panel shows the observed standard deviation is under-estimated at three

different values of σδ. The three side-by-side boxplots should have nearly identical

distributions from the vagueness of the Jeffreys prior on σ2
WT . There is a very slight

increase in absolute bias from the low contamination becoming “amplified” from the

increases in σδ. Likely, the culprit for this bias is the location of the mean of the

closest NWT component. It contributes to the overlap of the observed distributions

far into the WT right tail and far into the NWT left tail. This results in the observed

WT distribution slightly “leaching” into the observed NWT distribution.
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Figure 3.8. The boxplots show the bias of the ME variance, latent
WT variance, and the obs. WT standard deviation, each when σδ =
0.4, 0.5, 0.6, respectively at low contamination and size 600.
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3.7.2 Log2gamma Case

As discussed in Chapter 1, the other methods consider the observed WT distribu-

tion to be log2gamma rather than a convolution with a log2gamma distribution with

a Normal measurement error distribution. Consequently the tails of the observed WT

distribution are prone to under-estimation. As a result, the other methods usually

provide biased estimates of the observed ECOFF.

Figure 3.9 summarizes the results for medium contamination and σδ = 0.5. The

three panels represent the three sample sizes. BayesACME is unique among the

methods in that it accounts for the Normal measurement error. Clearly BayesACME

is the only procedure that accurately estimates the observed ECOFF. According to

Table 3.9 the absolute bias is smallest and is the most precise as it has the lowest

MADT. The other methods all demonstrate considerable bias. In fact, increasing

sample sizes makes the discrepancy even more pronounced as the variability of the

estimates decreases.
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Figure 3.9. The results of the ECOFF values of the compared methods
at medium contamination and σδ = 0.5.
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By looking at the results from TURNM, the bias in the TURN estimates is deflated

because acquiring additional contaminated bins makes it appear that it compensates

for the misspecification. Similarly, for JASP cases where a relatively large number of

bins was taken resulted in the “packs” that are close to the truth. In terms of MADT,

JASP struggles the most. Like both TURN and TURMN, it has misspecified the

observed WT distribution. At low sample sizes, JASP can inadvertently compensate

for its misspecification by using more bins, but the probability of this happens tends

to 0 as the sample size increases. As the log2gamma distribution is asymmetric, the

subset methods struggle to estimate the right tail of the WT distribution. The greater

absolute bias from JASP indicates that a majority of the time, it assumes the right

tail is decaying at a faster rate than TURN.

Table 3.9.
Numerical Summaries for Figure 3.9

Method Ntot Median-Truth MAD MADT IQR
TURN 300 −0.3668 0.1954 0.3685 0.4689

TURNM 300 −0.3886 0.1117 0.3893 0.2251
JASP 300 −0.5646 0.0667 0.5646 0.1311

BayesACME 300 −0.0158 0.1335 0.1353 0.2684

TURN 600 −0.3721 0.1309 0.3721 0.3925
TURNM 600 −0.3794 0.0782 0.3794 0.1571

JASP 600 −0.5579 0.0445 0.5579 0.0886
BayesACME 600 −0.0145 0.0985 0.0974 0.1965

TURN 1200 −0.3720 0.0705 0.3720 0.3423
TURNM 1200 −0.3694 0.0540 0.3694 0.1079

JASP 1200 −0.5537 0.0302 0.5370 0.0603
BayesACME 1200 −0.0050 0.0736 0.0730 0.1499

Although the other methods misspecify the observed WT distribution, they are ca-

pable of producing adequate estimates of prevalence. Figure 3.10 summarizes the dif-

ferent prevalence estimates at different sample sizes at medium contamination where

σδ = 0.5. BayesACME develops some slight bias with increases in sample size. This
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bias is due to the sensitivity in setting
ˆ̂
A. As sample sizes increases, the mean value
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Figure 3.10. Boxplots of results for prevalence of the compared meth-
ods at medium contamination and σδ = 0.5 as sample size varies.
Notice that the methods that misspecified the observed WT distribu-
tion are able to produce adequate estimates of prevalence.

of
ˆ̂
A decreases. This occurrence does not happen at low contamination and is more

pronounced at high contamination indicating this is a sensitivity to contamination.

The variance based on the fixed prior is likely becoming too big. A smaller value of
ˆ̂
A

enables a NWT component to absorb more of the WT right tail. As the right tail for

a log2gamma distribution decays at relatively faster rate after the mode, this “creep-

ing” effect of the NWT distribution is less of an issue for estimating the observed

ECOFF. It may lead to deflated prevalence estimates. Except for the moderate bias

in TURN, both TURNM and JASP are adequate at estimating the prevalence de-

spite misspecifying the observed WT distribution. Relative to JASP, TURNM more

rapidly loses its long left tail.

In Table 3.10, the bias of TURNM is the most improved by increases in sample

size. For within-data set comparisons, TURNM is the only the method to show
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improvement in accuracy over BayesACME, albeit very slight. Comparative gains in

efficiency are experienced by JASP except it is slightly more biased. BayesACME

has much better relative performance at low contamination.

Table 3.10.
Numerical Summaries for Figure 3.10

Method Ntot Median-Truth MAD MADT IQR

TURN 300 0.0190 0.2800 0.0311 0.0561

TURNM 300 0.0015 0.0209 0.0208 0.0414

JASP 300 −0.0017 0.0285 0.0262 0.0516

BayesACME 300 0.0007 0.0242 0.0246 0.0481

TURN 600 0.0141 0.0258 0.0249 0.0523

TURNM 600 0.0012 0.0143 0.0141 0.0285

JASP 600 0.0040 0.0142 0.0150 0.0283

BayesACME 600 −0.0045 0.0176 0.0180 0.0353

TURN 1200 0.0066 0.0197 0.0171 0.0464

TURNM 1200 0.0000 0.0103 0.0103 0.0205

JASP 1200 −0.0058 0.0101 0.0105 0.0201

BayesACME 1200 −0.0114 0.0145 0.0156 0.0292

We can examine the influence of contamination in the log2gamma case. Below

in Figure 3.11 at size 1200 and σδ = 0.5, the results at low, medium, and high

contamination from left to right for the observed ECOFF, respectively. Similar to

the Normal case, TURN struggles with contamination. By avoiding the bins of the

right WT tail, TURNM is robust to contamination. JASP struggles to determine

the “correct” number of bins to use in the jump from low to medium contamination.

BayesACME produces the least biased of the estimates by properly accounting for ME

and handles contamination well by modelling the entire distribution. The precision

decreases as contamination increases, but that is anticipated for all methods. There

does appear to be slight bias in the observed ECOFF for BayesACME at low and high

contamination. At high contamination, BayesACME is anticipated to over-estimate.

The slight bias at low contamination does not manifest at lower sample sizes where

low contamination is associated with the most accurate estimates of the observed
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ECOFF at σδ = 0.5 as anticipated. Nor does this occur at sample size 1200 and

σδ = 0.4. Likely, there is a NWT mode at this setting that does not manifest at other

settings. The prior for σ2
δ also plays a role in the magnitude of the bias, where the

absolute bias reflects the sensitivity to the prior. This sensitivity is explored later.
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Figure 3.11. Boxplots of estimates of the observed ECOFF at size
1200 with σδ = 0.5 across contamination levels. Notice the drastic
changes in TURNM versus the other methods.

Table 3.11 reveals BayesACME tends to under-estimate. In fact, it only over-

estimates the majority of the time at high contamination. This slight bias even at

low contamination suggests an area of improvement in the selection of the base dis-

tribution or possibly considering an alternative mechanism of managing latent NWT

contamination. Interestingly at high contamination, TURN over-estimates not only

the other subset methods, but BayesACME as well. Given TURNM drastically under-

estimates at low contamination and at medium contamination to a lesser degree, this

suggests that managing contamination has become a larger issue than the misspeci-

fication of the observed WT distribution.
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Table 3.11.
Numerical Summaries for Figure 3.11

Method Cont. Median-Truth MAD MADT IQR
TURN Low −0.3672 0.0498 0.3672 0.0987

TURNM Low −0.4191 0.0538 0.4191 0.1071
JASP Low −0.3638 0.1355 0.3638 0.3219

BayesACME Low −0.0442 0.0485 0.0582 0.0960

TURN Medium −0.3720 0.0705 0.3720 0.3423
TURNM Medium −0.3694 0.0540 0.3694 0.1079

JASP Medium −0.5537 0.0302 0.5537 0.0603
BayesACME Medium −0.0050 0.0736 0.0730 0.1499

TURN High 0.1710 0.2424 0.3343 0.6578
TURNM High −0.3041 0.0561 0.3041 0.1131

JASP High −0.5198 0.0301 0.5198 0.0605
BayesACME High 0.0597 0.0842 0.1002 0.1660

Next we examine prevalence estimation across the three levels of increasing con-

tamination shown from left to right in Figure 3.12. Similar to the Normal case,

TURN struggles with contamination, while its modification, TURNM, is relatively
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Figure 3.12. Boxplots of estimates of prevalence at size 1200 with σδ = 0.5.
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robust. It is important to note that the prevalence estimates from the subset meth-

ods particularly TURNM and also JASP are not biased to the same degree as the

observed ECOFF estimates by ignoring ME. There is a bias in BayesACME that is

most prominent at medium contamination, but decreases at high contamination. In

Table 3.12, BayesACME is the least biased of the compared methods at low and high

contamination. At low contamination, BayesACME is the best according to MADT.

At high contamination, it has the second best MADT. At medium contamination,

the subset methods appear to have smaller bias, with BayesACME having the second

best MADT, indicating some sensitivity in the assumptions of the NWT distribution

for BayesACME.

Table 3.12.
Numerical Summaries for Figure 3.12

Method Cont. Median-Truth MAD MADT IQR
TURN Low −0.0047 0.0103 0.0103 0.0206

TURNM Low −0.0117 0.0101 0.0134 0.0201
JASP Low −0.0072 0.0123 0.0129 0.0246

BayesACME Low −0.0041 0.0100 0.0101 0.0201

TURN Medium 0.0066 0.0197 0.0171 0.0464
TURNM Medium 0.0000 0.0103 0.0103 0.0205

JASP Medium −0.0058 0.0101 0.0105 0.0201
BayesACME Medium −0.0114 0.0145 0.0156 0.0292

TURN High 0.0880 0.0382 0.0880 0.0932
TURNM High 0.0181 0.0105 0.0185 0.0210

JASP High 0.0093 0.0100 0.0122 0.0200
BayesACME High −0.0059 0.0164 0.0172 0.0328

The evaluation of prevalence sheds light on the corresponding observed ECOFF

results for BayesACME. As the prevalence is relatively unbiased, the method appears

to struggle in determining the shape of the log2gamma. On a latent true level, the

bias in both α and β is the least at low contamination and the most at medium

contamination. The bias in the prevalence estimates reflects this pattern. When this
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happens at medium contamination, TURNM is able to be more accurate within-data

sets than BayesACME.

To show the sensitivity of the prior for σ2
δ , Figure 3.13 summarizes the changes

in estimates bias of the observed ECOFF at low contamination and size 600. Each

boxplot from left to right, corresponds with an increase of σδ. As the other methods

only work on an observed level, increases in σδ cause the observed WT distribution

(and amplify the low contamination) to become further misspecified. Thus, the in-

creases in σδ increase the bias in the observed ECOFF. For BayesACME, changes

in σδ are indicative of sensitivity to the prior on σ2
δ . In the left panel, σδ = 0.4,

BayesACME over-estimates the observed ECOFF as the prior places a greater weight

on a larger value. At σδ = 0.5, the observed ECOFF fairly unbiased. At σδ = 0.6,

under-estimation occurs. Generally, these biases decrease as sample size increases.
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Figure 3.13. Boxplots of bias in the obs. ECOFF at size 600 with low
contamination across the three levels of σδ.

The magnitude of the bias is greater for BayesACME at σδ = 0.6 than σδ = 0.4.

Additionally, the precision is influenced as well as MADT is higher for σδ = 0.6 than

σδ = 0.4. These facts demonstrate the sensitivity to the prior for σ2
δ . As shown in
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Figure 3.1, a value of σδ = 0.6 is further in the right tail than σδ = 0.4 in the left tail.

Thus, the prior selection σ2
δ , at least at this sample size, impacts both the magnitude

of the bias as well as whether BayesACME over- or under-estimates the truth.

The question emerges about the estimation of prevalence with regards to changes

in σδ. While the observed ECOFF is clearly impacted, the prevalence estimates tend

to be adequate as shown in Figure 3.12 for a sample size of 1200.

3.8 Real Data Set Application

Professor John Turnidge provided data sets from a single Dutch lab with MIC

results collected annually from 2011 to 2014. The species is Neisseria gonorrhoeae

and the drug is Penicillin. The benefit of data collected from a single labs means that

there is no between-lab variability provided there is no temporal variability.

