
ANALYZING SENSITIVE DATA WITH LOCAL
DIFFERENTIAL PRIVACY

by

Tianhao Wang

A Dissertation

Submitted to the Faculty of Purdue University

In Partial Fulfillment of the Requirements for the degree of

Doctor of Philosophy

Department of Computer Science

West Lafayette, Indiana

May 2021

THE PURDUE UNIVERSITY GRADUATE SCHOOL
STATEMENT OF COMMITTEE APPROVAL

Dr. Ninghui Li, Chair

Department of Computer Science

Dr. Somesh Jha

Department of Computer Science, University of Wisconsin-Madison

Dr. Elisa Bertino

Department of Computer Science

Dr. Jeremiah Blocki

Department of Computer Science

Dr. Jean Honorio

Department of Computer Science

Approved by:

Dr. Kihong Park

2

ACKNOWLEDGMENTS

First and foremost, I would like to express my greatest thanks to my advisor, Professor

Ninghui Li, for his continued guidance, support, and encouragement during my Ph.D. study.

I am so fortunate to be leaded into the area of data privacy by him. I am truly grateful for

his vision and direction about research, inspiration, and perfect personality as advisor.

Also I would like to show my deep gratitude to other doctoral committee members,

Professor Somesh Jha, Professor Elisa Bertino, and Professor Jeremiah Blocki, Jean Honorio

for their invaluable help on my research and constructive suggestions on the dissertation.

Many thanks to my internship mentors, Dr. Bolin Ding at Alibaba and Professor Ashwin

Machanavajjhala at Tumult Labs and Duke University. I learned a lot from them and gained

a lot of valuable experiences, which are important to my Ph.D. research.

I also thank Michael Backes, Sze Yiu Chau, Joann Chen, Min Chen, Yueqiang Cheng,

Omar Chowdhury, Fabrizio Cicala, Graham Cormode, Huangyi Ge, Victor Gonsalves, Cheng

Hong, Zhicong Huang, Mathias Humbert, Tejas Kulkarni, Huian Li, Zhou Li, Faming Liang,

Milan Lopuhaä-Zwakenberg, Hemanta Maji, Boris Skoric, Divesh Srivastava, Dong Su, We-

icheng Wang, Aiping Xiong, Min Xu, Jianyu Yang, Yang Yang, Yang Zhang, Zhikun Zhang,

Yunlei Zhao, Jingren Zhou, Xukai Zou for enjoyable collaborations over the years.

Last but not least, my heartfelt appreciation goes to my whole family. I can always feel

their love, inspiration, bless, and support behind me.

3

TABLE OF CONTENTS

LIST OF TABLES . 11

LIST OF FIGURES . 12

ABSTRACT . 15

1 INTRODUCTION . 16

2 BACKGROUND . 18

2.1 Differential Privacy . 18

2.2 Differential Privacy in the Local Setting . 18

3 FREQUENCY ORACLE . 20

3.1 Existing Work . 20

3.1.1 Basic Rappor . 20

3.1.2 Rappor . 23

3.1.3 Random Matrix Projection . 24

3.2 A Framework for LDP Protocols . 25

3.3 Optimizing LDP Protocols . 28

3.3.1 Direct Encoding (DE) . 29

3.3.2 Histogram Encoding (HE) . 30

3.3.3 Unary Encoding (UE) . 32

3.3.4 Binary Local Hashing (BLH) . 34

3.3.5 Optimal Local Hashing (OLH) . 36

3.4 Discussion . 38

3.4.1 Which Protocol to Use . 38

3.4.2 On Answering Multiple Questions . 40

3.5 Experimental Evaluation . 41

3.5.1 Verifying Correctness of Analysis . 42

3.5.2 Towards Real-world Estimation . 42

4

Accuracy on Frequent Values . 43

Distinguish True Counts from Noise 43

On Information Quality . 45

4 HEAVY HITTER IDENTIFICATION . 47

4.1 Existing Solutions . 48

4.1.1 The Segment Pairs Method (SPM) 48

4.1.2 The Multiple Channel Method (HASH) 49

4.2 The Prefix Extending Method . 50

4.2.1 Overview of Prefix Extending Method (PEM) 51

4.2.2 Instantiation and Analysis of PEM 53

4.2.3 Concurrent work: PEM1. 54

4.2.4 Concurrent work: PrivTrie. 54

4.3 Choosing the Parameter g . 56

4.3.1 Impact of g . 56

4.3.2 The Sensitivity Threshold for LDP 57

4.3.3 Choice of g . 60

4.3.4 Verifying the Analytical Results Empirically 61

4.4 Evaluation . 62

4.4.1 Evaluation Setup . 62

Utility Metric . 62

Dataset . 63

Competitors . 64

4.4.2 Detailed Results . 65

Effect of ε . 65

Effect of k . 65

Evaluation of Threshold Version . 67

Effect of Partitioning Users . 67

Effect of g . 68

Comparison of Estimation Accuracy 68

5

Effect of Distribution Assumption . 69

Comparison with PrivTrie . 69

5 FREQUENT ITEMSET MINING . 71

5.1 Existing Work . 72

5.1.1 LDPMiner . 72

5.2 Padding-and-Sampling-based Frequency Oracles 73

5.2.1 Privacy Amplification of GRR . 74

5.2.2 No Privacy Amplification of other FO 76

5.2.3 Utility of PSFO . 77

5.2.4 Adaptive FO . 79

5.2.5 Choosing ̀ . 80

5.3 Proposed Method . 81

5.3.1 Frequent Item Mining . 81

5.3.2 Frequent Itemset Mining . 84

5.4 Evaluation . 86

5.4.1 Experimental Setup . 86

5.4.2 Evaluation of Item Mining . 88

5.4.3 Evaluation of Itemset Mining . 91

5.5 Supplementary Results . 92

5.5.1 (ε, δ)-LDP and Limited Amplification Effect 92

5.5.2 Additional Results . 96

6 MARGINAL RELEASE . 100

6.1 Problem Definition and Existing Solutions 100

6.1.1 Problem Definition: Centralized Setting 100

6.1.2 Problem Definition: Local Setting . 102

6.1.3 Full Contingency Table Method (FC) 102

6.1.4 All Marginal Method (AM) . 104

6.1.5 Fourier Transformation Method (FT) 104

6.1.6 Expectation Maximization Method (EM) 105

6

6.2 CALM: Consistent Adaptive Local Marginal 106

6.2.1 An Overview of PreView . 106

6.2.2 Overview of the CALM Method . 108

6.2.3 Choosing the Set of Marginals . 110

6.2.4 Consistency between Noisy Marginals 114

6.2.5 Discussion . 116

6.3 Evaluation . 117

6.3.1 Experimental Setup . 117

6.3.2 SSE on Binary Datasets . 118

6.3.3 SSE on Non-binary Datasets . 121

6.3.4 Classification Performance . 122

6.3.5 Verifying Marginal Parameters . 124

6.3.6 Impact of k and the Local Setting 126

7 QUERY ANSWERING . 129

7.1 Preliminaries . 130

7.1.1 Multi Dimensional Model and Analytics 130

7.1.2 Definition of LDP Revisited . 131

7.2 Weighted Frequency Oracle . 131

7.2.1 Weighed Frequency Queries and MDA 132

Our Weighted Frequency Oracle (AFO, f̂M) 132

7.2.2 Oracle Running on Random Samples 134

7.2.3 Answering MDA via LDP Marginals 135

7.3 MDA with One Private Dimension . 136

7.3.1 Hierarchical-Interval (HI) Mechanism 136

7.3.2 Better Accuracy via Level Partitioning 139

7.4 Multiple Private Dimensions . 141

7.4.1 Multiple Ordinal Dimensions . 141

Multi-dimensional Hierarchical Intervals 141

Multi-dimensional HI Mechanism (AHI, PHI) 144

7

Boosting Accuracy via User Partitioning 145

7.4.2 Ordinal and Categorical Dimensions 146

7.4.3 Split-and-Conjunction: When the Dimensionality is High 146

Conjunctive Estimators f̄ and f̄M
 147

Split-and-Conjunction (SC) Mechanism 150

7.4.4 Performance Comparison . 151

7.5 Evaluation . 152

7.5.1 Experimental Comparison . 153

One Ordinal Dimension . 153

Two Ordinal Dimensions . 155

Three Ordinal Dimensions . 156

7.5.2 Relative Error and Practical Usage 157

Two Ordinal and Two Categorical Dimensions 158

Four Ordinal and Four Categorical Dimensions 158

Case Study: E-Commerce Analytics 159

7.6 Extensions and Discussion . 159

8 POST PROCESSING . 162

8.1 Towards Consistent Frequency Oracles . 162

8.1.1 Baseline Methods . 163

8.1.2 Normalization Method . 165

8.1.3 Constrained Least Squares . 168

8.1.4 Maximum Likelihood Estimation . 170

8.1.5 Least Expected Square Error . 173

8.1.6 Summary of Methods . 175

8.2 Evaluation . 175

8.2.1 Experimental Setup . 176

8.2.2 Bias-variance Evaluation . 177

8.2.3 Full-domain Evaluation . 178

8.2.4 Set-value Evaluation . 181

8

8.2.5 Frequent-value Evaluation . 185

8.2.6 Discussion . 187

8.3 Related Work . 187

9 PRIVACY AMPLIFICATION VIA SHUFFLING 189

9.1 Background . 190

9.2 Summary of Existing Results . 191

9.3 Improving Utility of the Shuffler Model . 192

9.3.1 Unary Encoding for Shuffling . 192

9.3.2 Local Hashing for Shuffling . 193

9.3.3 Utility Analysis . 199

9.3.4 Comparison with Parallel Work . 201

9.4 Security Analysis . 202

9.4.1 Parties and Attackers . 202

9.4.2 Privacy Guarantees of Existing Methods 203

9.4.3 Robustness to Malicious Parties . 205

9.4.4 Discussion and Key Observations . 206

9.5 Defending against Attacks . 207

9.5.1 Fake Response from Auxiliary Servers 207

First Attempt: Sequential Shuffle . 208

Second Attempt: Oblivious Shuffle 208

Proposal: Private Encrypted Oblivious Shuffle 209

9.5.2 Privacy Analysis . 211

9.5.3 Utility Analysis . 213

9.5.4 Discussion and Guideline . 214

9.6 Evaluation . 215

9.6.1 Experimental Setup . 215

9.6.2 Frequency Estimation Comparison 217

9.6.3 Succinct Histograms . 219

9.6.4 Performance Evaluation . 220

9

9.7 Related Work . 222

REFERENCES . 225

VITA . 232

10

LIST OF TABLES

3.1 Comparison of communication cost and variances for different methods. 39

3.2 Numerical values of Var[c̃(i)]/n for different methods. 39

4.1 The value of the threshold Ψ(σ, 2m, n, 1) for different ε, m, and n 59

4.2 The empirical utility (measured by the average number of identified heavy hitters)
of PEM under different settings, assuming m = 32. 61

4.3 The empirical utility (measured by the average number of identified heavy hit-
ters) of PEM under different settings, assuming m = 32. We assume that the
candidates used in the last round are always the true heavy hitter prefixes. . . . 61

5.1 Numerical value of ε′ under different ε and `. 76

5.2 Numerical value of ε′ under different ε and `. The upper part is for δ = 10−3,
and the lower part is for δ = 10−9. . 96

6.1 List of Notations . 103

7.1 A relational table T with sensitive dimensions 130

7.2 One-run estimations (using HIO) of sample AVG queries and true answers 156

7.3 One-run estimated answers in the case study . 159

8.1 Summary of Methods. 175

9.1 Privacy amplification result comparison. Each row corresponds to a method.
The amplified εc only differs in constants. The circumstances under which the
method can be used are different. . 191

9.2 Comparison of SOLH and RAPR in Kosarak. 218

9.3 Computation and communication overhead of SS and PEOS for each user, each
shuffler, and the server. We assume n = 106 and r = 3 or 7. 221

11

LIST OF FIGURES

3.1 Numerical values of Var[c̃(i)] for different methods. 40

3.2 Comparing empirical and analytical variance. 41

3.3 Average squared error, varying ε. 43

3.4 Number of true positives, varying ε, using significance threshold. The dashed
line corresponds to the average number of items identified. 44

3.5 Results on Kosarak dataset. The y axes are the number of identified hash values
that is true/false positive. The x axes are the threshold. We assume ε = 4. . . . 44

4.1 Numerical results of Ψ. 60

4.2 Evaluation of the datasets, vary ε while fixing k = 16. 66

4.3 Evaluation of the datasets, varying k while fixing ε = 2. 66

4.4 Evaluation of the synthetic datasets, vary one of ε and θ while fixing the other.
m = 64, n = 1000000. 67

4.5 Evaluation of the synthetic datasets, vary ε. m = 64, n = 1000000. F1 is plotted. 68

4.6 Evaluation of the synthetic datasets, vary ε. m = 64, n = 1000000. 69

5.1 Privacy amplification effect for different `. . 76

5.2 Illustration of SVIM and SVSM. The users to the left are partitioned into five
groups. The aggregator to the right first runs SVIM with the first three groups,
and find the frequent items. Then the aggregator interacts with the following
two groups to find frequent itemsets. . 81

5.3 Singleton identification. . 90

5.4 POS Itemset Mining Results. . 91

5.5 Privacy amplification effect for different `. . 94

5.6 More results on singleton identification. . 97

5.7 More results on singleton estimation. . 98

5.8 More results on itemset mining results for Kosarak dataset. 99

6.1 Example of the dataset, the full contingency table, and the marginal tables. . . 101

6.2 Illustration of CALM. The users to the left are partitioned into groups. The
aggregator to the right first specifies the marginals to all the users and aggregate
the reports for each marginal table. Then the aggregator process the data to
publish the final results. 109

6.3 Noise Errors times k when n = 216, m = 8, k = 3. 114

12

6.4 Comparison of different methods on binary datasets. We only plot the methods
that are scalable in each setting, Uni method is a baseline method. Results are
shown in log scale. 119

6.5 Comparison of different methods in two non-binary datasets. We only plot the
methods that are scalable in each setting, Uni method is a baseline method, BE
method is the binary encoding version of CALM. Results are shown in log scale. 121

6.6 Comparison on classification performance. We only plot the methods that are
scalable in each setting. NoNoise is the baseline where no noise is added; Majority
is the naive method to always answer the majority label. 123

6.7 Mutual effects of marginal size s, number of marginals t and the privacy budget ε. 125

6.8 Kosarak dataset. Using t and s optimized for different k′. 127

6.9 Kosarak dataset, n = 218, m = 16. 128

7.1 Hierarchy of intervals and the HI mechanism . 136

7.2 2D hierarchy of intervals, query decomposition, and HI mechanism 141

7.3 Comparing different mechanisms: vary query volume and data size (ε = 2 and
d = 1) . 154

7.4 IPUMS 1M: vary ε (d = 1) . 155

7.5 Two sensitive ordinal dimensions: vary ε and data size (d = 2) 155

7.6 Two sensitive dimensions: vary query volume (ε = 2 and d = 2) 156

7.7 Three sensitive dimensions: vary query volume (ε = 2 and d = 3) 156

7.8 Relative error of HIO: vary selectivity . 157

7.9 Relative error of HIO on 2 (ordinal) + 2 (categorical) dimensions: vary domain
sizes and query types (SUM queries) . 157

7.10 Relative error of HIO and SC on 4 (ordinal) + 4 (categorical) dimensions: vary
query types (ε = 5) . 157

8.1 Log-scale distribution of the Zipf’s dataset fixing ε = 1, the x-axes indicates the
sorted value index and the y-axes is its count. The blue line is the ground truth;
the green dots are estimations by different methods. 178

8.2 Bias of count estimation for the Zipf’s dataset fixing ε = 1. 179

8.3 Variance of count estimation of the Zipf’s dataset fixing ε = 1. The y-axes are
scaled down by n = 106 (a value a in the figure represents a · 106). 180

8.4 MSE results on full-domain estimation, varying ε from 0.2 to 4. The top row is
for Zipf’s distribution and the bottom row is for the Emoji dataset. 181

13

8.5 MSE results on full-domain estimation on Zipfs dataset, comparing n with n,
fixing ε = 1 while varying n from 0.2× 106 to 2.0× 106. Three pairs of methods
have similar performance: Base and Norm, Base-Pos and Post-Pos, Norm-Sub
and MLE-Apx. . 182

8.6 MSE results on set-value estimation, varying set size percentage ρ from 10 to 90,
fixing ε = 1. Top row is Zipf’s and bottom row is Emoji. 183

8.7 MSE results on set-value estimation, varying set size percentage ρ from 1 to 10,
fixing ε = 1. Top row is Zipf’s and bottom row is Emoji. 184

8.8 MSE results on set-case estimation for the Emoji dataset, varying ε from 0.2 to 4. 184

8.9 Synthetic estimation for set-case query on the Emoji dataset. 185

8.10 MSE results on top-k value estimation varying k from 2 to 32, fixing ε = 1. Top
row is Zipf’s and bottom row is Emoji. 186

9.1 Overview of parties and interactions. Users communicate with the auxiliary
servers. The auxiliary servers processes the users’ data, and communicate with
the server. . 204

9.2 Overview of EOS with r = 3 shufflers and n = 3 values a, b, c. Each shuffler re-
ceives n shares; and one shuffler’s shares are encrypted by additive homomorphic
encryption. During hiding, one shuffler sends its shares to the other two shufflers,
who then shuffle the aggregated shares with an agreed permutation. To reshare,
each of the shufflers splits its shares and send them to the other shufflers. . . . 207

9.3 Results of MSE varying εc on the IPUMS dataset. Base always outputs 1/d for
each estimation. Lap stands for Laplace mechanism for DP. 218

9.4 Comparison on the succinct histogram problem. The target is to identify the top
32 most frequent values. 220

14

ABSTRACT

Vast amounts of sensitive personal information are collected by companies, institutions

and governments. A key technological challenge is how to effectively extract knowledge from

data while preserving the privacy of the individuals involved. In this dissertation, we address

this challenge from the perspective of privacy-preserving data collection and analysis. We

focus on investigation of a technique called local differential privacy (LDP) and studied

several aspects of it.

In particular, the thesis serves as a comprehensive study of multiple aspects of the LDP

field. We investigated the following seven problems: (1) We studied LDP primitives, i.e., the

basic mechanisms that are used to build LDP protocols. (2) We then studied the problem

when the domain size is very big (e.g., larger than 232), where finding the values with high

frequency is a challenge, because one needs to enumerate through all values. (3) Another

interesting setting is when each user possesses a set of values, instead of a single private value.

(4) With the basic problems visited, we then aim to make the LDP protocols practical for

real-world scenarios. We investigated the case where each user’s data is high-dimensional

(e.g., in the census survey, each user has multiple questions to answer), and the goal is to

recover the joint distribution among the attributes. (5) We also built a system for companies

to issue SQL queries over the data protected under LDP, where each user is associated with

some public weights and holds some private values; an LDP version of the values is sent to

the server from each user. (6) To further increase the accuracy of LDP, we study how to add

post-processing steps to protocols to make them consistent while achieving high accuracy

for a wide range of tasks, including frequencies of individual values, frequencies of the most

frequent values, and frequencies of subsets of values. (7) Finally, we investigate a different

model of LDP which is called the shuffler model. While users still use LDP algorithms to

report their sensitive data, now there exists a semi-trusted shuffler that shuffles the users’

reports and then send them to the server. This model provides better utility but at the cost

of requiring more trust that the shuffler should not collude with the server.

