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ABSTRACT

With the ever-growing demand for higher data rate in next generation communication

systems, researchers are pushing the limits of the existing architecture. Due to the stochas-

tic nature of communication channels, most systems use some form of adaptive methods to

adjust the transmitting parameters and allocation of resources in order to overcome channel

variations and achieve optimal throughput. We will study four cases of adaptive transmis-

sion and dynamic resource allocation in collaborative systems that are practically significant.

Firstly, we study hybrid automatic repeat request (HARQ) techniques that are widely used

to handle transmission failures. We propose HARQ policies that improve system throughput

and are suitable for point-to-point, two-hop relay, and multi-user broadcast systems. Sec-

ondly, we study the effect of having bits of mixed SNR qualities in finite length codewords.

We prove that by grouping bits according to their reliability so that each codeword con-

tains homogeneous bit qualities, the finite blocklength capacity of the system is increased.

Thirdly, we study the routing and resource allocation problem in multiple collaborative net-

works. We propose an algorithm that enables collaboration between networks which needs

little to no side information shared across networks, but rather infers necessary information

from the transmissions. The collaboration between networks provides a significant gain in

overall throughput compared to selfish networks. Lastly, we present an algorithm that allo-

cates disjoint transmission channels for our cognitive radio network in the DARPA Spectrum

Collaboration Challenge (SC2). This algorithm uses the real-time spectrogram knowledge

perceived by the radios and allocates channels adaptively in a crowded spectrum shared with

other collaborative networks.
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1. INTRODUCTION

One of the key problems in communication systems design is the ability to handle trans-

mission errors. If the communication channel is relatively static or varies very slowly in

time, existing techniques such as beamforming, channel sounding, equalization, etc. can be

used to counteract the effects of fading, multipath, and other physical channel characteris-

tics. These techniques are widely used in present systems including LTE, 5G NR, and cable

communications. However, future wireless communication systems such as millimeter wave

(mmWave) communications, internet of things (IoT), vehicular communications, etc. pose

difficulties in beam alignment and channel sounding, and the communication channel is ex-

pected to exhibit greater variability and less favorable conditions. A robust protocol capable

of handling transmission errors and decoding failures is therefore crucial in such systems to

maintain stable and continuous high speed connections.

A natural trade-off that emerges in communication systems is between having a high

data rate and having low frame error probability. Using higher modulation and channel

coding rate results in denser information rate in the transmission stream, but also increases

the probability of decoding error at the receiver, and vice versa. Traditionally, some systems

use a conservative configuration of modulation and coding scheme to guarantee a minimum

frame success rate over a wide range of SNR to overcome channel variations; however, this

is inefficient when the SNR is high. As a result, most modern systems use an adaptive

approach to maximize data rate by utilizing some kind of feedback from the receiver.

However, such adaptive schemes cannot guarantee error-free delivery of information and

are still prone to errors due to the stochastic nature of communication channels. Sudden

obstacles blocking the line of sight, mobility of the users causing beam misalignment, or fast

fading can all unexpectedly degrade the channel drastically. When decoding errors occur

at the receiver, communication systems usually rely on automatic repeat request (ARQ) to

invoke the retransmission of failed messages, assuming they are still relevant. (In latency-

sensitive applications such as VoIP and live broadcast, a packet is deemed irrelevant if it

fails to be delivered by a certain deadline, and in this case retransmission is unnecessary.)

Traditional ARQ requires individual acknowledgement of every packet, and retransmissions
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are also packet-based. Hybrid ARQ (HARQ), however, allows the retransmission of a flexible

number of additional parity bits, referred to as incremental redundancy (IR), whose gener-

ating matrix is pre-agreed between the transmitter and the receiver. The receiver will then

be able to leverage these additional bits alongside the previously received codeword to retry

decoding and to correct the errors. Such method avoids retransmitting the entire packet

when only a few additional bits are sufficient for the receiver to decode the message, and

hence greatly improves the overall efficiency. Clearly, there is another trade-off here: sending

a larger number of IR bits reduces the risk of another decoding failure, but decreases the

average data rate. This creates an opportunity to optimize and adapt the IR bits according

to the channel conditions.

Another important problem that arises with communication networks is the dynamic

allocation of resources. The resource allocation problem includes two aspects: sharing the

time-frequency resources between multiple networks, and routing and scheduling the traf-

fic within each network. Both aspects have their own challenges. In theory, it is possible

for a network to achieve the theoretical maximum data rate with a centralized controller

if it knows all the information. However, the problem of joint routing and scheduling is

NP-hard, and even centralized control algorithms usually employ heuristics to simplify the

computation. When multiple networks are sharing the same time-frequency resources, they

need to work out a way to collaborate so that the spectrum is not overloaded with excessive

interference, rendering it impossible for anyone to reliably transmit any information across.

However, centralized control of multiple networks may not be feasible at all because the

networks usually do not share relevant information such as the offered traffic rate, source

and destination nodes, channel gains and so on. This adds to the difficulty of efficient

resource allocation between networks. Practical systems typically resort to sensing-based

techniques, or dividing the time and frequency into slices that are exclusively reserved for

individual networks. Sensing-based approaches such as carrier-sense multiple access with col-

lision avoidance (CSMA/CA) and DARPA XG significantly underperform theoretical limits,

and slicing the spectrum into exclusive bands is not flexible enough to handle the fluctuation

in network traffic, often resulting in a partition of the spectrum that correlates poorly with

the actual traffic load of each network.
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The recent advancement in software defined radios (SDRs) offers an extra dimension to

solve this problem. Compared to traditional radios that use hardware and firmware to imple-

ment the signal processing chains, SDRs are much more flexible. Dynamic resource allocation

in accordance with the traffic becomes easier to implement, and collaboration between SDR

networks is possible with or without shared side information. Advanced techniques in AI

may also be applied. DARPA launched the Spectrum Collaboration Challenge, aiming to

address this problem. In the challenge, several SDR networks sharing the same spectrum

are allowed to exchange partial information over a side channel for collaboration, and they

must dynamically and autonomously allocate the resources both between and within the

networks.

This thesis studies four cases of adaptive approaches used by collaborative communication

systems for transmission and resource allocation, and proposes optimized schemes that can

be used in each of these cases. They are outlined as follows:

Chapter 2 reviews the existing HARQ techniques, and proposes a new adaptive HARQ

scheme that maximizes the overall throughput by acknowledgement bundling in a limited

feedback system [1 ]. It models the HARQ process as a Markov decision process (MDP)

and optimizes the lengths and types of IR that the transmitter should send based on the

SNR and coding rate of the received codewords, and the number of decoding failures in a

bundle of codewords. In addition, it studies how such techniques generalize to multi-hop

relay systems and multi-user broadcast systems. It proposes a scheme for the relay to decide

between amplify-and-forward (AF) and decode-and-forward (DF) based on the estimation

of channel SNR, where codeword errors at the end user will be corrected by HARQ from

the base station or from the relay. Finally it proposes and optimizes the HARQ policies

suitable for a transmitter that broadcasts bundled codewords to multiple receivers. It shows

the advantage of using bundled codewords and IR in the broadcast setting compared to

individual retransmission.

Chapter 3 proposes and studies a technique for grouping the bits transmitted through

a wireless channel into codewords according to their SNR quality [2 ]. It proves that by

splitting the bits into multiple codewords and encoding the higher quality bits with higher

coding rate and lower quality bits with lower rate, the throughput can be improved compared
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to mixing heterogeneous quality bits into fixed-rate codewords. The chapter first analyzes

the pros and cons of different mappings of bits and codewords to the available time, fre-

quency, and modulation resources. Then it describes the proposed bit splitting scheme for

16-QAM modulation, where the asymmetric mapping of bits into modulation symbols cre-

ates bits of heterogeneous qualities. Simulations show the benefits of our proposed scheme.

Finally, the chapter presents a mathematical proof of the gain in feasible throughput result-

ing from the proposed bit splitting technique in a binary-input parallel AWGN channel with

finite blocklength error correcting codes (ECC). The proposed scheme can be applied to any

communications channel using ECC, but it is of particular interest for mmWave wireless

communications, where the channel quality is closely monitored and high order modulations

are used over wide bandwidths. The simulations suggest that modest gains in throughput

can be obtained with negligible additional complexity.

Chapter 4 studies the routing and resource allocation problem in multiple collaborative

networks [3 ]. It first proposes a method based on a genetic algorithm (GA) and dual gradient

ascent to optimize the routing, scheduling, and transmit powers in a single network, assuming

that centralized control is possible by a certain node that has full knowledge of the network’s

properties. It then extends this method to the scenario of multiple networks sharing the same

time-frequency resources, but do not have a protocol to share any side information with

each other. Our proposed algorithm infers certain necessary information entirely from the

network nodes’ transmissions, and uses that information to enable collaboration between

the networks. We show that by discarding transmission links according to their rate-to-

power ratios, the system of collaborative networks is able to achieve a significant gain in

overall throughput compared to selfish networks that greedily assign their own transmissions

and treat peer networks’ transmissions as noise. Simulations also find that our proposed

scheme provides a moderate gain compared to the even splitting of resources (i.e., slicing

the spectrum into exclusive bands) for heterogeneous networks, especially when the offered

data rate is high.

Chapter 5 presents an adaptive algorithm that allocates disjoint transmission channels

in a cognitive radio network, which was used in our submission to the DARPA Spectrum

Collaboration Challenge (SC2). This challenge which lasted for 3 years seeks to find a
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solution for the long-existing problem of radio spectrum scarcity, which is getting more and

more significant with the increasingly rapid growth in the worldwide demand of data over

the wireless spectrum. In SC2, the participating teams were challenged to each develop an

intelligent SDR network, and the networks from different teams competed against each other

to deliver as much traffic as possible within their networks. The spectrum was shared and

very crowded, and so the teams had to collaborate in order to deliver data without jamming

each other. The dynamic channel allocation algorithm that this thesis proposes takes into

account both the spectrum availability at our own receiving nodes by reading their power

spectral density (PSD) measurements, as well as the interference that a transmission channel

may cause to other teams. This algorithm promotes collaboration and allows for potential

inter-network spectrum reuse if the interference level is low.
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2. OPTIMIZING HARQ AND RELAY STRATEGIES IN

LIMITED FEEDBACK COMMUNICATION SYSTEMS

One of the key challenges for future communication systems is to deal with fast changing

channels due to the mobility of users in 5G wireless networks, IoTs etc. Having a robust

protocol capable of handling transmission failures in unfavorable channel conditions is cru-

cial, but the feedback capacity may be greatly limited due to strict latency requirements.

This chapter studies the hybrid automatic repeat request (HARQ) techniques involved in

re-transmissions when decoding failures occur at the receiver and proposes a scheme that

relies on codeword bundling and adaptive incremental redundancy (IR) to maximize the

overall throughput in a limited feedback system. In addition to the traditional codeword

extension IR bits, this chapter introduces a new type of IR, bundle parity bits, obtained

from an erasure code across all the codewords in a bundle. The type and number of IR

bits to be sent as a response to a decoding failure is optimized through a Markov Decision

Process. In addition to the single link analysis, the chapter studies how the same techniques

generalize to relay and multi-user broadcast systems. It proposes a scheme for the relay to

decide between amplify and forward (AF) and decode and forward (DF), and optimizes the

HARQ policies suitable for a broadcast transmitter using bundled codewords. Simulation

results show that the proposed schemes can provide a significant increase in throughput over

traditional HARQ techniques.

2.1 Introduction

Communication systems are naturally prone to varying channel conditions. Before the

recent information explosion, it was common for systems to use conservative configurations

which allowed them to operate in a wide range of conditions, but this came at the expense

of performance. In order to accommodate the ever growing traffic requirements of next

generation communication devices, researchers are now using adaptive schemes to maximize

bandwidth efficiency and squeeze as much throughput as possible in every situation. A sig-

nificant amount of work has been devoted to designing algorithms for adapting physical layer
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parameters such as the transmit power, modulation and coding rate based on the channel

state information [4 ]–[8 ], but there is not as much literature on adaptive retransmissions

when failures occur despite it has been shown that they can provide significant gains in

terms of both throughput [9 ]–[11 ] and outage probability [12 ], [13 ].

Traditional automatic repeat request (ARQ) forces the receiver to send an ACK back

to the transmitter for every packet it successfully decodes, and a NACK otherwise. If the

transmitter does not receive an ACK before the timeout expires, the entire packet will be

resent, assuming that it is still within the latency limit. Retransmitting the whole packet

is justified when the previous one has been completely lost, but in many cases the received

packet can be partially recovered, and it still contains useful information for the decoder,

even if it cannot be entirely decoded. In those cases, it is more efficient if the receiver can

recover the whole packet with the help of a few additional bits sent from the transmitter,

referred to as incremental redundancy (IR). This is commonly known as Type-II hybrid

automatic repeat request (Type-II HARQ) [14 ], and it is the focus of this chapter.

The achievable data rate (throughput) with Type-II HARQ has been upper-bounded

under the assumption of unlimited single bit IR and perfect feedback [9 ], [15 ] and several

methods have been proposed to construct IR bits [16 ], [17 ] or optimize their block lengths

under a finite number of retransmissions [18 ], [19 ]. However, most of these works have

focused on extending idealized error correcting codes (ECC) in known channels with either

infinite or single bit feedback. Some works have proposed more realistic models accounting

for system-level constraints [20 ]–[22 ], bundling multiple packets in one resource block [11 ],

[23 ] and imperfect channel information [24 ]. The first part of this chapter takes one step

further in this direction by introducing a new type of IR bits and proposing frameworks to

optimize the number and type of IR bits to be sent in scenarios with imperfect ECC, limited

feedback, packet bundling, and overhead costs for each round of incremental redundancy. It

models the problem as a Markov decision process (MDP) which minimizes the average cost

per information bit delivered, relying on a code-specific Gaussian model for the probability

of decoding failure as a function of SNR and code rate. By adjusting the relative costs

associated to decoding and retransmissions, this method can be used to model practical

constraints such as latency and hardware.
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HARQ has been included and widely deployed in recent cellular networks such as LTE [25 ],

[26 ] and 5G NR [27 ], and there are studies that evaluate its performance [28 ]. However, most

standards proposed the use of fixed-length IRs due to practical constraints. LTE generally

assigns one bit feedback per transport block, equivalent to one bit per codeword. The 5G

NR standard includes multiple types of operations and is a little more flexible, but does not

rise to the level that we propose in this chapter. It still uses ACK or NACK and pre-fixed

IR lengths. This chapter shows that our proposed HARQ strategies can potentially achieve

higher throughput by allowing even more flexibility than 5G NR in the types and lengths of

IR retransmissions. In terms of channel coding, the punctured turbo codes in LTE have been

replaced with low-density parity-check (LDPC) codes in 5G NR. Among other advantages,

LDPC codes provide more flexible puncturing and rate adaptation, allowing for a nearly

continuous number of IR bits. The ideas in this chapter can be applied to any family of

channel codes, but assume the use of LDPC codes by default.