Figure 3.14 displays the distribution of the log2(MIC) results for 2013. The WT

distribution appears to be approximately symmetric. Relying on ocular methods, the

2013: N. gonorrohoeae vs. Penicillin
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Figure 3.14. This histogram visualizes the 2013 collection of N. gon-
orrhoeae treated with Penicillin.

Normal distribution seems an appropriate choice.
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By working with both distributions, it is apparent in Table 3.13 that the esti-

mate of prevalence relates to the specification of the WT distribution. In the Normal

case, BayesACME produces estimates that are closest to JASP. The second clos-

est method is JASPB. For estimation of both µWT and π, BayesACME is between

JASP and JASPB. Interestingly, BayesACME produces the largest estimate of the

observed standard deviation, but it is comparable to JASP and JASPB. Consequently

BayesACME has the largest estimate of the observed ECOFF. The comparable per-

formance of JASP and BayesACME is anticipated from the use of non-informative

priors for θWT and π. For large samples, it is similar to maximum likelihood estima-

tion, especially as JASP uses eight bins encompassing the full mode.

Table 3.13.
Results from the N. gonorrhoeae vs. Penicillin from a single Dutch lab in 2013

Normal µWT σobs π ECOFF Bins

TURN -3.419 1.559 0.913 1.398 7

TURNM -3.512 1.472 0.879 1.036 5

JASP -3.491 1.656 0.936 1.768 8

JASPB -3.163 1.571 0.933 1.692 14

BayesACME -3.349 1.668 0.930 1.806 All

log2gamma α β π ECOFF Bins

TURN 1.423 12.871 0.835 -0.695 5

TURNM 1.657 17.451 0.744 -1.040 6

JASP 1.926 22.996 0.755 -1.341 5

BayesACME 1.403 11.521 0.865 -0.190 All

For the purposes of the calculating the χ2 test statistic, the bins for log2(MIC)

values greater than one are binned together effectively decreasing the number of

bins to nine. The Normal distribution has a better fit in this case. The median of

the Normal test statistic posterior distribution is 9.940 while the the median of the

posterior distribution for the test in log2gamma distribution is 14.003. One readily

available goodness-of-fit metric is estimating the proportion that the test statistic is

greater than the 95th percentile of the corresponding asymptotic χ2(J−1) distribution
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[Johnson et al., 2004]. For the Normal case, this proportion is 0.064 and for the

log2gamma the proportion is 0.354. The closer this proportion is to 0.05, the better

the approximation of the asymptotic distribution is for the posterior distribution.

Rather than just using a particular percentile for comparison, stronger conclusions

can be made by viewing the entire distribution. In fact, a visual comparison is

displayed using the kernel estimates of the posterior densities of the test statistic in

Figure 3.15. The Normal density is to the left of the log2gamma density.
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Figure 3.15. These are kernel densities of the resulting posterior dis-
tributions of the test statistic. The Normal case is the black dashed
curve and the log2gamma distribution is the red-dashed curve.

In Chapter 1, a model-based alternative to the ECOFF was provided to classify a

single MIC value as WT or not. Figure 3.16 produces the model-based alternative to

the ECOFF for the Normal case. The figure displays the estimated probability that

a random isolate with the reported log2(MIC) is WT. For each bin, the probability

of WT is determined using the equation from Chapter 1. The error bars denote the

95th percent credible intervals. For a single observed MIC observation, there is a

posterior probability whether the isolate is WT or not. This figure presents a clear

way of assessing a probability that an isolate with a record MIC is WT or not with

uncertainty. As the ECOFF value presents a particular point of distinction between



48

the WT and NWT distribution, it is more natural of working for concentrations on

a continuous level. Yet, the discrete nature of the MIC assay forces microbiologists

to work with C1, ..., CJ .
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Figure 3.16. For the Normal case case, this plot illustrates the prob-
ability of an isolated with the recorded MIC labelled a WT. The blue
error bars are the 95% credible intervals.

3.8.1 Conclusion

The proposed method, BayesACME, fills a void in the literature by properly ad-

dressing measurement error. In general, it shows improvement in terms of accuracy

and precision. In the Normal case, the other Bayesian semiparametric method does

show better behavior at high contamination. Certainly, it warrants future investiga-

tion in improving BayesACME whether that involves introducing informative priors

for the WT distribution or improving the nonparametric estimation for the NWT

distribution.

The benefit of modelling measurement error is demonstrated in the observed

ECOFF estimates in the log2gamma case. BayesACME is the only method that
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properly specifies the observed distribution. Consequently, BayesACME is the most

accurate method for estimating the observed ECOFF in the log2gamma case. Inter-

estingly, the advantages of modelling measurement error do not necessarily carry over

to prevalence estimation.

There is the question of what happens if π approaches 1.0? At π = 1.0, the

observed MIC values are no longer a mixture so BayesACME as a mixture model is

inappropriate. The subset methods still work, but at the cost of under-utilizing the

data. Now if π is large but less than 1.0, then there may not be too much gained by

modelling the NWT distribution. Thus, BayesACME is likely to have a competitive

edge when the NWT distribution has some substantial weight. The trade-off is how

well can BayesACME estimate the left NWT tail? Little to no assumptions are

made by the subset methods and P-splines. The selection of the base distribution

for the DPMM is presented as a heuristic. In the concluding chapter, we discuss

an alternative way to control the contamination in the base distribution. Given

the good performance from TURNM and JASP at estimating prevalence and the

need for BayesACME to further restrict the WT distribution in high contamination,

incorporating informative priors on π may be a starting place for future work in

improving model robustness to contamination.

For both the Normal and even more so for the log2gamma there is sensitivity to

the prior for σ2
δ . So far the prior σ2

δ has been investigated by considering unlikely, but

plausible, values in its tails. From the results of the simulation studies, we are aware

of the impact the prior selection for σ2
δ has. Yet, it may be worthwhile to examine

results that are further in the tails of the prior distribution.

In the real data analysis, BayesACME has similar performance to JASPB in the

Normal case. Interestingly, it produces the greatest estimate for the observed ECOFF

in both the Normal and log2gamma case. It is possible for this particular Dutch lab

that the measurement error variance may be smaller than is implied with the chosen

prior on σ2
δ .
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Given that labs produce annual data, a natural next step is extending the proposed

methodology for the purpose of estimating WT prevalence over time. By doing so,

BayesACME can serve as a key tool for AMR surveillance.
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4. MULTIYEAR AST MONITORING

While single-year estimation is important, it is usually the AMR trend that is of

interest to microbiologists, clinicians, and policymakers. In fact, Fuhrmeister and

Jones [2019] named longitudinality a key element of AMR surveillance. This chapter

extends our single-year approach to handle multiyear data. While one could analyze

each year separately and piece together a trend, we think that more can be gained

from a joint analysis.

Underlying our proposed method is the premise that the WT distribution does

not change over time. It is the natural distribution of bacterial strains that have

not yet exhibited resistance mechanisms. This premise is supported on the EUCAST

website as their definition of the WT distribution includes the statement that it is

the same in space, time, and source (i.e., animal or environment) [EUCAST, 2017].

Given that strains are leaving the WT distribution, this means they are being

added to the NWT distribution. However, the MICs of these mutated strains are

unknown. Furthermore, additional mutations of the current NWT strains may alter

their MIC. This means that the NWT distribution is not static. The changes are not

anticipated to be dramatic year to year, but there would be changes nonetheless.

4.1 Previous Literature

In the literature, there is only one method designed to detect temporal changes in

AMR. As was done in Chapter 3, Zhang et al. [2020] propose a Bayesian latent class

mixture model to describe the observed MIC distribution. However, their single-year

mixture model and how they allow the WT and NWT subpopulations to change

over time are both very different. First, they assume the observed continuous MIC

distribution is simply a mixture of two Normals. Second, they only allow the WT
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distribution to change over time while the NWT distribution is static. Specifically,

for t = 1, ..., T , their model for year t is

ft(X
∗) = πtft,WT (X∗) + (1− πt)ft,NWT (X∗)

where

• ft,WT ∼ N(γ0 + γ1t, σobs)

• ft,NWT ∼ N(µNWT , σNWT )

• ln( πt
1−πt ) ∼ N(θ, ν)

Thus, they allow the WT distribution’s mean to drift linearly with time. A positive

value for the slope, γ1, implies that AMR is increasing with time. A negative value of

γ1 implies that AMR is decreasing with time. The NWT distribution, on the other

hand, remains static. They argue this is reasonable because censoring prevents this

trend from being observed. The standard deviations for the WT and NWT distribu-

tions are also assumed invariant over time. There is no assumption or anticipation

regarding how prevalence changes over time. Thus, the researchers’ goals based on

fitting this model are fundamentally different from the goals in this chapter.

There is very little discussion in the paper regarding their choice of model. The

authors state their assumed linear trend in the WT mean is built on a “naive analy-

sis” of Salmonella enteric and the antibiotic CHL in the CDC NARMS data set. We,

however, are a bit perplexed over their choice of MIC evolution. We are also con-

cerned about the restrictive assumption that the distribution for each subpopulation

is Normal.

4.2 Multiyear Extensions of the Subset Methods

Under our assumption that the WT distribution is static over time, both subset

methods can easily be extended for multiyear analysis. We will briefly describe these

extensions here. Full details are provided in Appendix E.
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Given that TURNM handled contamination better in the single-year analysis, we

extend it to multiyear data. This extension means that there is a different prevalence

πt for each of the T years, but a common WT distribution (i.e., single set of parameters

θWT ). Using the cumulative counts Bt,j for the left-most bins up to the WT mode

plus one bin in year t, the following objective function is minimized with respect to

θWT and π1, ..., πT :

T∑
t=1

Kt∑
j=1

[Bt,j −Nt,totπt · FWT (Ct,j;θWT )]2

The cumulative distribution function FWT can either be Normal or log2gamma.

For the multiyear extension of JASP, the challenge is determining the number of

bins to use in each year. Given the set (K1, ..., KT ), each year t represents a new

independent draw from a multinomial where the bin probabilities for the first Kt bins

are based on the same WT distribution and the remaining Jt−Kt bins are free to vary

under the restriction that the sum of the bin probabilities in each year must equal

one. To avoid the search for the best set (K1, ..., KT ), we propose applying JASP to

each year, and then computing the weighted average of each year’s estimate θt,WT

(using the the observed Hessians for weights). We then update each year’s prevalence

estimate using the overall estimate of θWT . It is important to note that θWT is not

necessarily the MLE for the T years, but rather it is a weighted average of T years

using approximate standard errors.

4.3 Multiyear Extension of BayesACME

Similar to the two subset methods, we consider a static WT distribution over

T years, but allow the WT prevalence and the NWT distribution to vary. Thus,

θWT and the θt,NWT represent the parameters of the true MIC assay distributions

for a given year t. We again deconvolve the continuous observed MIC distribution

into the true MIC distribution and measurement error distribution and consider both
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the Normal and log2gamma distributions for gWT . Likewise, we describe each NWT

distribution gt,NWT using a mixture of Normals. For the last 50 years, the MIC assay

has, for the purposes of this dissertation, remained unchanged. For that reason, there

are no temporal assumptions made regarding measurement error.

Analogous to Chapter 3, we introduce latent values Xt,i and δt,i to correspond

with each Yt,i. We also consider an indicator ct,i, which denotes if whether isolate i

in year t is WT or not. This allows us to specify the model as :

ct,i ∼ Bernoulli(πt)

Xt,i ∼ (gWT (Xt,i))
ct,i(gt,NWT (Xt,i))

1−ct,i

δt,i ∼ N(0, σδ)

Yt,i = dXt,i + δt,ie

The likelihood can similarly be expressed as

T∏
t=1

Nt,tot∏
i=1

h∗(Yt,i | Xt,i, σδ)g(Xt,i | θWT ,θt,NWT , ct,i)p(ct,i | πt)

where p is the pmf of the Bernoulli distribution, g is either the Normal or log2gamma

pdf, and h∗ is a truncated Normal density. The set of unknowns:

{X1...,XT, c1, ..., cT, δ1, ..., δT , π1, ..., πT ,θWT ,θ1,NWT , ...,θT,NWT , σ
2
δ}

has increased due to the introduction of latent vectors, but the benefit of this model

specification is that it again makes working with non-Normal WT distributions far

more straightforward.
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4.3.1 Prior Selection

The priors selected for θWT and σ2
δ are the same as in the single-year case. Simi-

larly, the priors for πt
i.i.d.∼ Unif(0.5, 1.0) for t = 1, ..., T .