15

1. INTRODUCTION

Large volumes of users’ data about their profiles and activities are collected by enterprises

to make informed business decisions. In order to meet users’ expectation of their privacy,

applications and services must provide rigorous privacy guarantees on how their data is

collected and analyzed. Differential privacy (DP) [1] has emerged as the de facto standard

for privacy guarantees. Recently, techniques for satisfying DP in the local setting, which we

call LDP, have been studied deployed by, e.g., Google [2], Apple [3], and Microsoft [4].

Together with my advisor and colleagues, we studied LDP primitives, i.e., the basic

mechanisms that are used to build LDP protocols. Specifically, assuming that each user has

a private value from a known domain, these primitives are able to estimate the distribution

of values, thus are also called frequency oracles. In Chapter 3 , we introduce a framework

that generalizes several frequency oracles proposed in the literature. Our in-depth analysis

enables us to choose optimal parameters, resulting in two new protocols. The estimation

error of the proposed protocols is 1/14 that of Apple’s implementation, and 1/2 that of

Google’s RAPPOR.

Frequency oracles can handle domains of limited size. When the domain size is very

big (e.g., larger than 232), finding the values with high frequency (referred to as the heavy

hitters) is a challenge, because one needs to enumerate through all values. In Chapter 4 , we

proposed protocols to find the heavy hitters efficiently. The high-level idea is to iteratively

identify increasingly longer frequent prefixes (assuming the values are represented by binary

strings). With a thorough analysis of the utility, we found that within the computational

limit, it works best to make as few iterations as possible. This design makes our protocol

effectively find around 2× more heavy hitters than existing methods.

Another interesting setting is when each user possesses a set of values, instead of a single

private value. In this setting, an additional padding and sampling step is needed to find

the frequent values and estimate their frequencies. In Chapter 5 , we formally defined such

padding and sample based frequency oracles; and we identified the privacy amplification

property. As a result, compared with existing methods, our protocol can find 3× more

frequent items, with 3 orders of magnitudes less estimation errors.

16

With the basic problems visited, we then aim to make the LDP protocols practical for

real-world scenarios. In Chapter 6 , we investigated the case where each user’s data is high-

dimensional (e.g., in the census survey, each user has multiple questions to answer), and the

goal is to recover the joint distribution among the attributes. The high level idea is that, as

there is a limit on accuracy, working on all possible joint distributions will make each one

less accurate; therefore, we focus on some joint distributions, and use these few but accurate

estimations to synthesize the uncovered ones. As a result, our proposal consistently performs

at least one magnitudes better than existing protocols.

In the traditional model of LDP (and all centralized DP models), it is assumed that all

the information associated with the user is private and should be protected. This is not

the case in many practical scenarios of local DP. As each user reports to the server, there

are internally public information associated with the user that is known to the server; and

such information is not supposed to be protected by LDP. In Chapter 7 , we utilize this

information and build a system for companies to issue SQL queries over the data protected

under LDP, where each user is associated with some public weights and holds some private

values; an LDP version of the values is sent to the server from each user.

To further increase the accuracy of LDP, we study how to add post-processing steps to

primitives to make them consistent while achieving high accuracy for a wide range of tasks,

including frequencies of individual values, frequencies of the most frequent values, and fre-

quencies of subsets of values. In Chapter 8 , we consider 10 different methods, some of them

explicitly proposed before in the literature, and others introduced in this paper. We estab-

lish theoretical relationships between some of them and conducted extensive experimental

evaluations to understand which methods should be used for different query tasks.

Finally, in Chapter 9 , we study a variant of LDP that introduces an intermediate server

with the assumption that this intermediate server does not collude with the aggregator.

Under this assumption, less noise can be added to achieve the same privacy guarantee as

LDP, thus improving utility for the data collection task. We analyze the system model

and identify potential adversaries. We then make two improvements: a new algorithm that

achieves a better privacy-utility tradeoff; and a novel protocol that provides better protection

against various attacks.

17

2. BACKGROUND

We consider a setting where there are several users and one aggregator. Each user possesses

a value v from a domain D, and the aggregator wants to learn the distribution of values

among all users, in a way that protects the privacy of individual users.

2.1 Differential Privacy

Definition 2.1.1 (ε-Differential Privacy). An algorithm A(·) satisfies ε-differential privacy

(ε-DP) if and only if for any two neighboring datasets D and D′, we have

∀t ∈Range(A) : Pr [A(D) = t] ≤ eε Pr [A(D′) = t] .

where Range(A) denotes the set of all possible outputs of the algorithm A.

Here neighboring is the bounded definition, which means two datasets D and D′ differ by

replacing one element (instead of the unbounded definition where one of D or D′ is obtained

by inserting or deleting one element from the other).

2.2 Differential Privacy in the Local Setting

In the local setting, each user perturbs the input value v using an algorithm AL and

sends AL(v) to the aggregator. The formal privacy requirement is that the algorithm AL(·)

satisfies the following property:

Definition 2.2.1 (ε-Local Differential Privacy). An algorithm AL(·) satisfies ε-local differ-

ential privacy (ε-LDP) if and only if for any input v1, v2 ∈ D, we have

∀T ⊆Range(AL) : Pr [AL(v1) ∈ T] ≤ eε Pr [AL(v2) ∈ T] ,

where Range(AL) denotes the set of all possible outputs of the algorithm AL.

Compared to the centralized setting, the local version of DP offers a stronger level of

protection, because each user only reports the perturbed data. Each user’s privacy is still

protected even if the aggregator is malicious.

18

Given an ε-DP algorithm A, we can apply it to datasets of a single item; and this also

satisfies ε-LDP. On the other hand, given an ε-LDP algorithm AL, we can apply it to each

element of the database to satisfy ε-DP. The difference between these two definitions is the

system model.

Properties of LDP. Both notions enjoy properties of sequential composition, parallel com-

position, and post-processing. As we focus on LDP, the theorems are presented informally

for LDP; but the DP version can be similarly derived. Specifically, (1) if the user executes a

set of functions, each satisfying εi-LDP, then the whole process satisfies ∑ εi-LDP. The value

ε is also called the privacy budget. (2) parallel composition is trivial in the local setting: if

the users are partitioned into groups, each evaluating a separate ε-LDP algorithm, the whole

process is ε-LDP. (3) any modification to the perturbed result do not influence the privacy

guarantee of LDP.

19

3. FREQUENCY ORACLE

(A version of this chapter has been previously published in USENIX Security

2017 [5]. There is also a public version [6] with some additional information.)

In this chapter, we focus on frequency estimation. This is the most basic primitive and is

a necessary building block for other goals in the subsequent sections. Improving this will

improve effectiveness of other protocols.

We assume there are n users. Each user j has one value vj, which can be viewed as

the user’s answer to a given question, and reports once. We use d to denote the size of the

domain of the values the users have, and D = [d] to denote the set {1, 2, . . . , d}.

The most basic goal of the server is frequency estimation, i.e., estimate, for a given

value v ∈ [d], how many users have the value v. Such a data collection protocol consists of

the following algorithms:

• Encode is executed by each user. The algorithm takes an input value v and outputs

an encoded value x.

• Perturb, which takes an encoded value x and outputs y. Each user with value v reports

y = Perturb(Encode(v)). For compactness, we use PE(·) to denote the composition

of the encoding and perturbation algorithms, i.e., PE(·) = Perturb(Encode(·)). PE(·)

should satisfy ε-LDP given in Definition 7.1.1 .

• Aggregate is executed by the aggregator; it takes all the reported values, and outputs

aggregated information.

3.1 Existing Work

3.1.1 Basic Rappor

Rappor [2] is designed to enable longitudinal collections, where the collection happens

multiple times. Indeed, Chrome’s implementation of Rappor [7] collects answers to some

20

questions once every 30 minutes. Two protocols, Basic Rappor and Rappor, are proposed

in [2]. We first describe Basic Rappor.

Encoding. Encode(v) = B0, where B0 is a length-d binary vector such that B0[v] = 1 and

B0[i] = 0 for i 6= v. We call this Unary Encoding.

Perturbation. Perturb(B0) consists of two steps:

Step 1: Permanent randomized response: Generate B1 such that:

Pr [B1[i] = 1] =

 1− 1
2f, if B0[i] = 1,

1
2f, if B0[i] = 0.

Rappor’s implementation uses f = 1/2 and f = 1/4. Note that this randomization is

symmetric in the sense that Pr [B1[i] = 1|B0[i] = 1] = Pr [B1[i] = 0|B0[i] = 0] = 1 − 1
2f ;

that is, the probability that a bit of 1 is preserved equals the probability that a bit of 0 is

preserved. This step is carried out only once for each value v that the user has.

Step 2: Instantaneous randomized response: Report B2 such that:

Pr [B2[i] = 1] =

 p, if B1[i] = 1,

q, if B1[i] = 0.

This step is carried out each time a user reports the value. That is, B1 will be perturbed

to generate different B2’s for each reporting. Rappor’s implementation [7] uses p = 0.75 and

q = 0.25, and is hence also symmetric because p + q = 1.

We note that as both steps are symmetric, their combined effect can also be modeled by

a symmetric randomization. Moreover, we study the problem where each user only reports

once. Thus without loss of generality, we ignore the instantaneous randomized response

step and consider only the permanent randomized response when trying to identify effective

protocols.

This step is introduced to help prevent multiple reports from the same user to be cor-

related; however, the rationale of this step is questionable. First, in the LDP setting, the

aggregator is the adversary against which privacy protection is needed. Since a user needs

to communicate with an aggregator, then correlation can be made based on other aspects of

21

the communication (such as the IP address). Second, the exact quantitative degree of such

protection is unclear, especially because a user’s reporting may consist of answers to many

questions. Third, this step affects utility (because it further perturbs the value) without im-

proving privacy guarantee, because against an adversary who sees multiple responses, such

as the aggregator, this step provides little additional privacy, since the effect of instantaneous

randomization can be cancelled out. We also note that when one uses p and q values such

that p+q = 1, as in the case of the Rappor implementation [7], the combined effect of the two

randomization steps can be approximated by using only the first step, but with a different

f value.

Aggregation. Let Bj be the reported vector of the j-th user. Ignoring the Instantaneous

randomized response step, to estimate the number of times i occurs, the aggregator computes:

c̃(i) =
∑

j 1i∈{i|Bj [i]=1} − 1
2fn

1− f

That is, the aggregator first counts how many time i is reported by computing∑j 1i∈{i|Bj [i]=1},

which counts how many reported vectors have the i’th bit being 1, and then corrects for the

effect of randomization. We use 1P to denote the indicator function such that: 1P = 1 if the

predicate P is true and 0 otherwise.

Cost. The communication and computing cost is Θ(d) for each user, and Θ(nd) for the

aggregator.

Privacy. Against an adversary who may observe multiple transmissions, this achieves

ε-LDP for ε = ln
((

1− 1
2 f

1
2 f

)2
)

, which is ln 9 for f = 1/2 and ln 49 for f = 1/4.

22

3.1.2 Rappor

Basic Rappor uses unary encoding, and does not scale when d is large. To address this

problem, Rappor uses Bloom filters. While Bloom filters are typically used to encode a set

for membership testing, in Rappor it is used to encode a single element.

Encoding. Encoding uses a set of m hash functions H = {H1, H2, . . . , Hm}, each of which

outputs an integer in [k] = {0, 1, . . . , k − 1}. Encode(v) = B0, which is k-bit binary vector

such that

B0[i] =

 1, if ∃H ∈ H, s.t., H(v) = i,

0, otherwise.

Perturbation. The perturbation process is identical to that of Basic Rappor.

Aggregation. The use of shared hashing creates challenges due to potential collisions.

If two values happen to be hashed to the same set of indices, it becomes impossible to

distinguish them. To deal with this problem, Rappor introduces the concept of cohorts. The

users are divided into a number of cohorts. Each cohort uses a different set of hash functions,

so that the effect of collisions is limited to within one cohort. However, partial collisions, i.e.,

two values are hashed to overlapping (though not identical) sets of indices, can still occur

and interfere with estimation. These complexities make the aggregation algorithm more

complicated. Rappor uses LASSO and linear regression to estimate frequencies of values.

Cost. The communication and computing cost is Θ(k) for each user. The aggregator’s

computation cost is higher than Basic Rappor due to the usage of LASSO and regression.

Privacy. Rappor achieves ε-LDP for ε = ln
((

1− 1
2 f

1
2 f

)2m
)

. The Rappor implementation uses

m = 2; thus this is ln 81 ≈ 4.39 for f = 1/2 and ln 74 ≈ 7.78 for f = 1/4.

23

3.1.3 Random Matrix Projection

Bassily and Smith [8] proposed a protocol that uses random matrix projection. This

protocol has an additional Setup step.

Setup. The aggregator generates a public matrix Φ ∈ {− 1√
m

, 1√
m
}m×d uniformly at random.

Here m is a parameter determined by the error bound, where the “error” is defined as the

maximal distance between the estimation and true frequency of any domain.

Encoding. Encode(v) = 〈r, x〉, where r is selected uniformly at random from [m], and x is

the v’s element of the r’s row of Φ, i.e., x = Φ[r, v].

Perturbation. Perturb(〈r, x〉) = 〈r, b · c ·m · x〉, where

b =

 1 with probability p = eε

eε+1 ,

−1 with probability q = 1
eε+1 ,

c = (eε + 1)/(eε − 1).

Aggregation. Given reports of the form 〈rj, yj〉, the estimate for i ∈ [d] is given by

c̃(i) =
∑

j

yj · Φ[rj, i].

The effect is that each user with input value i contributes c to c̃(i) with probability p, and

−c with probability q; thus the expected contribution is

(p− q) · c =
(

eε

eε + 1 −
1

eε + 1

)
· eε + 1

eε − 1 = 1.

Because of the randomness in Φ, each user with value 6= i contributes to c̃(i) either c or −c,

each with probability 1/2; thus the expected contribution from all such users is 0. Note that

each row in the matrix is essentially a random hashing function mapping each value in [d]

24

to a single bit. Each user selects such a hash function, uses it to hash her value into one bit,

and then perturbs this bit using random response.

Cost. A straightforward implementation of the protocol is expensive. However, the public

random matrix Φ does not need to be explicitly computed. For example, using a common

pseudo-random number generator, each user can randomly choose a seed to generate a row

in the matrix and send the seed in her report. With this technique, the communication cost

is Θ(log m) for each user, and the computation cost is O(d) for computing one row of the Φ.

The aggregator needs Θ(dm) to generate Φ, and Θ(md) to compute the estimations.

3.2 A Framework for LDP Protocols

Multiple protocols have been proposed for estimating frequencies under LDP, and one

can envision other protocols. A natural research question is how do they compare with

each other? Under the same level of privacy, which protocol provides better accuracy in

aggregation, with lower cost? Can we come up with even better ones? To answer these

questions, we define a class of LDP protocols that we call “pure”.

For a protocol to be pure, we require the specification of an additional function Support,

which maps each possible output y to a set of input values that y “supports”. For example,

in the basic Rappor protocol, an output binary vector B is interpreted as supporting each

input whose corresponding bit is 1, i.e., Support(B) = {i | B[i] = 1}.

Definition 3.2.1 (Pure LDP Protocols). A protocol given by PE and Support is pure if and

only if there exist two probability values p∗ > q∗ such that for all v1,

Pr [PE(v1) ∈ {y | v1 ∈ Support(y)}] = p∗,

∀v2 6=v1Pr [PE(v2) ∈ {y | v1 ∈ Support(y)}] = q∗.

A pure protocol is in some sense “pure and simple”. For each input v1, the set {y | v1 ∈

Support(y)} identifies all outputs y that “support” v1, and can be called the support set of

v1. A pure protocol requires the probability that any value v1 is mapped to its own support

set be the same for all values. We use p∗ to denote this probability. In order to satisfy LDP,

25

it must be possible for a value v2 6= v1 to be mapped to v1’s support set. It is required

that this probability, which we use q∗ to denote, must be the same for all pairs of v1 and v2.

Intuitively, we want p∗ to be as large as possible, and q∗ to be as small as possible. However,

satisfying ε-LDP requires that p∗

q∗ ≤ eε.

Basic Rappor is pure with p∗ = 1 − f
2 and q∗ = f

2 . Rappor is not pure because there

does not exist a suitable q∗ due to collisions in mapping values to bit vectors. Assuming the

use of two hash functions, if v1 is mapped to [1, 1, 0, 0], v2 is mapped to [1, 0, 1, 0], and v3

is mapped to [0, 0, 1, 1], then because [1, 1, 0, 0] differs from [1, 0, 1, 0] by only two bits, and

from [0, 0, 1, 1] by four bits, the probability that v2 is mapped to v1’s support set is higher

than that of v3 being mapped to v1’s support set.

For a pure protocol, let yj denote the submitted value by user j, a simple aggregation

technique to estimate the number of times that i occurs is as follows:

c̃(i) =
∑

j 1i∈Support(yj) − nq∗

p∗ − q∗ (3.1)

The intuition is that each output that supports i gives an count of 1 for i. However, this

needs to be normalized, because even if every input is i, we only expect to see n · p∗ outputs

that support i, and even if input i never occurs, we expect to see n · q∗ supports for it. Thus

the original range of 0 to n is “compressed” into an expected range of nq∗ to np∗. The linear

transformation in Equation (3.1) corrects this effect.

Theorem 3.2.1. For a pure LDP protocol PE and Support, Equation (3.1) is unbiased, i.e.,

∀iE [c̃(i)] = nfi, where fi is the fraction of times that the value i occurs.

Proof:

E [c̃(i)] =E

(∑

j 1i∈Support(yj)
)
− nq∗

p∗ − q∗

=nfip

∗ + n(1− fi)q∗ − nq∗

p∗ − q∗

=n · fip
∗ + q∗ − fiq

∗ − q∗

p∗ − q∗

=nfi

26

The variance of the estimator in Equation (3.1) is a valuable indicator of an LDP proto-

col’s accuracy:

Theorem 3.2.2. For a pure LDP protocol PE and Support, the variance of the estimation

c̃(i) in Equation (3.1) is:

Var[c̃(i)] = nq∗(1− q∗)
(p∗ − q∗)2 + nfi(1− p∗ − q∗)

p∗ − q∗ (3.2)

Proof: The random variable c̃(i) is the (scaled) summation of n independent random

variables drawn from the Bernoulli distribution. More specifically, nfi (resp. (1 − fi)n) of

these random variables are drawn from the Bernoulli distribution with parameter p∗ (resp.

q∗). Thus,

Var[c̃(i)] = Var

(∑

j 1i∈Support(yj)
)
− nq∗

p∗ − q∗

=
∑

j Var[1i∈Support(yj)]
(p∗ − q∗)2

= nfip
∗(1− p∗) + n(1− fi)q∗(1− q∗)

(p∗ − q∗)2

= nq∗(1− q∗)
(p∗ − q∗)2 + nfi(1− p∗ − q∗)

p∗ − q∗

In many application domains, the vast majority of values appear very infrequently, and

one wants to identify the more frequent ones. The key to avoid having lots of false positives

is to have low estimation variances for the infrequent values. When fi is small, the variance

in Equation (3.2) is dominated by the first term. We use Var∗ to denote this approximation

of the variance, that is:

Var∗[c̃(i)] = nq∗(1− q∗)
(p∗ − q∗)2 (3.3)

27

We also note that some protocols have the property that p∗ + q∗ = 1, in which case Var∗ =

Var.