Upcoming millimeter wave (mmWave) systems are likely to deploy dense networks of

access points acting as relays between a base station and the end users, requiring HARQ

strategies suitable for multi-hop architectures [29 ]–[31 ]. These relay nodes have to decide

between using amplify and forward (AF) or decode and forward (DF) when passing on

information. AF amplifies and retransmits incoming packets as they are received, signal

and noise. It is faster and less complex but noise accumulates over multiple hops until the

packet can become unrecoverable. DF decodes the received signal and reencodes it before

retransmission. This provides noise reduction and early detection of failures, but the required

processing increases latency, complexity, and power consumption. Previous literature has

shown that DF generally has higher channel capacity than AF [32 ] and lower frame error rate

(FER) with several HARQ protocols [33 ]. However, some of the practical benefits of AF,

such as simpler hardware and lower latency, were not considered in those studies. Hybrid

schemes between AF and DF, such as transcoding [34 ] or compress and forward [35 ], have

been shown to reduce the latency in modern 5G relay systems. Those schemes address

how information is processed by the relay in each transmission, but do not address how to

proceed when decoding failures occur. The second part of this chapter shows how the MDP
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framework initially proposed for a single link scenario can be easily extended to account for

the complexities of a relay system, including optimizing the decision between AF and DF.

Finally, the third part of this chapter addresses another very relevant scenario for modern

and future networks: multi-user systems where a single base station is communicating with

multiple recipients. Even if each recipient is only interested in some of the information, it

makes sense for the base station to bundle several packets and broadcast the bundle to all

the users. If multiple users suffer a small number of decoding failures, the base station does

not need to send individual IR to everyone; instead, it can broadcast one additional piece

of information – for example the XOR of the packets in the bundle – to help multiple users

decode their failed codewords. This idea, commonly known as network coded (H)ARQ, dates

back to the 1980s [36 ], but it has recently experienced a renewed interest from the research

community due to its potential uses in the Internet of Things (IoT). Its maximal achievable

throughput under idealized conditions was characterized in [37 ], and [38 ] extended that work

with a deeper study of the practical overheads associated with various implementations. It

showed that using general linear codes requires significantly more overhead than binary

codes, since the transmitter not only needs to specify which packets are included in each

linear combination, but also their coefficients. Hence, this chapter only considers binary

XOR packet combinations. The choice of packets to include is then a special case of the

well known index coding problem [39 ], [40 ], but our framework also requires optimizing the

number of bits to be sent, which further complicates the problem. Still, we show that it can

be formulated in a relatively simple convex form. Numerical convex optimization algorithms

can then be applied to solve for a good approximation to the optimum.

The main contributions of the chapter can be summarized as follows. It introduces a

new type of IR bits, bundle parity bits, computed across a bundle of codewords. It proposes

a MDP model for the HARQ process over a point-to-point link, optimizing the type and

number of IR bits to be sent when failures occur. It then shows how such HARQ scheme can

be generalized and adapted to suit a two-hop relay network, where the relay node can be

optimized to choose between AF and DF based on the channel state information. Finally,

it considers a multi-user broadcast scenario and shows that the optimization of the HARQ

can be formulated in a convex form. Numerical simulations verify the derivations, and show
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Figure 2.1. Relay system model

that the proposed methods achieve modest improvements against traditional schemes in all

three scenarios.

The rest of the chapter is organized as follows. Section 2.2 explains the system model

and some notation to be used throughout the chapter. Section 2.3 introduces the different

types of IR bits being considered and how they can help in the decoding of a given bundle of

codewords. Section 2.4 builds a single-link decision engine optimizing the type and number

of IR bits to be sent as a function of the channel SNR, coding rate, and number of failed

codewords in the bundle. Section 2.5 derives the decision engine for the relay, which decides

between AF and DF relay strategies as a function of the SNRs on the two links and the code

rate on the first link. Section 2.6 addresses the case of multi-user systems, proposing a combi-

natorial optimization algorithm for deciding how the failed codewords should be grouped for

the generation of IR when failures occur. Finally, section 2.7 illustrates the performance of

our proposed policies through numerical simulations, and section 2.8 concludes the chapter.

2.2 System Model

This section introduces the system models used throughout the chapter. It first presents

a single link scenario (with a direct channel between the transmitter and receiver) describing

the channel, modulation, ECC, and HARQ schemes. Then it extends this scenario to the

dual-hop relay system depicted in Fig. 2.1 , where the base station (BS) can only reach the

end user through an intermediate relay station (RS), and to a multi-user scenario where a

single transmitter (possibly the relay) is communicating with multiple recipients. All the
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links in the relay and multi-user scenarios follow the same model as that in the single link

scenario.

2.2.1 Channel and Modulation

Modern communication systems estimate the channel by periodically sending pilot sig-

nals, and use those estimates to adjust the modulation and coding schemes so as to maintain

a certain frame error rate (FER). However, the unpredictable nature of channels and the

blind period between channel sounding cycles make it impossible to achieve optimal adap-

tation for all codewords.

In this chapter, channels are modeled as interference-free AWGN. We assume that multi-

ple codewords (or packets1
 ) are bundled together into a single block, experiencing the same

(often unknown) SNR at the receiver. All the IR bits requested in the same round also

experience the same SNR, but this SNR is independent from that for the bundle and for

previous rounds of IR (if any). This assumption is made in light of the fact that there is

typically a delay between the transmissions of the original bundle and the IR, during which

channel conditions could have changed.

In order to increase throughput, the transmitter uses high-order modulations with mul-

tiple bits per symbol for all but the noisiest channel conditions. Encoding these modulation

symbols directly would increase the error correction capabilities [41 ], but would complicate

significantly the encoding and decoding. Treating the bits in a modulation symbol as in-

dependent and using binary error correcting codes is significantly simpler computationally,

specially in the case of LDPC codes, but the performance is slightly worse than with non-

binary error correction codes. Still, it is the most common approach in practice. Therefore,

this chapter assumes the use of binary encoders and decoders which operate as if the bits

came from independent BPSK modulations with constant SNR throughout each codeword,

even if higher order modulations are actually being used [2 ].
1↑ For simplicity, we assume that each packet consists of a single codeword and we refer to packets or
codewords indistinctly. In a scenario where each packet consists of multiple codewords, we can either
acknowledge codewords independently or treat each packet as a single unit which can either succeed or fail
to decode.
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2.2.2 Error Correction

Several works (e.g. [18 ], [42 ]) have shown that the FER of a finite length code can be

well approximated by

Pe(R, SNR) = Q
(

µ−R

σ

)
, (2.1)

where R represents the code rate (i.e. number of information bits divided by codeword

length) and µ and σ are code-specific parameters that depend on the SNR. We model such

dependency as

µ = aµ · SNR−cµ + bµ, (2.2)

σ = aσ · SNR−cσ + bσ. (2.3)

The techniques proposed in this chapter could be applied to any code by adjusting the

parameters (aµ, bµ, cµ, aσ, bσ, cσ), but the numerical simulations in this chapter will focus

on the binary QC-LDPC code of length n = 648 and k = 432 (rate 2/3) proposed in the

3GPP standard for 802.11n [43 ], for illustrative purposes. Our prior work [44 ], [45 ] showed

that

aµ = −0.2 bµ = 0.86 cµ = 1.74 (2.4)

aσ = 0.12 bσ = −0.08 cσ = 0.42 (2.5)

provide a good fit to this code when SNR ∈ [0.5, 2].

Binary QC-LDPC codes offer very efficient encoding and decoding using parallel shift

registers [46 ], [47 ]. This has made them the preferred option in 5G NR, over turbo codes

such as the ones proposed in the LTE standard. Additionally, QC-LDPC codes can be

flexibly punctured and extended for nearly continuous rate adaptation. A QC-LDPC code

is uniquely defined by a sparse parity check matrix H ∈ {0, 1}(n−k)×n, such that Hx = 0
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for all codewords x. Received channel values (i.e. matched filter outputs) are processed to

obtain a log-likelihood ratio (LLR) for each individual bit b as

` = LLR(b|r) = log p(b = 0|r)
p(b = 1|r) , (2.6)

where p(0|r) and p(1|r) represent the conditional probability of b = 0 and b = 1, respec-

tively, given the received value r. It is not hard to prove that for an AWGN channel with

equiprobable and symmetric inputs, the LLR values are given by

LLR(b|r) = 2 · SNR · r. (2.7)

The decoding of LDPC codes is typically done through message-passing algorithms, which

refine these LLR values iteratively until convergence or until a prefixed maximum number

of iterations is reached. When the algorithm does converge, it is almost always to the right

codeword. We thus assume that a codeword error occurs if and only if the LDPC decoder

fails to converge.

2.2.3 Single Link System: Hybrid ARQ

This chapter focuses on the optimization of HARQ protocols, abstracting some of the

other practical complexities that are present in real world communication networks. For

example, the chapter assumes perfect synchronization between all the nodes and error-free,

albeit limited-capacity, feedback links. Feedback links are assumed to offer no more than

one bit of feedback per packet, allowing for 256 possible responses to a bundle of 8 packets,

for instance. However, most of the proposed HARQ strategies do not require that many

feedback messages, so the required number of feedback bits can be lower.

It is also assumed that the receiver can request as many rounds of incremental redundancy

as needed until the whole bundle is successfully decoded. Each round is penalized with an

adjustable overhead cost of cR per link plus a decoding cost of cD for each codeword for

which decoding is attempted.
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2.2.4 Relay System: Amplify or Decode?

In the relay scenario, the intermediate node needs to decide whether to adopt an AF or

DF strategy for each incoming bundle. It will base this decision on the channel SNR estimates

and the code rate of the bundle. With DF, the system is equivalent to two separate links,

which could be independently optimized using the same HARQ protocol as for the single link

scenario. With AF, the HARQ problem is slightly more complex. When a bundle arrives,

the relay will forward it without any processing, but we assume that it caches the LLR values

temporarily. If the end user is successful in decoding the whole bundle, these LLR values

can be discarded, but if the end user suffers any decoding failures, the relay reverts to DF.

It decodes the bundle using its cached LLR values (employing HARQ if needed) and only

after having succeeded it sends IR to the end user.

When employing AF, we assume unit transmit power at the base station and that the

relay amplifies its received signal to invert the attenuation of the first channel. In other

words, if the relay receives

y1 = g1x + n1,

where g1 is the channel gain on the first link, x is the signal with E[x2] = 1 and n1 is

Gaussian noise with variance σ2
1, the relay amplifies y1 by a factor 1/g1 before forwarding it.

Then, the received signal at the end user is

y2 = g2
1
g1

y1 + n2 (2.8)

= g2

(
x + n1

g1
+ n2

g2

)
, (2.9)

where g2 is the gain over the second link. Since the noise components n1 and n2 are inde-

pendent, the SNR at the end user with AF is

SNRAF = E[x2]
Var [n1

g1
+ n2

g2
]

= (SNR−1
1 + SNR−1

2 )−1, (2.10)
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where E[ · ] and Var [ · ] denote expectation and variance respectively, and SNRj = g2
j /σ2

j

(j = 1, 2) is the SNR on the j-th link. Note that SNRAF is always lower than the SNR on

either link.

2.2.5 Multi-user Systems

The last scenario studied in this chapter is that of a single transmitter communicating

with multiple recipients. Each recipient is only interested in a subset of the information

being transmitted, but can overhear everything. Each receiver has its own data and feed-

back channel, with independent SNR and decoding process. When a receiver is unable to

decode its desired information, it reports the failures to the transmitter and requests IR.

The transmitter compiles the failure reports from all the receivers and uses the proposed

algorithm to optimize the set of IR bits that should be broadcast in order to ensure that

none of them suffers a probability of error above a pre-fixed value γ. This optimization is

formulated as a convex optimization problem, albeit with the number of variables increasing

exponentially with the number of failures reported. In any case, if the number of failures is

too large, it is usually better to re-transmit the whole bundle anyway.
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2.3 Incremental Redundancy

This chapter uses the term “Incremental Redundancy” (IR) to denote all the bits trans-

mitted with the objective of aiding in the recovery of one or more codewords whose decoding

had previously failed. Fig. 2.2 shows three different types of IR:

1. Chase Combining [48 ]: the sequence of IR bits is identical to a subset of the bits

previously sent. It is simple and computationally efficient, since the transmitter does

not need to generate new bits and the decoder can just refine the previous LLRs using

maximal ratio combining. However, some of the information transmitted might be

redundant to the receiver, so it is a suboptimal approach.

2. Bundle parity bits: the sequence of IR bits consists of a bit-wise erasure code over the

previously transmitted codewords [49 ]. This chapter uses the XOR of the codewords

in a bundle, unless stated otherwise.

3. Codeword parity (or extension) bits: the sequence of IR bits extends each of the previ-

ously transmitted codewords with either previously punctured bits or with completely

new parity found by adding new rows and columns to the parity check matrix H.

We assume that the decoder can handle the decoding of a (possibly extended) codeword,

but does not have enough memory to jointly decode all the codewords in a bundle. Each

codeword is therefore decoded independently, although Chase Combining and bundle parity

bits can be used to refine its LLR values.

We now study the effect that each of these types of IR bits has on the codewords. In

a nutshell, Chase Combining and bundle parity bits increase the SNR for some bits in the

failed codewords, and extension bits reduce the rate of the codeword. These improvements

in SNR and rate can be translated into a lower probability of error using Eq. (2.1 ).

2.3.1 Chase Combining

Let r(0) = b + n(0) and r(1) = b + n(1) be the received values corresponding to two

transmissions of the same bit b with different SNR0 and SNR1, respectively. With Chase
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Combining, the receiver can combine both values into r(0) + r(1) = 2b + n(0) + n(1) resulting

in an effective SNR of

SNRCC = 4
1

SNR0
+ 1

SNRIR

, (2.11)

for the retransmitted bits. Since p(1|r(0), r(1)) is proportional to p(1|r(0))p(0|r(1)) (the same

applies for b = 0), the decoder can just add the LLRs from the individual transmissions.

