File(s) under embargo

Reason: Submitting to a journal publication for review based on thesis paper.

1

year(s)

2

month(s)

22

day(s)

until file(s) become available

Analysis of Pop-Up Rings for the Fabrication of Giant MEMS Hemispheric Shell Resonators

thesis
posted on 16.12.2020, 16:15 by Calvin Mitchell Jones
Fabrication of hemispherical structures for application in hemispherical resonator gyro-scopes (HRG) is an integral part of modern sensing systems, especially in relation to space navigation. First, it is important for these structures to be as symmetric as possible in order to accurately track both in-plane and out-of-plane acceleration that occurs in fast moving satellites and space crafts. Next, they need to be larger for easier application in current mm scale systems and to maintain a lower noise floor and high quality factor. The work in this paper introduces a methodology for the analyzation of the micromachining process for larger symmetric hemispherical shell resonators (HSR). This is in order to increase their size while maintaining symmetry through isotropic etching using HNA and the pop-up ring mask design. The implementation of the pop-up ring mask allows for symmetric etching of<111> silicon and larger MEMS structures at a low cost while giving more design control to the user in comparison to alternative designs such as the pinhole. The investigation of how hemispheric structures are affected based on the adjustment of the pop-up ring design serves to both create larger symmetric HSRs and create a better model for future designs and applications. During this investigation, a range of design tests were done to create the hemispherical resonator molds in order to gauge the effectiveness of the pop-up ring changes. These results were then used to develop a method for achieving the desired larger symmetric HSRs.

Funding

Purdue University Ross Fellowship

History

Degree Type

Master of Science in Electrical and Computer Engineering

Department

Electrical and Computer Engineering

Campus location

West Lafayette

Advisor/Supervisor/Committee Chair

Dr. Sunil Bhave

Additional Committee Member 2

Dr. Dana Weinstein

Additional Committee Member 3

Dr. Mahdi Hosseini