As the estimation c̃(i) is the sum of many independent random variables, its distribution

is very close to a normal distribution. Thus, the mean and variance of c̃(i) fully characterizes

the distribution of c̃(i) for all practical purposes. When comparing different methods, we

observe that fixing ε, the differences are reflected in the constants for the variance, which is

where we focus our attention.

3.3 Optimizing LDP Protocols

We now cast many protocols that have been proposed into our framework of “pure”

LDP protocols. Casting these protocols into the framework of pure protocols enables us to

derive their variances and understand how each method’s accuracy is affected by parameters

such as domain size, ε, etc. This also enables us to generalize and optimize these protocols

and propose two new protocols that improve upon existing ones. More specifically, we will

consider the following protocols, which we organize by their encoding methods.

• Direct Encoding (DE). There is no encoding. It is a generalization of the Random

Response technique (GRR).

• Histogram Encoding (HE). An input v is encoded as a histogram for the d possible

values. The perturbation step adds noise from the Laplace distribution to each number

in the histogram. We consider two aggregation techniques, SHE and THE.

– Summation with Histogram Encoding (SHE) simply sums up the reported

noisy histograms from all users.

– Thresholding with Histogram Encoding (THE) is parameterized by a value

θ; it interprets each noisy count above a threshold θ as a 1, and each count below

θ as a 0.

• Unary Encoding (UE). An input v is encoded as a length-d bit vector, with only

the bit corresponding to v set to 1. Here two key parameters in perturbation are p,

28

the probability that 1 remains 1 after perturbation, and q, the probability that 0 is

perturbed into 1. Depending on their choices, we have two protocols, SUE and OUE.

– Symmetric Unary Encoding (SUE) uses p + q = 1; this is the Basic Rappor

protocol [2].

– Optimized Unary Encoding (OUE) uses optimized choices of p and q; this is

newly proposed In this section.

• Local Hashing (LH). An input v is encoded by choosing at random H from a

universal hash function family H, and then outputting (H, H(v)). This is called Local

Hashing because each user chooses independently the hash function to use. Here a key

parameter is the range of these hash functions. Depending on this range, we have two

protocols, BLH and OLH.

– Binary Local Hashing (BLH) uses hash functions that outputs a single bit.

This is equivalent to the random matrix projection technique in [8].

– Optimized Local Hashing (OLH) uses optimized choices for the range of hash

functions; this is newly proposed In this section.

3.3.1 Direct Encoding (DE)

One natural method is to extend the binary response method to the case where the

number of input values is more than 2.

Encoding and Perturbing. EncodeDE(v) = v, and Perturb is defined as follows.

Pr [PerturbDE(x) = i] =

 p = eε

eε+d−1 , if i = x

q = 1−p
d−1 = 1

eε+d−1 , if i 6= x
(3.4)

Theorem 3.3.1 (Privacy of DE). The Direct Encoding (DE) Protocol satisfies ε-LDP.

Proof: For any inputs v1, v2 and output y, we have:

Pr [PEDE(v1) = y]
Pr [PEDE(v2) = y] ≤

p

q
= eε/(eε + d− 1)

1/(eε + d− 1) = eε

29

Aggregation. Let the Support function for DE be SupportDE(i) = {i}, i.e., each output

value i supports the input i. Then this protocol is pure, with p∗ = p and q∗ = q.

Plugging these values into Equation (3.3), we have

Var∗[c̃DE(i)] = n · d− 2 + eε

(eε − 1)2 (3.5)

Note that the variance given above is linear in nd. As d increases, the accuracy of DE

suffers. This is because, as d increases, p = eε

eε+d−1 , the probability that a value is transmitted

correctly, becomes smaller. For example, when eε = 49 and d = 216, we have p = 49
65584 ≈

0.00075.

3.3.2 Histogram Encoding (HE)

In Histogram Encoding (HE), an input x ∈ [d] is encoded using a length-d histogram.

Encoding. EncodeHE(v) = [0.0, 0.0, · · · , 1.0, · · · , 0.0], where only the v-th component is

1.0. Two different input v values will result in two vectors that have L1 distance of 2.0.

Perturbing. PerturbHE(B) outputs B′ such that B′[i] = B[i] + L
(

2
ε

)
,

where L (β) is the Laplace distribution where Pr [L (β) = x] = 1
2β

e−|x|/β.

Theorem 3.3.2 (Privacy of HE). The Histogram Encoding protocol satisfies ε-LDP.

Proof: For any inputs v1, v2, and output B, we have

Pr [B|v1]
Pr [B|v2]

=
∏

i∈[d] Pr [B[i]|v1]∏
i∈[d] Pr [B[i]|v2]

= Pr [B[v1]|v1] Pr [B[v2]|v1]
Pr [B[v1]|v2] Pr [B[v2]|v2]

≤ eε/2 · eε/2 = eε

Aggregation: Summation with Histogram Encoding (SHE). works as follows: For

each value, sum the noisy counts for that value reported by all users. That is, c̃SHE(i) =

30

∑
j Bj[i], where Bj is the noisy histogram received from user j. This aggregation method

does not provide a Support function and is not pure. We prove its property as follows.

Theorem 3.3.3. In SHE, the estimation c̃SHE is unbiased. Furthermore, the variance is

Var∗[c̃SHE(i)] = n
8
ε2

Proof: Since the added noise is 0-mean; the expected value of the sum of all noisy

counts is the true count.

The L (β) distribution has variance 2
β2 , since β = ε

2 for each Bj[i], then the variance of

each such variable is 8
ε2 , and the sum of n such independent variables have variance n 8

ε2 .

Aggregation: Thresholding with Histogram Encoding (THE). interprets a vector

of noisy counts discretely by defining

SupportTHE(B) = {v | B[v] > θ}

That is, each noise count that is > θ supports the corresponding value. This thresholding

step can be performed either by the user or by the aggregator. It does not access the original

value, and thus does not affect the privacy guarantee. Using thresholding to provide a

Support function makes the protocol pure. The probability p∗ and q∗ are given by

p∗ = 1− F (θ − 1); q∗ = 1− F (θ),

where F (x) =

1
2e

ε
2 x, if x < 0

1− 1
2e− ε

2 x, if x ≥ 0

Here, F (·) is the cumulative distribution function of Laplace distribution. If 0 ≤ θ ≤ 1, then

we have

p∗ = 1− 1
2e

ε
2 (θ−1); q∗ = 1

2e− ε
2 θ.

31

Plugging these values into Equation (3.3), we have

Var∗[c̃HET(i)] = n · 2eεθ/2 − 1
(1 + eε(θ−1/2) − 2eεθ/2)2

Comparing SHE and THE. Fixing ε, one can choose a θ value to minimize the variance.

Numerical analysis shows that the optimal θ is in (1
2 , 1), and depends on ε. When ε is large,

θ → 1. Furthermore, Var[c̃THE] < Var[c̃SHE] is always true. This means that by thresholding,

one improves upon directly summing up noisy counts, likely because thresholding limits the

impact of noises of large magnitude. In Section 3.4.1 , we illustrate the differences between

them using actual numbers.

3.3.3 Unary Encoding (UE)

Basic Rappor, which we described in Section 3.1.1 , takes the approach of directly per-

turbing a bit vector. We now explore this method further.

Encoding. Encode(v) = [0, · · · , 0, 1, 0, · · · , 0], a length-d binary vector where only the v-th

position is 1.

Perturbing. Perturb(B) outputs B′ as follows:

Pr [B′[i] = 1] =

 p, if B[i] = 1

q, if B[i] = 0

Theorem 3.3.4 (Privacy of UE). The Unary Encoding protocol satisfies ε-LDP for

ε = ln
(

p(1− q)
(1− p)q

)
(3.6)

32

Proof: For any inputs v1, v2, and output B, we have

Pr [B|v1]
Pr [B|v2]

=
∏

i∈[d] Pr [B[i]|v1]∏
i∈[d] Pr [B[i]|v2]

(3.7)

≤Pr [B[v1] = 1|v1] Pr [B[v2] = 0|v1]
Pr [B[v1] = 1|v2] Pr [B[v2] = 0|v2]

(3.8)

=p

q
· 1− q

1− p
= eε

Equation (3.7) is because each bit is flipped independently, and Equation (3.8) is because v1

and v2 result in bit vectors that differ only in locations v1 and v2, and a vector with position

v1 being 1 and position v2 being 0 maximizes the ratio.

Aggregation. A reported bit vector is viewed as supporting an input i if B[i] = 1, i.e.,

SupportUE(B) = {i | B[i] = 1}. This yields p∗ = p and q∗ = q. Interestingly, Equation (3.6)

does not fully determine the values of p and q for a fixed ε. Plugging Equation (3.6) into

Equation (3.3), we have

Var∗[c̃UE(i)] = nq(1− q)
(p− q)2 = nq(1− q)

(eεq
1−q+eεq

− q)2

= n · ((eε − 1)q + 1)2

(eε − 1)2(1− q)q . (3.9)

Symmetric UE (SUE). Rappor’s implementation chooses p and q such that p + q = 1;

making the treatment of 1 and 0 symmetric. Combining this with Equation (3.6), we have

p = eε/2

eε/2 + 1 , q = 1
eε/2 + 1

Plugging these into Equation (3.9), we have

Var∗[c̃SUE(i)] = n · eε/2

(eε/2 − 1)2

33

Optimized UE (OUE). Instead of making p and q symmetric, we can choose them to
minimize Equation (3.9). Take the partial derivative of Equation (3.9) with respect to q,
and solving q to make the result 0, we get:

∂
[

((eε−1)q+1)2

(eε−1)2(1−q)q

]
∂q

=
∂
[

1
(eε−1)2 ·

(
(eε−1)2q

1−q + 2(eε−1)
1−q + 1

q(1−q)

)]
∂q

=
∂
[

1
(eε−1)2 ·

(
−(eε − 1)2 + e2ε

1−q + 1
q

)]
∂q

= 1
(eε − 1)2

(
e2ε

(1− q)2 −
1
q2

)
= 0

=⇒ 1− q

q
= eε, i.e., q = 1

eε + 1 and p = 1
2

Plugging p = 1
2 and q = 1

eε+1 into Equation (3.9), we get

Var∗[c̃OUE(i)] = n
4eε

(eε − 1)2 (3.10)

The reason why setting p = 1
2 and q = 1

eε+1 is optimal when the true frequencies are

small may be unclear at first glance; however, there is an intuition behind it. When the true

frequencies are small, d is large. Recall that eε = p
1−p

1−q
q

. Setting p and q can be viewed as

splitting ε into ε1 + ε2 such that p
1−p

= eε1 and 1−q
q

= eε2 . That is, ε1 is the privacy budget

for transmitting the 1 bit, and ε2 is the privacy budget for transmitting each 0 bit. Since

there are many 0 bits and a single 1 bit, it is better to allocate as much privacy budget for

transmitting the 0 bits as possible. In the extreme, setting ε1 = 0 and ε2 = ε means that

setting p = 1
2 .

3.3.4 Binary Local Hashing (BLH)

Both HE and UE use unary encoding and have Θ(d) communication cost, which is too

large for some applications. To reduce the communication cost, a natural idea is to first

hash the input value into a domain of size k < d, and then apply the UE method to the

hashed value. This is the basic idea underlying the Rappor method. However, a problem

with this approach is that two values may be hashed to the same output, making them

34

indistinguishable from each other during decoding. Rappor tries to address this in several

ways. One is to use more than one hash functions; this reduces the chance of a collision.

The other is to use cohorts, so that different cohorts use different sets of hash functions.

These remedies, however, do not fully eliminate the potential effect of collisions. Using more

than one hash functions also means that every individual bit needs to be perturbed more to

satisfy ε-LDP for the same ε.

A better approach is to make each user belong to a cohort by herself. We call this the lo-

cal hashing approach. The random matrix-base protocol in [8] (described in Section 3.1.3),

in its very essence, uses a local hashing encoding that maps an input value to a single bit,

which is then transmitted using randomized response. Below is the Binary Local Hashing

(BLH) protocol, which is logically equivalent to the one in Section 3.1.3 , but is simpler and,

we hope, better illustrates the essence of the idea.

Let H be a universal hash function family, such that each hash function H ∈ H hashes

an input in [d] into one bit. The universal property requires that

∀x, y ∈ [d], x 6= y : Pr
H∈H

[H(x) = H(y)] ≤ 1
2 .

Encoding. EncodeBLH(v) = 〈H, b〉, where H ←R H is chosen uniformly at random from H,

and b = H(v). Note that the hash function H can be encoded using an index for the family

H and takes only O(log n) bits.

Perturbing. PerturbBLH(〈H, b〉) = 〈H, b′〉 such that

Pr [b′ = 1] =

 p = eε

eε+1 , if b = 1

q = 1
eε+1 , if b = 0

Aggregation. SupportBLH(〈H, b〉) = {v | H(v) = b}, that is, each reported 〈H, b〉 supports

all values that are hashed by H to b, which are half of the input values. Using this Support

35

function makes the protocol pure, with p∗ = p and q∗ = 1
2p + 1

2q = 1
2 . Plugging the values of

p∗ and q∗ into Equation (3.3), we have

Var∗[c̃BLH(i)] = n · (eε + 1)2

(eε − 1)2 .

3.3.5 Optimal Local Hashing (OLH)

Once the random matrix projection protocol is cast as binary local hashing, we can

clearly see that the encoding step loses information because the output is just one bit. Even

if that bit is transmitted correctly, we can get only one bit of information about the input,

i.e., to which half of the input domain does the value belong. When ε is large, the amount

of information loss in the encoding step dominates that of the random response step. Based

on this insight, we generalize Binary Local Hashing so that each input value is hashed into a

value in [g], where g ≥ 2. A larger g value means that more information is being preserved

in the encoding step. This is done, however, at a cost of more information loss in the random

response step. As in our analysis of the Direct Encoding method, a large domain results in

more information loss.

Let H be a universal hash function family such that each H ∈ H outputs a value in [d′].

Encoding. Encode(v) = 〈H, x〉, where H ∈ H is chosen uniformly at random, and

x = H(v).

Perturbing. Perturb(〈H, x〉) = (〈H, y〉), where

∀i∈[d′] Pr [y = i] =

 p = eε

eε+d′−1 , if x = i

q = 1
eε+d′−1 , if x 6= i

Theorem 3.3.5 (Privacy of LH). The Local Hashing (LH) Protocol satisfies ε-LDP

Proof: For any two possible input values v1, v2 and any output 〈H, y〉, we have,

Pr [〈H, y〉|v1]
Pr [〈H, y〉|v2]

= Pr [Perturb(H(v1)) = y]
Pr [Perturb(H(v2)) = y] ≤

p

q
= eε

36

Aggregation. Let SupportLH(〈H, y〉) = {i | H(i) = y}, i.e., the set of values that are

hashed into the reported value. This gives rise to a pure protocol with

p∗ = p and q∗ = 1
d′ p + d′ − 1

d′ q = 1
d′ .

Plugging these values into Equation (3.3), we have the

Var∗[c̃LP(i)] = n · (eε − 1 + d′)2

(eε − 1)2(d′ − 1) . (3.11)

Optimized LH (OLH). Now we find the optimal d′ value, by taking the partial

derivative of Equation (3.11) with respect to d′.

∂
[

(eε−1+d′)2

(eε−1)2(d′−1)

]
∂d′ =

∂
[

d′−1
(eε−1)2 + 1

d′−1 ·
e2ε

(eε−1)2 + 2eε

(eε−1)2

]
∂d′

= 1
(eε − 1)2 −

1
(d′ − 1)2 ·

e2ε

(eε − 1)2 = 0

=⇒ d′ = eε + 1

When d′ = eε + 1, we have p∗ = eε

eε+d′−1 = 1
2 , q∗ = 1

d′ = 1
eε+1 into Equation (3.9), and

Var∗[c̃OLH(i)] = n · 4eε

(eε − 1)2 . (3.12)

Comparing OLH with OUE. It is interesting to observe that the variance we derived for

optimized local hashing (OLH), i.e., Equation (3.12) is exactly that we have for optimized

unary encoding (OUE), i.e., Equation (3.10). Furthermore, the probability values p∗ and q∗

are also exactly the same. This illustrates that OLH and OUE are in fact deeply connected.

OLH can be viewed as a compact way of implementing OUE. Compared with OUE, OLH has

communication cost O(log n) instead of O(d).

37

The fact that optimizing two apparently different encoding approaches, namely, unary

encoding and local hashing, results in conceptually equivalent protocol, seems to suggest that

this may be optimal (at least when d is large). However, whether this is the best possible

protocol remains an interesting open question.

3.4 Discussion

3.4.1 Which Protocol to Use

We have cast most of the LDP protocols proposed in the literature into our framework of

pure LDP protocols. Doing so also enables us to generalize and optimize existing protocols.

Now we are able to answer the question: Which LDP protocol should one use in a given

setting?

Guideline. Table 3.1 lists the major parameters for the different protocols. Histogram

encoding and unary encoding requires Θ(d) communication cost, and is expensive when

d is large. Direct encoding and local hashing require Θ(log d) or Θ(log n) communication

cost, which amounts to a constant in practice. All protocols other than DE have O(n · d)

computation cost to estimate frequency of all values.

Numerical values of the approximate variances using Equation (3.3) for all protocols are

given in Table 3.2 and Figure 3.1 (n = 10, 000). Our analysis gives the following guidelines

for choosing protocols.

• When d is small, more precisely, when d < 3eε+2, DE is the best among all approaches.

• When d > 3eε+2, and the communication cost Θ(d) is acceptable, one should use OUE.

(OUE has the same variance as OLH, but is easier to implement and faster because no

hash functions is used.)

• When d is so large that the communication cost Θ(d) is too large, we should use OLH.

It offers the same accuracy as OUE, but has communication cost O(log d) instead of

O(d).