2.3.2 Bundle parity

Similarly to Chase Combining, bundle parity bits can be used to increase the SNR for

some of the bits in the failed codewords. Assume that a vector b = [b1, b2, · · · , bn] of n

bits from from different codewords is transmitted through an AWGN channel and that their

XOR x = b1⊕· · ·⊕bn is transmitted through another AWGN channel with possibly different

SNR. Denoting the received values for b and x as r and rx, respectively, the probability of

a specific bit bk being 0 conditioned on these received values can be found as

pk(0|r, rx) =
∑

d∈{0,1}n

dk=0

(
n∏

j=1
pj(dj|rj)

)
px(⊕d|rx)

∑
v∈{0,1}n

(
n∏

j=1
pj(vj|rj)

)
px(⊕v|rx)

, (2.12)

where ⊕ represents the XOR operator and px(⊕v|rx) denotes the probability that x = v1⊕

· · ·⊕vn given the received value rx. Eq. (2.12 ) provides the exact probabilities required for the

computation of the LLR values, but it is impractical to evaluate for large bundle sizes because

the number of terms increases exponentially. Hence, we adopt a similar approximation to

that used in Min-Sum LDPC decoders [50 ] and calculate the updated LLR for bit bk as

`new
k = `k +

n+1∏
i=1
i 6=k

sign(`i)

 min
i=1...n+1

i 6=k

∣∣∣`i

∣∣∣, (2.13)
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where `n+1 denotes the LLR value for x = ⊕b. The effect of this update can be modelled

as an increase in the SNR of the bits using Eq. (2.7 ). Specifically,

SNRnew = E[`new]2

Var [`new]
, (2.14)

where `new corresponds to the LLRs conditioned on b = 0 being transmitted2
 . The two

terms in Eq. (2.13 ) are independent, so the moments of `new can be found by adding their

corresponding moments. Characterizing the mean and variance of the minimum value among

a set of Gaussians is possible, but requires tedious equations that add little value to this

chapter. Instead, Fig. 2.3 illustrates the SNRnew as a function of the number of failed

codewords and the SNR of the original bits, assuming a SNR of 0 dB for the IR. In a

practical setting, that table would be computed offline and saved in memory to be used in

the optimizations described in subsequent sections.

LDPC decoders can occasionally fail to converge, but when they converge to a feasible

codeword it is almost always the right one. Therefore, when the decoder fails to decode some

of the codewords in a bundle, the receiver can set the LLR values for successfully decoded

codewords to have infinite magnitude and update those for the failed codewords according

to Eq. (2.13 ) before attempting another decoding. If it succeeds in decoding any previously

failed codewords, their LLRs can be scaled to have infinite magnitude and those for failed

codewords can be updated again.

2.3.3 Codeword Extension

Finally, codeword extension bits reduce the rate of the code. The probability of a suc-

cessful decoding with these extension bits is highly dependent on the specific code being

used. The code specifications often characterize this probability, but only under the assump-

tion that the original codeword and the extension bits are received with the same SNR.

Unfortunately, this is generally not the case in practice.
2↑ The same formula would hold if b = 1 is being transmitted.
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Figure 2.4. Probability of decoding failure for a signal with Eb = 1 and vari-
able noise variance. The four solid curves, which correspond to combinations
with the same SNReff , are nearly identical.

In order to simplify our derivations, we define the effective SNR of a codeword as

SNReff =
(

E
[ 1
SNR

])−1
, (2.15)

where the expectation is taken over the bits in the codeword. When all the bits in the

codeword have the same energy Eb, SNReff is equivalent to dividing Eb by the average noise

power. Fig. 2.4 illustrates the probability of decoding failure for different noise powers

and distributions of signal strength within a codeword. Solid curves, which correspond to

different distributions with the same SNReff are nearly identical, while dashed curves show

the effect of a 25% variation in SNReff . We therefore assume that the probability of failure

mostly depends on SNReff , not on the SNR variance within the codeword.
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2.4 Decision Engine for Single Link

This section considers a point-to-point link, and proposes an optimization method where

the requested number and type of IR bits can be chosen to minimize a cost function. We

discretize the coding rate R and the SNR into a finite set of values so that practical numerical

methods can be applied to the optimization problem. Since the feedback channel has limited

capacity and only offers a few bits for each IR request, we constrain the number of IR bits

to be requested to a small set of pre-defined values. A Markov Decision Process (MDP) can

then be established to model the HARQ protocol as follows:

• State: s = (f, SNR, R), where f denotes the number of decoding failures in the bundle,

SNR their effective SNR, and R their coding rate.

• Action: A(s) = (α, β), where α and β respectively represent the requested number of

extension bits for every codeword in the bundle and the requested number of bundle

parity bits. Chase Combining bits will not be used because for typical values of SNR

and code rate, their performance is inferior compared to extension bits [48 ].

• Cost: C = bα+β+fcD +cR, where b denotes the bundle size (i.e. number of codewords

per bundle). Assuming that transmitting one bit costs one unit, cD denotes the cost

to decode a single codeword, and cR denotes the overhead cost due to each round of IR

accounting for hardware complexity, increased latency, feedback bits, etc. One possible

interpretation for this cost is latency. In that case, cD would be the time required to

decode a codeword and cR the time between retransmissions.

The objective is to find the actions that minimize the total expected cost until all code-

words in the bundle are successfully decoded, i.e.

A(s) = arg min
(α,β)

E{Total cost|s, α, β} (2.16)

for all s. By sending IR bits, α reduces the code rate and β increases the SNR, transitioning

from s0 = (f0, SNR0, R0) to a new state s1 = (f1, SNR1, R1), where SNR1 and R1 are
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deterministic and f1 ≤ f0 follows a binomial distribution. They can be determined by the

following equations:

SNR1 =
[(

α

SNRIR

+ β

SNRnew
+ k/R0 − β

SNR0

) 1
k/R0 + α

]−1
(2.17)

R1 = k

k/R0 + α
(2.18)

P (f1|s0, α, β) =
(

f0

f1

)
pf1(1− p)f0−f1 (2.19)

where k denotes the number of information bits per codeword and SNRnew denotes the

increased SNR of the bits that participated in the bundle parity IR, as given by Eq. (2.14 )

and illustrated in Fig. 2.3 . The formula for SNR1 is obtained from Eq. (2.15 ) by observing

that every codeword in a bundle can be partitioned into three sections according to the SNR:

the α bits of codeword extension have SNRIR, the β bits of overlapping part with bundle

parity IR have SNRnew after updating their LLRs, and the remaining k/R0−β bits keep the

same SNR0 as before receiving the IR.The probability p in Eq. (2.19 ) denotes the conditional

probability that a codeword fails in state s1 given that it failed in s0, and can be computed

using Eq. (2.1 ) as

p = Pe(R1, SNR1)
Pe(R0, SNR0)

. (2.20)

For any state s and SNRIR, the total expected future cost V and the optimal action A

can be expressed recursively as follows:

V (s, SNRIR) = E[Total cost|s, α, β]

= bα + β + fcD + cR +
∑
s′

P (s′|s, α, β)V (s′, SNRIR) (2.21)

A(s, SNRIR) = arg min
(α,β)

V (s, SNRIR), (2.22)

where the summation is taken over all possible states s′ to which s can transition according to

Eq. (2.17 )-(2.19 ) given that (α, β) IR bits are sent. P (s′|s, α, β) denotes the state transition

probability.
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If we discretize the states and actions to take values from a finite set, the value iteration

algorithm [51 ] can then be used to numerically find V (s, SNRIR) and A(s, SNRIR) for all

s and SNRIR. Essentially, value iteration initializes V with random values, and alternates

between finding the optimal actions A according to Eq. (2.22 ) and updating the value V

according to Eq. (2.21 ), until convergence. At that point A(s, SNRIR) stores the optimal

policy to follow when the HARQ process is at state s expecting SNRIR for the IR, while

V (s, SNRIR) stores the total expected future cost until successfully decoding all codewords

in the bundle at the receiver.

The single link scenario decision engine is specified by the policy A, and it can be readily

extended to individual links in a multi-hop scenario as well. The receiver can estimate its

state by computing the bundle’s relevant statistics when decoding failures occur, and it then

follows A to request a combination of (α, β) IR bits from the transmitter.

2.5 Decision Engine for Relay

This section extends the framework described in Section 2.4 to the two-hop scenario

illustrated in Fig. 2.1 . On top of optimizing the type and number of IR bits to be transmitted,

the intermediate station also has to decide between using an amplify and forward (AF) or

decode and forward (DF) relay strategy. In order to compare both strategies we propose a

parametric cost model for each of them and a decision engine to minimize the average cost

per successfully delivered information bit. Specifically, we model the cost of AF and DF (cAF

and cDF ) as functions of the SNR on both links (SNR1 and SNR2) and the code rate in the

first link (R1). As in the single link decision engine, the decoding cost cD and the overhead

cost cR are normalized by the cost of transmitting 1 bit of information over one link.

2.5.1 Cost of DF

With a DF relaying strategy, both links can be treated as independent. Thus, the cost

of DF is decomposed as

cDF = c1 + c2, (2.23)
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where cj is the expected cost on the j-th link (j = 1, 2). We further decompose each cj as

the sum of three terms: the number of bits sent on the j-th link, the cost of decoding the b

codewords in the bundle, and the expected future cost in the case of decoding failures. Thus,

cj = bk

Rj

+ bcD +
b∑

i=1
PB(b, pj, i)δj(i), (2.24)

where PB(b, pj, i) :=
(

b
i

)
pi

j(1 − pj)b−i represents the probability of suffering i failures in the

bundle and δj(i) represents the expected future cost on the j-th link when that happens.

The probability of failure pj = Pe(Rj, SNRj) is obtained from Eq. (2.1 ) and

δj(i) = V ((i, SNRj, Rj), SNRIR,j) (2.25)

is given by Eq. (2.21 ) from the single link scenario. The code rate on the second link R2

should be chosen such that c2 is minimized. For the sake of simplicity, we assume that

the IR experiences the same SNR as the original codewords in the relay scenario, hence

SNRIR,j = SNRj for both links j = 1, 2.

2.5.2 Cost of AF

With an AF strategy, the relay is assumed to keep the code rate unchanged, i.e. R2 = R1,

so the same number of bits is sent over both links in the first transmission. Decoding the

bundle at the end user costs bcD plus any cost associated to IR if failures occur. Thus, the

cost of AF is decomposed as

cAF = 2 · bk

R1
+ bcD +

b∑
i=1

PB(b, pAF , i)δAF (i), (2.26)

where pAF = Pe(R1, SNRAF ), SNRAF is taken from Eq. (2.10 ), and δAF (i) denotes the

expected future cost when i failures are present at the end user. If decoding failures do

occur, the end user will request IR from the relay. We assume that the relay always reverts

back to a DF strategy in this case, decoding the cached bundle with IR from the base station

if necessary. If there are j failed codewords at the relay, decoding the entire bundle will cost
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V ((j, SNR1, R1), SNR1). Once the relay has succeeded at decoding the whole bundle, it

can generate and transmit the IR that the end user requested. This step costs another

V ((i, SNRAF , R2), SNR2).

With AF, the noise accumulates over the two links. It is therefore very unlikely for a

codeword that could not be decoded at the relay to be correctly decoded at the end user.

Similarly, if a codeword was correctly decoded by the end user we assume that it will also be

successfully decoded by the relay. The number of failures at the relay then follows a binomial

distribution with i representing the number of failures at the end user and pR representing

the conditional probability that a codeword fails at the relay conditioned on it failing at the

end user. Hence,

δAF (i) = bcD + V ((i, SNRAF , R2), SNR2)

+
i∑

j=1
PB(i, pR, j)V ((j, SNR1, R1), SNR1), (2.27)

where

pR = Pe(R1, SNR1)
Pe(R1, SNRAF )

follows from Bayes’ rule.

The values of cDF and cAF can now be computed for all discretized values of SNR1, SNR2,

and R1 using Eqs. (2.23 ) and (2.26 ). A decision map is then generated specifying whether

AF or DF provides lower expected cost. According to this decision map, the relay can make

the AF or DF decision by estimating the SNR on the two links and finding the rate of the

received codeword in a practical situation.

2.6 Decision Engine for Multi-User Systems

This section addresses a system where a single server (or base station) uses a broadcast

link to deliver content to multiple users. The channels from the base station (BS) to each user

experience different and independent SNR, so when the BS broadcasts a bundle of codewords,

each user is able to decode some of them but not others. If all users are interested in decoding

all codewords the problem is similar to that of a single link: it makes sense to focus on the
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user with the most failures and broadcast the corresponding IR bits, that all other users

are also able to hear and use in their own data recovery. However, we analyze the more

interesting case in which each user is only interested in a subset of the codewords but can

overhear and attempt to decode those meant for other users. Furthermore, we assume that

users can report the specific codewords that they succeeded in decoding. In this case, the

BS can leverage that information and use network coding schemes to optimize the IR [38 ],

[39 ], [52 ], [53 ]. Since not all users are interested in all codewords, extension IR bits for

any given codeword would only benefit a subset of the users, possibly a single one. Bundle

parity bits obtained by taking the XOR of multiple codewords, however, have the potential

to help multiple users decode their desired information. This section focuses on optimizing

the choice of codewords in such combinations and the number of bundle parity bits to be

sent for each of them.

Consider a bundle of codewords being broadcast to multiple users, so that user i is

only interested in codeword i but overhears all the others. If user i can successfully decode

codeword i, then it is done and does not require any IR. Our goal is to minimize the total

number of IR bits sent while ensuring a minimal probability of success for all the users who

failed to do so. Let b denote the number of users that fail to decode their corresponding

codewords, and consider all the possible subsets of {1, . . . , b}, indexed with numbers between

0 and 2b − 1. A simple way of doing this would be to use the binary representation of the

elements included in the subset. Let Ωk ⊆ {1, . . . , b} represent the k-th such subset for

k = 0, . . . , 2b− 1, so that j ∈ Ωk if and only if bk/2j−1c is odd. Let βk represent the number

of IR bits to be sent obtained from the XOR of the codewords in Ωk. Then the problem that

we are trying to solve is

minimize
2b−1∑
k=0

βk (2.28)

subject to P (i)
e ≤ γ, i = 1, . . . , b (2.29)

βk ≥ 0, k = 0, . . . , 2b − 1 (2.30)
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where P (i)
e represents the probability of user i failing to decode after receiving the IR, condi-

tioned on having failed without it, and γ represents the highest such probability that we are

willing to tolerate. The failure probability P (i)
e depends on SNR

(i)
0 , the SNR of the original

codeword, and on SNR
(i)
eff , the effective SNR after IR defined in Eq. (2.15 ). The latter is itself

a function of β = (β1, β2, . . . , β2b−1), as described below.

Let χi ∈ {1, . . . , b} represent the indices of the codewords that user i failed to decode

and assume that i ∈ χi (otherwise the user has received its information and is out of the

picture). Receiving βk bits from the XOR of codewords in Ωk would help user i increase

the SNR in βk of the bits from codeword i. Fig. 2.3 provides the new SNR for those bits,

denoted SNRnew, as a function of SNR
(i)
0 and the number of failed codewords in the XOR,

denoted f
(i)
k = |χi ∩ Ωk|. Assuming that the IR updates do not overlap, the effective SNR

for user i after IR would be

SNR
(i)
eff(β) =

 1
SNR

(i)
0

+ 1
n

∑
{k:i∈Ωk}

βk

(
1

SNRnew(f (i)
k , SNR

(i)
0 )
− 1

SNR
(i)
0

)−1

. (2.31)

Eqs. (2.1 )-(2.3 ) and (2.20 ) can be used to rewrite the error constraints in (2.29 ) as

λiaσzi(β)cσ − aµzi(β)cµ ≤ θi (2.32)

for i = 1, . . . , b, where

λi := Q−1
(
γPe(R, SNR

(i)
0 )
)

, (2.33)

θi := bµ −R− λibσ, (2.34)

zi(β) :=
(
SNR

(i)
eff(β)

)−1
. (2.35)
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In the above definitions Pe(R, SNR
(i)
0 ) denotes the probability of error before IR and R the

coding rate, assumed to be identical for all codewords for the sake of simplicity. Using the

numerical values in Eqs. (2.4 ) and (2.5 ), problem (2.28 ) becomes

minimize
2b−1∑
k=0

βk

subject to 0.2zi(β)1.74 + 0.12λizi(β)0.42 ≤ θi, i = 1, . . . , b

βk ≥ 0, k = 0, . . . , 2b − 1.