We again use a DPMM to model each year’s NWT distribution. While we make

no assumptions about the shape across years, realistically the changes should be

subtle. How subtle, however, is unclear [Mouton et al., 2018]. For now, the same

base distribution is assigned to each year’s NWT distribution. As each year has

the same base distribution, the same general strategy applies as in the single-year

case. The modification to estimating A using multiple years is described alongside

setting the initial values. The same process to select the priors for σ2
B is used as well.

Each year’s concentration parameter αt,conc has the same prior. Specifically, priors

for σ2
B from the simulation studies Chapter 3 are used again. In the future, if more

information is available about the evolution of the NWT over time, at least for a

specific “drug/bug” combination, it can be incorporated into the model.

4.4 Computation

Given that the extension to multiple years is simply another level in our hierarchi-

cal model, we again take a Bayesian approach. The general computational approach

is Metropolis-within-Gibbs.

4.4.1 Setting Initial Values

Given that we now have multiple years of data describing the WT, we now im-

plement the multiyear TURNM method to generate initial estimates of θWT
(0) and

π1
(0), ..., πT

(0). The mode for the prior of σ2
δ is the initial value σ2

δ
(0)

. Like in the

single-year scenario, we determine the initial value for the latent true WT variance

by subtracting the initial value for the ME variance from the observed WT distri-

bution variance in the Normal case. In the log2gamma case, measurement error is
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ignored because both α and β require modification. For each year t = 1, ..., T , we

then proceed to generate the latent vectors using the same strategy in Chapter 3.

In Chapter 3 the value A is determined using a function of θWT . The process to

determine Â is the same here except θWT is estimated initially with the multiyear

extension of TURNM. A burn-in of 5000 iterations is used to determine
ˆ̂
A. The

process for selecting the prior on the variances is the same as the single-year case

detailed in Chapter 3.

4.4.2 Updates to the Model Parameters

In the Normal case, µWT is updated in a Gibbs step. Both σ2
WT and σ2

δ are jointly

updated with a Metropolis step. This is different than the single-year case because

it handles the initial values δ1, ..., δT and consequential correlation between the two

variance components better than two separate Gibbs steps. In the log2gamma case,

α is updated in a Metropolis step and β is updated in a Gibbs step. Also, σ2
δ is

updated in a Gibbs step. Beyond those updates the algorithms for the Normal and

log2gamma case are very similar: π1,...,πT , X1, ...,XT, c1, ..., cT, and δ1, ..., δT are

updated in Gibbs steps. Each year’s DPMM is updated using Algorithm 8 from Neal

[2000]. The concentration parameters α1,conc, ..., αT,conc are each updated in separate

Gibbs steps using West [1992]. Appendix F contains the details for both the Normal

and log2gamma distributions.

Outline of Computation

The outline of the algorithms is very similar. In the Normal case, a non-trivial

difference is σ2
WT and σ2

δ are jointly updated in a Metropolis step.

1. Set initial values for parameters

2. Determine base distribution of DPMM

3. Update Model Parameters for a Set Number of Iterations
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• Update θWT | X1, ...,XT, c1, ..., cT and σ2
δ | δ1, ..., δT

– Normal

∗ Update µWT | σ2
WT ,X1, ...,XT, c1, ..., cT

∗ Update (σ2
WT , σ

2
δ ) | µWT ,X1, ...,XT, c1, ..., cT, δ1, ..., δT

– log2gamma

∗ Update α | β,X1, ...,XT, c1, ..., cT

∗ Update β | α,X1, ...,XT, c1, ..., cT

∗ Update σ2
δ | δ1, ..., δT

• For t = 1, ..., T , update πt | ct

• For t = 1, ..., T , update θt,NWT | Xt, ct

• For t = 1, ..., T , update Xt | Yt, ct, δt

• For t = 1, ..., T , update δt | Xt, ct,Yt, σ
2
δ

• For t = 1, ..., T , update ct | Xt, πt,θWT ,θt,NWT

4. Discard burn-in

4.5 Multiyear Simulation Study

In this section, we perform a simulation study to compare the two extended sub-

set methods with our BayesACME extension. Because our focus is on the change in

prevalence, we make the simplifying assumption that only the WT prevalence changes

over time and the WT and NWT distributions remain static. In reality, the NWT

distribution would also change, but because none of these methods make any assump-

tions regarding the similarity of the NWT distribution across time, we do not consider

it to be a drawback. This also makes it much easier to compare these results to the

single-year results under low, medium, and high contamination.

For our simulations, we consider a study over four years (i.e., T = 4) under

different levels of contamination and sample sizes. For measurement error, we just
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use σδ = 0.4 as it is a “low” level of ME. The implication is the log2gamma is the

TURNM and JASP produce biased ECOFF estimates, but that is not the focus in

this chapter. Because the true value of σδ is not centered with the prior, BayesACME

produces biased observed ECOFF estimates in the log2gamma case as shown in Figure

3.13, but likely less biased estimates than those from the subset methods. The bias

of these methods produce regarding the observed ECOFF is not the focus in this

chapter, rather the focus is on the prevalence estimation as it pertains to capturing

AMR trend.

In terms of a decline in WT prevalence over time, we consider two cases: a slow rate

where the prevalence remains relatively constant over time and a fast rate. Because

the prevalence of AMR grows logistically [John Turnidge, personal communication,

January 27, 2020], we consider two rates of logit decline. These true WT prevalence

values are shown in the Table 4.1 and displayed in Figure 4.1.

Table 4.1.
Changes in Wild-Type Prevalence over Four Years

Rate Year 1 Year 2 Year 3 Year 4

Slow 0.7600 0.7545 0.7489 0.7433

Fast 0.7600 0.6963 0.6180 0.5267
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Figure 4.1. This plot shows the trend for the fast (in blue) and slow
(in red) rates of decline for the WT prevalence.
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We perform a simulation study to demonstrate its application for both the Normal

and log2gamma cases. We use the same latent WT distribution as in Chapter 3. For

the NWT distribution, we again consider a mixture of two Normals, with components

that vary by contamination level. The medium and high contamination are different

from the single-year levels because the fast rate decreases π to a value where the

overall MIC distribution appears to be unimodal. To maintain biological plausibility,

different NWT distributions for the medium and high case are assigned.

• Low Contamination:

wNWT = ( 5
37
, 32
37

) µNWT = (4.60, 5.10) σNWT = (0.95, 1.10)

• Medium Contamination:

wNWT = (15
37
, 22
37

) µNWT = (3.50, 5.00) σNWT = (1.10, 1.30)

• High Contamination:

wNWT = (22
37
, 15
37

) µNWT = (2.50, 5.00) σNWT = (0.80, 1.30)

The endpoints for censoring are −4 and 7. Each year has the following sample

sizes: 300, 600, and 1200. We perform 1000 simulations for each scenario. Table 4.2

reports the Bhattacharyya coefficients for the observed distribution (both continuous

and censored) in the Normal and log2gamma cases, respectively. As discussed in

Table 4.2.
Contamination for the Multiyear Simulation Study with ME

Normal Low Medium High

Continuous 0.0259 0.0945 0.1640

Censored 0.0323 0.1073 0.1854

Log2gamma Low Medium High

Continuous 0.0171 0.0836 0.1517

Censored 0.0237 0.0993 0.1801
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Chapter 3, the Bhattacharyya coefficient does not take into account prevalence π.

Ignoring prevalence becomes more of an issue in the multiyear case because it changes

each year. In future work, a scalar quantity to describe contamination that takes into

account π is desired.

Similar to the single-year analysis, boxplots and numerical summaries are dis-

played. As the focus is on the trend, numerical summaries are only presented for

the trend analysis. There are two ways of conducting trend analysis. The first is

applying the L2 loss function to the set of prevalence estimates with the respective

true values. The other way to quantify the trend is exploiting the pattern of WT

decline used in the simulation study. Recall that in the simulation study assumed

the logit of the true prevalence values decreases linearly. Then properties comparing

the slope of the fitted least squares line are compared. The prevalence estimates for

each year are compared using side-by-side boxplots. The trend results are presented

using numerical summaries. The numerical summaries reported are

• Median ln(L2) (Med. ln(L2))

• Bias

• Variance (Var.)

• Mean Squared Error (MSE)

The first quantity, Median ln(L2), is the median of the natural logarithm of the

L2 loss of each year’s prevalence estimates with their respective true values. This

distribution tends to be skewed so the median is selected. Unlike Chapter 3, the

distributions tend to be reasonably symmetric so robust statistics are not necessary.

Bias is defined here as the arithmetic average minus the true value. We use the sample

variance (Var.) and the MSE (the bias squared plus the variance). The estimated

MSE serves an indicator of the best overall estimation method. As only three methods

are compared, only the best quantity is in boldface. As the results are rounded, ties
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are settled by looking at the next decimal place. For brevity only some of the results

are discussed in this chapter. More are contained in Appendix G.

4.5.1 Normal Results

Slow Rate

Figure 4.2 shows the bias of prevalence. Each panel from left to right represents

year 1 to year 4. Figure 4.2 shows that JASP is the least biased across the four years,

while BayesACME is generally the most precise. Utilizing the least number of bins,

TURNM is the least precise.
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Figure 4.2. Normal distribution at low contamination at Size 300 at
the slow rate of WT prevalence decline

Figure 4.3 shows the results with high contamination. As the high contamination

violates the “clear separation” assumption in each individual year, JASP handles the

contamination the worst. It is the most biased and the least precise in each of the

four years. As TURNM excludes bins far on the right tail of the WT distribution,

the contamination biases the estimates of TURNM to a lesser extent than JASP.
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BayesACME is relatively robust to the contamination; it is the most accurate and

most precise in each year.
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Figure 4.3. Normal distribution at high contamination at size 300 at
the slow rate of WT prevalence decline

The previous figures provide only a marginal analysis of each year’s prevalence

estimate. As the goal is multiyear monitoring of WT prevalence, understanding the

trend is key. Table 4.3 displays two different forms of trend analysis. The column

Median ln(L2) is using the L2 loss of the estimates from the four years using the true

values. To assist comparison, the natural logarithm is taken (i.e., the more negative

the better). Generally, BayesACME is the best by having the smallest median value

at each contamination level. JASP is the second best in terms of median at low

and medium contamination. At high contamination, TURMN outperforms JASP in

terms of the median L2 loss.

Exploiting the simulation study design, the logit of the true prevalence values

decreases linearly. Then the bias of the estimated slope coefficient from the estimates

is displayed. Table 4.3 reveals that at each contamination level BayesACME has the
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Table 4.3.
Numerical Summaries for Normal Distribution at Slow Rate

Method Cont. Med. ln(L2) Bias Var. MSE

TURNM Low −5.4240 −0.0005 0.0077 0.0077

JASP Low −6.1102 −0.0002 0.0038 0.0038

BayesACME Low −6.1403 −0.0002 0.0035 0.0035

TURNM Med. −5.3995 −0.0005 0.0078 0.0078

JASP Med. −5.9099 0.0009 0.0043 0.0043

BayesACME Med. −6.0795 0.0004 0.0037 0.0037

TURNM High −5.3029 −0.0012 0.0082 0.0082

JASP High −5.1073 0.0014 0.0075 0.0075

BayesACME High −5.9028 −0.0001 0.0042 0.0042

lowest absolute bias and variance. Consequently, BayesACME is the best method in

terms of MSE at capturing the trend.

Fast Rate

Figure 4.4 has similar results to the slow rate regarding bias. The exception is

year 4 for BayesACME because the true value is close to the lower limit on the prior

for prevalence. This prior results in a slightly more biased, but more precise marginal

posterior for year 4. The boxplots show across the four years, JASP is now the most

accurate of the three methods, but BayesACME is still generally the most precise.

Similiar to the slow rate, TURNM is the least precise from using the least number of

bins.

At high contamination shown in Figure 4.5, the results are similar to the slow

case. It is clear that BayesACME performs the best in this setting. Across the four

years, BayesACME, like with the slow rate, is the most accurate and most precise.

There does appear to be a relatively stronger performance by JASP than in the slow

rate. This suggests in most years, it has better subset selection than at the slow rate.
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Figure 4.4. Normal distribution at low contamination at Size 300 at
the fast rate of WT prevalence decline
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Figure 4.5. Normal distribution at high contamination at size 300 at
the fast rate of WT prevalence decline

As reflected in Table 4.4, BayesACME has the smallest median in terms of the

natural logarithm of L2 loss. In the analysis of the slope of the logit of the prevalence
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estimates, BayesACME is the most precise across contamination levels. It is no longer

the case that BayesACME is the most accurate at capturing the trend of prevalence

changes in terms of absolute bias. However, it is still the best method at the three

contamination levels in terms of MSE. In the future, it is possible to examine the

influence the Unif(0.5, 1.0) versus Unif(0.0, 1.0) has on the bias of detecting the

trend. At low and medium contamination, the subset methods have smaller bias.