Discussion. In addition to the guidelines, we make the following observations. Adding

Laplacian noises to a histogram is typically used in a setting with a trusted data curator,

38

Table 3.1. Comparison of communication cost and variances for different methods.
DE SHE THE (θ = 1) SUE OUE BLH OLH

Communication Cost O(log d) O(d) O(d) O(d) O(d) O(log n) O(log n)
Var[c̃(i)]/n d−2+eε

(eε−1)2
8
ε2

2eε/2−1
(eε/2−1)2

eε/2

(eε/2−1)2
4eε

(eε−1)2
(eε+1)2

(eε−1)2
4eε

(eε−1)2

Table 3.2. Numerical values of Var[c̃(i)]/n for different methods.
DE (d = 2) DE (d = 32) DE (d = 210) SHE THE (θ = 1) SUE OUE BLH OLH

ε = 0.5 3.92 75.20 2432.40 32.00 19.44 15.92 15.67 16.67 15.67
ε = 1.0 0.92 11.08 347.07 8.00 5.46 3.92 3.68 4.68 3.68
ε = 2.0 0.18 0.92 25.22 2.00 1.50 0.92 0.72 1.72 0.72
ε = 4.0 0.02 0.03 0.37 0.50 0.34 0.18 0.08 1.08 0.08

who first computes the histogram from all users’ data and then adds the noise. SHE applies

it to each user’s data. Intuitively, this should perform poorly relative to other protocols

specifically designed for the local setting. However, SHE performs very similarly to BLH,

which was specifically designed for the local setting. In fact, when ε > 2.5, SHE performs

better than BLH.

While all protocols’ variances depend on ε, the relationships are different. BLH is least

sensitive to change in ε because binary hashing loses too much information. Indeed, while all

other protocols have variance goes to 0 when ε goes to infinity, BLH has variance goes to n.

SHE is slightly more sensitive to change in ε. DE is most sensitive to change in ε; however,

when d is large, its variance is very high. OLH and OUE are able to better benefit from an

increase in ε, without suffering the poor performance for small ε values.

Another interesting finding is that when d = 2, the variance of DE is eε

(eε−1)2 , which is

exactly 1
4 of that of OUE and OLH, whose variances do not depend on d. Intuitively, it is

easier to transmit a piece of information when it is binary, i.e., d = 2. As d increases, one

needs to “pay” for this increase in source entropy by having higher variance. However, it

seems that there is a cap on the “price” one must pay no matter how large d is, i.e., OLH’s

variance does not depend on d and is always 4 times that of DE with d = 2. There may exist

a deeper reason for this rooted in information theory. Exploring these questions is beyond

the scope of this paper.

39

10
2

10
3

10
4

10
5

10
6

10
7

 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

V
a
r

ε

DE(d=2)
DE(d=4)

DE(d=16)

DE(d=128)
DE(d=2048)

OUE

(a) Vary ε

10
2

10
3

10
4

10
5

10
6

10
7

 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

V
a
r

ε

DE

SHE

SUE

OUE

BLH

OLH

(b) Vary ε (fixing d = 210)

Figure 3.1. Numerical values of Var[c̃(i)] for different methods.

3.4.2 On Answering Multiple Questions

In the setting of traditional DP, the privacy budget is split when answering multiple

queries. In the local setting, previous work follow this tradition and let the users split

privacy budget evenly and report on multiple questions. Instead, we suggest partitioning

the users randomly into groups, and letting each group of users answer a separate question.

In fact, this is an important principle of LDP that we keep using in the next chapters. Now

we compare the utilities by these approaches.

Suppose there are Q ≥ 2 questions. We calculate variances on one question. Since there

are different number of users in the two cases (n versus n/Q), we normalize the estimations

into the range from 0 to 1. In OLH, the variance is σ2 = Var∗[c̃OLH(i)/n] = 4eε

(eε−1)2·n .

When partitioning the users, n/Q users answer one question, rendering σ2
1 = 4Qeε

(eε−1)2·n ;

when privacy budget is split, ε/Q is used for one question, we have σ2
2 = 4eε/Q(

eε/Q−1
)2

·n
. We

want to show σ2
1 < σ2

2:

σ2
2 − σ2

1 = 4
n

(
eε/Q

(eε/Q − 1)2 −
Qeε

(eε − 1)2

)

= 4eε/Q

n (eε/Q − 1)2 (eε − 1)2 ·
[
(eε − 1)2 −Qeε−ε/Q

(
eε/Q − 1

)2
]

40

10
2

10
3

10
4

10
5

2
2

2
4

2
6

2
8

2
10

2
12

2
14

2
16

2
18

V
ar

d

Empirical DE
Empirical SUE
Empirical OUE

Analytical DE
Analytical SUE
Analytical OUE

(a) Vary d (fixing ε = 4)

10
2

10
3

10
4

10
5

2
2

2
4

2
6

2
8

2
10

2
12

2
14

2
16

2
18

V
ar

d

Empirical SHE
Empirical BLH
Empirical OLH

Analytical SHE
Analytical BLH
Analytical OLH

(b) Vary d (fixing ε = 4)

10
2

10
3

10
4

10
5

10
6

10
7

 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

V
ar

ε

Empirical DE
Empirical SUE
Empirical OUE

Analytical DE
Analytical SUE
Analytical OUE

(c) Vary ε (fixing d = 210)

10
2

10
3

10
4

10
5

10
6

10
7

 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

V
ar

ε

Empirical SHE
Empirical BLH
Empirical OLH

Analytical SHE
Analytical BLH
Analytical OLH

(d) Vary ε (fixing d = 210)

Figure 3.2. Comparing empirical and analytical variance.

The first term is always greater than zero since ε > 0. For the second term, we define

eε/Q = z, and write it as:

(zQ − 1)2 −QzQ−1(z − 1)2 = (z − 1)2 ·
[
(zQ−1 + zQ−2 + . . . + 1)2 −QzQ−1

]
> 0

Therefore, σ2
1 is always smaller than σ2

2. Thus utility of partitioning users is better than

splitting privacy budget.

3.5 Experimental Evaluation

We empirically evaluate these protocols on both synthetic and real-world datasets. All

experiments are performed ten times and we plot the mean and standard deviation.

41

3.5.1 Verifying Correctness of Analysis

The conclusions we drew above are based on analytical variances. We now show that

our analytical results of variances match the empirically measured squared errors. For the

empirical data, we issue queries using the protocols and measure the average of the squared

errors, namely, 1
d

∑
i∈[d] [c̃(i)− nfi]2, where fi is the fraction of users taking value i. We run

queries for all i values and repeat for ten times. We then plot the average and standard

deviation of the squared error. We use synthetic data generated by following the Zipf’s dis-

tribution (with distribution parameter s = 1.1 and n = 10, 000 users), similar to experiments

in [2].

Figure 3.2 gives the empirical and analytical results for all methods. In Figures 3.2a

and 3.2b , we fix ε = 4 and vary the domain size. For sufficiently large d (e.g., d ≥ 26), the

empirical results match very well with the analytical results. When d < 26, the analytical

variance tends to underestimate the variance, because in Equation (3.3) we ignore the fi

terms. Standard deviation of the measured squared error from different runs also decreases

when the domain size increases. In Figures 3.2c and 3.2d , we fix the domain size to d = 210

and vary the privacy budget. We can see that the analytical results match the empirical

results for all ε values and all methods.

In practice, since the group size d′ of OLH can only be integers, we round d′ = eε + 1 to

the nearest integer.

3.5.2 Towards Real-world Estimation

We run OLH, BLH, together with Rappor, on real datasets. The goal is to understand

how does each protocol perform in real world scenarios and how to interpret the result.

Note that Rappor does not fall into the pure framework of LDP protocols so we cannot use

Theorem 3.2.2 to obtain the variance analytically. Instead, we run experiments to examine

its performance empirically. Following the setting of Erlingsson et al. [2], we use a 128-bit

Bloom filter, 2 hash functions and 8/16 cohorts in Rappor. In order to vary ε, we tweak

the f value. The instantaneous randomization process is omitted. We implement Rappor in

42

10
5

10
6

10
7

10
8

10
9

10
10

 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

V
a
r

ε

OLH
BLH

RAP(8)
RAP(16)

Figure 3.3. Average squared error, varying ε.

Python. The regression part, which Rappor introduces to handle the collisions in the Bloom

filter, is implemented using Scikit-learn library [9].

Datasets. We use the Kosarak dataset [10], which contains the click stream of a Hungarian

news website. There are around 8 million click events for 41, 270 different pages. The goal

is to estimate the popularity of each page, assuming all events are reported.

Accuracy on Frequent Values

One goal of estimating a distribution is to find out the frequent values and accurately

estimate them. We run different methods to estimate the distribution of the Kosarak dataset.

After the estimation, we issue queries for the 30 most frequent values in the original dataset.

We then calculate the average squared error of the 30 estimations produced by different

methods. Figure 3.3 shows the result. We try Rappor with both 8 cohorts (RAP(8)) and

16 cohorts (RAP(16)). It can be seen that when ε > 1, OLH starts to show its advantage.

Moreover, variance of OLH decreases fastest among the four. Due to the internal collision

caused by Bloom filters, the accuracy of Rappor does not benefit from larger ε. We also

perform this experiment on different datasets, and the results are similar.

Distinguish True Counts from Noise

Although there are noises, infrequent values are still unlikely to be estimated to be

frequent. Statistically, the frequent estimates are more reliable, because the probability it

43

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

T
P

ε

OLH
BLH

RAP(8)
RAP(16)

Figure 3.4. Number of true positives, varying ε, using significance threshold.
The dashed line corresponds to the average number of items identified.

 0

 20

 40

 60

 80

 100

 120

 140

 160

 5000 10000 15000 20000

T
P

Threshold

OLH
BLH

RAP(8)
RAP(16)

(a) Number of True Positives

10
0

10
1

10
2

10
3

10
4

 5000 10000 15000 20000

F
P

Threshold

OLH
BLH

RAP(8)
RAP(16)

(b) Number of False Positives

Figure 3.5. Results on Kosarak dataset. The y axes are the number of
identified hash values that is true/false positive. The x axes are the threshold.
We assume ε = 4.

is generated from an infrequent value is quite low. However, for the infrequent estimates,

we do not know whether it comes from an originally infrequent value or a zero-count value.

Therefore, after getting the estimation, we need to choose which estimate to use, and which

to discard.

Significance Threshold. In [2], the authors propose to use the significance threshold.

After the estimation, all estimations above the threshold are kept, and those below the

threshold Ts are discarded.

Ts = Φ−1
(

1− α

d

)√
Var∗ (3.13)

44

where d is the domain size, Φ−1 is the inverse of the cumulative density function of standard

normal distribution, and the term inside the square root is the variance of the protocol.

Roughly speaking, the parameter α controls the number of values that originally have low

frequencies but estimated to have frequencies above the threshold (also known as false pos-

itives). We use α = 0.05 in our experiment.

For the values whose estimations are discarded, we do not know for sure whether they

have low or zero frequencies. Thus, a common approach is to assign the remaining probability

to each of them uniformly.

Recall Var∗ is the term we are trying to minimize. So a protocol with a smaller variance

will have a lower threshold; thus more values can be detected reliably.

Number of Reliable Estimation. We run different protocols using the significance

threshold Ts on the Kosarak dataset. Note that Ts will change as ε changes. We define

a true (false) positive as a value that has frequency above (below) the threshold, and is

estimated to have frequency above the threshold. In Figure 3.4 , we show the number of

true positives versus ε. As ε increases, the number of true positives increases. When ε = 4,

Rappor can output 75 true positives, BLH can only output 36 true positives, but OLH can

output nearly 200 true positives. We also notice that the output sizes are similar for Rappor

and OLH, which indicates that OLH gives out very few false positives compared to Rappor.

The cohort size does not affect much in this setting.

On Information Quality

Now we test both the number of true positives and false positives, varying the threshold.

We run OLH, BLH and Rappor on the Kosarak dataset.

As we can see in Figure 3.5a , fixing a threshold, OLH and BLH performs similarly in

identifying true positives, which is as expected, because frequent values are rare, and variance

does not change much the probability it is identified. Rappor performs slightly worse because

of the Bloom filter collision.

As for the false positives, as shown in Figure 3.5b , different protocols perform quite

differently in eliminating false positives. When fixing Ts to be 5, 000, OLH produces tens

45

of false positives, but BLH will produce thousands of false positives. The reason behind

this is that, for the majority of infrequent values, their estimations are directly related to

the variance of the protocol. A protocol with a high variance means that more infrequent

values will become frequent during estimation. As a result, because of its smallest Var∗, OLH

produces the least false positives while generating the most true positives.

46

4. HEAVY HITTER IDENTIFICATION

(A version of this chapter has been previously published in IEEE TDSC 2019 [11].

There is also a public version on arXiv with some additional information [12].)

In the heavy hitter identification problem, the aggregator wants to know the distribution

of the frequent values. When the data domain D is relatively small, having a frequency

estimation protocol (or frequency oracle, as described in Chapter 3) suffices, as the aggregator

can invoke the frequency oracle for all values in D, and identify the frequent ones. However,

in many applications, the data domain D is very large, e.g., 2128 when the input values have

16 bytes. Enumerating through all values in them is computationally infeasible.

In this chapter we focus on the problem of identifying frequent values under the local

differential privacy (LDP) setting when the input domain is large. For simplicity, we assume

that each value is represented by a binary string of length m, although our method can be

easily changed to support more complicated structure of values, such as a value consisting

of multiple components.

More formally, the problem of finding frequent values (heavy hitters) can be defined

either as identifying the top-k values or finding values that appear above a certain threshold.

We assume that each user has a single value, and thus each frequency threshold can be

approximately translated into a k value. We use the top-k version of definition: Given n

values v1, v2, . . . , vn from domain D, an element v ∈ D is a top-k heavy hitter if its frequency

fv = |{j|j∈[n]∧vj=v}|
n

is ranked among top k frequencies of all possible values.

Suppose that each user has a length m = 128 binary string v as input value, the naive

approach of querying the frequency of each string requires 2128 oracle queries and is infeasible.

The Optimized Local Hashing (OLH) protocol presented earlier deals with a large do-

main size. But each invocation of the frequency oracle takes time linear in the population

size. Furthermore, the computations needed for recovering the frequency of one value are

independent from those needed for recovering that of another value.

The importance of population size. Note the the variances of GRR and OLH (Equa-

tions 3.5 and 3.12) are both linear in n. This is also true with all existing frequency oracles

47

under LDP, and is a fundamental accuracy cost one has to pay in order to achieve LDP [13].

This means that LDP protocols can be useful only when the group size n is large, and LDP

protocols are meaningful only for the frequent values.

This also means that the standard deviation (SD) of the estimations is linear in
√

n.

When n increases, the standard deviation of the absolute count increases; however, we are

mostly interested in the normalized frequency (estimated frequency divided by the population

size). The variance on estimated normalized frequency thus has SD that is linear in 1√
n
. A

larger population size will thus lead to more accurate estimations.

4.1 Existing Solutions

4.1.1 The Segment Pairs Method (SPM)

The approach taken by Google’s team lets each user report a pair of two randomly chosen

segments [14]. We call this the Segment Pair Method (SPM).

In SPM, a length-m value is divided into g segments of length s = m/g each. For

example, when g = 8, m = 128, each segment has s = 16 bits. We use the notation v[i : j]

to denote the segment of v starting at the i’th bit and stopping just before the j’th bit.

Thus v[0 : m] represents the complete v. In addition to reporting the overall value v, a user

also randomly chooses two segments to report. More specifically, the user randomly chooses

1 ≤ α 6= β ≤ g, and reports

〈A(v), α, β,A(v[(α− 1)s : αs]),A(v[(β − 1)s : βs])〉.

where A(·) denotes the encode-perturbation algorithm of any LDP protocol described in

Chapter 3 . The user runs three reporting protocols in parallel, each using one third of privacy

budget. Since each user randomly chooses 2 out of g segments to report, the population is

divided into
(

g
2

)
groups, each reporting for one pair of segments. When n users are reporting,

one expects that about n
g/2 users report on each segment, and about n

g(g−1)/2 users report

each pair of segments.

48

The aggregator first identifies the frequent patterns in each of the g segments, denoted

by C1, . . . , Cg. Then, it queries, for each pair 1 ≤ i, j ≤ g of segments, the frequency for the

values in Ci×Cj, where Cartesian product operation × is defined as Ci×Cj = {ci||cj : ci ∈

Ci, cj ∈ Cj}, and || is the string concatenation operation, and identifies the value pairs that

are frequent in segments i, j.

From the frequent value pairs for each pair of segments, the aggregator recovers candi-

dates for frequent values for the whole domain, using the a priori principle that if a value

v ∈ D is frequent, every pair of its segments must also be frequent. Because of this filtering

by segment pairs, the size of C is typically small enough to query the frequency of each value

in it.

The main limitation of this method is that, since the length of each segment must be

relatively small (one needs to enumerate through all possible values for each segment), when

the domain is large, there are too many pairs of segments. As a result, the number of users

reporting on each location-pair is limited, making it difficult to accurately identify frequent

value pairs. For example, when g = 16, each pair has only about n
120 users.

4.1.2 The Multiple Channel Method (HASH)

Bassily and Smith proposed an approach which we call Multiple Channel Method (HASH)

[8]. Our description of HASH below simplifies that in [8], and is equivalent to it. This

approach separates the values into multiple channels so that with high probability each

channel has at most one frequent value, and then identifies this candidate frequent value by

identifying each bit of it.

The approach uses a hash function H that maps each input value v to an integer in

{1 . . . h}. We say that v is mapped to the channel H(v). The value h needs to be large

enough to ensure that the probability that any two frequent values are mapped to the same

channel is low. Each user with input v randomly selects i such that 0 ≤ i < m and reports:

〈A(v), i, b1, b2, · · · , bh〉

49

The privacy budget ε is divided into two parts ε1 + ε2 = ε. Sending the value v uses ε1; bj’s

are computed such that when j 6= H(v), b is a randomly sampled bit, and when j = H(v), b

is a perturbed value of the v[i], flipped with probability q = 1
eε2 +1 . That is, each user chooses

one of the m bit to report.

From each channel, the aggregator extracts a candidate frequent value by taking the

majority vote for each bit. The aggregator then queries the frequency of these candidates

and outputs the frequent values.

One main limitation of this approach is that since each user reports a single bit, only a

small number of users are reporting for each bit. For example, with m = 128, only n
128 users

participate in the determination of candidate for each bit. Furthermore, to correctly recover

the candidate value, each of the 128 bits must be recovered correctly. (While error correction

code is suggested in [8], that will further reduce the group size and increase the probability

that any one bit is recovered correctly.) This limitation can be addressed by having each

user report a bigger block (such as 16 bit) at a time, which does improve the accuracy.

Another limitation is that since one identifies a single candidate from each channel, each

user has to report on multiple channels, and the oracle queries must be made on all h

channels. This adds a multiplicative factor of h to the communication and computation

overheads.

4.2 The Prefix Extending Method

In both SPM and HASH, to deal with the challenge of large domains, a bit string input

is divided into non-overlapping segments so that one can recover frequent patterns in each

segment. These patterns need to be combined into a set of candidate frequent values. SPM

does this by making each user report a pair of segments, dividing the population into
(

g
2

)
groups. HASH does this by using multiple channels so that within each channel one focuses

on identifying a single candidate frequent value.

We observe that instead of dividing a bit string into non-overlapping segments, one can

use segments that overlap with each other. In particular, one can consider prefixes of different

50

lengths. We propose the Prefix Extending Method (PEM), which gradually identifies longer

and longer frequent prefixes.