(2.36)

Observe that zi(β) is a linear function of β, as shown in Eq. (2.31 ). Assuming that zi(β) ≥

0.5, since the model in Eq. (2.1 ) is not valid outside of that range, the above problem is

convex for γ ≥ 2.3
Pe(R,SNR0) · 10−4 and can be solved by any of the many existing convex

optimization methods [54 ]. The solution β = (β1, . . . , β2b−1), with all values rounded to the

nearest integer, provides a good approximation to the optimal combination of IR bits to be

sent so as to guarantee a probability of success above 1− γ for all users.

2.7 Numerical Results

We now simulate the proposed methods and show numerical results to evaluate their

performance. All simulations assume a bundle size of b = 8 codewords obtained from the

QC-LDPC code of length n = 648 and k = 432 (rate 2/3) specified in [43 ]. Decoding and

retransmission overhead costs are set to cD = 300 and cR = 100.

2.7.1 Single Link

This subsection simulates the method described in Section 2.4 . As a reminder, the goal

was to optimize the number and type of IR bits to be sent when there is a direct link between

the transmitter and the receiver. Value iteration was applied to Eqs. (2.21 ) and (2.22 ) to

yield a policy A(f, SNR, R, SNRIR) specifying the number of extension bits (α) and bundle

parity bits (β) to be requested as a function of the number of failed codewords remaining in

the bundle f and their effective SNR. We restrict the range of α and β to be [0, 216] and

[0, 648] respectively, so that the set of actions is finite. Fig. 2.5 shows a slice of the policy for
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Figure 2.5. α and β decision for R = 2/3 and SNRIR = SNR
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Figure 2.6. Throughput of different IR schemes for a single link.

code rate R = 2/3 and the IR having the same SNR as the original bundle, (SNRIR = SNR).

It can be seen that the sum of α and β increases as the SNR decreases. This is because more

IR bits are required to recover a highly corrupted bundle. In addition, our policy suggests

that bundle parity bits are preferred over extension bits when there is a small number of failed

codewords. This is worth noticing, since bundle parity is equivalent to Chase Combining

when there is a single failure and extension bits generally offer better performance than

Chase Combining [48 ]. However, the feedback limitations in our system prevent the receiver

from conveying to the transmitter the specific codewords that failed; if extension bits were

requested, the transmitter would have to send them for every codeword in the bundle, even

for those that have already been successfully decoded. The policy illustrated in Fig. 2.5 has

less than 16 possible combinations of (α, β), so it suffices to use 4 feedback bits to specify

the request. This translates to only 1 bit of feedback per 2 codewords, which is half as much

feedback as traditional fixed-length IR schemes with individual acknowledgements.
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Fig. 2.6 compares the number of information bits delivered per unit cost for different IR

schemes. Each point in the plot is the result of averaging Monte Carlo simulations for 1000

bundles and unlimited rounds of IR until success. If we interpret the cost as delay, then the

number of information bits delivered divided by the cost will be the throughput. It can be

observed that our HARQ policy provides modest gains over those with a fixed IR length,

regardless of what this fixed number is and the SNR of the channel. These gains would be

even larger in a scenario with variable SNR where, unlike fixed IR schemes, the proposed

HARQ protocol would be able to adapt the IR length to each individual bundle.

2.7.2 Relay

This subsection simulates the method described in Section 2.5 . As a reminder, a relay

between the transmitter and receiver has to decide between AF and DF, using the same

policies as in the single link scenario when failures occurred. The costs cDF and cAF , defined

in Eqs. (2.23 ) and (2.26 ), are computed offline and compared to obtain the decision map.

The relay estimates the SNR of both channels, finds the code rate of the received bundle,

and looks up the decision map for whether or not to decode it. Fig. 2.7 shows the decision

map for R1 = 2/3. It can be observed that AF is preferred when both SNR1 and SNR2 are

high enough, since the resulting SNRAF is high and so AF removes the decoding cost at the

relay, offsetting the small additional risk of decoding failure at the end user. Especially when

SNR2 > 4.5 dB, AF is the better choice regardless of SNR1. The simulations also show that

the AF region shifts to the right as the code rate R1 increases. This makes sense because for

higher code rates, the SNR must be increased correspondingly so that the risk of decoding

failure is maintained at a low level for AF to prevail as discussed earlier.

Monte Carlo simulations also verify that the proposed relay HARQ strategy provides

higher throughput than existing ones. Again, we could interpret the cost as delay, and

so the information bits delivered per unit cost would measure the average throughput. The

simulations first use an AWGN channel with deterministic gain to show that the relay decision

map in Fig. 2.7 indeed chooses the forwarding scheme with a higher throughput. We then

introduce stochastic channel gains to simulate a more practical scenario. Although the relay
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Figure 2.8. Average throughput of different relay strategies in AWGN channel.

decision engine was derived based on the assumption of AWGN channels, we show that the

smart relay using our proposed policy based on the measured CSI (channel side information)

is also suitable in this scenario and outperforms a fixed AF or DF relay.

In order to perform a fair comparison all relays use the same HARQ strategy described

earlier when it comes to the single-link regime. Fig. 2.8 shows the average throughput using

different relay strategies as a function of SNR2, given a fixed SNR1 = 4 dB and R1 = 2/3.

The relay decision map in Fig. 2.7 predicts that AF is the better choice if SNR2 > 3 dB, and

indeed we see in the figure that AF results in higher throughput than DF when SNR1 > 3 dB.

The smart relay is programmed to take the strategy with higher throughput.

Using the decision map should provide an advantage against channel variations because

the relay can measure the SNR of its received signal and adopt the appropriate strategy

accordingly, whereas a relay with fixed forwarding scheme will fail to adapt to the time-

varying channel. The received signal is modeled as y = gx + n where we assume unit

transmit power (E[x2] = 1) and additive Gaussian noise n ∼ N (0, σ2). The channel gain g
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Figure 2.9. Average throughput of different relay strategies in fading channel.

is uniformly distributed over the range [0.75, 1.25], remaining constant within each bundle

but changing across different bundles and links. Fig. 2.9 shows the average throughput of

the different relay strategies in the fading scenario as a function of SNR2 for fixed SNR1 = 4

dB and R1 = 2/3. The smart relay exhibits a noticeable gain in throughput compared to

AF or DF only relays. The gain is especially prominent in the region where AF and DF have

similar performance, because our proposed hybrid relay strategy combines the advantages of

both when neither of them significantly dominates the other.

2.7.3 Multi-user systems:

This subsection simulates the method described in Section 2.6 . As a reminder, a single

transmitter is delivering content to multiple receivers using a broadcast link. Each receiver

is only interested in a subset of the codewords, but can overhear the others. Our goal is to

minimize the number of IR bits to be broadcast in order to guarantee a certain probability

of success for all users who suffered failures in decoding their desired information.
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Fig. 2.10 compares the average number of incremental redundancy bits resulting from

Eq. (2.36 ) with that required if we were to send extension bits for every codeword that failed

decoding at its desired receiver. Each point in the plot is the result of 100 Monte Carlo

simulations with rate R = 0.5 broadcast to 8 users experiencing random SNR uniformly

distributed between −2 dB and −1 dB. According to Eq. (2.1 ), that yields a probability

of decoding failure between 0.1 and 0.9 per codeword at each user. We used a logarithmic

barrier method coupled with Newton descent to solve problem (2.36 ) and plotted the average

‖β‖1 (number of IR bits) for different values of γ (probability of error after receiving the

IR). Then, we used Eq. (2.1 ) to derive the number of extension bits that would be required

to guarantee the same probability of error for all users. As it can be seen, our proposed

method requires significantly fewer bits regardless of γ.

In most practical instances, the solution to problem (2.36 ) is not unique. There is a whole

subspace of optimal values for β. In order to obtain a sparse solution, we introduced a small

random perturbation in the objective, minimizing ∑2b−1
k=0 (1+εk)βk instead of ∑2b−1

k=0 βk, where

εk are random noise variables distributed between 0 and 10−2. The result was that, in most

cases, the number of non-zero entries in β was lower than the number of failed codewords.

This means that, on top of requiring fewer IR bits, our method is also able to group them

into fewer types than a pure extension approach, reducing the amount of overhead.

2.8 Conclusion

This chapter addresses the problem of error correction in single link, relay, and broadcast

systems. Specifically, it proposes techniques for optimizing the incremental redundancy

(IR) bits sent by an HARQ protocol under the assumption that the feedback channel can

only support a few bits of feedback per bundle of codewords (or packets). Apart from the

traditional extension IR bits, consisting of a few additional bits for each codeword, this

chapter also considers bundle IR, consisting of encoded IR bits which the receiver can use

to refine the LLRs in multiple codewords.

The allocation of IR bits in a single link is modelled as a Markov Decision Process seeking

to minimize a pre-determined cost function. The chapter describes how the problem should
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be formulated and solved, resulting in a set of policies parameterized by the number of

failures per codeword bundle, effective SNR of the received codewords, and coding rate. It

then extends this single link framework to a relay scenario, where an intermediate node has

to decide whether to decode (DF) or just amplify (AF) incoming bundles before forwarding

them on. Finally, the chapter studies a multiuser scenario where a single source broadcasts

information to multiple receivers with different interests. It proposes transmitting encoded

IR bits that benefit multiple receivers and formulates a convex problem to optimize their

number and encoding.

Numerical simulations show that the proposed methods provide a modest increase in

throughput compared to traditional HARQ schemes with fixed-length codeword extension.

The proposed policy for the relay outperforms fixed forwarding strategies and the proposed

strategy for broadcast systems significantly reduces the total number of IR bits needed to

guarantee a given probability of success, compared to sending individual extension bits for

each codeword. The increased flexibility in requesting different numbers and types of IR bits

and the ability to make decisions based on the measurement of the received signals display

significant advantages in limited feedback communication systems.
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3. INCREASING THROUGHPUT IN WIRELESS

COMMUNICATIONS BY GROUPING SIMILAR QUALITY

BITS

This chapter proposes and studies a technique for grouping the bits transmitted through a

wireless channel into codewords according to their quality (SNR). It proves that splitting

the bits into multiple codewords of different rates provides a higher throughput than mixing

heterogeneous quality bits into fixed-rate codewords. The chapter first analyzes the pros

and cons of different mappings of bits and codewords to the available time, frequency, and

modulation resources. Then it describes the proposed scheme for a 16-QAM modulation

and illustrates its benefits through simulations. Finally, it provides a mathematical proof of

its superiority in a binary-input parallel AWGN channel with finite length error correcting

codes (ECC). The proposed scheme can be applied to any communications channel using

ECC, but it is of particular interest for millimeter-wave (mmWave) wireless communications,

where the channel quality is closely monitored and high order modulations are used over wide

bandwidths. The simulations suggest that modest gains in throughput can be obtained with

negligible additional complexity.

3.1 Introduction

Typical wireless systems subdivide their available time and frequency bands into smaller

resource blocks that can be independently processed at the receiver. Within each of these

resource blocks, the transmitter can compensate for link gain fluctuations by periodically

adjusting the size of the modulation and the rate of the error correcting codes (ECC),

attempting to ensure a somewhat uniform probability of failure at the receiver. Several

other factors, such as latency, reliability and decoder complexity are also taken into account

but, ultimately, the overall goal is to maximize throughput, understood as the number of

information bits correctly received per second.

The Shannon coding theorem states that if the blocklength of the channel code goes to

infinity, it is possible for the throughput to match the channel capacity. However, [42 ] has
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shown a much tighter upper bound in the finite blocklength regime by introducing the channel

dispersion parameter V . Specifically, the maximum cardinality M∗(n, ε) of a blocklength n

codebook that can be decoded with block error rate (BLER) at most ε satisfies

log M∗(n, ε) = nC −
√

nV Q−1(ε) + O(log n), (3.1)

where C and V are the Shannon capacity and the dispersion of the channel, respectively.

This chapter will propose a technique for mapping information bits into finite length

codewords and those codewords into resource blocks with the goal of maximizing throughput.

The proposed technique can be applied to any communications channel with heterogeneous

bit qualities but, for the sake of simplicity, we will assume a wireless system using QAM

modulations and an AWGN channel [55 ]. Our simulations will employ the binary Low

Density Parity Check (LDPC) codes of length n = 648 proposed in the 3GPP standard for

802.11n [43 ]. Binary LDPC codes are the most prevalent ECC in modern systems and have

been included in the mmWave standard [56 ].

In a binary LDPC decoder, received channel values are processed to obtain a log-

likelihood ratio (LLR) for each individual bit bi as `i = log pi(0|yi)
pi(1|yi) , where pi(0|yi) and pi(1|yi)

respectively represent the probability of bi being 0 or 1, given the corresponding received

value yi. These LLRs are then progressively refined by iterative message passing.

Summarizing, this chapter explores multiple practical aspects of modulation and coding

that may be relevant in the research, design, and standardization of mmWave for fifth gen-

eration (5G) and beyond networks. The chapter will be organized as follows. Section 3.2 

studies different mappings of information bits to modulation symbols, and codewords to

time-frequency and constellation resources. Simulations show practical benefits from our

proposed bit mapping strategies in a 16-QAM modulation and suggest that interleaving can

actually increase the decoding failure rate if not designed carefully. Section 3.3 studies the

achievable channel coding rate of a parallel AWGN channel for finite blocklength codes. It

provides a mathematical proof that grouping the bits into codewords with homogeneous

SNR allows for a higher data rate than mixing them into the same codeword. Section 3.4 

concludes the chapter.
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Figure 3.1. Mapping of bits to 16-QAM constellation symbols.

3.2 Codeword Mapping and Modulation

To the best of our knowledge, there does not exist a commonly agreed standard for the

modulation and frame structure of mmWave communications [57 ]. Additionally, the number

of codewords transmitted in each frame will depend on the order of the modulation, code

length, etc. Information bits are encoded and then mapped into modulation symbols to be

transmitted using the time and frequency resource blocks. Hence, a modulation needs to

specify both how to map the bits into symbols and how to distribute the codewords across

the resource blocks.

3.2.1 Mapping bits to modulation symbols

Modulations with multiple bits per symbol can use different mappings, as shown in

Fig. 3.1 for 16-QAM. Gray mapping offers the lowest bit error rate (BER) since adjacent

constellation symbols differ in a single bit, but it is not linear. Superposition mapping can

be understood as the algebraic sum of independent BPSK modulations with different power.