Table 4.4.
Numerical Summaries for Normal Distribution at Fast Rate

Method Cont. Med. ln(L2) Bias Var. MSE

TURNM Low −5.3692 −0.0060 0.0061 0.0062

JASP Low −5.9556 −0.0012 0.0035 0.0035

BayesACME Low −6.1484 0.0205 0.0024 0.0028

TURNM Med. −5.3289 −0.0081 0.0063 0.0064

JASP Med. −5.6896 0.0013 0.0039 0.0039

BayesACME Med. −6.0988 0.0218 0.0026 0.0031

TURNM High −5.1583 −0.0152 0.0069 0.0072

JASP High −5.1380 −0.0196 0.0066 0.0069

BayesACME High −5.9041 0.0184 0.0030 0.0034

4.5.2 Log2gamma Results

Slow Rate

Figure 4.6 show the results for low contamination at size 300. Except for year 4,

BayesACME is the most precise in terms of IQR. The results for best performance in

terms of bias are mixed. BayesACME is the most accurate in years 1 and 4. JASP

is the most accurate in years 2 and 3.

At high contamination shown in Figure 4.7, the multiyear extensions of TURNM

and BayesACME have comparable precision with a very slight edge to TURNM.

TURNM is the most accurate across the four years. JASP struggles with contamina-

tion and suffers from a loss of precision.
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Figure 4.6. Log2gamma distribution at low contamination at size 300
at the slow rate of WT prevalence decline
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Figure 4.7. Log2gamma distribution at high contamination at size
300 at the slow rate of WT prevalence decline
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Of course, the focus is capturing the trend. At the slow rate of decline, it appears

at low contamination in terms of natural logarithm of the L2 loss with the true values

the multiyear extension of BayesACME has the best performance. This pattern

becomes slightly more pronounced with increases in sample size. Table 4.5 shows

the estimated bias of the slope of the logit of the prevalence estimates shows that

BayesACME is the most accurate in terms of absolute bias and the most precise at

all three contamination levels. In terms of MSE, BayesACME is the best method at

these settings.

Table 4.5.
Numerical Summaries for log2gamma Distribution at Slow Rate

Method Cont. Med. ln(L2) Bias Var. MSE

TURNM Low −5.7936 0.0037 0.0047 0.0047

JASP Low −6.0334 0.0030 0.0039 0.0040

BayesACME Low −6.1036 0.0026 0.0036 0.0036

TURNM Med. −5.8479 0.0037 0.0048 0.0048

JASP Med. −5.9477 0.0030 0.0043 0.0044

BayesACME Med. −6.0913 0.0023 0.0037 0.0037

TURNM High −5.8721 0.0034 0.0049 0.0049

JASP High −5.5341 0.0025 0.0055 0.0055

BayesACME High −5.8867 0.0023 0.0042 0.0042

Fast Rate

At low contamination in Figure 4.8, there is still the slight bias in TURNM. The

estimates in the multiyear extension of JASP are nearly unbiased. BayesACME is

nearly unbiased except for year 4 where the prior for π4 becomes informative. For all

four years, there is a slight bias in the extension of TURNM. The extension of JASP

is quite good at being nearly unbiased. Generally, BayesACME is the most precise.

Figure 4.9 shows the results at high contamination when there is a fast decline in

WT prevalence. BayesACME bests JASP in terms of precision in each of the four
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Figure 4.8. Log2gamma distribution at low contamination at size 300
at the fast rate of WT prevalence decline

years of prevalence. It does appear that the estimates from TURNM are the least

biased and with the exception of year 4 are the most precise.
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Figure 4.9. Log2gamma distribution at high contamination at size
300 at the fast rate of WT prevalence decline
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Table 4.6 displays the natural logarithm of the L2 loss of the prevalence estimates

with the true values. Again BayesACME does the best in terms of median. Similar to

the Normal case, at the fast rate, BayesACME is no longer the most accurate in terms

of absolute bias. It is still the most precise across contamination levels and is the

bias is still mild enough that BayesACME is the best method in terms of estimated

MSE. In terms of slope of the logit of the prevalence estimates, BayesACME is the

most precise across contamination levels. Except at high contamination, JASP is the

most accurate.

Table 4.6.
Numerical Summaries for log2gamma distribution at Fast Rate

Method Cont. Med. ln(L2) Bias Var. MSE

TURNM Low −5.7470 −0.0060 0.0061 0.0062

JASP Low −5.9177 −0.0012 0.0035 0.0035

BayesACME Low −6.1574 0.0205 0.0024 0.0028

TURNM Medium −5.7966 −0.0081 0.0063 0.0064

JASP Medium −5.7499 0.0013 0.0039 0.0039

BayesACME Medium −6.0596 0.0218 0.0026 0.0031

TURNM High −5.7486 −0.0152 0.0069 0.0072

JASP High −5.5100 −0.0196 0.0066 0.0069

BayesACME High −5.7922 0.0184 0.0030 0.0034

4.6 Real Multiyear Data Set Application

Professor John Turnidge provided data sets from a single lab with MIC results

collected annually from 2011 to 2014. The advantage of results from a single lab

is the elimination of between-lab variability. This advantage enables a longitudinal

analysis without that concern. We examine the collection of MIC results of Neisseria

gonorrhoeae treated with Penicillin. In Chapter 3, the data from 2013 was considered.

Now four consecutive years (2011-2014) are considered jointly.
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Figure 4.10 shows the MIC distributions for each year. Interestingly, the data

from 2011 differs the most on the left. The difference is in terms of the left-most

mode and the amount of skewness. The distribution for 2011 has a much rounder

mode than the other three years and the distribution is much more right-skewed than

the others. Each year’s data set has the following sample size: 286, 276, 355, and

327, respectively. Each data set is tested with the same concentrations.
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Figure 4.10. Each year’s MIC distribution is shown as a histogram.

Figure 4.11 summarizes the resulting fits. The error bars shown for the BayesACME

method represent the 95% credible intervals. Using the combined goodness-of-fit

statistic for the the four years summed together for the multinomial model, the dis-

tribution of the Normal model with a median of 76.250 is smaller than that of the

median of 77.399 for test statistic distribution for the log2gamma. The test statistic

is large because the data sets for 2011 and 2014 are a bit unusual. The 2011 data set

has an unusual mode and 2014 data set has an odd WT left-tail. The estimates from

the three methods under the two distributions are displayed in Table 4.7.
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WT Prevalence Over Time: N. gonorrhoeae vs. Penicillin

Figure 4.11. This plot is the estimate of prevalence versus time for
the three extended methods from 2011 to 2014. The left column is
the Normal case and the right column is the log2gamma case.

Because we assume the same WT distribution over time, the model adjusts for

the unique pattern in the data of 2011 by lowering its prevalence estimate. Except

for that year, the estimates follow a steady trend. The patterns are very consistent in

the Normal case across the three methods. The extension of TURNM is more erratic

in the Normal case. At this method of estimation uses the mode plus one bin as the

subset for estimation it may acquire sensitivity to how bins to the left and right of

the left-most mode fluctuate from year to year. In both the Normal and log2gamma

cases, BayesACME and JASP tend to agree within the presented credible intervals

for the most part. By looking back to Figure 4.10, the WT distribution for year 2011

has a different form. In contrast to the other years, the WT mode is rounder. It may

explain why the estimate of WT prevalence is relatively different.

There are results from the state of Maryland from 2009 and 2010, where the WT

prevalence is 97% and 94%, respectively [Ghanem and Razeq, 2012]. Table 4.7 below

provides the estimates from the two different models. As the geography and time
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period is slightly different between the state of Maryland estimates and the estimates

from BayesACME, they do appear to be comparable except for year 2011.

Table 4.7.
Results from the N. gonorrhoeae vs. Penicillin from a Single Dutch
Lab from 2011 to 2014

Normal µ σobs π1 π2 π3 π4 ECOFF Bins

TURNM −3.747 1.599 0.894 1.000 0.826 0.846 1.194 (4,4,5,5)

JASP −3.596 1.441 0.735 0.923 0.916 0.923 0.857 (5,7,7,7)

BayesACME −3.274 1.749 0.883 0.943 0.932 0.927 2.131 All

log2gamma α β π1 π2 π3 π4 ECOFF Bins

TURNM 1.564 15.995 0.681 0.791 0.784 0.744 −0.950 (5,5,6,6)

JASP 1.542 14.000 0.764 0.935 0.956 0.922 0.901 (5,5,5,6)

BayesACME 1.606 12.143 0.803 0.908 0.918 0.908 1.040 All

4.7 Conclusion

This chapter extends the proposed model in Chapter 3 for the purpose of lon-

gitudinal surveillance of AMR. Additionally, it extends the two subset methods for

comparison. The simulation study shows that the multiyear extension shows the gen-

eral pattern that BayesACME is better at handling contamination and more precise

by modelling the entire mixture. Both the Normal and log2gamma case attest to

the improvement in precision. However, in the log2gamma case at the fast rate of

decline in WT prevalence and especially at high contamination, the subset methods

can become more accurate because BayesACME struggles to estimate the WT right

tail. In terms of capturing the trend, BayesACME has a dominant performance with

reporting the lowest MSE for the slope at all three contamination levels in the Normal

and log2gamma cases.

In future work, a joint prior can be placed on the prevalence. Biologically, the

true prevalence values should only decrease when time, geography, and source are

the same. Previously, we considered an ordered constraint prior, and found that it
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resulted in over-estimating the decline in WT prevalence at a slow rate. Perhaps

experimenting with a prior that imposes a similar, but a weaker condition such as

E[π1] > ... > E[πT ] is suited for future work.
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5. CONCLUDING REMARKS

In this dissertation, we proposed a novel AMR monitoring method and show across

most settings that it outperforms current single-year methods in both accuracy and

precision. This improvement is due primarily to two reasons. First, we utilize the

entire collection of bin counts rather than just using a subset of them to estimate the

prevalence and WT parameters. This allows us to incorporate information on the right

tail of the WT distribution that the subset methods do not necessarily incorporate.

Second, our approach is the only method whose model accounts for measurement error

in the assay. While other methods focus on the observed distribution of assay results,

we are able to partition the observed distribution into a latent assay distribution and

Normal measurement error distribution. This grants us the ability to

1. Describe the observed assay distribution properly when the latent WT distri-

bution is non-Normal

2. Incorporate biological knowledge into the prior of the NWT distribution. Thereby

allowing this method to handle cases with various degrees of contamination.

As discussed in Chapter 1, the log2gamma distribution convolved with a Normal

measurement error (ME) distribution is no longer a log2gamma. Thus, methods that

assume the observed assay distribution is log2gamma are prone to poor estimation of

the true underlying log2gamma distribution and thus prone to biases when estimating

functions of the distribution such as the observed ECOFF. Outside of assuming the

WT distribution is Normal, accounting for ME is essential for proper estimation.

In addition, by partitioning noise from the latent distribution, we incorporate

biological information into the relationship between the WT and NWT distribution.

In other words, we are able to separate overlap in these two distributions that is truly

biological from overlap that is created due to ME. We currently use the concept of
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a latent ECOFF to set these limits of true biological overlap in the distribution, but

our method is flexible enough to consider an alternative use of this information.

Using information to constrain the NWT distribution and imposing little prior

information on the WT distribution is the complete opposite of the other Bayesian

semiparametric approach in the literature. It takes a more empirical approach using

the results from fitting a cruder subset model to set an informative prior for the

WT distribution. Our current simulations suggest our approach outperforms this

alternative except when the amount of overlap in the observed results is high. The

better performance at high contamination may be in part due to the fact their prior

is more informative than our current restrictions on the NWT. Further research is

needed on this.

In Chapter 4, we considered extending our approach to handle AMR monitoring

to across years under the assumption that the WT distribution is static over time.

If reasonable, this assumption enables the sharing of information across years in the

estimation of the WT distribution and resulting in more precise estimates of preva-

lence. For comparison purposes, we not only extended our model, but also extended

the two subset methods (i.e., TURNM and JASP) to handle multiple years. We again

show that our method generally outperforms these other two in terms of precision

and accuracy of the trend, especially when the overlap in the WT distribution and

NWT distribution is high.

5.1 Limitations

The collections of observed assay values typically come from multiple clinics, per-

formed by various technicians, and across numerous days. Thus, the observed mea-

surement error is not due just to the assay itself but is also confounded with other

sources of variation. Our current prior of σ2
δ is based on the within-lab variabilities

observed in QC studies. As a result, our prior may cover a range of variances that is

much smaller than expected in practice.
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While properly estimating this variance does not impact our estimation of the

observed ECOFF in the Normal case, this variability will impact our estimates of the

latent WT and NWT distributions. Not only in terms of partitioning away error, but

also because the overlap limits of the two distributions we set. We have yet to do a

robust analysis where we consider ME outside the range of the prior. As shown in

the simulations, there is considerable sensitivity to the prior σ2
δ in the non-Normal

WT distributions. If the prior is not properly centered, the estimation of observed

ECOFF is biased for non-Normal data.