4.2.1 Overview of Prefix Extending Method (PEM)

The PEM method is parameterized by the parameter g. The population is divided into

g mutually exclusive groups. A user is randomly assigned into one of g groups. (The

assignment of users to groups can be made by the aggregator, or by having each user selecting

a group at random.) The groups are indexed from 1 to g. To identify k heavy hitters, users

in the i-th group use an FO protocol to report the prefix of length

si = dlog2 ke+
⌈
i× m− dlog2 ke

g

⌉
.

Let D1 = {0, 1}s1 , the aggregator uses the first group’s reports to identify which values

in D1 are frequent prefixes. Let C1 be the result. The aggregator then constructs D2 =

C1 × {0, 1}s2−s1 , which are candidates for longer frequent prefixes, and uses the second

group’s reports to identify the frequent ones as C2. This continues until the last step where

Cg gives the set of frequent values.

Example 1. For example, consider the case that D consists of length-128 binary strings,

and we want to identify the 28 = 256 most frequent values. We could divide users into

g = 6 groups, with the i’th group (1 ≤ i ≤ 6) using an FO protocol to report the prefix of

length 8 + 20i. That is, the first group reports 28-bit prefixes, the second group reports 48-bit

prefixes, and so on. The 6th and last group reports the 128-bit values. Using reports from

the first group, and querying the frequency of every one of the 228 length-28 prefix, we can

discover C1, the 28 most frequent length-28 prefixes. Using reports from the second group,

and querying the 228 strings obtained by appending a string in C1 with each length-20 binary

string, we can discover C2, the 28 most frequent length-48 prefixes. By iterating the above

step, we can discover the 28 most frequent values with a total of 6× 228 FO queries.

Algorithm 1 gives the outline of PEM. It is executed between the server and the users.

The server iterates through the groups. In group i for i = 1, 2, . . . , g, the server constructs

51

Algorithm 1 PEM
Input: n, m, k, ε, k, g.
Output: Top-k heavy hitters Cg and their frequencies.

1: procedure PEM(n, m, k, ε)
2: Partition users into g groups
3: Init s0 ← dlog2 ke, C0 ← {0, 1}s0

4: for i = 1 to g do . Server side
5: si ← dlog2 ke+ di× m−dlog2 ke

g
e

6: Construct Di = Ci−1 × {0, 1}si−si−1

7: Receive reports from users
8: Estimate frequency of all v ∈ Di

9: Construct Ci as k highest estimated values
10: for j = 1 to n do . User side
11: User j gets group assignment i
12: si ← dlog2 ke+ di× m−dlog2 ke

g
e

13: User j reports 〈i,A(vj[0 : si])〉

the domain Di, receives the reports from users in that group, and estimates the values in

Di using the frequency oracle. The top-k highly estimated values are identified as the prefix

candidates Ci ⊂ Di. The final results are Cg and its corresponding estimations. On the user

side, each user just reports a prefix of his private value using the frequency oracle.

Privacy Guarantee. We show that when using any FO protocol that satisfies ε-LDP,

PEM satisfies ε-LDP.

Theorem 4.2.1 (Privacy of PEM). PEM satisfies ε-LDP when it uses an FO protocol that

satisfies ε-LDP.

52

Proof: For each user, the report of PEM consists of an index i, which is determined

indepedent of the user’s private input, and an output from the underlying frequency oracle.

For any input v1, v2 ∈ D, and for any specific tuple 〈i, y〉 ∈Range(PEM), we have

max
v1,v2,〈i,y〉

Pr [PEM(v1) = 〈i, y〉]
Pr [PEM(v2) = 〈i, y〉]

= max
v1,v2,〈i,y〉

Pr [A(v1[0 : si]) = y|i] · Pr [i]
Pr [A(v2[0 : si]) = y|i] · Pr [i] (4.1)

= max
v1,v2,y

Pr [A(v1[0 : si]) = y]
Pr [A(v2[0 : si]) = y]

≤eε (4.2)

Pr [i] from line (4.1) represents the probability the user chooses i. Since it is random and

independent of the private value, it is 1/g. The last line (4.2) is derived from the theorem

that the FO perturb function A is ε-LDP.

4.2.2 Instantiation and Analysis of PEM

Dividing population instead of budget. Note that we divide users into groups and

require each user to answer a separate question. An alternative is to let each user report

v[0 : si] for all i ∈ 1, . . . , g, and use ε/g as the privacy parameter for each reporting. This

approach, however, will deteriorates utility, as pointed out in Section 3.4.2 .

Choice of FO. One can use different FO protocols to instantiate PEM. So long as the FO

protocol satisfies ε-LDP, privacy is satisfied. The criteria is accuracy, communication, and

computation cost. In the setting of large domains, we propose to use OLH, since it achieves

optimal accuracy and communication cost. More importantly, it makes the overall protocol

non-interactive: each user hashes his prefix, and the aggregator only estimates values that

are interested. To estimate the frequency of one value, the server needs to evaluate n/g hash

function, where n/g is the number of user reports used for the estimation.

Complexity analysis. The server-side computation is dominated by the number of queries

to the frequency oracle. Specifically, constructing each Ci requires evaluating the frequency

53

of |Di| = k · 2si−si−1 ' k · 2d m−dlog2 ke
g

e values. Note that one estimation requires evaluating

n/g hash functions, and there are g groups. Therefore, the total number of oracle queries is

k · 2d m−dlog2 ke
g

e · n
g
· g = nk · 2d m−dlog2 ke

g
e. (4.3)

Observe that the computation complexity grows with smaller g. Also note that within each

iteration, the evaluation for each hash function can be paralleled.

Example 2. Continuing Example 1 , instead of dividing the users into 6 groups, we could

divide the users into g = 12 groups (with each successive group reporting prefixes that are 10

bit longer). This would require 12× 220 FO queries in total. We could also divide the users

into g = 4 groups, which requires 4× 238 FO queries in total.

4.2.3 Concurrent work: PEM1.

After we finished this work (and made public [12]), we found a simultaneous paper [15]

by Bassily et al. This paper proposes two methods to handle the heavy hitter problem. The

first method is similar to our PEM protocol except that each group of users report on one

incremental bit. We call it PEM1. This divides users into m groups. Since this line of work

is motivated by the applications where m is large, dividing the population into m groups

will result in poor accuracy. We include comparision with this method in our experiments.

The other method is basically the HASH method with only
√

n channels (instead of

n1.5 channels, as suggested in [8]). In our experimental comparison with HASH in [12], we

already used around
√

n channels for HASH, and it significantly under-performed our pro-

posed method. The two methods are proven to provide similar utility guarantees with similar

complexities. In [15], only the first algorithm PEM1 is implemented, and no experimental

comparison with SPM is conducted.

4.2.4 Concurrent work: PrivTrie.

We also found another concurrent work, PrivTrie [16], which considers a more realistic

setting where the length of each user’s value is not fixed. The main idea of PrivTrie is similar

54

to PEM and PEM1: For each location, it tests which prefix is more frequent, and then uses

the frequent prefixes as the candidate to test the next location.

PrivTrie deals with ASCII string values and choose to extend by one character each time,

this is equivalent to choosing g = m/8. This suggests that while researchers hit upon the

idea of using PEM, how the parameter g impacts accuracy was not well understood, and

researchers chose whatever g that appears natural.

The interesting idea (and the major structural difference from PEM) of PrivTrie is the

dynamic group allocation. That it, less users will be allocated to estimate the very beginning

prefixes, and more users can be assigned to evaluate the final estimation. Specifically, the

users are partitioned into batches; each time, the aggregator estimates one prefix’s frequency

using one batch of users, until the aggregated count estimation exceeds a threshold 4n

ε·
√∑

nb

,

where nb is the number of users per batch, and ∑nb is the total number of users reporting

this prefix. Then the prefix is considered frequent and pretended by one character. Each user

can keep reporting on new prefixes so long as these prefixes are not result from extending

those he already have reported. After identifying the frequent strings, a post-processing step

modified from [17] is used to make the final estimation more accurate.

While the idea seems promising, PrivTrie is highly interactive. That is, the aggregator

needs to explicitly tell each user which prefixes he needs to report. Note that PEM is non-

interactive in a sense that each user can report his prefix once using OLH, and the aggregator

can examine all prefixes of the same size.

Another shortcoming of PrivTrie is that it uses threshold testing. While the analysis is

made easier than the top-k version, the empirical utility will be poor when the threshold

is set to an inappropriate value. If the threshold is too low, there are too many prefix

candidates, which will blow up the computational cost; if it is set too high, there will be very

few, even no candidate identified. As can be seen in the evaluation section, the threshold

value 4n

ε·
√∑

nb

from paper [16] does not work in some of our experiment setting.

55

4.3 Choosing the Parameter g

An important parameter in PEM is g, the number of groups. As shown in Section 4.2.2 ,

a smaller g value leads to higher computational cost. If we consider only computational

efficiency, we would want to choose g to be m − dlog2 ke. PEM1 does this. However,

choosing a large g may not be good for accuracy. In this section, we answer the question

how to choose g to obtain the best accuracy.

4.3.1 Impact of g

For a heavy hitter identification protocol to be accurate, we want two things:

• High recall: That is, truly frequent values will be identified as frequent.

• Low False Positive Rate (FPR): That is, few infrequent values will be identified as

frequent.

The choice of g affects both recall and FPR in the following ways.

1. A larger g leads to lower recall because PEM filters candidate frequent prefixes g times.

For a frequent value to be successfully identified, it needs to pass the filtering g times.

2. A larger g leads to lower recall and higher FPR because of its effect on sampling error.

Since each group is a subset of the overall population, the distribution in a group may

be different from the distribution of the population. With a larger g, the number of

users in each group will be smaller, and the sampling error is larger.

3. A larger g leads to lower recall and higher FPR because of larger SD of the (normalized)

estimation, which is linear in 1√
n/g

.

4. A larger g leads to lower FPR because in each iteration there are fewer candidates

to test. Each candidate has some probability to get a very high estimated frequency.

There are a fixed number of truly frequent candidates, the more candidates that are

tested, the more false positives we will get.

56

Because g impacts accuracy in so many different ways, comparing overall impacts of

different g values is quite challenging. We deal with the challenge by simplifying the com-

parison. We ignore the first and second effect, namely more rounds and larger sampling

error, and focus on the third and fourth effect. That is, we compare the effect of smaller

groups and fewer candidates. We will show that these two effects largely cancel each other

out. Since the other factors all favor smaller g values, this shows that overall smaller g is

preferred for accuracy. We will verify this using empirical evaluations in Section 4.3.4 .

More specifically, we compare the accuracy of the last round only, assuming that the

previous rounds have preserved all frequent prefixes and that the group for the last round

has the same distribution as the overall population. That is, we perform a hypothetical

comparison such as the following:

Example 3. We want to comparing the effect of using g = 4 versus g = 12 when aiming

to select the 28 frequent values with a 128-bit domain, with n = 6 × 106 users. We want to

know which of the following two hypothetical case leads to more accurate selections.

• Case g = 4: we have a group of n/4 = 1.5m users, are given the set of 28 most frequent

98-bit prefixes, and are asked to select the 28 frequent values among the 238 candidates.

• Case g = 12: we have a group of n/12 = 0.5m users, and are given the set of 2118-bit

prefixes, and are asked to select the 28 frequent values among the 218 candidates.

In the above example, because the g = 4 case has a larger group size, this leads to a

lower SD and more accurate estimates for the frequent values. However it has 238−218 ≈ 238

additional candidate values, which could lead to a lot more false positives. Our analysis

focuses on understanding the FPR. We introduce the concept of sensitivity threshold.

4.3.2 The Sensitivity Threshold for LDP

The estimated frequency of a value v (computed by Equation (3.1) when OLH is used)

is a linear function of the random variable Iv, which counts how many reports “support” v.

Let n be the number of reports, then Iv is the summation of n Bernoulli random variables.

Since n is very large in our setting (typically thousands or more), Iv can be approximated by

57

a Gaussian distribution. Now consider the estimated frequency of a value v, which is a linear

function of Iv. We already know it is unbiased and its variance (e.g., Equation (3.12)); now

we also know it follows a Gaussian distribution, and we can derive the mean and variance of

the Gaussian distribution.

When one estimates the frequencies of all values in a large candidate set and then selects

the k most frequent ones among them, one wants to avoid false positives that are caused by

low-frequency values. Among a population of size n and domain of size d, where d is quite

large, the vast majority of the values have a count of 0 or very close to 0. We thus care

about when we make d independent samples from a zero-mean Gaussian distribution, how

many sampled values will be above a certain threshold.

Definition 4.3.1 (Sensitivity Threshold). The threshold function Ψ(σ, d, n, T) computes

the smallest threshold θ such that from d independent sampling of a zero-mean Gaussian

distribution with variance σ2 · n, the expected number of sampled values that are above θ · n

is ≤ T .

When using an FO with normalized standard deviation σ, if we want to take all values that

have estimated frequency above θ, then we would expect to find around T false positives

from the very low-frequency ones. Fixing the number of false positives one is willing to

tolerate (the parameter T), one can reliably identify frequent values with frequency above

θ = Ψ(σ, d, n, T). Specifically, assume the CDF that a Gaussian variable is sampled above

θ · n is

Φ(θn|0, σ
√

n) =
∫ ∞

θn

1√
2πσ2n

· e− x2
2σ2n dx

Ψ calculates a θ value such that the CDF equals T/d. Namely,

Ψ(σ, d, n, T) = Φ−1(T/d|0, σ
√

n)

Two different g values lead to different n values and different d values; and we can thus

compare their resulting θ values for the same t and σ. Assume OLH is used, σ =
√

4eε

(eε−1)2

according to Equation (3.12). Figure 4.1 gives the value of Ψ(σ, d, n, T) under different

settings.

58

Table 4.1. The value of the threshold Ψ(σ, 2m, n, 1) for different ε, m, and n
PPPPPPPPPε, m, n

g 1 2 3 4

1, 32, 104 0.119629 0.137374 0.144731 0.154686
1, 32, 105 0.037832 0.043285 0.045536 0.048738
1, 32, 106 0.011960 0.013674 0.014388 0.015396
1, 32, 107 0.003781 0.004322 0.004546 0.004866
1, 48, 104 0.149492 0.163341 0.168102 0.178922
1, 48, 105 0.047267 0.051595 0.052936 0.056182
1, 48, 106 0.014937 0.016314 0.016738 0.017751
1, 48, 107 0.004723 0.005158 0.005294 0.005610
1, 64, 104 0.174594 0.186712 0.192771 0.199696
1, 64, 105 0.055144 0.058866 0.060857 0.062761
1, 64, 106 0.017426 0.018599 0.019218 0.019845
1, 64, 107 0.005510 0.005881 0.006077 0.006271
1, 128, 104 0.250765 0.258555 0.261585 0.267211
1, 128, 105 0.079250 0.081804 0.082799 0.084400
1, 128, 106 0.025056 0.025844 0.026164 0.026683
1, 128, 107 0.007923 0.008173 0.008272 0.008437
2, 32, 104 0.053054 0.060933 0.064084 0.068286
2, 32, 105 0.016788 0.019178 0.020202 0.021646
2, 32, 106 0.005302 0.006063 0.006376 0.006825
2, 32, 107 0.001677 0.001916 0.002016 0.002158
2, 48, 104 0.066447 0.072487 0.074325 0.078790
2, 48, 105 0.020964 0.022907 0.023511 0.024903
2, 48, 106 0.006623 0.007235 0.007424 0.007865
2, 48, 107 0.002094 0.002287 0.002347 0.002488
2, 64, 104 0.077477 0.082466 0.085355 0.088244
2, 64, 105 0.024456 0.026111 0.026977 0.027844
2, 64, 106 0.007728 0.008248 0.008527 0.008800
2, 64, 107 0.002443 0.002608 0.002694 0.002781
2, 128, 104 0.111353 0.115030 0.116080 0.118706
2, 128, 105 0.035144 0.036247 0.036746 0.037508
2, 128, 106 0.011111 0.011463 0.011599 0.011835
2, 128, 107 0.003513 0.003624 0.003668 0.003741

Now we go back to the original problem of comparing the utility for different g values.

Table 4.1 gives the calculated θ values for different settings. For g > 1, the aggregator

estimates d values, where d = k · 2sg−sg−1 − k = k · 2dm−dlog2 kee−
⌈

(g−1)· m−dlog2 ke
g

⌉
− k, using

n/g users. In this table, each row corresponds to one setting, and each column corresponds

to one g value. Note that within each row, the typical trend is that when g increases, θ

increases.

59

10
−4

10
−3

10
−2

10
−1

10
0

 0.5 1 1.5 2 2.5 3 3.5

θ

ε

104

105
106

107
108

(a) m = 64, T = 1

10
−4

10
−3

10
−2

10
−1

10
0

 0.5 1 1.5 2 2.5 3 3.5

θ

ε

104

105
106

107
108

(b) m = 128, T = 1

10
−4

10
−3

10
−2

10
−1

10
0

 0.5 1 1.5 2 2.5 3 3.5

θ

ε

104

105
106

107
108

(c) m = 256, T = 1

10
−4

10
−3

10
−2

10
−1

10
0

 64 128 192

θ

m

104

105
106

107
108

(d) ε = 0.5, T = 1

10
−4

10
−3

10
−2

10
−1

10
0

 64 128 192

θ

m

104

105
106

107
108

(e) ε = 1.0, T = 1

10
−4

10
−3

10
−2

10
−1

10
0

 64 128 192

θ

m

104

105
106

107
108

(f) ε = 2.0, T = 1

10
−4

10
−3

10
−2

10
−1

10
0

10
5

10
6

10
7

10
8

θ

n

0.5 1.0 2.0 4.0

(g) m = 64, T = 1

10
−4

10
−3

10
−2

10
−1

10
0

10
5

10
6

10
7

10
8

θ

n

0.5 1.0 2.0 4.0

(h) m = 128, T = 1

10
−4

10
−3

10
−2

10
−1

10
0

10
5

10
6

10
7

10
8

θ

n

0.5 1.0 2.0 4.0

(i) m = 256, T = 1

10
−4

10
−3

10
−2

10
−1

10
0

10
1

10
1

10
1

θ

T

0.5 1.0 2.0 4.0

(j) m = 64, n = 104

10
−4

10
−3

10
−2

10
−1

10
0

10
1

10
1

10
1

θ

T

0.5 1.0 2.0 4.0

(k) m = 128, n = 106

10
−4

10
−3

10
−2

10
−1

10
0

10
1

10
1

10
1

θ

T

0.5 1.0 2.0 4.0

(l) m = 256, n = 108

Figure 4.1. Numerical results of Ψ.

4.3.3 Choice of g

Table 4.1 indicates that looking at the final test only, setting g = 1 (which equals OLH)

makes identification of high-frequency items most reliable. In the context of heavy hitter

identification, when taking the filtering effect of the previous rounds, the advantage of using

smaller g values will be more pronounced.

Regarding the running time, on the other hand, a small g will make the running time

increase greatly. In particular, should be as small as possible.