The transmitted symbols can therefore be constructed by scaling and adding multiple inde-

pendent streams of binary data, which facilitates its implementation in multi-user scenarios

[58 ].
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Another factor to consider in the mapping of bits to modulation symbols is that when

there are more than two bits per symbol, not all the bits have the same error probability [55 ].

Regardless of whether Gray or superposition labeling is used, the second and fourth bit

in Fig. 3.1 are more prone to error than the first and third. Furthermore, the marginal

distributions of the noise experienced by each bit are highly correlated.

Ideally, the system should use a non-binary LDPC code with a decoder capable of ac-

counting for these asymetries and correlations. Non-binary LDPC codes significantly out-

perform their binary counterparts in terms of failure rate, but their increased decoding

complexity is a problem for the high speeds expected in mmWave communications [59 ].

Therefore, most practical systems use binary LDPC codes and operate as if each bit suf-

fered independent Gaussian noise. The following subsection will propose a refinement to this

approach.

3.2.2 Mapping codewords to resource blocks

There are multiple ways in which the LDPC codewords can be mapped to the resource

blocks. As depicted in Fig. 3.2 , codewords can be assigned different time slots, frequency

subcarriers, or bits in a modulation symbol. Each codeword mapping approach has its own

advantages and drawbacks1
 :

Split across time

Codewords are transmitted sequentially in time, using all available subcarriers. This

mapping minimizes latency, since codewords can start being decoded as soon as they are

received. Additionally, full-duplex receivers are able to report decoding failures immediately,

allowing the transmitter to adjust the modulation size or code rate for subsequent codewords.

On the negative side, if the subcarriers use different modulations or there is frequency se-

lective fading, the reliability of the bits in a codeword could vary widely. Furthermore, it is
1↑ In practice, bits from different codewords are often interleaved to break error bursts. Still, each codeword
can either be distributed across many subcarriers during a short time, or over one subcarrier for a longer
period, etc.
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Figure 3.2. Mapping of codewords to resources.
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very hard for binary decoders to exploit the correlation in the noise suffered by the bits in

each modulation symbol.

Split across frequency

Codewords are assigned to different subcarriers, using as many time slots as necessary.

Frequency selective fading can be addressed by adjusting the modulation and coding rate

within each codeword, and it is easy to multiplex users in frequency by assigning them

different subcarriers. Unfortunately, latency and memory requirements would be worse than

in the previous case. The receiver needs to wait until the first batch of codewords has been

received before starting to decode them all in parallel. The noise correlation between bits in

the same modulation symbol is still hard to exploit, but there exist multi-edge type decoders

that can do it if the modulation remains constant throughout the codeword [60 ].

Split across modulation

For modulations with more than one bit per symbol, have each bit correspond to a dif-

ferent codeword [44 ]. This mapping increases the number of subcarriers and/or timeslots

required to transmit each codeword, thereby increasing latency, but it simplifies the exploita-

tion of the correlation and asymmetries between the different bits in a symbol. Specifically,

when one codeword is successfully decoded, the known bits can be used to refine the LLRs

from the other bits in the same symbols, helping decode the remaining codewords. Fig. 3.3 

shows how the distribution of LLR values for the first bit in a Gray-coded 16-QAM constel-

lation changes when the second bit is known.

Bits with higher probability of error should be encoded at a lower rate than those with

lower BER. The maximal coding rate achievable with finite blocklength decreases with the

channel dispersion (variance of the information density) [42 ]. Grouping the bits into code-

words according to their reliability will create several parallel channels with smaller disper-

sion than the original channel, thereby increasing the overall finite length capacity. We will

present a proof of this result in a relaxed scenario in section 3.3 .
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3.2.3 Simulations

The splitting across time or frequency is a relatively standard concept but, to the extent

of our knowledge, the idea of assigning the bits in a modulation symbol to codewords of

different rates is new. Other attempts have been made at using bit mapping to improve the

overall decoding performance [61 ], but they are significantly more complex to implement.

One of the main advantages of our method is that it does not require any knowledge about

the channel or decoder because the asymmetry in bit qualities is solely due to the QAM

constellation. Fig. 3.4 compares the throughput achieved with a 16-QAM modulation when

all the bits in each symbol are part of the same codeword (solid curves) with that achieved

when they are grouped into codewords of different rates according to their BER and the

correlation between the codewords can be exploited (dashed curves). It can be observed

that the latter increases the rate for both Gray and superposition bit mappings.

An interesting observation that arises from Fig. 3.4 is that interleaving can be detrimental

to the data rate if it is done across symbols with different reliability. However, interleaving

is necessary in practice to break error bursts and smooth channel variations. Rather than

avoiding it completely, we propose having multiple parallel encoder-interleaver chains pro-

ducing the different bits in a modulation symbol, as shown in Fig. 3.5 . Bits prone to higher

probability of error would be interleaved among themselves and encoded with lower rates

than those subject to smaller probabilities of error. Interleaving is done across codewords of

the same rate.

3.3 Coding Rate of Mixed SNR Channels

We have not been able to derive a mathematical characterization for the gain obtained

by splitting the bits in a 16-QAM constellation, mainly because of the difficulty in deriv-

ing the finite blocklength capacity of such a system. However, this section provides such

characterization for a simplified channel.

We consider a binary-input parallel AWGN channel where a proportion α ∈ [0, 1] of

the bits experience SNR of γ1, and the remaining ᾱ := 1 − α experience SNR of γ2. The

transmitter knows which bits will experience a higher or lower SNR, and can therefore decide
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to mix them in the same codeword or group them into codewords with homogeneous SNR.

This assumption arises naturally in a 16-QAM channel where some bits are known to suffer

higher BER than others; here we relax the model to BPSK and parallel AWGN. We will

prove that grouping the bits into codewords according to their SNR allows for a higher

channel coding rate with finite length codewords.

Theorem 3.3.1. When seeking to guarantee BLER ≤ ε with finite blocklength codes, grouping

the bits into SNR-homogeneous codewords will achieve a higher channel coding rate than

mixing bits of different SNR in the same codeword.

Proof. With bit grouping, we effectively have two independent AWGN channels with different

SNR. If we have L codewords of length n bits, αL codewords will experience SNR γ1, and ᾱL

codewords will experience γ2. (L can be chosen large enough such that these are integers.)

According to Eq. (4.6 ), the maximum feasible number of information bits subject to block

error rate below ε can be expressed as

k∗
split = αL

(
nC1(γ1)−

√
nV1(γ1)Q−1(ε) + ρn

)
+ ᾱL

(
nC1(γ2)−

√
nV1(γ2)Q−1(ε) + ρn

)
(3.2)

where C1(γ) = 1
2 log(1 + γ) and V1(γ) = γ(γ+2)

2(γ+1)2 are the channel capacity and dispersion for

an AWGN channel [62 ]; ρn = O(log n) is the error term.

Without bit grouping, we effectively have an L-parallel Gaussian channel with mixed

SNRs. In each codeword, αn bits experience SNR γ1 and the other ᾱn bits experience γ2.

Theorem 4 in [62 ] shows the finite blocklength capacity and dispersion of L-parallel Gaussian

channels, and we use that result to express the maximum feasible number of information

bits with L codewords as

k∗
mixed = L

(
n

L
CL(γ1, γ2)−

√
n

L
VL(γ1, γ2)Q−1(ε) + ρn

)
= nL (αC1(γ1) + ᾱC1(γ2))

−
√

nL
√

αV1(γ1) + ᾱV1(γ2)Q−1(ε) + Lρn (3.3)
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where CL(γ1, γ2) and VL(γ1, γ2) are the capacity and dispersion for the L-parallel AWGN

channel comprising αL sub-channels with SNR γ1 and ᾱL sub-channels with SNR γ2.

If we consider a reasonable practical code length where the ρn = O(log n) term is negli-

gible, we see that the gain in coding rate due to bit grouping can be expressed as

∆R =
k∗

split − k∗
mixed

nL
(3.4)

= Q−1(ε)√
n

[√
αV1(γ1) + ᾱV1(γ2)

−
(

α
√

V1(γ1) + ᾱ
√

V1(γ2)
) ]

. (3.5)

Eq. (3.5 ) is always non-negative, since

αV1(γ1) + ᾱV1(γ2)−
(

α
√

V1(γ1) + ᾱ
√

V1(γ2)
)2

= α(1− α)
(√

V1(γ1)−
√

V1(γ2)
)2
≥ 0, (3.6)

and this completes our proof that ∆R ≥ 0.

We now make a few observations. Equality holds in Eq. (3.6 ) when γ1 = γ2 or α = 0, 1.

In other words, splitting the bits will always achieve a higher information rate than not

splitting them for finite length codes, unless all bits experience the same SNR. It can also be

seen that the rate gain ∆R increases as α→ 1/2 for fixed SNRs and as the BLER constraint

tightens (ε → 0). However, it decreases with blocklength, since both rates converge to the

Shannon limit when n→∞.

We now support the previous result with numerical simulations. We consider the 802.11n

LDPC codes of length n = 648 [43 ] sent over a mixed SNR channel and find the average

throughput, defined as the total number of information bits in successful frames divided

by the total number of bits sent. The mixed SNR channel has two fixed SNRs of γ1 =

0.8 dB and γ2 = 3.0 dB. We use L = 12 and simulate the channel with α = i/12 for

i = 0, 1, · · · , 12. Practical LDPC decoders are often unable to characterize the SNR of each

specific bit. Instead, they observe the variance of the noise across the whole codeword (or

over a training sequence) and use it to estimate the SNR required to generate the LLRs.

61



0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

T
h
ro

u
g
h
p
u
t

Mixed SNR Gaussian Channel

Uniform rate 2/3

Uniform rate 3/4

Uniform rate 5/6

Split between 2/3 and 5/6

Figure 3.6. Throughput with and without bit splitting, as a function of α,
i.e. the fraction of bits having γ1. SNRs are fixed at γ1 = 0.8 dB and γ2 = 3.0
dB.

62



When the transmitter groups the bits into different codewords according to their anticipated

qualities, the receiver may obtain a different noise variance estimate for each codeword, and

such estimate will be used to compute the LLRs in our simulation.

We simulated 6000 random codewords to find the average throughput for each scenario,

and used the MATLAB communications toolbox LDPC decoder with maximum of 40 itera-

tions. The dashed curves in Fig. 3.6 show the throughput of LDPC codes with different rates

when a fraction α of the bits in the codeword have SNR 0.8 dB and ᾱ have 3.0 dB. The solid

curve is obtained by sending a fraction α of the codewords with rate 2/3 over an AWGN

channel with 0.8 dB, and the other ᾱ with rate 5/6 over 3.0 dB. This captures the effective

behavior of splitting and grouping the bits into homogeneous codewords as described earlier.

It can be seen that the bit splitting technique outperforms all fixed rate codes, regardless of

the proportion of good and bad bits in the codewords.

3.4 Conclusion

This chapter studied some of the modulation and coding trade-offs arising in mmWave

systems due to fast channel variations. It analyzed how the mapping of bits and codewords

to time, frequency, and modulation resources can affect the average latency and throughput

in the network. Then it showed that the overall data rate can be improved by grouping bits

into codewords according to their reliability and exploiting correlation between codewords

when decoding. Finally, it proved that such grouping increases the maximum achievable

channel coding rate for finite blocklength codes in a parallel AWGN channel. The gain

was found to be most significant when the channel experiences high SNR variations. The

proposed techniques are suitable in a wide range of channel conditions for future mmWave

systems.
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4. A ROUTING AND RESOURCE ALLOCATION

ALGORITHM FOR COLLABORATIVE NETWORKS USING

INFERRED INFORMATION

Even with the advent of 5G wireless communications and the millimeter wave spectrum,

there will always be crowded frequency bands where multiple uncoordinated networks will

have to contend (or collaborate) to squeeze as much throughput as possible while avoiding

interference. This work presents a heuristic algorithm that individual networks can follow

to collaboratively share the available bandwidth and route the traffic within their network,

with the objective of maximizing the overall sum rate over all networks. The algorithm finds

a greedy solution by independently optimizing the links and routes for each network, and

then refines that solution by discarding inefficient and potentially harmful links. Simulation

results show that, when the networks have different sizes and traffic loads, the proposed

algorithm outperforms the original greedy solution as well as the optimal configuration with

a uniform distribution of resources.

4.1 Introduction

The number of wireless devices is increasing exponentially and expected to continue do-

ing so in the foreseeable future. Furthermore, users and applications demand more data at

faster speeds, lower latencies, and higher reliability. Some researchers and telecommunica-

tions providers have turned towards the mmWave band (above 6 GHz) to find the necessary

bandwidth to accommodate such growing demand, but the hardware and propagation limi-

tations associated with high frequencies make mmWave communications unsuitable for many

applications. The congestion in the sub-6GHz band is not expected to be alleviated anytime

soon and it is therefore imperative that we find ways for different networks to coexist sharing

the same spectrum.

Prior research has addressed this problem using either shared databases (e.g., TV whites-

pace [63 ] and CBRS [64 ]) or sensing-based techniques (e.g., DARPA XG [65 ]), but these ap-

proaches substantially underperform information theoretic limits. Information theory tells

64



us that nearly any performance measure of multiple networks operating in a shared environ-

ment is bounded by the fully centralized case, where all nodes have infinite capacity links to

a shared controller. Centralized performance is clearly unachievable in practice, but allowing

some level of collaboration or information sharing could help us approach that bound.

The goal of this chapter is to design a protocol for autonomous routing and spectrum

management across multiple wireless networks operating in a shared interference-limited

environment. Each network will have to assign a carrier frequency and bandwidth to each

of its links, as well as adapt their transmit power and the path that packets will take from

their source to their destination. This will be done by studying the optimal (centralized)

solutions for different random configurations and attempting to leverage their common traits

in the design of our protocol.

We will use the information-theoretical capacity as a performance metric, ignoring la-

tency, security, and other practical considerations. The concept of capacity in wireless net-

works was pioneered by Gupta and Kumar in [66 ]. Their paper focused on asymptotic

bounds for the number of successful links that can be simultaneously scheduled under two

interference models: the physical model, where transmissions are successful when the SINR

is above a pre-fixed thresthold, and the protocol model, where they are successful as long as

there are no other transmitters within a certain distance of the receiver. Subsequent works

adopted the same models and extended the results to consider probabilistic success in the

transmissions [67 ] and heuristics with constant approximation guarantees to the previous

bounds [68 ]–[70 ]. However, they still focused on cases with asymptotically large number of

nodes and offered loads. This chapter attempts to solve the problem for a pre-fixed set of

flows with specific sources, sinks, and maximum data rates.