Along those same lines, our current heuristic for setting a lower limit on the means

of the NWT components and an upper limit on the standard deviations currently relies

on a decent estimate of the ME variance. While we are confident in the reasoning used

to construct these limits knowing the truth, we are unclear if our current estimation

approach is the best one for setting these limits.

Although BayesACME typically outperformed the current methods, JASPB per-

formed the best, especially as the degree of contamination increased. While an ap-

proach that separates the WT and NWT distributions based on biological arguments

is desirable, we have to admit that taking an empirical approach to set a prior for

θWT also works quite well.

Fortunately, our approach handles the log2gamma distribution and can easily be

adapted to incorporate the prior used by JASPB, should its incorporation or a hybrid

of our two approaches be viable. This issue only arises in the high contamination

setting, but warrants further investigation.

5.2 Future Work

Inspired by the popularity of the Excel Macro ECOFFfinder [EUCAST, 2020],

we plan to make our procedure available as an R Shiny app and as an R package.

By offering new statistical software, we hope to start a more vibrant discussion over
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WT distribution specifications, the inclusion of measurement error, and uncertainty

quantification.

In addition, the algorithms proposed are MCMC schemes. There is room to

improve the computationally efficiency. For example, the current implementation is

written entirely in R, but some of the MCMC steps could easily be sped up using a

compiled language such as C or Fortran. It is also possible that by switching from

a random-walk MCMC to a more sophisticated mechanism that introduces gradient

information may improve things.

5.2.1 Explicitly Including Between-Lab Variability

As mentioned earlier, QC data suggests there is inherent variability in the MIC

assay both between and within-labs. Currently, these MIC collections do not specify

the lab, but if they did, we could adjust the underlying latent MIC distribution for

this source of variability.

Denoting the between-lab error as ε ∼ N(0, σε), we model the observed MIC using

Y = dX + δ + εe

Using the same QC data as before, we can put a prior on σε based on the between-lab

variability. This inclusion would allow us to adjust properly for an unequal number

of samples from labs that we cannot do now. Of course, this only makes sense if each

lab-effect remains constant over the collection time, something that is not yet clear.

5.2.2 Allowable Overlap Between the NWT and WT Distributions

Currently, overlap is managed by controlling the means and standard deviations

of the NWT Normal components. Alternative approaches could consider using a

single measure to quantify the overlap such as the Bhattarcharyya coefficient. The

advantage of this approach is a restriction placed on the entire mixture rather than
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just the means and standard deviations of the components. As dealing with a latent

continuous distribution and using the Bhattarcharyya coefficient to quantify con-

tamination are first proposed here, an acceptable and realistic upper bound placed

on the Bhattarcharyya coefficient needs to be determined for real data sets. This

modification removes the requirement for pre-specification of parameters and relaxes

assumptions about the base distribution in the DPMM.

Another idea is to determine empirical priors for θWT and π like JASPB and

place little to no restrictions on the DPMM. Likely, there would need to be some

requirement on the DPMM to ensure the NWT remains to the right of the WT

distribution.

5.2.3 WT Model Comparison

The χ2 goodness-of-fit test requires either the visual assessment of two different

distributions or selecting a heuristic from the χ2 distribution to determine the better

model fit. This may make cases where the two models have very comparable fit diffi-

cult to distinguish as the difference between the models is the latent WT distribution.

One option is to use an alternative that creates scores for comparison.

The widely applicable information criteria also known as the Watanabe-Akaike

Information Criteria (WAIC) addresses this limitation [Watanabe, 2010, 2013]. The

WAIC is a generalization of the AIC suited for Bayesian hierarchical models and is

asymptotically comparable to Bayesian Leave-One-Out Cross Validation (LOO-CV).

The WAIC is a Bayesian approach for estimating the out-of-sample expectation

using a computed log pointwise posterior predictive density [Gelman et al., 2013].

Analogous to information criteria such as the AIC that introduce a penalty for the

number of parameters, the WAIC introduces a correction for the effective number

of parameters. One must take a sample of n “new” observations denoted Ỹ1, ..., Ỹn.

Then using S posterior samples, the expected log pointwise predictive density (ellpd)
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for the “new” data set can be estimated with the log pointwise predictive density

(llpd):
n∑
i=1

log(
1

S

S∑
s=1

P (Ỹi | θ̃
s
))

where θ̃
s

is the sth posterior draw of θ̃ and P denotes the multinomial probability.

To calculate the correction for the effective number of parameters denoted pWAIC ,

Gelman et al. [2013] recommend summing over the sample variances of the log-

likelihood for the S posterior draws for the n “new” data. The WAIC is calculated as

−2llpd + 2pWAIC . Like other information criteria, the lower the value of the WAIC;

the higher the predictive accuracy.

The downside to this method is the selection of the n “new” observations is not

clear. In the future, it may be worthwhile exploring if the WAIC can be adapted or

modified to focus solely on the latent true WT distribution with the hopes of avoiding

issues of low bin counts associated with the multinomial model.

5.2.4 Time Dependent Dirichlet Process Mixture Models

One relatively new development is modelling the NWT distribution jointly with

the WT distribution semiparametrically [Jaspers et al., 2016a,b]. Although the NWT

may be viewed as a nuisance factor, there is information in this distribution. In the

multiyear analysis, we currently assume the WT distribution remains fixed with no

restrictions on how the NWT changes over time. The question of how (and even

how much) the NWT distribution changes for an arbitrary “drug/bug” combination

is an open question [Mouton et al., 2018]. Certainly, labs may want to explore and

highlight any changes or trends in this subpopulation when submitting results.

One possibility is to use a Time Dependent Dirichlet Process Mixture Model

(DDPMM). The DDPMM generalizes the DPMM model by eliminating the key as-

sumption of exchangeability with the data points and their labeling (a necessary re-

quirement for the Chinese Restaurant Process). The DDPMM generalizes the DPMM
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by including birth, death, and transition processes into the clusters for the model

[Campbell et al., 2013, Lin et al., 2010, MacEachern, 2000]. By doing this, it allows

for the parameters of the components to be static over time, but the weights of the

mixture to change over time [Fox and Jordan, 2013]. This is a potential generalization

to the assumptions of Chapter 4, where the mean and standard deviation of the WT

component are relatively static over time, but the mixture weight π changes. Now all

the components are relatively fixed, but all the weights are changing over time.

5.2.5 Considering a Hypersusceptible Subpopulation

The methodology discussed in this dissertation is inappropriate for addressing a

hypersusceptible subpopulation. It is assumed to not exist. In fairness, its presence

is rare. Its inclusion requires adding a component to the mixture model. Denote

the density as fhyp with parameter set θhyp and weight ξ. Then the overall mixture

model becomes:

f(X∗) = ξfhyp(X
∗ | θhyp) + πfWT (X∗ | θWT ) + (1− ξ − π)fNWT (X∗ | θNWT )

for the observed data Y.

Currently, not much can be said about the hypersusceptible subpopulation other

than it is to the left of the WT population as a distinct population. As it is a likely

product of evolution like the NWT distribution, a form of nonparametric estimation

is likely required. Currently, it is not clear the best method of estimation and con-

sideration must be made to the possibility that this subpopulation may only span a

single bin.

If this subpopulation is present, it creates major issues for WT distribution and

prevalence estimation, as the key assumption is that the WT distribution is the left-

most subpopulation. It may also contaminate the left WT tail. In fact, it brings up a

return to the other value of the ECOFF namely the 0.1th percentile of the WT distri-

bution [Turnidge et al., 2006]. Typically, this value was not of any particular interest
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as the contamination only occurred from the right, except for excluding possible lab

errors. It is possible a left-ward hypersusceptible mode elevates its relevance.

5.2.6 Potential Changes to the MIC Assay

In studying the MIC assay it becomes readily apparent that little has changed

with the procedure and its use for over 50 years. As a major challenge with this

analysis is the loss of information from censoring, I would like to study the impact of

two MIC alterations:

1. What if we consider more than 12 concentrations? Clearly narrower bins in

the region of the observed ECOFF would help analysis. If there were fold-level

changes in concentration over the same region, what would be the improvement?

2. If more concentrations were not feasible, what would be the gain if each isolate

were tested twice? This would not only help in estimating the underling latent

MIC, but would help in estimating the within-assay variability.

If the investigation from these questions proves useful, then approaching microbiolo-

gists and monitoring agencies to investigate meaningful reforms.

As laboratories collect the data, subsequent methodological considerations should

be made. Ideally, laboratories should supply more than the assay results. They should

try to provide (or make available) information on the broth, the geographic location

where the bacterium was collected, the specific date the experiment was done, and

the technician(s) [Mouton et al., 2018]. This list is not exhaustive. It allows for the

best use of the results.
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A. LATENT WT DISTRIBUTIONS

Normal Distribution

For a random variable, X ∼ N(µ, σ), the mean is E[X] = µ, and the variance is

V ar(X) = σ2 where µ is any real value and σ > 0. A special case is the standard

Normal where µ = 0 and σ = 1.

The Normal distribution is special in that linear combinations of independent

Normal random variables are also Normally distributed. The mean of the linear

combination is the linear combination of the means of each of the Normal random

variables. Assuming mutual independence among the Normal components, the vari-

ance is the linear combination of the Normals random variables. Specifically, for

t = 1, ..., n with Xt
indep.∼ N(µt, σt), then

∑n
t=1 atXt ∼ N(

∑n
t=1 atµt,

√∑n
t=1 a

2
tσt

2).

We denote the probability density function (pdf) for the standard Normal as φ(·).

In the pdf, π denotes the mathematical constant (i.e., π = 3.14159...) and not WT

prevalence. For an arbitrary random variable X with the Normal distribution, the

pdf is

fX(x) =
1

σ
φ

(
x− µ
σ

)
=

1√
2πσ

exp

[
−(x− µ)2

2σ2

]

The cumulative distribution function (cdf) is denoted as Φ(x−µ
σ

). The cdf does

not have a closed-form. The density is bell-shaped and symmetric so the median

and mode are also equal to the mean. The parameter µ shifts the density and the

parameter σ scales the density.

Figure A.1 contains the Normal density for different values of µ and σ.
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Figure A.1. The pdf of the Normal distribution for different parameters values.

Log2gamma Distribution

The log2gamma distribution is the logarithm base 2 transformation of a gamma

random variable with shape parameter α and rate parameter β. Both α and β must

be positive. Its probability density function (pdf) is

fX(x) = ln(2)
βα

Γ(α)
2αx exp[−β2x]

where Γ(·) is the gamma function.

Denoting the digamma function as ψ(·) and the trigamma function as ψ(1)(·), the

mean is

E[X] =
ψ(α)− ln(β)

ln(2)

and the variance is

V ar[X] =
ψ(1)(α)

ln(2)2
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This distribution is skewed to the left with the mode:

mode(X) = log2(
α

β
)

Figure A.2 contains several densities of the log2gamma distribution. The param-

eter α and the spread of the distribution are inversely related. By decreasing β and

keeping α fixed, the density shifts to the right.
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Figure A.2. The pdf of the log2gamma distribution with different
parameters values. The parameter α solely determines the spread.
Both α and β determine the mean and mode.
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B. DERIVATION OF MAXIMUM LIKELIHOOD ESTIMATES FOR

JASPERS ET AL. SUBSET METHOD

The method of Jaspers et al. [2014a] assumes the observed results from the MIC

assay form a multinomial. For the WT component with bin j with corresponding

with concentration Cj. The first K bins on the left are determined parametrically

with some distribution FWT with parameter set θWT

p̃j =

FWT (Cj;θWT ) j = 1

FWT (Cj;θWT )− FWT (Cj−1;θWT ) j = 2, 3, ..., K

(B.1)

The definition for p̃j is different in this appendix than in Chapter 2 by excluding

the prevalence, π. This discrepancy is intentional. The definition in Chapter 2 that

includes π enables brevity. In this appendix excluding π allows for clarity in the

derivation.

We seek to make rigorous the maximum likelihood estimation for the method of

Jaspers et al. [2014a]. We have a multinomial where the first K bins on the left are

defined parametrically. The remaining J − K are not dependent on θWT . Using

the following log-likelihood, l(θWT , π, pK+1, ..., pJ , λ) with Lagrange multiplier λ to

enforce the constraint that bin probabilities sum to 1. We use p̃j to denote the bin

probabilities for the WT component for the first K bins and pj to denote the bin

probabilities for the NWT bins. Each bin j has count mj.