60

Table 4.2. The empirical utility (measured by the average number of identi-
fied heavy hitters) of PEM under different settings, assuming m = 32.

PPPPPPPPPDataset, ε
g 1 2 3 4

URL, 1.0 6.4 4.7 4.1 4.0
URL, 2.0 14.3 12.8 11.4 8.5
AOL, 1.0 4.2 4.1 4.0 3.6
AOL, 2.0 8.5 7.8 6.9 7.2

Table 4.3. The empirical utility (measured by the average number of iden-
tified heavy hitters) of PEM under different settings, assuming m = 32. We
assume that the candidates used in the last round are always the true heavy
hitter prefixes.

PPPPPPPPPDataset, ε
g 1 2 3 4

URL, 1.0 6.4 6.8 8.2 8.4
URL, 2.0 14.3 13.9 13.4 13.3
AOL, 1.0 4.2 4.6 5.0 5.2
AOL, 2.0 8.5 8.1 9.0 9.4

4.3.4 Verifying the Analytical Results Empirically

We compute the empirical results for the different g in Table 4.2 and Table 4.3 . Under

the same evaluation setup as in Section 4.4 , the results are the average of 10 runs. Note

that we only compute m = 32, because the computational time increases exponentially with

m for g = 1. Specifically, in Table 4.2 , we can see the performance is best when g = 1. In

Table 4.3 , we assume all the candidates for the last round are the ground truth. The setting

for g = 3 is generally favorable, because the number of additional bits to be tested in the

final round is smaller. Note that when g = 1, the result is slightly worse, because there are

values with frequency close the that of the top-k heavy hitters, thus interfering the results

(but this will not happen when m becomes larger). However, when g > 1, those values are

to some extent eliminated. The standard deviations for both tables are around 1.

61

4.4 Evaluation

Now we discuss experiments that evaluate different protocols. Basically, we want to

answer the following questions: First, how many heavy hitters can be effectively identified.

Second, how much improvement is PEM over existing protocols. Finally, what are the effects

of different design choices in PEM.

4.4.1 Evaluation Setup

Each experiment is run 10 times, and the average and standard deviation are reported.

All algorithms are implemented in Python 2.7 and all the experiments are conducted on an

Intel Core i7-4790 3.60GHz PC with 16GB memory.

Utility Metric

F1 and NCR scores are used to measure utility.

F-measure (F1). Define vj as the j-th most frequent value. Denote ground truth for

top k values as CT = {v1, v2, . . . , vk}. The k values identified by the protocol is Cg. CT ∩Cg

is the set of real top-k values that are identified by the protocol, and CT ∪ Cg is the union

of the two sets. We use the widely used F-measure, which is the harmonic mean of precision

and recall, i.e.,

F1 = 2
1/P + 1/R

= 2PR

P + R

where P = |CT ∩ Cg|
|Cg|

, R = |CT ∩ Cg|
|CT |

We note that when |CT | = |Cg|, the precision P equals the recall R, and the F-measure

equals the precision, as well as 1 minus the false negative rate.

Normalized Cumulative Rank (NCR). The F-measure uses only the unordered set

CT as the ground truth. As a result, missing the value with the highest frequency is penalized

the same as missing any others. To address this limitation, we assign a quality function q(·)

to each value, and use the Normalized Cumulative Gain (NCG) metric:

62

NCG =
∑

v∈Cg
q(v)∑

v∈CT
q(v)

We instantiate the quality function using v’s rank as follows: the highest ranked value

has a score of k (i.e., q(v1) = k), the next one has score k− 1, and so on; the k-th value has

a score of 1, and all other values have scores of 0. To normalize this into a value between 0

and 1, we divide the sum of scores by the maximum possible score, i.e., k(k+1)
2 . This gives

rise to what we call the Normalized Cumulative Rank (NCR); this metric uses the true rank

information of the top-k values.

Both F-measure and NCR are in the range [0.0, 1.0], where higher values indicate better

accuracy. We present results using these metrics and observe that the correlation among

them is quite stable.

Dataset

The following three datasets are used. We assume the Zipf’s distribution when optimizing

PEM. Note that in the real world, auxiliary information (heavy hitter dictionary) may exist

to help improve the result. For example, the system BLENDER [18] is proposed to work

under the assumption that a certain amount of users will participate in a centralized DP

protocol to find out the dictionary of heavy hitters. However, our focus is on the case where

there is no additional dictionary or the heavy hitters are changing frequently so that existing

dictionaries are not reliable to provide up-to-date information.

Frequent URL. In Rappor [14], the authors synthesized one million urls from a confi-

dential distribution of only 100 websites. The urls are fixed to be 20 bytes (160 bits) long

(padding or truncating if needed). We do not have the same dataset but collect a similar

dataset from Quantcast [19]. The dataset contains domain name and monthly visited people

of the 80 thousand most frequently visited websites. We limit urls to 20 bytes and limit

the analysis to a 5-minute period (we downloaded the data for one month, which contains

10 billion clicks, and down-sample it for 5-minute, i.e., divide the count for each number by

63

30 · 24 · 12), resulting a dataset containing 1.2 million data points, and 27 thousand unique

urls.

Query Trends. The AOL dataset contains user queries on AOL website during the first

three months in 2006. Similar to the settings of [18], we assume each user reports one query

(wlog., the first query). The queries are limited to be 6 bytes long. This results a dataset of

around 0.5 million queries including 0.12 million unique ones.

Synthetic Dataset. We generate a synthetic dataset of n = 1000000 data points

following the exponential distribution (also known as geometric distribution). The values

(heavy hitters) are randomly distributed. Each value is represented by m = 64 bits. The

exponential scale is 0.05, which is close to the experimental setting in [2].

Competitors

We initialize PEM so that the overall number of queries to the frequency oracle is bounded

to 220. In practice, PEM runs fast. We also consider the following algorithms: PEM, PEM1,

HASH, and SPM.

PEM1, SPM and HASH were designed to find heavy hitters based on threshold, but PEM

works for top k heavy hitters. For a fair comparison, we make some changes described below.

Note that PEM can also be changed to work for threshold. The corresponding results are

shown in Section 4.4.2 .

1. Replace Threshold Test. Existing methods require internal test and filtering based

on a threshold. That is, there is a final testing phase on all the identified values. Only those

tested above a threshold will be returned. We replace this constraint by releasing the top k

values for a fair comparison.

Specifically, in PEM1, at each iteration, prefixes with frequency lower than a fixed thresh-

old is discarded. We keep k values at each iteration. In Rappor, each segment or segment-pair

will be identified if its frequency is estimated above a threshold. We relax this by limiting

exactly k patterns in each segment. This ensures to identify at least k heavy hitters. For the

location-pairs, we keep adding segment-pairs until more than k candidates are identified.

64

2. Same Frequency Oracle. Existing methods use non-optimal LDP primitives, but

they can be changed. Specifically, SPM use RAP [2] as the internal LDP primitive, and

HASH use BLH, and PEM1 uses counter median sketch based primitive. We replace them

with OLH.

3. Reduce Number of Groups. For the url dataset, SPM specifies one segment length

to be two bytes. But for other domain length, there is no clear specification as to how long

each segment should be. Guided by the analysis of Section 4.3 , we make the segment length

as long as possible, conditioned on that they do not take too much more computational time

than PEM.

HASH uses n1.5 channel, which is infeasible in many scenarios. We observe that collision

of other non-frequent values does not effect much, and propose to use k1.5 channels. This is

similar to the second protocol described in [15].

4.4.2 Detailed Results

Effect of ε

We show F1 and NCR results of different methods varying ε in Figure 4.2 . It is clear

that PEM performs best among all three protocols. When ε increases, the number of heavy

hitters that can be identified will increase. The improvement is more significant when ε is

larger.

When ε = 4, PEM achieves F1 = 0.9, meaning that more than ten frequent URLs can be

identified; on the other hand, other methods can only identify two.

Effect of k

Figure 4.3 gives F1 and NCR results of different methods varying k. Similarly, we can

see that PEM outperforms its competitors. Note the correlation between F1 and NCR is

close: a protocol with better F1 score will also have a better NCR score. Thus, from now

on, we ignore the NCR scores.

For most of the cases, utility scores decrease with k, since the less frequent values are

harder to identify. In the synthetic dataset, PEM achieves almost full utility for up to k = 30.

65

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.5 1 1.5 2 2.5 3 3.5

F1

ε

PEM
PEM1

MCM
SPM

Trie

(a) URL, F1

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.5 1 1.5 2 2.5 3 3.5

F1

ε

PEM
PEM1

MCM
SPM

Trie

(b) AOL, F1

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.5 1 1.5 2 2.5 3 3.5

F1

ε

PEM
PEM1

MCM
SPM

Trie

(c) Synthetic, F1

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.5 1 1.5 2 2.5 3 3.5

N
C

R

ε

PEM
PEM1

MCM
SPM

Trie

(d) URL, NCR

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.5 1 1.5 2 2.5 3 3.5

N
C

R

ε

PEM
PEM1

MCM
SPM

Trie

(e) AOL, NCR

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.5 1 1.5 2 2.5 3 3.5

N
C

R

ε

PEM
PEM1

MCM
SPM

Trie

(f) Synthetic, NCR

Figure 4.2. Evaluation of the datasets, vary ε while fixing k = 16.

 0

 0.2

 0.4

 0.6

 0.8

 1

 5 10 15 20 25 30

F1

k

PEM
PEM1

MCM
SPM

Trie

(a) URL, F1

 0

 0.2

 0.4

 0.6

 0.8

 1

 5 10 15 20 25 30

F1

k

PEM
PEM1

MCM
SPM

Trie

(b) AOL, F1

 0

 0.2

 0.4

 0.6

 0.8

 1

 5 10 15 20 25 30

F1

k

PEM
PEM1

MCM
SPM

Trie

(c) Synthetic, F1

 0

 0.2

 0.4

 0.6

 0.8

 1

 5 10 15 20 25 30

N
C

R

k

PEM
PEM1

MCM
SPM

Trie

(d) URL, NCR

 0

 0.2

 0.4

 0.6

 0.8

 1

 5 10 15 20 25 30

N
C

R

k

PEM
PEM1

MCM
SPM

Trie

(e) AOL, NCR

 0

 0.2

 0.4

 0.6

 0.8

 1

 5 10 15 20 25 30

N
C

R

k

PEM
PEM1

MCM
SPM

Trie

(f) Synthetic, NCR

Figure 4.3. Evaluation of the datasets, varying k while fixing ε = 2.

On the other hand, in some cases, as k increases, the absolute number of heavy hitters that

can be identified stops increasing. This is because the task becomes hard so that even with

more guesses, it is still hard to find the heavy hitters.

66

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.5 1 1.5 2 2.5 3 3.5 4

F1

ε

PEM PEM1 MCM SPM

(a) F1, vary ε fixing θ = 0.023

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.005 0.01 0.015 0.02 0.025 0.03

F1

θ

PEM PEM1 MCM SPM

(b) F1, vary θ fixing ε = 2

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.5 1 1.5 2 2.5 3 3.5 4

F1

ε

zipfs
zipfs(-20)

exponential

(c) F1, vary θ fixing ε = 4

Figure 4.4. Evaluation of the synthetic datasets, vary one of ε and θ while
fixing the other. m = 64, n = 1000000.

Evaluation of Threshold Version

In this section, we modify PEM in order to identify heavy hitters with frequencies above

a threshold θ. Note that each threshold value θ can be translated into a corresponding k

value. The lower the θ, the bigger the k is.

Similar to the previous section, we also show results varying ε and θ. For brevity, we only

show F1 for the Exponential dataset in Figure 4.4 . The results are similar in other datasets.

As can be seen from Figure 4.4a , when we fix θ = 0.023 (0.023 is around frequency of the

16-the most frequent value in the dataset), PEM performs better. This advantage is most

profound when ε = 2, where PEM achieves performs much better than existing methods.

The effects of fixing ε and varying θ are also demonstrated in Figure 4.4b and 4.4c .

Effect of Partitioning Users

We further improve HASH and SPM algorithms so that instead of split privacy budget,

we allocate 10% of users for the final testing. The result shown in Figure 4.5a demonstrates

the advantage of partitioning users. Especially, when ε = 1.2, the original HASH method

achieves F1 less than 0.2, while the new version achieves nearly 0.8. For brevity, we only

show F1 score on Exponential dataset, but the trend is similar in other settings. Note PEM1

already partition the users.

67

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.5 1 1.5 2 2.5 3 3.5 4

F1

ε

PEM
new MCM

new SPM
 MCM

SPM

(a) Effect of partitioning users.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.5 1 1.5 2 2.5 3 3.5 4

F1

ε

2
1

4
6

8
10

(b) Effect of ∆s.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.5 1 1.5 2 2.5 3 3.5 4

F1

ε

zipfs
zipfs(-20)

exponential

(c) Effect of distribution as-
sumption.

Figure 4.5. Evaluation of the synthetic datasets, vary ε. m = 64, n =
1000000. F1 is plotted.

Effect of g

In Figure 4.5b , we demonstrate the effect of group g. We set g so that the difference

between any two consecutive prefixes si and si−1, defined as ∆s, is 1 (PEM1), 2, 4, 6, 8, 10

and plot the results. It is clear that when ∆s increases, the overall utility is better. When

ε = 0.9, we see the F1 score is 0.4 when ∆s = 2, and 0.8 when ∆s = 10. Note that there

should be a limit on how large ∆s can be, that is, ∆s is limited by the number of queries

the aggregator can make.

Comparison of Estimation Accuracy

Having demonstrated that PEM achieves better utility (no matter F1 or NCR scores),

we compare the estimation accuracy. We use the Mean Squared Error (Var) as the metric,

that is,

Var = 1
|CT ∩ Cg|

∑
v∈CT ∩Cg

(
nv − f̂(v)

)2
,

where nv is the true count of v and f̂(v) is its estimation by the protocol. As the quantity

converges to the theoretical variance, we also use Var to denote it Note that we only account

heavy hitters that are successfully identified by the protocol, i.e., v ∈ CT ∩ Cg.

Figure 4.6 shows comparison of estimation variance for different methods. Observe that

the HASH method has smaller variance than Rappor, because the final testing step of HASH

68

105

106

107

108

109

1010

 0.5 1 1.5 2 2.5 3 3.5 4

V
ar

ε

PEM PEM1 MCM SPM

Figure 4.6. Evaluation of the synthetic datasets, vary ε. m = 64, n = 1000000.

uses half of the ε, while that of Rappor uses one third. As a comparison, PEM uses only the

last group, which is one sixth of users, and achieves similar estimation accuracy. PEM1 uses

smaller amount of users, thus produces higher variance.

Effect of Distribution Assumption

In the experiment, to mimic the blindness of the distribution, we use a Zipf’s distribution

to optimize PEM. Note that in practice, it is hard to know the real distribution of the dataset.

The task of getting an accurate distribution is therefore left to the practitioners. Here, we

argue that except in extreme cases, the influence of a poor assumption to the final result is

not much. As we can see from Figure 4.5c , under different assumptions, the results are very

similar.

Comparison with PrivTrie

In [16], the authors compare PEM, setting ∆s = 5 (∆s is the difference between any two

consecutive prefixes si and si−1). We believe they did not conduct a fair comparison. So we

redo the experimental comparison.

In the experiment, we assume that all the values are binary and have the same length

m, and the size of the alphabet in PrivTrie is 28. The batch size is max(n/1000, 800/ε2). For

a fair comparison, we do not include the final consistent step proposed in [16], because this

69

is orthogonal to the structure of the method, and all methods can potentially benefit from

this additional step.

The results are shown in Figure 4.2 and 4.3 . As can be seen, the utility of PrivTrie

is always worse than PEM. Specifically, for the URL dataset, even when ε = 4, PrivTrie

still identifies no meaningful heavy hitters. As a contrast, PEM achieves F1 > 0.8 when

ε = 4. The results are as expected from the analysis in Section 4.2.4 . Note that PrivTrie

is highly interactive in that each user in PrivTrie will be contacted multiple times; and the

communication cost is high. In contrast, existing methods are all non-interactive.

70

5. FREQUENT ITEMSET MINING

(A version of this chapter has been previously published in IEEE SP 2018 [20].)

In [21], Qin et al. considered the problem of locally differentially private frequent itemset

mining. In this setting, there is a fixed set I of items. Each user j’s value vj is a set (we

also call it a transaction), and vj ⊆ I. For any item x ∈ I, its frequency is defined as the

number of transactions that include x, i.e., fx := |{vj | x ∈ vj}|. Similarly, the frequency of

any itemset x ⊆ I is defined as the number of transactions that include x as a subset, i.e.,

fx := |{vj | x ⊆ vj}|. The goal in this setting is to find items and, more generally, itemsets

that are frequent in the population. An item (itemset) is a top-k frequent item (itemset) if

its frequency is among the k highest for all items (itemsets).

We want to provide the strong notion of local differential privacy (LDP), namely, for any

pair of possible itemsets v and v′, their output distributions are similar (with respect to ε).

This problem is quite challenging even when one just tries to find frequent items. En-

coding each transaction as a single value in the domain D = P(I) (i.e., D is the power set

of I), and using existing FO protocols does not work. While we described methods for large

domains in last chapter, such techniques still does not scale to the case where the binary

encoding of the input domain has more than a few hundred bits. We want to be able deal

with hundreds or thousands of items. An FO protocol can identify only values that are very

frequent in the population, because the scale of the added noises is linear to square root of

the population size [13]. It is quite possible that each particular transaction appears relative

infrequently, even though some items and itemsets appear very frequently. When no value

in P(I) is frequent enough to be identified, using a direct encoding an aggregator can obtain

only noises.

For example, assume we have five transactions {a, c, e}, {b, d, e}, {a, b, e}, {a, d, e}, {a, f}.

While no transaction appears more than once, items a and e each appears 4 times, and the

itemset {a, e} appears 3 times. Thus the three most frequent itemsets are {a}, {e}, {a, e}.

71

5.1 Existing Work

5.1.1 LDPMiner

To the best of our knowledge, LDPMiner [21] is the only protocol for dealing with set

values in the LDP setting. While finding frequent itemsets is a natural goal, LDPMiner finds

only frequent items (i.e., singleton itemsets) and leaves the frequent itemset mining as an

open problem. LDPMiner has two phases.

Phase 1: Candidate Set Identification. The goal of Phase 1 is to identify a candidate

set for frequent items. The protocol requires as input a parameter L, which is the 90th

percentile of transaction lengths . That is, about 90% of all transactions have length no

more than L. When L is not known, it needs to be estimated. In [21], it is assumed that L

is available.

In Phase 1, each user whose transaction v has less than L items first pads it with dummy

items so that the transaction has size L. Then, the user selects at uniform random one item

v from the padded transaction (which could result in a dummy item), and uses FO to report

it with privacy budget ε/2. That is, each user sends to the aggregator AFO(ε/2)(v), where

A·(·) denotes the encode-perturbation algorithm of any LDP scheme described in Chapter 3 .

Note that the FO can perturb the original value into any value including the dummy item.