In environments where background noise is significantly stronger than the potential in-

terference between networks (noise-limited), the capacity maximization problem becomes

trivial: every node should transmit with as much power as it can using as much bandwidth

as it can. However, when the background noise is relatively small (interference-limited) the

problem of designing a strategy to maximize the information theoretical capacity of a net-

work is very hard, mostly because the optimal strategy is different depending on the noise

power and the positions of the nodes (equivalently, the channel gains). Consider the highly
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simplified scenario of four nodes located in the corners of a D × D square, with quadratic

signal attenuation and additive white Gaussian noise. Assuming that the two nodes on the

left want to transmit to the two nodes on the right, the question arises: would it be better

to have both nodes transmit simultaneously or to alternate their transmissions? The answer

depends on the distance between the nodes and how they are paired. If the links go along

the sides of the square, the overall capacity for each strategy is given by

Csim = 2 log
(

1 + 2P

N0 + P

)
(4.1)

Calt = log
(

1 + 2P

N0

)
, (4.2)

where N0/2 is the noise power and P = PT /D2 denotes the received signal power, given by the

transmit power divided by the distance squared. When P = N0 we have that Csim > Calt, but

when P becomes large enough the inequality inverts. Similarly, if the nodes are attempting

to transmit along the diagonals of the square, the overall capacities for the two strategies

are given by

Csim = 2 log
(

1 + P

N0 + 2P

)
(4.3)

Calt = log
(

1 + P

N0

)
. (4.4)

When P = N0 we have the opposite conclusion as in the previous case: Csim < Calt, but

the inequality once again inverts if the received power becomes small enough. Finding the

optimal strategy requires carefully analyzing the received, interference, and noise powers,

even in a simplified scenario such as this one. In a more realistic situation with a larger

number of nodes in arbitrarily locations the problem becomes exponentially more complex.

Apart from assigning powers and scheduling transmissions, it is well known that the si-

multaneous routing and resource allocation problem is NP-hard [71 ]. Over the last decade

there have been multiple attempts at finding efficient methods to solve it, mostly through de-

composition. Palomar et al. published a compilation of the first results in this direction [72 ]

and analyzed the advantages and disadvantages for each of them. However, there has been
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significant progress in this area since that compilation was published. Iterative approaches

such as [73 ]–[75 ] have been shown to provide better results than methods purely based on de-

composition. More recently, there have been multiple methods proposed based on fractional

programming techniques [76 ]–[78 ], information-theoretical inequalities for the optimality of

treating interference as noise [79 ], [80 ], and machine learning [81 ]–[84 ]. Heuristic methods

based on the distance between the links have also been shown to provide good results [85 ].

In many applications, it is common for resources to be sliced (in time, in frequency, or

both) and auctioned among multiple networks for their exclusive use. Some researchers have

studied this scenario and attempted to optimize the bidding process [86 ]. Another common

approach in modern software defined radio (SDR) -based networks is to map multiple virtual

channels to a few shared physical ones [87 ]. Yang et. al. proposed using a dynamic program

to optimize such mapping [88 ], allowing reuse of the physical channels when the collision

probability is below a pre-fixed threshold.

However, all of these recent methods are aimed at solving the sum-rate maximization

problem (or some variation of it) for a single network and frequency band. They seek the

set of links that should be scheduled simultaneously to maximize a certain utility function,

assuming that the nodes are somewhat coordinated and it is possible to sacrifice all trans-

missions from some nodes in favor of those from others. This chapter, on the other hand,

attempts to solve the problem for multiple networks and frequency bands, for which there

is very limited literature. It will assume that the networks operate independently without a

standardized physical layer to enable the decoding and relaying of each other’s messages as

proposed in [1 ], [89 ]. It is therefore unclear how any of them would know to stop its trans-

missions for the benefit of others. We will propose a scheme that enables collaboration using

only the information that the networks can infer from the power of overheard transmissions.

Notation: We use bold font to represent vectors (lower case) and matrices (upper case).

The bold numbers 0 and 1 represent the all zeros and the all ones vectors, respectively, with

dimensions that should be clear from the context. We use parentheses to construct column

vectors from comma separated lists, i.e., x = (x1, . . . , xn) = [ x1 · · · xn ]T . The gradient

of a scalar function respect to a vector is given by ∇xf =
(

∂f
∂x1

, . . . , ∂f
∂xn

)
. The comparison

operators (≤, ≥, min, max) on vectors or matrices are understood as elementwise.
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4.2 System Model

The existing literature typically divides time into discrete time slots, and then optimizes

the transmission schedule of the network in each time slot. This is suitable for traditional

radios where the Tx (transmitter) and Rx (receiver) signal processing chains are implemented

in hardware, offering limited flexibility. A controller may switch the transmitter on or off and

control the power in each time slot to achieve the desired schedule. However, with the recent

advancement in SDRs, more dimensions can now be explored. An SDR transmitter can easily

switch its frequency on demand, and cater to complicated signal processing requirements.

We leverage this flexibility of SDRs and divide the available bandwidth into m identical

bands or channels instead of dividing time. Theoretically, these are equivalent approaches,

but dividing frequency instead of time offers some practical advantages. For instance, the

nodes do not need to synchronize the time slots and multi-hop packets can be delivered to

their destinations with less latency because the connecting hops can happen concurrently

on different frequency channels, whereas in the time-division approach one hop may need to

wait until the next cycle after the previous hop.

We consider N wireless networks deployed over a rectangular 2-dimensional region, with

the i-th network consisting of ni nodes distributed uniformly at random over the whole

region. Each node is equipped with a single-antenna full-duplex transceiver, i.e., a node

can be transmitting on one frequency band while it is receiving on another. Although some

modern radios are capable of transmitting and receiving on the same frequency, this chapter

does not address that scenario. To simplify our discussion, we will assume that every network

has an even number of nodes and there are a total of 2n = ∑N
i=1 ni nodes. This will allow

grouping all the nodes into transmitter-receiver pairs on each frequency band, although not

all those links will be necessarily active. If the number of nodes were odd, one node would be

left out of the Tx-Rx pairing for each frequency band, but this should not have any impact

in the overall performance since most of the chosen transmitters will need to stay inactive

regardless to avoid excessive interference. For simplicity, we will assume that nodes that

transmit do so continuously in time, on whatever band they are assigned.
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The signal received by node i at time t and channel f , assuming it is not transmitting

on that channel, is given by

yf
i (t) =

2n∑
j=1

√
gjix

f
j (t) + zf

i (t), (4.5)

where xf
j (t) is the signal transmitted by node j on channel f at time t (if any), gji the

(power) path loss from node j to node i, and zf
i (t) the additive Gaussian noise at receiver

i. For simplicity, we assume that the noise is white with the same variance σ2 for all

receiver nodes, that the path loss is identical for all the frequencies under consideration, and

we neglect propagation delays. These assumptions could be easily removed, but it would

complicate the equations unnecessarily.

Since there are 2n nodes and m frequency bands, there will be L = nm potentially active

links for any given set of pairings. These links are modeled as symmetric AWGN channels

with attenuation proportional to the distance squared. Recent research has shown that,

although simplistic, quadratic loss channel models are a sufficiently good approximation in

many scenarios and enough for machine learning models to provide good results [84 ].

The capacity of the `-th link (` = 1, . . . , L) is given by

c` = log(1 + γ`), (4.6)

where the unit of data rate is normalized by the bandwidth of each frequency channel and

γ` denotes the SINR (signal-to-interference-and-noise ratio) of the link. Specifically, if the

`-th link goes from node `o to node `d,

γ` = g`o`d
p`∑

ν∈T`\{`} gνo`d
pν + ρ`d

, (4.7)

where T` denotes the set of all links on the same frequency band as link `, νo denotes the

transmitter node for link ν, pν its transmit power, and ρ`d
= σ2 the noise level at `d. We

assume unit maximum power, so 0 ≤ p` ≤ 1 for all `.
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Each network is being asked to deliver a certain number of flows with randomly chosen

sources, sinks, and offered data rates. We use F to denote the total number of flows offered

across all networks and r := (r1, . . . , rF ) to denote the corresponding vector of maximum

data rates. The traffic can take multiple hops to get from the source to the sink, but the relay

nodes must be within the same network and the data rate on each hop is limited by the link

capacity in Eq. (4.6 ). Each network can be centrally optimized with perfect knowledge of the

path loss between its nodes and the source and destination of each flow, but no information

can be exchanged between different networks.

However, to enable collaboration between networks, we assume that each network can

infer certain information about the others from their transmissions, namely the node lo-

cations and transmit powers. Since concurrent transmissions are generally scattered into

different regions to avoid excessive interference, this information can be found through tri-

angulation. Even if certain nodes are mobile, we assume that the relative motion is slow and,

with periodic re-estimations, the location and power estimates can be reasonably accurate

for the period under consideration. We note that in some practical applications there could

be pre-established collaboration protocols allowing networks to share the GPS locations and

transmit powers of their nodes over a side channel, e.g., DARPA’s Spectrum Collaboration

Challenge [90 ]. This would render unnecessary the aforementioned information inference

through triangulation.

The goal of this chapter is to maximize the sum of the rates that can be delivered by

all N networks. Unlike many prior works (e.g., [81 ]), we do not include any fairness criteria

in our objective function. Some networks or flows will be encouraged to deliver significantly

more data than others if it increases the overall data rate. Additionally, we allow partial

delivery of the flows.

4.3 Optimization of a Single Network

The centralized optimization of a single network can be decomposed into two subprob-

lems: 1) mapping the nodes into Tx-Rx pairs for each frequency band, and 2) optimizing

the transmit powers and flow routes for the chosen pairings. The search space of the first
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subproblem is very large: for a network with 2n nodes and m frequency bands there are

((2n)!/n!)m possible distinct pairings. We are not aware of any method that can be used

to solve the problem exactly, and exhaustive search is computationally intractable for the

network sizes that we are considering. Hence, we resorted to a genetic algorithm (GA) for

selecting the potentially active links combined with a gradient ascent optimization of the

transmit powers.

In a nutshell, the genetic algorithm generates a pool of random pairings and then evalu-

ates their fitness according to the optimal feasible data rate. It then keeps the best candidate

in the pool and a few others selected at random with likelihood proportional to their fit-

ness value, thereby simulating the process of natural selection. These randomly selected

members experience mutations, consisting of swapping the pairing of two random nodes in

each frequency band. Occasionally, one of the mutated candidates achieves a fitness value

greater than the previous maximum, thereby becoming the best candidate in the gene pool.

This process is repeated until the best candidate does not change for a certain number of

iterations.

The second subproblem, i.e., joint routing and power optimization, can be solved with

a combination of linear programming and gradient ascent. Given a set of pairings, we have

L = nm point-to-point links available to carry the traffic flows. To determine which flows

are feasible with these links, we first perform an exhaustive search for all possible (single or

multi-hop) paths from the sources to their respective sinks. Denote the total number of paths

as P , each connecting a specific source to its sink via one or more links. Let θ = (θ1, . . . , θP )

with θk representing the assigned data rate on the k-th path, then naturally our objective

is to maximize 1T θ = ∑P
k=1 θk with θ ≥ 0. Additionally, we also need to enforce two more

constraints:

• The total data rate on any link, found as the sum of the rates for the paths containing

that link, cannot exceed its capacity. This can be expressed as Aθ ≤ c(p), where

A is an L × P matrix with Aij = 1 if the j-th path uses the i-th link and Aij = 0

otherwise, and c(p) = (c1, . . . , cL) is the vector of link capacities for the transmit

powers p = (p1, . . . , pL), as computed by Eq. (4.6 ).
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• The previously mentioned exhaustive search could yield multiple possible paths for

each flow. The sum of the rates assigned to those paths must be below the total rate

being offered by that flow. This can be expressed as Bθ ≤ r, where B is an F × P

matrix with Bij = 1 if the j-th path delivers the i-th flow and Bij = 0 otherwise.

Given a vector p of transmit power for each link, the optimization problem can be formulated

as
maximize 1T θ

subject to Aθ ≤ c(p)

Bθ ≤ r

θ ≥ 0.

(4.8)

Unfortunately, the link capacities c(p) are not a concave function of the transmit powers,

so optimizing p is not a convex problem. We use gradient ascent to seek a locally optimal

solution: initialize p(0) with a feasible set of values (e.g., 1/2 on all links) and then iterate

between solving problem (4.8 ) to find the optimal θ?(p) and updating p with a step size of

µ along the gradient of the objective. In order to ensure that the updated p is feasible, its

components are cropped to be between 0 and 1, i.e.,

p(i+1) =
(
min

(
1, p(i) + µ∇p(1T θ?)

))
+

, (4.9)

where (·)+ is a function that replaces all negative elements with zeros. The iterations are

repeated until convergence.

The gradient in Eq. (4.9 ) can be found using the chain rule as follows

∂

∂p`

(1T θ?) = λT · ∂c(p)
∂p`

, (4.10)

where λ := ∇c(1T θ?) = (λ1, . . . , λL) is the gradient of the optimal objective value with re-

spect to the channel capacity vector c and can be obtained as the dual variables corresponding
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to the first constraint in problem (4.8 ) [54 ]. Applying Eqs. (4.6 ) and (4.7 ), Eq. (4.10 ) can

be further expressed as

∂(1T θ?)
∂p`

= λ`g`o`d

I(`d) −
∑

ν∈T`\{`}

(
λνg`oνd

gνoνd
pν

I(νd)[I(νd)− gνoνd
pν ]

)
, (4.11)

where I(`d) := ∑
ν∈T`

gνo`d
pν + ρ`d

represents the total power (signal, interference, and noise)

being received by node `d. The other variables are defined in the same way as in Eq. (4.7 ).

4.4 Optimization of Multiple Networks

With multiple networks sharing the same time-frequency resources, we consider two al-

gorithms that the networks may use. In the first algorithm, every network behaves greedily

trying to maximize its own data rate irrespective of the interference it causes onto other

networks. In the second algorithm, the networks attempt to achieve a better data rate as a

whole than the purely greedy approach.

Note that if the networks were allowed to share perfect information (sources and sinks,

offered flow rates, etc.) with each other, then the optimal strategy could be computed by a

centralized controller with the techniques described in the previous section. However, such

computation can be costly because of the super-exponential growth in search space when

the centralized controller needs to consider all networks’ nodes, and in practical scenarios

the different networks may not be able to share every piece of information due to limited

inter-network communications capability, privacy concerns, etc.

Our goal is to find a collaborative algorithm that takes advantage of the limited informa-

tion that each network can infer about its peers and steers the networks to a transmission

configuration that resembles what would be found by a centralized controller.

4.4.1 Greedy algorithm

Every network can keep track of the expected amount of noise plus interference from

other networks’ transmissions at each of its own nodes in each frequency band. In the greedy

algorithm, a network does not care about the performance of its peers, and it optimizes its
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Algorithm 1: Greedy and collaborative networks algorithms
1 for iter ← 1 to nIterations do
2 for i ∈ {networks} do
3 for (j, f) ∈ nodes(i)× {frequency slots} do
4 ρ

(f)
j ← noise plus interference estimate at node j at frequency slot f ;

5 links(i), p, θ ← optimized links, powers and flow scheduling of network i by
GA and Eqs. (4.8 ) and (4.9 );

6 if usingCollaboration then
7 refine link powers by Algorithm 2 ;
8 update transmission according to links(i), p, θ;
9 // for data analysis

10 evaluate total throughput, given the transmissions on all networks;

Algorithm 2: Refine link powers
1 for ` ∈ links(i) do
2 // discard links of low rate-to-power ratio
3 if [Aθ]`/p` ≤ η then
4 p` ← 0;

transmission powers and flow routing treating the interference as white noise [80 ]. The same

algorithm described in section 4.3 is used, except that the constant noise ρ`d
in Eq. (4.7 )

is replaced with the corresponding noise plus interference estimates. The networks then

take turns updating their estimates and re-optimizing their transmissions. Algorithm 1 with

usingCollaboration set to false shows the pseudocode for the greedy algorithm.