The log-likelihood is

l(θWT , π, pK+1, ..., pJ , λ) =

K∑
j=1

mj log(πp̃j) +
J∑

j=K+1

mj log(pj) + λ(1− π
K∑
j=1

p̃j −
J∑

j=K+1

pj) (B.2)
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= log(π)
K∑
j=1

mj +
K∑
j=1

mj log(p̃j)+
J∑

j=K+1

mj log(pj)+λ(1−π
K∑
j=1

p̃j−
J∑

j=K+1

pj) (B.3)

In general, when j ≥ 2, lj = uj − 1. Notice, we have a finite telescopic series:

K∑
j=1

p̃j = FWT (C1;θWT ) + (FWT (C2;θWT )− FWT (C1;θWT )) + ...

+ (FWT (CK ;θWT )− FWT (CK−1;θWT )) = FWT (CK ;θWT ) (B.4)

Then the log-likelihood can be restated by substituting FWT (CK ;θWT ) =
∑K

j=1 p̃j:

l(θWT , π, pK+1, ..., pJ , λ) =

log(π)
K∑
j=1

mj+
K∑
j=1

mj log(p̃j)+
J∑

j=K+1

mj log(pj)+λ(1−π·FWT (CK ;θWT )−
J∑

j=K+1

pj)

(B.5)

Now we must take the first derivative to each parameter in the log-likelihood and

set each each equation to 0. First, we look at the NWT components, pj, for j =

K + 1, ..., J ,
∂l(θWT , π, pK+1, ..., pJ , λ)

∂pj
=
mj

pj
− λ = 0 (B.6)

Then pj =
mj
λ

. Next, an equation for prevalence follows

∂l(θWT , π, pK+1, ..., pJ , λ)

∂π
=

1

π

K∑
j=1

mj−λ
K∑
j=1

p̃j =
1

π

K∑
j=1

mj−λFWT (CK ,θWT ) = 0.

(B.7)
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Then π =
∑K
j=1mj/λ

FWT (CK ;θWT )
. Now an equation for λ is required:

∂l(θWT , π, pK+1, ..., pJ , λ)

∂λ

= 1− π
K∑
j=1

p̃j −
J∑

j=K+1

pj = 1− πFWT (CK ,θWT )−
∑J

j=K+1mj

λ
= 0 (B.8)

Then

0 = 1− (

∑K
j=1mj/λ

FWT (CK ;θWT )
)FWT (CK ,θWT )−

∑J
j=K+1mj

λ
(B.9)

Then

0 = 1−
∑J

j=1mj

λ
= 1− Ntot

λ
(B.10)

There is an unique solution: λ = Ntot. Then for j = K + 1, ..., J, pj =
mj
Ntot

. Then

∂l(θWT , π, pK+1, ..., pJ , λ)

∂θWT

=

∂

∂θWT

[
K∑
j=1

mj log(π) +
K∑
j=1

mj[log(FWT (Cj;θWT ))− FWT (Cj−1;θWT ))]

− λπFWT (CK ;θWT )] = 0 (B.11)

Then

∂l(θWT , π, pK+1, ..., pJ , λ)

∂θWT

=

∂

∂θWT

[
K∑
j=1

mj[log(FWT (Cj;θWT ))− FWT (Cj−1;θWT ))]− λπFWT (CK ;θWT )] = 0

(B.12)

By substitution, π =
∑K
j=1mj/λ

FWT (CK ;θWT )
.

∂

∂θWT

[
K∑
j=1

mj[log(FWT (Cj;θWT ))− FWT (Cj−1;θWT ))]−
K∑
j=1

mj = 0 (B.13)
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Then define C0 = −∞,

θ̂WT = arg max
θWT

K∑
j=1

mj[log(FWT (Cj;θWT )− FWT (Cj−1;θWT ))]

Notice these solutions do not depend on either π or λ. In contrast, the estimator of

π depends on both θWT and λ. Using the determined solutions we can state:

π̂ =

∑K
j=1mj/Ntot

FWT (CK ; θ̂WT )
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C. SINGLE-YEAR COMPUTATION

In this appendix, the MCMC schemes for the Normal and log2gamma distributions

are each detailed. Each model is treated in a section. The R code for the DPMM is

a modification from the Dirichletprocess package to accommodate the truncation of

the base distribution [Ross et al., 2020].

Computation: Normal WT Distribution for Single-Year Data

Now for computational ease, three latent vectors are introduced. The first is the

latent continuous values, X. The second is an indicator for whether an observation

is a wild-type or not, c. The third is for values of the measurement error, δ. A

Metropolis-within-Gibbs algorithm is used.

For observation i, define ci =
1 if WT

0 else

Let θNWT = (θ1, ...,θk). Let S be a vector denoting the allocations of each NWT

observation to cluster 1, ..., k. Then S(−i) the vector S without observation i. The

vector n denotes the number of observations in each of the k NWT components.

The superscript (L) denotes the Lth iteration. First initial values are determined,

the (0)th values. Note that for the generation of latent vectors only interval censored

generation is shown for brevity. As the endpoints of the data set are both known and

fixed, the censoring is adjusted accordingly.

Update θWT | X, c

• µWT
(L) | σWT

2(L−1),X(L−1), c(L−1) ∼ N(X̄(L−1),
√

σWT
2(L−1)∑

i ci
(L−1) )

• σWT
2(L) | µWT

(L),X(L−1), c(t−1) ∼ InvGamma(
∑

i
c
(L−1)
i

2
,
∑

i:ci=1 (Xi
(L−1) − µWT

(L))
2
/2)
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Update π | c

• π(L) | c(L−1) ∼ TrBeta(a = .5, b = 1, α′ = 1+
∑

i ci
(L−1), β′ = 1+Ntot−

∑
i c

(L−1)
i )

Update σ2
δ | δ

• σδ
2(L) | δ(L−1) ∼ InvGamma(α′ = αδ + Ntot

2
, β′ = βδ +

∑
i δi

(L)2

2
)

Update θNWT | X, c.

• Use Neal [2000] Algorithm 8 with D auxiliary classes. For i = 1, ..., Ntot−
∑

i ci,

S(L) | αconc(L−1),θNWT
(L−1),X(L−1), c(L−1),S−i

(L−1)

For h = 1, ...k,

• µh
(L) | S(L),σh

(L−1),X(L−1), c(L−1) ∼ TrN(A,∞, µ′,
√
σ2′)

where

µ′ =

µG0
(L−1)

σ2
0

+

∑
i:S(L)

i=h
X

(L−1)
i

σh2
(L−1)

1
σ02

+ nh(L)

σ2
h
(L−1)

and

σ2′ =
1

1
σ02

+ nh

σ2
h
(L−1)

• σ2
h
(L) | S(L),X(L), µh

(L), c(L−1) ∼ InvGamma(α
′
= α1+

nh
2
, β
′
= β1+

∑
i:Si=h

(Xi−µh)2

2
)

• wh
(L) = nh

(L)

Ntot(1− ˆc(L−1))

Update the mean of the base distribution.

• µG0
(L) | µNWT

(L) ∼ TrN(A,∞, µ′G0
=

µGB
σGB

2+
∑
r µr

(L)

σ20

1
σGB

2+
k(L)

σ0
2

, σ
′
G0

= ( 1
σ2
GB

+ k(L)

σ2
0

)
−1/2

)

Update αconc using West [1992] where γ is the Euler-Mascheroni constant.

• αconc
(L) | k(L), c(L−1) asy.∼ Gamma(a+ k(L) − 1, b+ γ + log(Ntot −

∑
i ci

(L−1)))

Update X | Y, c, δ.

For the observations, i = 1, ..., Ntot where ci = 1

• X(L) | Y, c(L−1), µWT
(L), σWT

(L), δ(L−1)
ind.∼ TrN(Y−1−δ(L−1), Y−δ(L−1), µWT

(L), σWT
(L))

For the observations, i = 1, ..., Ntot where ci = 0



96

• X(L) | Y,S(L), c(L),µNWT
(L),σNWT

(L) ind.∼

TrN(Y − 1− δ(L−1), Y − δ(L−1),µNWT i:Si
(L)

(t),σNWT i:Si
(L)

(L))

Update δ | Y,X, σ2
δ .

• δ(L) | Y,X(L), c(L−1),S(L), σδ
2(L) ind.∼

TrN(Y − 1−X(L−1), Y −X(L−1), µ = 0, σδ
(L))

Update c | X, π,θWT ,θNWT

• c(L) | X(L), π(L),θWT
(L),θNWT

(L) ∼ Bernoulli(p′)

where

p′ =

π(L)

σWT
(L)φ(

X(L)−µ(L)
WT

σWT
(L) )

π(L)

σWT
(L)φ(X

(L)−µWT
(L)

σWT
L ) + (1− π(L))

∑k(L)

h=1
wh(L)

σh(L) φ(X
(L)−µh(L)

σh(L) )

Then increase L← L+ 1

Computation: log2gamma WT Distribution for Single-Year Data

Update θWT | X, c

• P (α(L) | β(L−1),X(L−1), c(L−1)) ∝ P (X(L−1) | c(L−1), α(L−1), β(L−1))pr(α(L−1))

• β(L) | X(L−1), c(L−1), α(L) ∼ Gamma(α′ = Ntot
¯c(L−1)α(L), β′ =

∑
i:c(L)

i=1 2X
(L)
i )

Update π | c

• π(L) | c(L−1) ∼ TrBeta(a = .5, b = 1, α′ = 1+
∑

i ci
(L−1), β′ = 1+Ntot−

∑
i c

(L−1)
i )

Update σ2
δ | δ

• σδ
2(L) | δ(L−1) ∼ InvGamma(α′ = αδ + Ntot

2
, β′ = βδ +

∑
i δi

(L)2

2
)

Update θNWT | X, c.

• Use Neal [2000] Algorithm 8 with D auxiliary classes. For i = 1, ..., Ntot−
∑

i ci,

S(L) | αconc(L−1),θNWT
(L−1),X(L−1), c(L−1),S−i

(L−1)
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For h = 1, ...k,

• µh
(L) | S(L),σh

(L−1),X(L−1), c(L−1) ∼ TrN(A,∞, µ′,
√
σ2′)

where

µ′ =

µG0
(L−1)

σ2
0

+

∑
i:S(L)

i=h
X

(L−1)
i

σh2
(L−1)

1
σ02

+ nh(L)

σ2
h
(L−1)

and

σ2′ =
1

1
σ02

+ nh

σ2
h
(L−1)

• σ2
h
(L) | S(L),X(L), µh

(L), c(L−1) ∼ InvGamma(α
′
= α1+

nh
2
, β
′
= β1+

∑
i:Si=h

(Xi−µh)2

2
)

• wh
(L) = nh

(L)

Ntot(1− ˆc(L−1))

Update the mean of the base distribution.

• µG0
(L) | µNWT

(L) ∼ TrN(A,∞, µ′G0
=

µGB
σGB

2+
∑
r µr

(L)

σ20

1
σGB

2+
k(L)

σ0
2

, σ
′
G0

= ( 1
σ2
GB

+ k(L)

σ2
0

)
−1/2

)

Update αconc using West [1992] where γ is the Euler-Mascheroni constant.

• αconc
(L) | k(L), c(L−1) asy.∼ Gamma(a+ k(L) − 1, b+ γ + log(Ntot −

∑
i ci

(L−1)))

Update X | Y, c, δ.

For the observations, i = 1, ..., Ntot where ci = 1

• X(L) | Y, c(L), δ(L), α(L), β(L) ∼ log2(TrGamma(a = 2Y−1−δ
(L)
, b = 2Y−δ

(L)
, α(L), β(L)))

For the observations, i = 1, ..., Ntot where ci = 0

• X(L) | Y,S(L), c(L),µNWT
(L),σNWT

(L) ind.∼

TrN(Y − 1− δ(L−1), Y − δ(L−1),µNWT i:Si
(L)

(t),σNWT i:Si
(L)

(L))

Update δ | Y,X, σ2
δ .

• δ(L) | Y,X(L), c(L−1),S(L), σδ
2(L) ind.∼

TrN(Y − 1−X(L−1), Y −X(L−1), µ = 0, σδ
(L))

Update c | X, π,θWT ,θNWT

• c(L) | X(L), π(L),θWT
(L),θNWT

(L) ∼ Bernoulli(p′)
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where

p′ =
π(L)fl2g(X

(L−1);α(L), β(L))

π(L)fl2g(X(L−1);α(L), β(L)) + (1− π(L))
∑k(L)

h=1
wh(L)

σh(L) φ(X
(L−1)−µh(L)

σh(L))

Then increase L← L+ 1
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D. SINGLE-YEAR SIMULATION RESULTS

Normal Case

For σδ = 0.4, 0.5, 0.6, we compare the performance of Turnidge et al. [2006]

(TURN) in green, in orange is the method Turnidge et al. [2006] but with a sub-

set of the mode plus one bin (TURNM), in brown is the method of Jaspers et al.