The aggregator then computes, for each item x ∈ I, its estimated frequency as

f̂FO(ε/2)(x) · L

where f̂·(·) denotes any FO’s aggregation function described in Chapter 3 . The intuition

behind the above estimation is that in each transaction of length L, each item x will be

selected and reported with probability 1
L

. Hence one needs to multiply the frequency oracle’s

estimation by a factor of L. Since 90% of transactions will have length exactly L after

padding, this estimation is reasonably accurate. From the estimates, the aggregator identifies

72

S, the set of 2k items that have the highest estimated frequencies, and sends S to the users.

Size of S is set to be twice that of the goal so that few candidates are missed in this step.

Phase 2: Frequency Estimation. On receiving S, each user intersects it with v, which

results in a transaction of length no more than |S| = 2k. She then pads her transaction

v ∩ S to be of size 2k, selects at uniform random one item v from the padded transaction,

and sends AFO(ε/2)(v) to the aggregator. Since each user sends two things, each in a way

that satisfies (ε/2)-LDP, by sequential composition, the protocol satisfies ε-LDP.

The aggregator estimates frequency for each item x ∈ S:

f̂FO(ε/2)(x) · 2k

Since the size of all user’s transactions have size 2k after padding, the estimated frequencies

are unbiased.

5.2 Padding-and-Sampling-based Frequency Oracles

The LDPMiner protocol deals with the challenge of set-valued inputs by using padding

and sampling before applying an FO protocol to report. We call such protocols Padding-

and-Sampling-based Frequency Oracle (PSFO) protocols. They use a padding-and-sampling

function, defined as follows.

Definition 5.2.1 (PS). The padding and sampling function PS is specified by a positive

integer ` and takes a set v ⊆ I as input. It assumes the existence of ` dummy items

⊥1,⊥2, . . . ,⊥` 6∈ I. PS`(v) does the following: If |v| < `, it adds ` − |v| different random

dummy elements to v. It then selects an element v at uniform random and outputs that

element.

A PSFO protocol then uses an FO protocol to transmit the element v. Note that the

domain of the FO becomes I ∪ {⊥1,⊥2, . . . ,⊥`}. To estimate the frequency of an item x,

one obtains the frequency estimation of x from the FO protocol, and then multiplies it by `.

More formally,

73

Definition 5.2.2 (PSFO). A padding-and-sample-based frequency oracle (PSFO) protocol is

specified by three parameters: a positive integer `, a frequency oracle FO, and the privacy

budget ε. It is composed of a pair of algorithms: 〈A, f̂〉, defined as follows.

PSFO(`, FO, ε) := 〈AFO(ε)(PS`(·)), f̂FO(ε)(·) · `〉

Note that if one does not do the padding step, it is equivalent to setting ` = 1. Doing so

significantly under-estimates the true counts. With padding to length ` and then sampling,

one can multiply the estimated counts by ` to correct the under estimation. However, items

that appear in transactions longer than ` can still be underestimated. At the same time,

multiplying the estimation by ` will enlarge any error due to noise by a factor of `.

Using this notation, the two phases of LDPMiner can be cast as using PSFO(L, FO, ε/2)

in Phase 1 and PSFO(2k, FO, ε/2) in Phase 2.

5.2.1 Privacy Amplification of GRR

LDPMiner uses the FO protocol in a black-box fashion. That is, in order to satisfy ε-LDP,

it invokes the FO protocol with the same privacy parameter ε. We observe that, since the

sampling step randomly selects an item, it has an amplification effect for privacy. This effect

has been observed and studied in the standard DP setting [22]: If one applies an algorithm

to a dataset randomly sampled from the input with a sampling rate of β < 1, to satisfy

ε-DP, the algorithm can use a privacy budget of ε′ such that eε′ −1
eε−1 = 1

β
.

We observe that the same privacy amplification effect exists when using the Generalized

Random Response (GRR) in PSFO.

Theorem 5.2.1 (PSFO-GRR: Privacy Amplification). AGRR(ε′)(PS`(·)) satisfies ε-LDP, such

that ε′ = ln (` · (eε − 1) + 1).

Proof: Let d′ = |I| + ` be the size of the new domain (I ′ = I ∪ {⊥1, . . . ,⊥`}), ε′ as

the privacy budget used in GRR. As defined in Equation (3.4), we have p′ = eε′

eε′ +d′−1 and

q′ = 1
eε′ +d′−1 as the perturbation probabilities.

74

It suffices to prove that for any ε ≥ 0, any v1, v2 ⊆ I, and any possible output t ∈ I ′,
p1
p2
≤ eε, where

p1 = Pr
[
AGRR(ε′)(PS`(v1)) = t

]
, and

p2 = Pr
[
AGRR(ε′)(PS`(v2)) = t

]
.

We first examine p1. When t ∈ v1,

p1 =Pr [t is sampled] · p′ + Pr [t is not sampled] · q′

= 1
max{|v1|, `}

· p′ + max{|v1|, `} − 1
max{|v1|, `}

· q′

=q′ + 1
max{|v1|, `}

· (p′ − q′)

≤q′ + 1
`
· (p′ − q′)

=1
`
p′ + `− 1

`
q′

When t 6∈ v1, p1 = q′. Similarly, for p2, when t ∈ v2,

p2 =Pr [t is sampled] · p′ + Pr [t is not sampled] · q′

=Pr [t is sampled] · (q′ + p′ − q′)

+Pr [t is not sampled] · q′

=q′ + Pr [t is sampled] · (p′ − q′) ≥ q′

When t 6∈ v2, p2 = q′. Thus p1
p2

is maximized when p1 = 1
`
p′ + `−1

`
q′ and p2 = q′. That is,

p1

p2
≤ p′/` + q′(`− 1)/`

q′

≤ eε′ 1
`

+ `− 1
`

= (` · (eε − 1) + 1)
`

+ `− 1
`

= eε

75

Table 5.1. Numerical value of ε′ under different ε and `.
HH

HHHHε
` 2 5 10 20 50 100

0.1 0.19 0.42 0.72 1.13 1.83 2.44
0.5 0.83 1.45 2.01 2.64 3.51 4.19
1.0 1.49 2.26 2.90 3.57 4.46 5.15
2.0 2.62 3.49 4.17 4.86 5.77 6.46
4.0 4.68 5.59 6.29 6.98 7.89 8.59

0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

 0.5 1 1.5 2 2.5 3 3.5

ε’

ε

2
5

10
20

50
100

Figure 5.1. Privacy amplification effect for different `.

Approximately, the privacy budget will be amplified by a factor of ln ` (will be the same

if ` = 1). Table 5.1 and Figure 5.1 give the corresponding ε′ value for ε under different `.

5.2.2 No Privacy Amplification of other FO

Interestingly, we found that this privacy amplification effect does not exist for OLH. The

reason is that, in GRR, the output domain of the perturbation is the same as the input

domain; thus each reported value y can “support” a single input element x = y in I. In

OLH, however, the reported value takes the form of 〈H, j〉 and can support any element x

in I such that H(x) = j. In case the chosen hash function H hashes all the user’s items into

the same value, no matter how we sample, the hashed result after sampling will always be

the same value. Therefore, there is no privacy amplification in the sampling.

76

Theorem 5.2.2 (PSFO-OLH: No Privacy Amplification). AOLH(ε′)(PS`(·)) does not satisfy

ε-LDP for any ε < ε′ when the input domain I is sufficiently large.

Proof: Let g be the output size of hash functions. Consider an input domain I such

that |I| ≥ g` + 1. Let H be the chosen hash function. By the pigeon hole principle, there

exists a value y such that H hashes at least ` items into y. Let v1 consists of ` items that

are hashed to y, and v2 consists of items that are not hashed to y. Then

Pr
[
AOLH(ε)(PS`(v1)) = 〈H, y〉

]
Pr
[
AOLH(ε)(PS`(v2)) = 〈H, y〉

]
=

Pr
[
AGRR(ε)(H(PS`(v1))) = y|H

]
Pr
[
AGRR(ε)(H(PS`(v2))) = y|H

]
=Pr [H is picked] · p′

Pr [H is picked] · q′ = p′

q′ = eε′

Therefore, AOLH(ε′)(PS`(·)) is not ε-LDP for any ε < ε′.

In Chapter 3 , another FO protocol, Optimal Unary Encoding (OUE), was proposed.

It has similar accuracy as OLH. In OUE, the reported value is a binary vector, each bit

representing one possible input value. One reported value can have multiple bits being 1,

supporting multiple input values. Similar to OLH, in case the reported vector supports all

the user’s items, there is no privacy amplification.

Note that from each user’s point of view, the hash function H is randomly chosen. Thus

only when the user happens to choose a hash function H that hashes all the users’ items

into the same hash value, would there be no privacy amplification benefit at all. However,

this can happen with only small probability. This observation suggests that (ε, δ)-LDP can

be applied to obtain some amplification effect.

5.2.3 Utility of PSFO

We now analyze the accuracy of PSFO. We first show that PSFO is unbiased when each

user’s itemset size is no more than `.

77

Theorem 5.2.3 (PSFO Expectation). PSFO(`, FO, ε) is unbiased when ` ≥ maxj∈[n] |vj|.

That is,

E
[

f̂PSFO(`,FO,ε)(x)
]

= nx,

where nx is the number of users who have item x.

Proof: We prove for GRR, using the general aggregate function given in Equation (3.1).

The proof for OLH can also be derived similarly.

E
[

f̂PSFO(`,GRR,ε)(x)
]

= E
[

f̂GRR(ε′)(x) · `
]

= E
[

C(x)− nq′

p′ − q′ · `
]

=` ·
nx

1
`
p′ + nx

`−1
`

q′ + (n− nx)q′ − nq′

p′ − q′ = ` ·
nx

1
`
(p′ − q′) + nxq′ + (n− nx)q′ − nq′

p′ − q′ = nx

The estimation is inherently noisy. We now calculate the variance of the estimation.

Theorem 5.2.4 (PSFO Variance). PSFO(`, FO, ε) has variance `2 times that of FO when

` ≥ maxj∈[n] |vj|. That is,

Var[f̂PSFO(`,FO,ε)(x)] = `2 · Var[f̂FO(ε′)(x)],

where ε′ = ln (` · (eε − 1) + 1) if FO is GRR.

Proof: We prove for GRR, and the proof for OLH can be easily derived.

Var[f̂PSFO(`,GRR,ε)(x)] = Var[f̂GRR(ε′)(x) · `]

=Var
[

C(x)− nq′

p′ − q′ · `
]

= `2

(p′ − q′)2 ·
∑

j

Var[C(x)]

= `2

(p′ − q′)2 ·
[
nx

(
1
`
p′ + `− 1

`
q′
)(

1−
(

1
`
p′ + `− 1

`
q′
))

+(n− nx)q′(1− q′)
]

' `2

(p′ − q′)2 · [nq′(1− q′)] = `2 · Var[f̂GRR(ε′)(x)]

78

5.2.4 Adaptive FO

PSFO needs to use an FO protocol. In Chapter 3 , it was shown that one should choose

GRR when d < 3eε + 2 (where d = |D| is the size of the domain under consideration), and

OLH otherwise. With sampling, GRR can benefit from privacy amplification, but OLH benefit

less. As a result, the criterion for choosing between GRR and OLH changes. For GRR, when

ε is used in PSFO, the effective privacy budget GRR can use becomes ln(`(eε − 1) + 1). We

use (3.5) (with domain size |I ′| = d + `) and get:

Var[f̂GRR(ln(`(eε−1)+1)(x) · `]

=n · `2 · d + l − 2 + ` · (eε − 1) + 1
(` · (eε − 1) + 1− 1)2

=n · d + l − 1 + ` · (eε − 1)
(eε − 1)2

=n · e
ε · ` + d− 1
(eε − 1)2 (5.1)

For OLH, by Equation (3.12) we have variance independent on d:

Var[f̂OLH(ε)(x) · `] = n · 4`2 · eε

(eε − 1)2 (5.2)

Comparing Equation (5.1) and Equation (5.2), when

d < `(4`− 1)eε + 1, (5.3)

using GRR itemset will lead to better accuracy. Note that by taking ` = 1, Equation (5.3) is

slightly different from the inequality of d < 3eε + 2 from Chapter 3 . This is because here we

consider a more general setting where some user may have no item at all, while the setting

79

of Chapter 3 is that each user has exactly one item. We propose Adap, which becomes GRR

or OLH adaptively (with new budget) based on Equation (5.3). That is,

Adap(ε) :=

 GRR(ln(`(eε − 1) + 1) if d < eε`(4`− 1) + 1,

OLH(ε) otherwise.

5.2.5 Choosing `

To use PSFO, one needs to decide what value of ` to use. When ` is small, there is less

variance but more bias (in the form of under estimation); when ` is large, there is more

variance and less bias. To find the suitable `, the high level idea is to find the right tradeoff

between bias and variance.

When identifying candidate items, the goal is find the most frequent items (but not

accurate frequencies for them), we propose to use a small `. The intuition is that, while

the bias is large when ` is small, the bias tends to be the same direction (namely under

estimation) for all items. While the absolute values of the counts are very inaccurate, the

relative order remain mostly unchanged. Note that it is possible the order is reversed after

sampling (if one item appears more often in smaller transactions, and another item appears

more often in larger transactions). To reduce this risk, we identify 2k candidate items (the

optimal size of the candidate set is dependent on the data distribution; we tried different

values and 2k appears to be a reasonable choice).

When estimating the actual frequency, one should use a larger ` to reduce bias. We

propose to use the 90th percentile L of the length of the input itemsets. While under

estimation can still occur, the degree is limited. Furthermore, when given the distribution

of the lengths of input itemsets, we propose to correct this under estimation by multiplying

the estimation by the factor:

u(L) = N

N −∑d
`=L+1 n`(`− L)

. (5.4)

Here N denotes the total number of items, n` denotes the number of users with itemset size

`, and ∑d
`=L+1 N `(`− L) gives the total number of missed items.

80

IS

S

S, L

S

L

IS, L

IS

L

Figure 5.2. Illustration of SVIM and SVSM. The users to the left are parti-
tioned into five groups. The aggregator to the right first runs SVIM with the
first three groups, and find the frequent items. Then the aggregator interacts
with the following two groups to find frequent itemsets.

5.3 Proposed Method

In this section, we propose solution for the frequent item and itemset mining. We first

present Set-Value Item Mining (SVIM) protocol to find frequent items in the set-value setting.

Based on the result from SVIM, we build Set-Value itemSet Mining (SVSM) protocol to find

frequent itemsets. The high level protocol structure is given in Figure 5.2 .

5.3.1 Frequent Item Mining

At a high level, SVIM works as follows: A set of candidate items are identified first.

Then these items are estimated and updated. The users are partitioned into three groups,

81

each participating in a task. Given that each task requires privacy budget of ε, each user is

protected by ε-LDP.

Step 1: Prune the Domain. When the domain is big (e.g., tens of thousands), the

aggregator has to first narrow down the focus to a small candidate set. Specifically, in Step

1, each user reports with a randomly selected value from her private set with length limit

set to 1:

APSFO(1,Adap,ε)(v).

The advantages of setting ` = 1 are first, every user will report an item, making the signal

strong; second, there is no extra cost of obtaining the exact L value.

The aggregator then estimates the frequency of the domain by

f̂PSFO(1,Adap,ε)(x),

and obtains the set S of the 2k most frequent items. S is then sent to users who participate

in Step 2. Note that this phase is unnecessary when the original domain size close to or less

than 2k.

Step 2: Size Estimation. Having narrowed down the domain from I to S, the aggregator

now estimates frequencies of items in S. As suggested by the analysis of PSFO (Section 5.2.5),

the aggregator first finds the 90-th percentile L (in this step) and then uses it as the limit

to estimate frequencies of S (next step).

To find L, each user in this task reports the size of the private set intersected with the

candidate S, i.e.,

AOLH(ε)(|v ∩ S|).

There is no sampling involved in this step, because each user has only one value. Here OLH

is as FO by default.

The aggregator in this step estimates the length distribution by calculating

f̂OLH(ε)(`)

82

for all ` ∈ [1, 2, . . . , 2k], and finds the 90 percentile L. That is, the aggregator then finds the

smallest L such that
∑L

`=1 f̂OLH(ε)(`)∑2k

`=1 f̂OLH(ε)(`)
> 0.9. Information of S and L are then sent to the users

for the next task.

Note that some of the estimates may be overwhelmed by noise, making it useless. For

this reason, we use the significance threshold T = Φ−1
(
1− 0.05

2k

)√
Var to filter the estimates,

where Φ−1 is the inverse of standard normal cumulative density function, and Var is specified

by Equation (3.12). Specifically, the aggregator keeps estimates that are greater than T , and

replaces all the others with zeros.

Step 3: Candidates Estimation. On receiving S and L, each of the rest of the users

reports a value sampled from the intersection of his private set v and the candidate set S,

padded to L, i.e.,

APSFO(L,Adap,ε)(v ∩ S).

The aggregator can estimates the candidates by running

f̂PSFO(L,Adap,ε)(x),

for all x ∈ S. Since the 90-th percentile L is used as limit, the estimates are slightly under-

estimate the truth. Therefore, the estimates are updated in the next step.

Step 4: Estimation Update. The update assumes that the missed count follow similar

distribution as the reported ones. Given that L is the 90 percentile, the difference will not

be significant. Thus the estimate for each item x is multiplied with a fixed update factor

(the noisy version of Equation (5.4))

u′(L) :=
∑2k

`=1 ` · f̂OLH(ε)(`)∑2k
`=1 ` · f̂OLH(ε)(`)−

∑2k
`=L+1(`− L) · f̂OLH(ε) (`)

(5.5)

Note that there is no privacy concern in this step because no user is involved. The information

is obtained from Step 2 and 3.

Difference from LDPMiner. The major differences between SVIM and LDPMiner are

many. (1) In Phase 1 of SVIM, the limit is set to one, instead of the 90-th percentile of

83

lengths of full transactions. (2) In Phase 2 of SVIM, the limit is reduced from |S| to the

90-th percentile L of the length of transactions when limited to items in S. (3) Phase 1 of

LDPMiner uses the 90-th percentile; it was assumed that this is provided as input. In SVIM,

the 90-th percentile of length is obtained in a way that satisfies LDP. (4) SVIM uses Adap

instead of black box FO. (5) SVIM has an update step at the end, which uses the length

distribution information to further reduces the bias. (6) In SVIM, users are partitioned

into groups, each answering one separate question, instead of answering multiple questions

each with part of ε. It is proved in Chapter 3.4.2 that this will make the overall result

more accurate. (7) SVIM uses OLH, a more accurate FO introduced in Chapter 3 . Since

improvements (6) and (7) are not introduced in this paper, in the experiments, for a fair

comparison, we evaluate on an improved version of LDPMiner. Specifically, OLH is used as

the FO, and users are partitioned into groups. That is, the evaluation shows only differences

due to (1), (2), (4), (5). Difference (3) means that SVIM is end-to-end private, and LDPMiner

needs a data-dependent input.

