Purdue University Graduate School
Browse

EQS Human Body Communication and Powering: From Theory to Applications for IoB

Reason: Some of the research work has not yet been published.

1

year(s)

10

month(s)

3

day(s)

until file(s) become available

Advanced Electro-Quasistatic Human Body Communication and Powering: From Theory to Application for Internet of Bodies

thesis
posted on 2024-08-07, 21:21 authored by Arunashish DattaArunashish Datta

Decades of semiconductor technology scaling and breakthroughs in communication technology have miniaturized computing, embedding it everywhere, enabling the development of smart things connected to the internet, forming the Internet of Things. Further miniaturization of devices has led to an exponential increase in the number of devices in and around the body in the last decade, forming a subset of IoT which is increasingly becoming popular as the Internet of Bodies (IoB). The gradual shift from the current form of human-electronics coexistence to human-electronics cooperation, is the vision of Internet of Bodies (IoB). This vision of a connected future with devices in and around our body talking to each other to assist their day-to-day functions demands energy efficient means of communication. Electro-Quasistatic Human Body Communication (EQS-HBC) has been proposed as an exciting alternative to traditional Radio Frequency based methodologies for communicating data around the body. In this dissertation, we expand the boundaries of wearable and implantable IoB nodes using Electro-Quasistatic Human Body Communication and Powering by developing advanced channel models and demonstrating novel applications.

Leveraging the advanced channel models developed for wearable EQS-HBC, we demonstrate wearable applications like ToSCom which extend the use cases of touchscreens to beyond touch detection and location to enable high-speed communication strictly through touch. We further demonstrate an application of EQS Resonant Human Body Powering to demonstrate Step-to-Charge, allowing mW-scale wireless power transfer to wearable devices. With increasing connected implanted healthcare devices becoming a part of the IoB space, we benchmark RF-based technologies for In-Body to Out-of-Body (IBOB) communication using novel in-vivo experiments. We then explore EQS-HBC in the realm of IBOB communication using advanced channel modeling, revealing its potential for low-power and physically secure data transfer from implantable devices to wearable nodes on the body, demonstrating its potential in extending the battery life span of implantable nodes. Finally, an overview of the potential of IoB devices is analyzed with the use of EQS-HBC where we propose a human-inspired distributed network of IoB nodes which brings us a step closer to the potential for perpetually operable devices in and around the body.

History

Degree Type

  • Doctor of Philosophy

Department

  • Electrical and Computer Engineering

Campus location

  • West Lafayette

Advisor/Supervisor/Committee Chair

Shreyas Sen

Additional Committee Member 2

Anand Raghunathan

Additional Committee Member 3

Vijay Raghunathan

Additional Committee Member 4

Byunghoo Jung