[2014a] (JASP), and blue is BayesACME. When σδ = 0.5, the method of Jaspers

et al. [2016a] (JASPB) is compared as well in pink. For the Bayesian methods, the

posterior mean (following burn-in) is taking as the Bayes estimate. The red horizontal

line denotes the truth. Each set of boxplots is for the different level of contamination

in the order of low, medium, and high as we move from left to right.

Comparison with Jaspers et al. (2016)

Only for σδ = 0.5, we compare the the performance of Turnidge et al. [2006],

Jaspers et al. [2014a], and Jaspers et al. [2016b] to BayesACME.
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Figure D.1. This set of boxplots contrasts the results of the ECOFF
values of the compared methods at size 300 and σδ = 0.5.



101

Turnidge Turnidge New Jaspers 2016

0
2

4
6

Low Contamination

Turnidge et al. 2006
Turnidge et al. 2006 (New Subset)
Jaspers et al. 2014
Jaspers et al. 2016
BayesACME

Turnidge Turnidge New Jaspers 2016

0
2

4
6

Medium Contamination

Turnidge Turnidge New Jaspers 2016

0
2

4
6

High contamination

Figure D.2. This set of boxplots contrasts the results of the ECOFF
values of the compared methods at size 600 and σδ = 0.5.
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Figure D.3. This set of boxplots contrasts the results of the ECOFF
values of the compared methods at size 1200 and σδ = 0.5.
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Figure D.4. This set of boxplots contrasts the estimates of the preva-
lence estimates of the discussed methods at size 300 and σδ = 0.5.



104

Turnidge Turnidge New Jaspers 2016

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Low Contamination

Turnidge et al. 2006
New Turnidge
Jaspers et al. 2014
Jaspers et al. 2016
BayesACME

Turnidge Turnidge New Jaspers 2016

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Medium Contamination

Turnidge Turnidge New Jaspers 2016

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

High Contamination

Figure D.5. This set of boxplots contrasts the estimates of the preva-
lence estimates the discussed methods at size 600 and σδ = 0.5.
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Figure D.6. This set of boxplots contrasts the estimates of the preva-
lence estimates of the compared methods at size 1200 and σδ = 0.5.
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Figure D.7. This set of boxplots contrasts the results of the ECOFF
values of the compared methods at size 300 and σδ = 0.4.
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Figure D.8. This set of boxplots contrasts the results of the ECOFF
values of the compared methods at size 300 and σδ = 0.6.
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Figure D.9. This set of boxplots contrasts the results of the ECOFF
values of the compared methods at size 600 and σδ = 0.4.
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Figure D.10. This set of boxplots contrasts the results of the ECOFF
values of the compared methods at size 600 and σδ = 0.6.
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Figure D.11. This set of boxplots contrasts the results of the ECOFF
values of the compared methods at size 1200 and σδ = 0.4.
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Figure D.12. This set of boxplots contrasts the results of the ECOFF
values of the compared methods at size 1200 and σδ = 0.6.
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Figure D.13. This set of boxplots contrasts the results of the ECOFF
values of the compared methods at size 300 and σδ = 0.4.
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Figure D.14. This set of boxplots contrasts the results of the ECOFF
values of the compared methods at size 300 and σδ = 0.6.
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Figure D.15. This set of boxplots contrasts the results of the ECOFF
values of the compared methods at size 600 and σδ = 0.4.
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Figure D.16. This set of boxplots contrasts the results of the ECOFF
values of the compared methods at size 600 and σδ = 0.6.
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Figure D.17. This set of boxplots contrasts the results of the ECOFF
values of the compared methods at size 1200 and σδ = 0.4.
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Figure D.18. This set of boxplots contrasts the results of the ECOFF
values of the compared methods at size 1200 and σδ = 0.6.
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Figure D.19. This set of boxplots contrasts the results of the ECOFF
values of the compared methods at size 300 and σδ = 0.5.
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Figure D.20. This set of boxplots contrasts the results of the ECOFF
values of the compared methods at size 600 and σδ = 0.5.



120

0
1

2
3

4
5

Low Contamination

0
1

2
3

4
5

Medium Contamination

0
1

2
3

4
5

High Contamination

Figure D.21. This set of boxplots contrasts the results of the ECOFF
values of the compared methods at size 1200 and σδ = 0.5.
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Figure D.22. This set of boxplots contrasts the results of the Preva-
lence Estimates of the compared methods at size 300 and σδ = 0.5.
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Figure D.23. This set of boxplots contrasts the results of the Preva-
lence Estimates of the compared methods at size 600 and σδ = 0.5.
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Figure D.24. This set of boxplots contrasts the results of the Preva-
lence Estimates of the compared methods at size 1200 and σδ = 0.5.
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Figure D.25. This set of boxplots contrasts the results of the ECOFF
values of the compared methods at size 300 and σδ = 0.4.



125

0
1

2
3

4
5

Low Contamination

0
1

2
3

4
5

Medium Contamination

0
1

2
3

4
5

High Contamination

Figure D.26. This set of boxplots contrasts the results of the ECOFF
values of the compared methods at size 300 and σδ = 0.6.
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Figure D.27. This set of boxplots contrasts the results of the ECOFF
values of the compared methods at size 600 and σδ = 0.4.
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Figure D.28. This set of boxplots contrasts the results of the ECOFF
values of the compared methods at size 600 and σδ = 0.6.
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Figure D.29. This set of boxplots contrasts the results of the ECOFF
values of the compared methods at size 1200 and σδ = 0.4.
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Figure D.30. This set of boxplots contrasts the results of the ECOFF
values of the compared methods at size 1200 and σδ = 0.6.
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Figure D.31. This set of boxplots contrasts the results of the Preva-
lence estimates of the compared methods at size 300 and σδ = 0.4.
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Figure D.32. This set of boxplots contrasts the results of the Preva-
lence estimates of the compared methods at size 300 and σδ = 0.6.
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Figure D.33. This set of boxplots contrasts the results of the Preva-
lence estimates of the compared methods at size 600 and σδ = 0.4.
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Figure D.34. This set of boxplots contrasts the results of the Preva-
lence estimates of the compared methods at size 600 and σδ = 0.6.
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Figure D.35. This set of boxplots contrasts the results of the Preva-
lence estimates of the compared methods at size 1200 and σδ = 0.4.
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Figure D.36. This set of boxplots contrasts the results of the Preva-
lence estimates of the compared methods at size 1200 and σδ = 0.6.
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E. MULTIYEAR EXTENSIONS TO SUBSET METHODS

Extension of Turnidge et al. [2006]

Define Ntot as the vector containing the number of observations for each particular

year. The cut point in each year can be different. The selection criteria for each year’s

subset for WT distribution parameter estimation is the same as TURNM; the left-

most bins up and to including the mode plus one bin. Denote the the vector of length

T of each year’s cutpoint as K.

Parameters: π1, ..., πT , θWT

1. The presumed wild-type data are pre-selected using the heuristic of choosing one

bin to the right of the mode (choose left-most K bins) for each year.

2. Use non-linear least squares estimation to determine:

arg min
π1,...,πT ,θWT

T∑
t=1

Kt∑
j=1

[Bt,j −Nt,totπt · FWT (Ct,j;θWT )]2.

Extension of Jaspers et al. [2014a]

Parameters: π1, ..., πT ,θWT ,θ1,NWT , ...,θT,NWT

As both the log2gamma and the Normal distribution with known censoring are

members of the regular exponential family. Then they both satisfy regularity condi-

tions. Thus the application of asymptotic theory of maximum likelihood estimates

(MLEs) is appropriate. The following procedure is employed:

1. Apply the method of Jaspers et al. [2014a] to each year. This produces a different

estimate of θWT for each year.

2. For each year’s estimate of θt,WT to determine the observed Fisher Information

using the negative of the Hessian of the log-likelihood. Denote it as It(θ̂t,WT )
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3. For each year’s estimate of θt,WT use the observed Fisher Information to calcu-

late approximate standard errors. Denote this as

SE(θ̂t,WT ) =

√
diag(It(θ̂t,WT )

−1
)

4. Now calculate the weighted averages of the the estimates for θ̂overall,WT by using

the following formula:

θ̂overall,WT =

∑T
t=1 θ̂t,WTSE(θ̂t,WT )−2∑T

t=1 SE(θ̂t,WT )−2
.

5. Using the estimate, θ̂overall,WT recalculate the estimate of each year’s prevalence.

The method that best allows each year to have a different subset of bins starting

from the left is to apply the method of Jaspers et al. [2014a] to each year, estimate

the standard errors using the observed Fisher Information, average the estimates.

Alternative Multiyear Extension of Jaspers et al. [2014a]

An alternative is estimating the T multinomials jointly. To satisfy the assumption

for changes in the MIC distribution over time, there a single θWT among the the T

years. Then consider all possible subsets of left-most bins. For each iteration’s subsets,

the different years WT subset can be effectively pooled together to determine θ̂WT .

Then treat the T as scaled components of a “larger” multinomial for the purpose of

a single AIC value.

The major drawback to this approach is realistically only (or almost only) models

where each year have the same cut-off are considered. For subsets, where that is not

the case, the iteration’s cut point enforces an inappropriate truncation. This results

in misleading counts for each of the considered bins, and in turn poor estimates of

θWT . In contrast the method above is far more accommodating by allowing each

year to have a different number of WT bins.
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F. MULTIYEAR COMPUTATION

This chapter considers a generalization of the algorithm for the single-year setting.

Before there was only one year, now there are T years. The model is detailed in

Chapter 4. Like in the single-year case, the R code for the DPMM for each year’s

NWT distribution is a modification of the dirichletprocess package [Ross et al., 2020].

Computation: Normal WT Distribution for Multiple Years

Now for computational ease, three latent vectors are introduced for each year

t = 1, ..., T . The first is the latent continuous values, Xt. The second is an indicator

for whether an observation is a wild-type or not, ct. The third is for values of the

measurement error, δt. A Metropolis-within-Gibbs algorithm is used.

For year t = 1, ..., T and for observation i, definect,i =
1 if WT

0 else

Let θt,NWT = (θ1, ...,θk). Let St be a vector denoting the allocations of each

NWT observation to cluster 1, ..., kt. Then St,(−i) the vector St without observation i.

The vector nt denotes the number of observations in each of the kt NWT components.

The superscript (L) denotes the Lth iteration. First initial values are determined,

the (0)th values. Note that for the generation of latent vectors only interval censored

generation is shown for brevity. As the endpoints of the data set are both known

and fixed, the censoring is adjusted accordingly. Denote X̃ = (X1, ...,XT), c̃ =

(c1, ..., cT), and δ̃ = (δ1, ..., δT )

Update µWT | X̃, c̃
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• µWT
(L) | σWT

2(L−1), X̃(L−1), c̃(L−1) ∼ N(
¯̃
X(L−1),

√
σWT

2(L−1)∑
i c̃

(L−1)
i

)

Jointly update σ2
WT and σ2

δ

• P (σ2
WT

(L)
, σ2

δ
(L) | µWT

(L), σWT
2(L−1), σ2

δ
(L−1)

, X̃(L−1), c̃(L−1), δ̃
(L−1) ∝

P (X̃(L−1) | µ(L)
WT , σWT

2(L−1), c̃(L−1))P ( ˜δ(L−1) | σ2
δ
(L−1)

)pr(σWT
2(L−1))pr(σ2

δ
(L−1)

)

For t = 1, ..., T , update πt | ct

• πt
(L) | ct

(L−1) ∼ TrBeta(a = .5, b = 1, α′ = 1 +
∑

i ct,i
(L−1), β′ = 1 + Nt,tot −∑

i c
(L−1)
t,i )

For t = 1, ..., T , update θt,NWT | Xt, ct.

• Use Neal [2000] Algorithm 8 withD auxiliary classes. For i = 1, ..., Nt,tot−
∑

i ct,i,

St
(L) | αt,conc(L−1),θt,NWT

(L−1),Xt
(L−1), ct

(L−1),St,−i
(L−1)

For h = 1, ...k,

• µt,h
(L) | St

(L),σt,h
(L−1),Xt

(L−1), ct
(L−1) ∼ TrN(A,∞, µ′t,

√
σ2′
t )

where

µ′t =

µGt,0
(L−1)

σ2
0

+

∑
i:St

(L)
i=h

Xt
(L−1)
i

σt,h2
(L−1)

1
σ02

+
nt,h(L)

σ2
t,h

(L−1)

and

σ2′ =
1

1
σ02

+
nt,h

σ2
t,h

(L−1)

• σ2
t,h

(L) | St
(L),Xt

(L), µt,h
(L), ct

(L−1) ∼ InvGamma(α
′

= α1 +
nt,h
2
, β
′

= β1 +∑
i:St,i=h

(Xt,i−µt,h)2

2
)

• wt,h
(L) =

nt,h
(L)

Nt,tot(1− ˆct(L−1))

For t = 1, ..., T , update the mean of the base distribution.