Although the greedy algorithm is able to provide a feasible transmission plan, it is clearly

sub-optimal. An optimal configuration should only allow a link to transmit when it yields a

throughput greater than the total decrease in throughput that its interference is causing on

other networks. The greedy algorithm neglects this consideration and results in a transmis-

sion plan that is often too crowded. Every network tries to shout as loudly as possible to get

their data through, causing severe interference to its peers and having a counterproductive

effect. A typical sample of the transmission links found by the greedy algorithm, discussed

in more detail in section 4.6 , can be seen in Fig. 4.4 .

74



4.4.2 Collaborative algorithm

In light of the above considerations, we design a collaborative algorithm which starts

from the greedy solution in each iteration and then refines it by discarding links that offer a

low rate-to-power ratio. Namely, link ` is discarded if [Aθ]`/p` ≤ η where A is taken from

problem (4.8 ), [ · ]` denotes the `-th component of a vector (so [Aθ]` is the data rate on

link `), and η is a threshold that will be described later. If a specific node transmits with

high power but only gets a small throughput due to excessive interference, it should stop

transmitting. The removal of such a link will have a small impact on the performance of

that network, but the interference it caused could have been having a significant impact on

peer networks.

Some studies have attempted to facilitate collaboration by assuming that networks can

share certain information, such as the GPS locations of their nodes and their planned trans-

missions, with their peers. One of these studies is the DARPA Spectrum Collaboration

Challenge (SC2), where ensembles of intelligent SDR networks exhibited autonomous col-

laborative behaviors and outperformed traditional RF schemes with evenly divided or in-

dividually reserved spectrum bands. The challenge was a big success, but its outstanding

performance relied heavily on collaboration messages between the networks through a side

channel [90 ]. This chapter, on the other hand, assumes that the networks lack a protocol for

exchanging collaboration messages, and proposes a collaboration algorithm which only uses

inferred information from other networks’ transmissions.

Algorithm 1 with usingCollaboration set to true summarizes the collaborative algorithm.

4.5 Optimal Rate-to-Power Threshold

This section will justify the heuristic of discarding the links with low rate-to-power ratio

and propose a method for choosing the threshold η. The greedy algorithm in the previous

section uses Eqs. (4.10 ) and (4.11 ) to find the gradient of the network capacity with respect to

the transmit powers, treating other networks’ transmissions as noise. One natural extension

to this scheme is to include the expected capacity of peer networks into the objective function

of problem (4.8 ).
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Let S and P be the set of nodes of our own network and of all the peer networks,

respectively. Since a network can estimate the locations and transmit powers of the peer

nodes through triangulation, it can also estimate the total received radio power at each node.

For a node i, denote its location as xi, and let ĝij := ‖xi − xj‖−2 be the estimated channel

gain between nodes i and j. Denote the estimated transmit power of node i as p̂i. Let

I(j) be the total received power (including signal, noise, and interference) at node j, and

let Ĩi(j) := I(j)− ĝij p̂i be the noise-plus-interference estimate at node j when node i is the

transmitter it is paired with.

For peer networks, although we are aware of their transmitters, we do not know the

routing information, i.e., which node is intended as the receiver, nor do we know which

nodes belong to which networks. Thus we assume that every peer node is equally likely to

be the receiver of any transmitting nodes. In this way, we can express the total expected

capacity of peer networks as follows:

E[Cpeers] = 1
|P| − 1

∑
i∈P

∑
j∈P\{i}

log
(

1 + ĝij p̂i

Ĩi(j)

)
. (4.12)

Adding this to the objective function in problem (4.8 ) results in 1T θ +αE[Cpeers], where α is

a parameter that determines how “considerate” our network is in weighing our own data rate

with respect to that in peer networks. Unfortunately, the objective function is not concave

and gradient ascent is not guaranteed to converge to a global maximum, as shown by the

following example.

Example 1. Consider a simple case where our two nodes and two peer nodes are located

at the corners of a unit square. The transmissions are along opposite sides of the square,

and in opposite directions. Suppose the peer transmission is at half power 0.5, our transmit

power is p, and the noise variance is 0.01, then the total capacity is

C(p) = log
(

1 + p

0.51

)
+ log

(
1 + 0.5

p + 0.01

)
.

dC/dp is always positive when p > 0.49 and in fact C goes to infinity as p increases, but this

is infeasible due to the unit power constraint. If we start with an initial value of p greater
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than 0.49, then gradient ascent eventually pushes p to 1, whereas on the interval p ∈ [0, 1],

C actually achieves its maximum at p = 0.

This example shows that although it may locally appear that increasing the power of a

link is beneficial to the overall capacity, turning it off completely can offer a larger gain in

peer networks’ capacity that offsets our loss. This is also supported by the empirical evidence

in Fig. 4.1 , which shows that dropping links according to the rate-to-power ratio typically

performs better than gradient ascent.

The rate-to-power threshold that determines whether a link is dropped cannot be a fixed

constant. For networks with different parameters, there exists different optimal thresholds

to use. For instance, if the network is densely packed with nodes competing to transmit,

it is desirable to limit the number of simultaneous transmissions to reduce interference, so

more links should be dropped; however, if the nodes are scattered across a very large region,

the background noise dominates the interference and it is better to allow more concurrent

transmissions to achieve a higher network data rate, and thus a lower threshold should

be used. We will derive a method to heuristically find the optimal threshold to use for

collaborative networks, and verify the result through numerical simulations.

Consider an active link ` in our network with power p`. If it is turned off, we lose the

data rate currently carried by that link [Aθ]`, but the expected capacity for peer networks

and our remaining links will increase due to the reduced interference. The gain in our own

network capacity can be expressed as

∆Cus =
∑

ν∈T`\{`}
log

(
1 + ĝνoνd

pν

Ĩνo(νd)− ĝ`oνd
z

)∣∣∣∣∣
z=p`

z=0
. (4.13)

For peer networks, since we do not know the routing information, we assume that every

peer node is equally likely to be the receiver of every transmission. Then, we can find the

total expected capacity gain in peer networks as follows:

∆E[Cpeers] = 1
|P| − 1

∑
i∈P

∑
j∈P\{i}

log
(

1 + ĝij p̂i

Ĩi(j)− ĝ`ojz

)∣∣∣∣∣
z=p`

z=0
. (4.14)
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If a network finds that the data rate on link ` is smaller than the overall expected gain

in capacity, it should drop the link, and vice versa. In other words, the condition that link

` should be dropped is

[Aθ]` < ∆Cus + ∆E[Cpeers]. (4.15)

Applying the mean value theorem to Eqs. (4.13 ) and (4.14 ), we find that this condition is

equivalent to

[Aθ]`
p`

<
∑

ν∈T`\{`}

ĝ`oνd
ĝνoνd

pν

Kνoνd
(Kνoνd

+ ĝνoνd
pν)

+ 1
|P| − 1

∑
i∈P

∑
j∈P\{i}

ĝ`oj ĝij p̂i

Kij(Kij + ĝij p̂i)
, (4.16)

for some 0 < ξ < p`, where Kij := Ĩi(j)− ĝ`ojξ.

This shows that dropping links with low rate to power ratio is likely to be beneficial for

the ensemble. The exact threshold below which the links should be dropped is unknown,

since the mean value theorem guarantees the existence of ξ but does not specify how it can

be found. However, this serves as a justification for our policy of using the rate-to-power

ratio as a metric to determine whether a link should be kept or dropped.

We sort the links in increasing order of the rate-to-power ratios, assume that they

are turned off sequentially, and compute the expected network capacity gain according to

Eqs. (4.13 ) and (4.14 ). Note that the estimated interference Ĩi(j) for each pair of nodes (i, j)

should be updated every time a link is turned off. Finally the threshold for the links to be

dropped is chosen to be at the point that maximizes the accumulated (expected) gain in net-

work capacity minus the accumulated loss in link data rate. This procedure is summarized

in Algorithm 3 .

4.6 Numerical Results

This section simulates multiple networks with nodes uniformly distributed over a 100 m ×

100 m square region and background noise variance of σ2 = 10−4. Each network will be asked

to carry a few flows with randomly chosen sources and sinks. Subsection 4.6.1 focuses on a

78



Algorithm 3: Find rate-to-power ratio threshold
1 sort links in increasing order of rate-to-power ratio;
2 η0, a0, b0 ← 0; k ← 1;
3 pcopy ← p;
4 for ` ∈ sorted(links) do
5 ηk ← [Aθ]`/p`;
6 ak ← ∆Cus + ∆E[Cpeers] by Eqs. (4.13 ) and (4.14 );
7 bk ← [Aθ]`;
8 p` ← 0;
9 for (i, j) ∈ (S ∪ P)2 do

10 update interference estimate Ĩi(j);
11 k ← k + 1;
12 k∗ ← arg maxk≥0

∑k
k′=0(ak′ − bk′);

13 p← pcopy;
14 return ηk∗ ;
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simplified scenario with homogeneous networks, a single frequency band, no maximum data

rates, and direct links only (no multi-hop). These results support the validity of our method

and conclusions in the absence of routing and saturation effects. Subsection 4.6.2 then

presents simulation results for heterogeneous networks with different sizes and requirements.

These results illustrate the performance of our method in a more complex scenario.

4.6.1 Single-hop

Before we attempt to study a complex scenario with multi-hop, multiple frequency bands,

and bounded flows, we want to analyze the capacity of our algorithm in a simplified case

with a single channel, point-to-point links, and unlimited offered rates for every flow. There

is therefore no need for routing or scheduling different sets of links. The problem is reduced

to finding the set of links that should be simultaneously activated so as to maximize the

overall capacity of the ensemble. Specifically, we performed our simulations in a scenario

with N = 8 networks with ni = 8 nodes each, and F = 32 flows (4 per network).

First, we wanted to check whether our solution, which drops some links completely and

leaves others untouched, is likely to provide better results than progressively adjusting the

power of all the links according to a gradient descent algorithm. We implemented both

options and saw that it was indeed the case. Fig. 4.1 shows the overall data rate that both

algorithms provide, averaged over eight ensemble instances. It can be seen that our algorithm

not only converges faster than gradient descent, but it also reaches higher data rates.

We then wanted to compare our algorithm with the greedy and centralized solutions.

Fig. 4.2 once again illustrates the gain in overall capacity relative to the initial solution for

all three algorithms, showing that our algorithm greatly outperformed the greedy solution

in all the network instances that we simulated. Furthermore, there is a relatively small gap

between the performance of our algorithm and that of the centralized solution.

4.6.2 Multi-hop

This subsection addresses a more complex scenario, with N = 4 heterogeneous networks

consisting of 2, 4, 8, and 10 nodes, and 1, 1, 4, and 5 flows, respectively. It will be assumed
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Figure 4.1. Total data rate averaged over eight instances of eight networks
with eight nodes each. Dropping links offers a clear advantage over smooth
power adaptation.
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Figure 4.2. Total data rate for five different instances of eight networks, un-
limited offered rate, without multi-hop. Our collaborative algorithm is signifi-
cantly better than greedy in all instances and not much worse than centralized.
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Figure 4.3. Average total data rate for five different instances of four net-
works. The offered data rate on each flow is uniformly distributed in [3, 5].

that there are m = 4 available frequency channels for transmission, all of them with equal

bandwidth and background noise σ2 = 10−4.

We generate five different instances of the 4 networks, with the offered rate per flow

uniformly distributed in [3, 5], and simulate three transmission schemes: centralized, greedy,

and collaborative. The centralized method consists of applying the GA algorithm described

in section 4.3 to all the nodes as if they were a single network, while ensuring that the paths

for each flow do not cross between networks. The resulting solution should be close to op-

timal. The greedy and collaborative methods correspond to those described in section 4.4 

and Algorithms 1 and 2 . The greedy and collaborative methods are iterative, so they can

occasionally get caught up in a cycle of updates without converging. To address this possi-

bility, our plots report their average data rate over the last 20 iterations, which should be a

representative measure of their average data rate in practice.

The total data rate of the five instances, averaged as previously mentioned, is shown

in Fig. 4.3 . It can be observed that the collaborative algorithm outperforms the greedy

algorithm by a wide margin in all five instances, and the centralized solution has the highest
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Figure 4.4. Sample links and powers with different algorithms.
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Figure 4.5. Average total throughput with different offered rates.

throughput in all instances, as expected. Fig. 4.4 illustrates a few representative samples

of the links and powers suggested by the three algorithms for one frequency channel in

instance 5. The different colors represent different networks, and the thickness and color

intensity of an arrow indicate the power of the link. A visual comparison of these chosen links

and powers shows an important difference between them: the pseudo-optimal (centralized)

and collaborative solutions have a lot fewer links than the greedy solution. Although the

figures only show a single frequency band, the same is observed in most of the others.

Fig. 4.5 shows the total data rate that the algorithms can achieve as a function of the

offered rate per flow. We take instance 4 from Fig. 4.3 and impose identical offered data rate

for all flows, with values ranging between 0.1 and 20. In addition to the three previously

described algorithms, the figure also shows the performance of a fourth scheme labeled

“TDMA”, which splits time evenly among the four networks allowing them to use all m = 4

frequency channels exclusively during their allotted interval. This is essentially equivalent to

the status quo of the licensed RF spectrum, which was used as a framework for comparison in
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SC2 [90 ]. In each exclusive interval, a network optimizes the transmission using the method

in section 4.3 . As before, the throughput shown for the greedy and collaborative algorithms

corresponds to an average over the last 20 iterations.

At the lowest offered data rate, all flows can be easily delivered by the greedy, centralized,

and TDMA solutions. Our collaborative algorithm, however, compels the networks to drop

some of their links sacrificing some performance. This seems counterproductive from a global

perspective, but it is important to remember that networks operate independently without

any communication between them. Since those links are using a significant amount of power

and barely carrying any traffic, the networks believe that dropping them would benefit their

peers. In a practical scenario, it would be sensible to include a failsafe mechanism that keeps

all the links active (or defers to the greedy method) when the ensemble can support it.

When the offered data rate is less than 1.5 per flow, there is no significant difference

between the optimal and TDMA solution; the offered rate is low enough that evenly split-

ting the resources does not throttle the network that needs them most. At this point the

improvement that collaboration brings upon greedy is moderate.

As the offered rate increases past 1.5, the TDMA performance saturates while the col-

laborative method quickly gains an edge over the greedy and eventually over the TDMA

methods. The greedy performance is severely limited by the high interference that it causes.