• µGt,0
(L) | µt,NWT

(L) ∼ TrN(A,∞, µ′Gt,0 =

µGB
σGB

2+
∑
r µt,r

(L)

σ20

1
σGB

2+
k
(L)
t
σ0

2

, σ
′
Gt,0

= ( 1
σ2
GB

+
k
(L)
t

σ2
0

)
−1/2

)

For t = 1, ..., T , update αt,conc using West [1992] where γ is the Euler-Mascheroni

constant.
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• αt,conc
(L) | k(L)t , ct

(L−1) asy.∼ Gamma(a+ k
(L)
t − 1, b+ γ + log(Nt,tot −

∑
i c

(L−1)
t,i ))

For t = 1, ..., T , update Xt | Yt, ct, δt.

For the observations, i = 1, ..., Nt,tot where ct,i = 1

• Xt
(L) | Yt, ct

(L−1), µWT
(L), σWT

(L), δt
(L−1) ind.∼ TrN(Yt−1−δt(L−1), Y−δt(L−1), µWT

(L), σWT
(L))

For t = 1, ..., T , for the observations, i = 1, ..., Nt,tot where ct,i = 0

• Xt
(L) | Yt,St

(L), ct
(L),µt,NWT

(L),σt,NWT
(L) ind.∼

TrN(Yt − 1− δt(L−1), Y − δt(L−1),µt,NWT i:St,i
(L) ,σt,NWT i:St,i

(L)
(L))

For t = 1, ..., T , update δt | Yt,Xt, σ
2
δ .

• δt(L) | Yt,Xt
(L), ct

(L−1),St
(L), σδt

2(L) ind.∼

TrN(Yt − 1−X(L−1)
t , Yt −X(L−1)

t , µ = 0, σδ
(L))

For t = 1, ..., T , update ct | Xt, πt,θWT ,θt,NWT

• ct
(L) | Xt

(L), π
(L)
t ,θWT

(L),θt,NWT
(L) ∼ Bernoulli(p′t)

where

p′t =

πt(L)

σWT
(L)φ(

X
(L)
t −µ(L)

WT

σWT
(L) )

πt(L)

σWT
(L)φ(Xt

(L)−µWT
(L)

σWT
L ) + (1− πt(L))

∑k
(L)
t
h=1

wt,h(L)

σt,h(L) φ(
Xt(L)−µt,h(L)

σt,h(L) )

Then increase L← L+ 1

Computation: log2gamma WT Distribution for Multiple Years

Update θWT | X̃, c̃

• P (α(L) | β(L−1), X̃(L−1), c̃(L−1)) ∝ P (X̃(L−1) | c̃(L−1), α(L−1), β(L−1))pr(α(L−1))

• β(L) | X̃(L−1), c̃(L−1), α(L) ∼ Gamma(α′ =
∑

tNt,tot
¯˜(L−1)cα(L), β′ =

∑
i:c̃

(L)
i =1

2X
(L)
i )

Update σ2
δ | δ̃

• σδ
2(L) | δ̃(L−1) ∼ InvGamma(α′ = αδ +

∑
tNt,tot
2

, β′ = βδ +
∑
t,i δt,i

(L)2

2
)

For t = 1, ..., T , update πt | ct
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• πt
(L) | ct

(L−1) ∼ TrBeta(a = .5, b = 1, α′ = 1 +
∑

i ct,i
(L−1), β′ = 1 + Nt,tot −∑

i c
(L−1)
t,i )

For t = 1, ..., T , update θt,NWT | Xt, ct.

• Use Neal [2000] Algorithm 8 withD auxiliary classes. For i = 1, ..., Nt,tot−
∑

i ct,i,

St
(L) | αt,conc(L−1),θt,NWT

(L−1),Xt
(L−1), ct

(L−1),St,−i
(L−1)

For h = 1, ...k,

• µt,h
(L) | St

(L),σt,h
(L−1),Xt

(L−1), ct
(L−1) ∼ TrN(A,∞, µ′t,

√
σ2′
t )

where

µ′t =

µGt,0
(L−1)

σ2
0

+

∑
i:St

(L)
i=h

Xt
(L−1)
i

σt,h2
(L−1)

1
σ02

+
nt,h(L)

σ2
t,h

(L−1)

and

σ2′ =
1

1
σ02

+
nt,h

σ2
t,h

(L−1)

• σ2
t,h

(L) | St
(L),Xt

(L), µt,h
(L), ct

(L−1) ∼ InvGamma(α
′

= α1 +
nt,h
2
, β
′

= β1 +∑
i:St,i=h

(Xt,i−µt,h)2

2
)

• wt,h
(L) =

nt,h
(L)

Nt,tot(1− ˆct(L−1))

For t = 1, ..., T , update the mean of the base distribution.

• µGt,0
(L) | µt,NWT

(L) ∼ TrN(A,∞, µ′Gt,0 =

µGB
σGB

2+
∑
r µt,r

(L)

σ20

1
σGB

2+
k
(L)
t
σ0

2

, σ
′
Gt,0

= ( 1
σ2
GB

+
k
(L)
t

σ2
0

)
−1/2

)

For t = 1, ..., T , update αt,conc using West [1992] where γ is the Euler-Mascheroni

constant.

• αt,conc
(L) | k(L)t , ct

(L−1) asy.∼ Gamma(a+ k
(L)
t − 1, b+ γ + log(Nt,tot−

∑
i ct,i

(L−1)))

For t = 1, ..., T , update Xt | Yt, ct, δt.

For the observations, i = 1, ..., Nt,tot where ct,i = 1

• Xt
(L) | Yt, ct

(L), δt
(L), α(L), β(L) ∼ log2(TrGamma(a = 2Yt−1−δ

(L)
t , b = 2Yt−δ

(L)
t , α(L), β(L)))

For t = 1, ..., T , for the observations, i = 1, ..., Nt,tot where ct,i = 0
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• Xt
(L) | Yt,St

(L), ct
(L),µt,NWT

(L),σt,NWT
(L) ind.∼

TrN(Yt − 1− δt(L−1), Y − δt(L−1),µt,NWT i:St,i
(L) ,σt,NWT i:St,i

(L)
(L))

For t = 1, ..., T , update δt | Yt,Xt, σ
2
δ .

• δt(L) | Yt,Xt
(L), ct

(L−1),St
(L), σδt

2(L) ind.∼

TrN(Yt − 1−X(L−1)
t , Yt −X(L−1)

t , µ = 0, σδ
(L))

For t = 1, ..., T , update ct | Xt, πt,θWT ,θt,NWT

• ct
(L) | Xt

(L), π
(L)
t ,θWT

(L),θt,NWT
(L) ∼ Bernoulli(p′t)

where

p′t =
π
(L)
t fl2g(X

(L)
t ;α(L), β(L))

πt(L)fl2g(X
(L−1)
t ;α(L), β(L)) + (1− π(L)

t )
∑k

(L)
t
h=1

wh(L)

σh(L) φ(
X

(L−1)
t −µh(L)

σh(L) )

Then increase L← L+ 1



143

G. MULTIYEAR PREVALENCE ESTIMATION RESULTS

Normal Distribution

Slow Rate
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Figure G.1. Normal with Low Contamination at Size 300
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Figure G.2. Normal with Low Contamination at Size 600
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Figure G.3. Normal with Low Contamination at Size 1200
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Figure G.4. Normal with Medium Contamination at Size 300
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Figure G.5. Normal with Medium Contamination at Size 600
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Figure G.6. Normal with Medium Contamination at Size 1200



149

−
0.

2
−

0.
1

0.
0

0.
1

0.
2

Year 1: Bias of Prev. Est.

MY Ext.: Turnidge et al.
MY Ext.: Jaspers et al.
MY Ext.: BayesACME

−
0.

2
−

0.
1

0.
0

0.
1

0.
2

Year 2: Bias of Prev. Est.

−
0.

2
−

0.
1

0.
0

0.
1

0.
2

Year 3: Bias of Prev. Est.

−
0.

2
−

0.
1

0.
0

0.
1

0.
2

Year 4: Bias of Prev Est.

Figure G.7. Normal with High Contamination at Size 300
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Figure G.8. Normal with High Contamination at Size 600
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Figure G.9. Normal with High Contamination at Size 1200
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Normal: Slow Trend
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Figure G.10. Trend for Normal case with Slow Rate of Decline at size 300
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Figure G.11. Trend for Normal case with Slow Rate of Decline at size 600
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Figure G.12. Trend for Normal case with Slow Rate of Decline at size 1200
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Fast Rate
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Figure G.14. Normal with Low Contamination at Size 600
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Figure G.15. Normal with Low Contamination at Size 1200
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Figure G.16. Normal with Medium Contamination at Size 300
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Figure G.17. Normal with Medium Contamination at Size 600
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Figure G.18. Normal with Medium Contamination at Size 1200
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Figure G.19. Normal with High Contamination at Size 300
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Figure G.20. Normal with High Contamination at Size 600
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Figure G.21. Normal with High Contamination at Size 1200
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Normal: Fast Trend
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Figure G.22. Trend for Normal case with Fast Rate of Decline at size 300
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Figure G.23. Trend for Normal case with Fast Rate of Decline at size 600



166

−
10

−
8

−
6

−
4

−
2

Low Cont.: ln(L2 Loss)
−

10
−

8
−

6
−

4
−

2

Med. Cont.: ln(L2 Loss)

−
10

−
8

−
6

−
4

−
2

High Cont.: ln(L2 Loss)

−
0.

4
−

0.
2

0.
0

0.
2

0.
4

Low Cont.: Est. Bias of Slope of logit(Prev.)

−
0.

4
−

0.
2

0.
0

0.
2

0.
4

Med. Cont. Est. of Slope of logit(Prev.)

−
0.

4
−

0.
2

0.
0

0.
2

0.
4

High Cont.: Est. Bias of Slope of logit(Prev.)

Figure G.24. Trend for Normal case with Fast Rate of Decline at size 1200
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Figure G.25. log2gamma with Low Contamination at Size 300
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Figure G.26. log2gamma with Low Contamination at Size 600
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Figure G.27. log2gamma with Low Contamination at Size 1200
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Figure G.28. log2gamma with Medium Contamination at Size 300
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Figure G.29. log2gamma with Medium Contamination at Size 600
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Figure G.30. log2gamma with Medium Contamination at Size 1200
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Figure G.31. log2gamma with High Contamination at Size 300
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Figure G.32. log2gamma with High Contamination at Size 600
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Figure G.33. log2gamma with High Contamination at Size 1200
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log2gamma: Slow Trend
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Figure G.34. Trend for log2gamma case with Slow Rate of Decline at size 300
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Figure G.35. Trend for log2gamma case with Slow Rate of Decline at size 600
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Figure G.36. Trend for log2gamma case with Slow Rate of Decline at size 1200
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Figure G.37. log2gamma with Low Contamination at Size 300
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Figure G.38. log2gamma with Low Contamination at Size 600
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Figure G.39. log2gamma with Low Contamination at Size 1200



182

−
0.

2
−

0.
1

0.
0

0.
1

0.
2

Year 1: Bias of Prev. Est.

MY Ext.: Turnidge et al.
MY Ext.: Jaspers et al.
MY Ext.: BayesACME

−
0.

2
−

0.
1

0.
0

0.
1

0.
2

Year 2: Bias of Prev. Est.

−
0.

2
−

0.
1

0.
0

0.
1

0.
2

Year 3: Bias of Prev. Est.

−
0.

2
−

0.
1

0.
0

0.
1

0.
2

Year 4: Bias of Prev. Est.

Figure G.40. log2gamma with Medium Contamination at Size 300
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Figure G.41. log2gamma with Medium Contamination at Size 600
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Figure G.42. log2gamma with Medium Contamination at Size 1200
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Figure G.43. log2gamma with High Contamination at Size 300
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Figure G.44. log2gamma with High Contamination at Size 600
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Figure G.45. log2gamma with High Contamination at Size 1200
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log2gamma: Fast Trend
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Figure G.46. Trend for log2gamma case with Fast Rate of Decline at size 300
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Figure G.47. Trend for log2gamma case with Fast Rate of Decline at size 600
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Figure G.48. Trend for log2gamma case with Fast Rate of Decline at size 1200
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