When the offered rate is more than 5, the collaborative algorithm surpasses TDMA because

it divides the resources among the 4 heterogeneous networks more effectively than simply

splitting them evenly. At the highest offered rate of 20, all 4 methods have saturated.

4.7 Conclusion

This chapter studied the problem of routing and resource allocation in a communications

network. It proposed algorithms suitable for a single network and for multiple collabora-

tive communications networks sharing the same time-frequency resources to autonomously

achieve a transmission assignment that reduces interference and increases throughput. The

collaborative algorithm employs heuristics, uses only information inferred from overheard

transmissions, and does not require any side information exchanged between the networks.
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Numerical simulations show that the collaborative algorithm significantly outperforms the

non-collaborative greedy approach, and it outperforms the uniform splitting of resources by

a moderate margin for high offered data rates and heterogeneous networks.
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5. CHANNEL ALLOCATION ALGORITHM FOR COGNITIVE

RADIOS IN THE DARPA SPECTRUM COLLABORATION

CHALLENGE

5.1 Introduction

The Spectrum Collaboration Challenge (SC2) was launched by DARPA and lasted for

3 phases from 2017 to 2019. It seeks to find a solution for the long-existing problem of

radio spectrum scarcity, which is getting more and more significant with the increasingly

rapid growth in the worldwide demand of more data over the wireless spectrum. In SC2,

the participating teams are challenged to each develop an intelligent software defined radio

(SDR) network, known as a Collaborative Intelligent Radio Network (CIRN). The CIRNs

from different teams share the same very crowded spectrum for their data channels, and they

need to compete against each other to deliver as much intra-network traffic as possible, while

being collaborative and intelligent in order not to jam each other. The collaboration is made

possible by cognitive abilities of every radio and a separate broadcast channel (referred to

as the collaboration channel) where networks can share collaboration messages that describe

their network status, including information such as node locations, current transmission

channels, performance of each node etc.

The wireless channel between each pair of transmitting and receiving nodes is simulated

by a very large channel emulator developed by DARPA, known as the Colosseum. The

Colosseum simulates various practical scenarios, where each unique scenario is characterized

by the channel conditions, location and mobility of the users, and the rise and fall in traffic

etc. The transceiving nodes in each network are given data packets from the Colosseum

to be delivered to their designated destinations, and there is a different set of requirements

for every type of data, such as a continuous minimum data rate for a data stream, or a

deadline line before which a file must be delivered. Each of these is called a mandate, and

it is associated with a score. Briefly speaking, a team’s overall score is determined by the

set of mandates that they can achieve, conditioned on a minimum score achieved by all
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the competing teams, so the teams cannot simply be selfish and interfering with others is

indirectly penalized.

The BAM! Wireless team consists of graduate students and faculty members from Purdue

University and Texas A&M University. This chapter will discuss certain aspects of the

technical design of the BAM! Wireless CIRN, especially the dynamic channel allocation

algorithm which determines the transmitting channel of each node. It takes into account

both the spectrum availability at our own receiving nodes by reading their power spectral

density (PSD) measurements, as well as the interference that a transmission channel may

cause to other teams. This algorithm allows for potential inter-network spectrum reuse if

the interference level is low.

5.2 BAM! Wireless CIRN Overview

We present in this chapter important aspects of the technical design of the BAM! Wireless

Collaborative Intelligent Radio Network (CIRN) that participated in Phase 2 of the DARPA

SC2. The CIRN consists of multiple Standard Radio Nodes (SRN) and one gateway node,

as depicted in Fig. 5.1 . All nodes interact directly with the Colosseum emulator, while only

the gateway can send and receive collaboration messages according to the defined CIRN

Interaction Language (CIL).

Following the Phase 2 scoring procedure, the approach behind the BAM! Wireless CIRN

design is centrally focused on maximizing the minimum number of achieved mandates by a

team in any given match (ensemble minimum), by regularly monitoring the reported per-

formance and use of resources of peer teams through the received collaboration messages.

The CIRN design specifically relies on lightweight intelligent algorithms that are robust to

changing environmental conditions. The final outcome is a robust intelligent solution that

jointly optimizes the decisions for the modulation and coding scheme, flow scheduling, as well

as channel allocation to maximize the ensemble performance in the wide range of Colosseum

scenarios. We next describe in detail the various technical components of the CIRN.

A high-level description of our CIRN is provided in Fig. 5.2 . Note that the Network

Controller function pertains only to the gateway node; all other components and features
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Figure 5.1. BAM! Wireless Network for the DARPA SC2.

are common to all SRN nodes as well as the gateway. We use a centralized control structure

for channel allocation: the gateway node gathers all the needed information from each SRN,

makes the channel allocation decision for every node in the network, and then broadcast this

decision to all the nodes. Every node only transmits on the one channel that it is assigned, but

receives on multiple channels that belong to other nodes. The channel allocation algorithm

resides in the Network Controller in Fig. 5.2 .

5.3 Channel Allocation

The gateway first looks at our historical performance, and decides whether our perfor-

mance is the worst in the ensemble or is much better than the peer networks in the ensemble.

If we are the worst, the gateway re-allocates all of our channels; if we are much better than

our peers, we reduce the bandwidth of the widest channel to allow for more space in the

spectrum for the peer networks. This procedure is summarized in Algorithm 4 .

When the gateway node decides to re-allocate all channels, it first estimates the chan-

nel gain between each of our nodes and all others, assumed to be frequency-independent,

symmetric, and slowly varying. These gains are initialized using the GPS locations reported
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Figure 5.2. High-level diagram showing the different layers and functional
components of the BAM! Wireless CIRN. The numbered features in diamonds
are: 1- Multi-Hop Routing, 2- Transmit Scheduling, 3- Broadcast of Con-
trol Data, 4- High Rate Data Link, 5- Transmit Power Control, 6- Adaptive
Modulation and Coding Scheme, 7- Automatic Repeat Request, 8- Program
Configuration through Database, 9- Visualization of Performance Measures,
10- Channel Allocation Algorithm.
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Algorithm 4: Pseudo Code for Channel Allocation Algorithm - Routine call every
one second
1 if we are the worst performing team for 5 consecutive routine calls then
2 call channel re-allocation algorithm;
3 else if we are two mandates above the worst performing team for 5 consecutive

routine calls then
4 reduce bandwidth allocated for widest channel;

through the CIL and assuming free space propagation with loss exponent of 3. These values

are then refined adaptively based on our own PSD measurements and CIL messages from

other nodes specifying their transmit power and frequency. The channel gain estimates and

the spectrum usage collaboration messages from other teams are hence used to construct an

interference map for each frequency.

The interference spectrum is different for each of our nodes. The gateway node goes

through all the frequency bands and determines the value that each band would have for

each node. The value function is computed as the weighted average of the SNR estimates

from a node i to all of the receiving nodes j in our network, at center frequency fc:

V (i, fc) =
∑

j 6=i,j∈BAM

w(i, j)SNR(i, j, fc), (5.1)

This value function takes into account the interference maps as well as the flows that each

node needs to deliver. A detailed explanation of the symbols can be found in Algorithm 5 .

The estimated SNR from node i to a specific node j at center frequency fc is computed

as the average ratio of the channel gain to the interference power at the receiver over the

bandwidth centered at fc:

SNR(i, j, fc) = 1
B(i)

f=fc+ B(i)
2∑

f=fc− B(i)
2

G(i, j)
IP (j, f) , (5.2)

where IP (j, f) denotes the interference power at node j at a specific frequency f , which is

estimated based on the PSD measurement at node j.
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The gateway node then assigns each node a channel (center frequency and bandwidth) to

transmit on. This choice is made through a combination of a greedy algorithm that attempts

to maximize the sum of the values and a considerate algorithm that reallocates channels

to help improve the ensemble minimum. The channel allocation mechanism responds to

environmental updates and changes in offered mandates. If a node needs to transmit more

traffic to a specific receiver, or the flows have more stringent requirements, the gateway will

take that into account when picking the center frequency.

It is important to highlight that an obstacle we faced towards making the channel alloca-

tion algorithm more biased towards a collaborative behavior was that the information that

we were receiving from peer nodes (specifically, the GPS locations and spectrum usage) was

frequently inaccurate.

In summary, each of our nodes will receive on multiple channels, but transmit on a

single one. The bandwidth required for each node is chosen based on the offered load. See

Algorithm 5 for a pseudo code of the channel allocation algorithm.

5.4 Results

We show in Fig. 5.3 an example behavior of the channel allocation mechanism in an

Alleys of Austin scenario. We note that the apparent vacancies in the spectrum is due to

blockages at the receiver. Certain peer network transmissions are too faint to be picked up

on the PSD, and if we combine the PSD from all of our nodes the spectrum is in fact very

crowded.
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Algorithm 5: Pseudo Code for Channel Re-allocation Algorithm
Input: Vector of bandwidths assigned to the receivers.
Data: IP (j, f): Estimated interference power at node j and frequency f .
G(k, j) = G(j, k): Channel gain between nodes k and j.
P (k): Transmit power at node k.
N (j): The set of neighbors (with significant interference) of receiver at node j.
d(k, j): Distance between nodes k and j.
B(i): Bandwidth allocated for transmitter at node i.
F : Set of all possible discretized frequencies.
SNR(i, j, fc): Estimated Average SNR between transmitter at node i and receiver
at node j if center frequency fc is selected.
V (i, fc): Estimated value of selecting center frequency fc for the transmitter at node
i.
w(i, j): Weight proportional to traffic from node i to node j.
BAM : Set of indices for nodes in our network.

1 for j ∈ BAM do
2 compute IP (j, f) based on the PSD measurement;
3 for i, j ∈ BAM and fc ∈ F do
4 compute SNR(i, j, fc) = 1

B(i)
∑f=fc+B(i)/2

f=fc−B(i)/2
G(i,j)

IP (j,f) ;

5 for i ∈ BAM and fc ∈ F do
6 compute V (i, fc) = ∑

j∈BAM\{i} w(i, j)SNR(i, j, fc);
7 Seek allocation arg maxfc:BAM→F

∑
i∈BAM V (i, fc(i)) without channel overlap, i.e.,

find a mapping from each node i to a center frequency fc(i) to maximize total
value function, subject to |fc(i)− fc(j)| ≥ 1

2(B(i) + B(j)) for i 6= j. This is done
through a greedy depth first search in decreasing order of required bandwidth B(i).
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Figure 5.3. Occupied spectrum in an Alleys of Austin scenario.
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6. SUMMARY AND FUTURE WORK

This thesis studies several areas of wireless communications that can benefit from the use

of adaptive methods and dynamic resource allocation to improve their performance. This

chapter summarizes the work and points out some possible future research directions.

Chapter 2 studies existing HARQ techniques and proposes adaptive HARQ schemes with

codeword bundling that are suitable for a variety of scenarios including single-link systems,

relay systems, and multi-user broadcast systems. The IR bits sent by our proposed HARQ

protocol are optimized under the assumption that the feedback channel can only support

a few bits of feedback per bundle of codewords (or packets). Apart from the traditional

extension IR bits consisting of a few additional bits for each codeword, this thesis also

considers bundle IR, consisting of encoded IR bits which the receiver can use to refine the

LLRs in multiple codewords. Simulation results show that the proposed methods provide

a modest increase in throughput with respect to traditional fixed-length HARQ schemes,

where codewords are individually acknowledged instead of bundled. It also proposes an

adaptive relaying policy which achieves a significant gain in throughput compared to relays

with fixed forwarding strategy. Simulations show that the proposed policy greatly reduces

the total number of IR bits needed in multi-user systems.

The relay system studied in chapter 2 for which the HARQ scheme is proposed is a 2-hop

system. Future work may extend this result to multi-hop relays, or even to a combination of

chains of relays and broadcasting nodes, forming a network of nodes with optimized HARQ

bits strategically sent from certain nodes.

Chapter 3 shows that the overall data rate of a communication link using ECC can

be improved by grouping bits into codewords according to their reliability and exploiting

correlation between codewords when decoding. Specifically, in a system using 16-QAM

(or higher), the bits in a modulation symbol present different error rates. Further, the

modulation symbols are not symmetric themselves, for example knowing the first bit of

a symbol will alter the conditional distribution of the second bit. This thesis proposes

methods to leverage these two asymmetries and shows the improvement in goodput through

simulations. In addition, theorem 3.3.1 proves that the proposed method for grouping the
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bits increases the maximum achievable channel coding rate for finite blocklength codes in

a binary-input parallel AWGN channel. The gain is found to be most significant when the

channel experiences high SNR variations.

However, the proof for the AWGN channel is still an approximated analysis to what

we propose for the 16-QAM scenario. The modulation symbols effectively create parallel

channels for the bits, but the channels are not Gaussian. Thus one possible extension to

this work is to generalize the proof to channels other than AWGN, including the 16-QAM

scenario.

Chapter 4 studies the problem of routing and resource allocation in a communications

network. It proposes an algorithm suitable for multiple collaborative communications net-

works sharing the same time-frequency resources to autonomously achieve a transmission

assignment that reduces interference and increases throughput. The algorithm enables col-

laboration using only information that can be inferred from other networks’ transmissions,

and no side information is shared between the networks. Numerical simulations show that

the collaborative algorithm performs significantly better than a non-collaborative greedy ap-

proach. It also outperforms the uniform splitting of resources by a moderate margin for high

offered data rates and heterogeneous networks.

Chapter 5 presents an adaptive algorithm that allocates disjoint transmission channels in

a cognitive radio network used by Team BAM! Wireless’ submission to the DARPA SC2. The

algorithm computes a value function that measures the benefit that each possible frequency

has for a given network. The value function combines an estimation of the SNR and the

interference a network causes to peer networks on each frequency. The estimation uses

PSD information collected from our cognitive SDR nodes and augmented with collaboration

messages received from other networks. By maximizing the value function, the algorithm

finds a feasible set of disjoint channels for our network while being considerate to peer

networks, thus allowing for inter-network collaborative behaviors that improve the overall

throughput.

The last two chapters of the thesis deal with the optimal allocation of resources among

collaborative communication networks. Such problems are NP-hard, so our proposed solu-

tions all utilized heuristics, and the effectiveness is verified by simulations and experiments.
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With the rapid advancement in recent AI and machine learning (ML) research, it would be

interesting to see whether ML techniques can be applied here to find better heuristics.

We also assume that the proposed collaborative algorithms are respected and followed by

all the networks to achieve communal success. However, this is a fragile balance; in practice,

every network can simply increase its own transmission power to benefit itself, at the expense

of reduced data rate in peer networks, which causes the sum of throughput of all networks

to drop. A possible future research direction is to study the dynamics of the system in the

presence of non-collaborators, or assuming that even the collaborative networks have certain

probability of cheating. Game theoretic results may be relevant in the analysis.

With the exponential explosion of demand in wireless communications traffic and the in-

creasingly scarce spectrum, the throughput and spectrum efficiency can be greatly improved

by a combination of the adaptive transmission techniques, collaboration across networks,

and the dynamic resource allocation methods proposed in this thesis.
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