5.3.2 Frequent Itemset Mining

The problem of mining frequent itemsets is similar to mining frequent items. The desired

result becomes a set of itemsets instead of items. These frequent itemsets can be used, for

example, by websites, to mine assocition rules and make recommendations. However, the

task is much more challenging, because there are exponentially more itemsets to consider,

and each user also has many more potential itemsets.

In this section, we introduce SVSM for finding frequent itemsets effectively. In the high

level, the aggregator first obtains the frequent items by executing SVIM. The aggregator

then constructs a candidate set of itemsets IS. Finally the set IS is estimated in a fashion

similar to the latter part of SVIM.

Constructing Candidate Set. The challenging part of frequent itemset mining is to

construct IS. There are exponentially many possible itemsets that can be frequent. If one

can reduce it to a manageable range (thousands), one can cast the problem to the item

84

mining problem and run SVIM. Moreover, if size of IS is close to k, only the estimation of

IS (latter part of SVIM) suffices.

Let S ′ be the k most frequent items returned by SVIM. To effectively further reduce the

candidate size, we use information of the estimates of S ′. Specifically, for an itemset x, we

first guess its frequency, denoted by f̃x, as the product of the estimates for all its items,

i.e., f̃x = ∏
x∈x f̂ ′(x), where f̂ ′(x) = 0.9·f̂(x)

maxx∈S′ f̂(x) is the normalized estimate. The 0.9 factor of

f̂ ′(x) serves to lower the normalized estimates for the most frequent item, because otherwise,

the guessed frequency of any set without the most frequent item equals that of the set plus

the most frequent item, which is unlikely to be true. Then 2k itemsets with highest guessing

frequencies are selected to construct IS. The intuition is that, it is very unlikely that a

frequent itemset is composed of several infrequent items (while it is theoretically possible).

The guessing frequency is thus an effective measurement of the likelihood each itemset is

among the frequent ones.

Formally, in SVSM, the domain IS is constructed as

IS := {x : x ⊆ S ′, 1 < |x| < log2 k,
∏
x∈x

f̂ ′(x) > t},

where t is choosen so that |IS| = 2k.

Mining Frequent Itemset. After the domain IS is defined, the following protocol works

similar to SVIM for frequent item mining. Note that step 1 is not necessary since IS is

already small. For each user with value v, a set of values from the domain IS is obtained

first:

vs = {x : x ∈ IS, x ⊆ v}

such that each itemset x ∈ vs is a value in IS.

Then a group of users report the size of their vs’s with FO:

AOLH(ε)(|vs|).

85

After the aggregator evaluates the number of users that has ` itemsets for each ` ∈

[1, 2, . . . , 2k], the aggregator finds the 90 percentile L and send it to the users in the final

group, who then reports vs by

APSFO(L,Adap,ε)(vs).

The aggregator obtains the estimates by evaluating

f̂PSFO(L,Adap,ε)(x) · u′(L)

for any itemset x ∈ IS, where u′(L) is the update factor used for correcting bias (same

format as Equation (5.5)), and get results for the heavy itemsets and their estimates. Note

that as singletons are also sets, we also consider results obtained from SVIM when finding

frequent itemsets.

5.4 Evaluation

Now we discuss experiments that evaluate different protocols. Basically, we want to an-

swer the following questions: First, how many frequent items and itemsets can be effectively

identified. Second, how much do our proposed protocols improve over existing ones.

As a highlight, in the POS dataset, our protocols can correctly identify around 45 frequent

items (while existing ones can identify around 12), with much more accurate estimates (error

is 3 orders of magnitudes less).

5.4.1 Experimental Setup

Environment. All algorithms are implemented in Python 2.7 and all the experiments are

conducted on an Intel Core i7-4790 3.60GHz PC with 16GB memory. Each experiment is

run 10 times, with mean and standard deviation reported.

Datasets. We run experiments on the following datasets:

• POS: A dataset containing merchant transactions of half a million users and 1657

categories.

86

• Kosarak: A dataset of click streams on a Hungarian website that contains around one

million users and 42 thousand categories.

• Online: Similar to POS dataset, this is a dataset that contains merchant transactions

of half a million users and 2603 categories.

• Synthesize: The dataset is generated by the IBM Synthetic Data Generation Code

for Associations and Sequential Patterns 1.8 million transactions was generated, with

1000 categories. The average transaction size is 5.

For brevity, we only plot results for the one dataset (POS). The detailed results for other

datasets are deferred to the supplementary section.

Metrics. To measure utility, we use the following metrics. Define xi as the i-th most

frequent value (xi is an item in the task of item mining and an itemset in itemset mining).

Let the ground truth for top k values as xt = {x1, x2, . . . , xk}. Denote the k values identified

by the protocol using xr. Then xt ∩ xr is the set of real top-k values that are identified by

the protocol.

1. Normalized Cumulative Rank (NCR). For each value x, we assign a quality function

q(·) to each value, and use the Normalized Cumulative Gain (NCG) metric:

NCG =
∑

x∈xr
q(x)∑

x∈xt
q(x) .

We instantiate the quality function using x’s rank as follows: the highest ranked value

has a score of k (i.e., q(x1) = k), the next one has score k− 1, and so on; the k-th value has

a score of 1, and all other values have scores of 0. To normalize this into a value between 0

and 1, we divide the sum of scores by the maximum possible score, i.e., k(k+1)
2 . This gives

rise to what we call the Normalized Cumulative Rank (NCR); this metric uses the true rank

information of the top-k values.

87

2. Mean Squared Error (Var): We measure the estimation accuracy by squared errors.

That is,

1
|xt ∩ xr|

∑
x∈xt∩xr

(
fx · n− f̂(x)

)2
,

As the quantity converges to the theoretical variance, we also use Var to denote it. Note that

we only account heavy hitters that are successfully identified by the protocol, i.e., x ∈ xt∩xr.

5.4.2 Evaluation of Item Mining

For the item mining problem, our main focus is to compare the performance of our

proposed method SVIM, and the existing method, LDPMiner. We implemented them as

follows:

LDPMiner is almost implemented as described in [21]. For a fair comparison, we made

two modifications. First, we partition the users into two groups. The first group focus on

finding S, while the second focus on estimating S. Users in each group use the full privacy

budget ε to report. It is proven in Chapter 3.4.2 that by this way, the overall utility is

better, compared to keeping asking all the users multiple questions, with splited privacy

budget. Second, to get the 90th percentile L, an additional group of users are assigned to

report the size of their private set. As a result, there will be three groups, 10% of users

report size in advance, 40% report in the first phase, and 50% report in the second phase.

For SVIM, we do the similar thing. Half of the users report based on the original itemsets

to find the candidate set S, and the other half report after seeing the candidate set to

estimate S. The difference is, the 90th percentile L is used when estimating S. Therefore,

10% of all users are allocated to estimate L from the second half. That is, 50% report in the

first phase, 10% of users report size of the their itemsets intersected with S, and 40% report

one actual item.

To demonstrate the precise effect of each design detail, we also line up several intermediate

protocols between LDPMiner and SVIM. We present them with synonyms (that specify the

FO and ` used in both tasks) to highlight the difference as follows:

88

• (BLH, L), (SUE, 2k): LDPMiner. LDPMiner uses two FO’s BLH [8] and SUE [2]. It is

proven in Chapter 3 that the two performs not as good as OLH.

• (OLH, L), (OLH, 2k): The frequency oracles are replaced with OLH.

• (OLH, 1), (OLH, 2k): The first phase uses ` = 1. Note that L is no longer needed, so

there are two groups each consists of half of the users.

• (OLH, 1), (Adap, 2k): The second phase uses adaptive frequency oracle.

• (OLH, 1), (Adap, L): The second phase uses L. An extra group of 10% of users are

assigned to estimate that.

• (OLH, 1), (Adap, L)(c): The final results are updated based on the length distribution.

This is the SVIM.

Note that the allocation of 10% of users for length distribution is not fully justified. This is

because the optimal allocation depends heavily on the dataset, and 10% seems a reasonable

choice.

Detailed Results. In Figure 5.3 , we evaluate the above six protocols on POS dataset,

and plot the NCR and Var scores. Overall, the identification accuracy (indicated by NCR)

increases with ε, and decreases with k. Similarly, the estimation accuracy becomes better

(as the indicator Var decreases) when ε is larger, and worse (Var increases) if k is larger.

Now we analyze performance of each competitor in more detail.

1. (BLH, L), (SUE, 2k) → (OLH, L), (OLH, 2k): First of all, we observe the identification

accuracy improves when the FO in the first phase is changed from BLH to OLH. This happens

because, by using OLH, a more accurate S will be returned, and by using OLH in the second

phase, one can better identify the top k items. Note that the estimation accuracy actually

does not improve significantly, because better FO does a better job at reducing the noise

for the lower ranked values (thus NCR is higher). The estimation improvement is nearly

unnoticeable in the log based figures.

2. (OLH, L), (OLH, 2k) → (OLH, 1), (OLH, 2k): One major NCR improvement happens

when the length limit is changed from the 90th percentile L to 1. To this point, the top 2k

89

0.0

0.2

0.4

0.6

0.8

1.0

 0.5 1 1.5 2 2.5 3 3.5

f1

ε

(BLH,L),(SUE,2k)
(OLH,L),(OLH,2k)
(OLH,1),(OLH,2k)

(OLH,1),(Adap,2k)
(OLH,1),(Adap,L)

(OLH,1),(Adap,L)(c)

(a) POS, NCR, vary ε, k = 64

0.0

0.2

0.4

0.6

0.8

1.0

 20 40 60 80 100

nc
r

k

(BLH,L),(SUE,2k)
(OLH,L),(OLH,2k)
(OLH,1),(OLH,2k)

(OLH,1),(Adap,2k)
(OLH,1),(Adap,L)

(OLH,1),(Adap,L)(c)

(b) POS, NCR vary k, ε = 2

105

106

107

108

109

1010

1011

1012

 0.5 1 1.5 2 2.5 3 3.5

va
r

ε

(BLH,L),(SUE,2k)
(OLH,L),(OLH,2k)
(OLH,1),(OLH,2k)

(OLH,1),(Adap,2k)
(OLH,1),(Adap,L)

(OLH,1),(Adap,L)(c)

(c) POS, Var, vary ε, k = 64

105

106

107

108

109

1010

1011

1012

 20 40 60 80 100

va
r

k

(BLH,L),(SUE,2k)
(OLH,L),(OLH,2k)
(OLH,1),(OLH,2k)

(OLH,1),(Adap,2k)
(OLH,1),(Adap,L)

(OLH,1),(Adap,L)(c)

(d) POS, Var vary k, ε = 2

Figure 5.3. Singleton identification.

items returned by the first phase contains most of the top k items. The NCR bottle neck

lies on the second phase, which cannot effectively identify the top k from the 2k items. Note

that the estimation accuracy does not improve because the same FO is used in the second

phase.

3. (OLH, 1), (OLH, 2k) → (OLH, 1), (Adap, 2k): The most significant improvement hap-

pens when changing from OLH to Adap in the second phase. Both identification and esti-

mation accuracy significantly (NCR almost doubled, and Var reduced by two magnitudes).

This is because Adap significantly reduces the variance (from a factor of (2k)2 to 2k).

4. (OLH, 1), (Adap, L) and (OLH, 1), (Adap, L)(c): By reducing 2k to the 90th percentile

L in the second phase, the results are further improved. Note that the improvement is not

90

0.0

0.2

0.4

0.6

0.8

1.0

 0.5 1 1.5 2 2.5 3 3.5

nc
r

ε

SVSM(LDPMiner) SVSM(SVIM)

(a) NCR, vary ε, k = 64

0.0

0.2

0.4

0.6

0.8

1.0

 20 40 60 80 100

nc
r

k

SVSM(LDPMiner) SVSM(SVIM)

(b) NCR vary k, ε = 2

105

106

107

108

109

1010

1011

1012

 0.5 1 1.5 2 2.5 3 3.5

va
r

ε

SVSM(LDPMiner) SVSM(SVIM)

(c) Var, vary ε, k = 64

105

106

107

108

109

1010

1011

1012

 20 40 60 80 100

va
r

k

SVSM(LDPMiner) SVSM(SVIM)

(d) Var, vary k, ε = 2

Figure 5.4. POS Itemset Mining Results.

that significant but still meaningful. This is partly because an additional 10% of users are

assigned to estimate the size distribution (to find L and update the results).

Remark. Because of the noisy nature (noise is in the order of
√

n) of the local setting

of DP, in order to get meaningful information, one has to increase ε or n (or both). When

the number of users is not sufficiently large, as in our experiment, the improvement is not

significant in the small ε range, as being used by experiments of centralized DP (e.g., 0.1).

However, in the case of deployed LDP protocol (Google uses ε > 4 [2], and Apple uses ε = 1

or 2 [23]), the advantage of the proposed protocol is profound.

5.4.3 Evaluation of Itemset Mining

We evaluate the effectiveness of SVSM. We want to answer the questions how many

itemsets can be identified, and the effectiveness of using SVIM in SVSM.

91

We implement SVSM as follows, half of the users are allocated to find frequent items

first. Then the set IS is constructed and estimated, by taking each of the element of it as an

independent item. To compare the effect of SVIM over LDPMiner, we also instantiate SVSM

using LDPMiner. Specifically, half of the users are allocated to find frequent items using

LDPMiner; then IS is constructed similarly; finally, Phase 2 of LDPMiner is executed to

estimate frequency of IS and output the most frequent k itemsets. Note that the 50%−50%

allocation is used since mining singletons and itemsets are two goals. One can allocate more

users to singletons if singleton mining is more important.

Detailed Results. Figure 5.4 shows the results of mining frequent itemsets. As we

can see from the upper two sub-figures, when fixing k = 64, the proposed SVSM protocol

(instantiated with SVIM, as default) can achieve the NCR score of 0.7 at ε = 1 and 0.9 when

ε = 2. As to when LDPMiner is used to instantiate SVSM, the utility drops to around 0.2.

When ε is fixed at 2, the improvement of SVIM over LDPMiner is also significant, especially

when k is greater than 64 (SVSM-SVIM keeps NCR greater than 0.8, while NCR for SVSM-

LDPMiner drops to below 0.2). This suggests that SVSM with LDPMiner can effectively

find only around 10 most frequent itemsets, while SVSM with SVIM can find around 70,

demonstrating a 7× improvement.

For the estimation accuracy shown by the bottom two sub-figures, we can see that the

estimation error drops with ε, and increases with k. When using LDPMiner in SVSM the

error is two magnitudes greater than using SVIM. This effect is more significant when k is

greater than 64. This is because Var for LDPMiner is heavily dependent on k, while SVIM

not.

5.5 Supplementary Results

5.5.1 (ε, δ)-LDP and Limited Amplification Effect

In (ε, δ)-LDP, the value δ (which is typically very small) has an intuitive interpretation

of “failure” probability. That is, with probability 1− δ, A is ε-LDP. When δ = 0, (ε, 0)-LDP

becomes ε-LDP.

92

Definition 5.5.1 ((ε, δ) Local Differential Privacy). An algorithm A satisfies (ε, δ)-local

differential privacy ((ε, δ)-LDP), where ε ≥ 0, and 0 ≤ δ < 1 if and only if for any input

v1, v2 ⊆ I, we have

∀T ⊆Range(A) : Pr [A(v1) ∈ T] ≤ eε Pr [A(v2) ∈ T] + δ,

where Range(A) denotes the set of all possible outputs of the algorithm A.

To apply the privacy amplification, one uses δ to measure the probability that failure

(multiple values are hashed to the same value) happens, and derive the corresponding ε′ that

OLH can use. For example, when ` = 2, the probability both the user’s items are hashed

into the same value by the chosen hash function is δ = 1
g
, where g = deε′ + 1e is the range of

the hash function. Under the condition the user’s items are hashed to at least two results,

OLH can be used with ε′ = ln(2eε − 1).

Theorem 5.5.1 ((ε, δ)-LDP by OLH(ε′)). AOLH(ε′)(PS`(·)) satisfies (ε, δ)-LDP, where ε′ =

ln
(

`
`′ · (eε − 1) + 1

)
, and `′ is an integer such that

(
`

`′ + 1

)
· 1
d `

`′ · (eε − 1) + 2e`′ ≤ δ.

That is, for any ε ≥ 0, any input v1, v2 ⊆I, any set of output T ⊆Range(APSFO(`,GRR,ε′)),

Pr
[
AOLH(ε′)(PS(v1, `)) ∈ T

]
≤ eε·Pr

[
AOLH(ε′)(PS(v2, `)) ∈ T

]
+ δ. (5.6)

Proof: To prove (5.6), it is equivalent to first prove that a “failure” event, where more

than `′ items in v1 are hashed to the same value, happens with probability less than δ, and

then prove that under the condition the “failure” event does not happen, AOLH(ε′)(PS`(·))

satisfies ε-LDP.

Given that the hash function is chosen randomly, and the hash family is random, bound-

ing the “failure” probability is equivalent to bounding the probability of throwing ` balls

93

0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

 0.5 1 1.5 2 2.5 3 3.5

ε’

ε

2
5

10
20

50
100

(a) Amplification of OLH with δ = 10−3

0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

 0.5 1 1.5 2 2.5 3 3.5

ε’

ε

2
5

10
20

50
100

(b) Amplification of OLH with δ = 10−9

Figure 5.5. Privacy amplification effect for different `.

randomly into g bins, and the max load is more than `′. The probability can be calculated

as follows:

Let Ei,a be the event that bin i contains more than a balls, then

Pr [Ei,a] =
(

`

a + 1

)
1

ga+1

By union bound, we know that

δ = Pr
 ⋃

i∈[g]
Ei,`′

 ≤∑
i

Pr [Ei,`′] =
(

`

`′ + 1

)
1

g`′

where g = deε′ + 1e = d `
`′ · (eε − 1) + 2e.

Now it suffices to prove that for any ε ≥ 0, any v1, v2 ⊆I, any possible hash function H

(such that at most `′ items are hashed into the same value), and any t ∈ [g], p1
p2
≤ eε, where

p1 = Pr
[
AOLH(ε′)(PS`(v1)) = 〈H, t〉

]
, and

p2 = Pr
[
AOLH(ε′)(PS`(v2)) = 〈H, t〉

]
.

94

We first upper bound p1,

p1 =Pr [H is picked] · Pr
[
AGRR(ε)(H(PS`(v1))) = t|H

]
=Pr [H is picked] ·

(
Pr [v is sampled ∧H(v) = t] p′

+Pr [v is sampled ∧H(v) 6= t] q′
)

≤Pr [H is picked] ·
(

`′

max{|v1|, `}
· p′

+max{|v1|, `} − `′

max{|v1|, `}
· q′
)

The equality holds when H(v) = t for all v1. Similarly, we lower bound p2,

p2 =Pr [H is picked] · Pr
[
AGRR(ε)(H(PS`(v2))) = t|H

]
=Pr [H is picked] ·

(
Pr [v is sampled ∧H(v) = t] p′

+Pr [v is sampled ∧H(v) 6= t] q′
)

≥Pr [H is picked] ·
(

0
max{|v1|, `}

· p′

+max{|v1|, `}
max{|v1|, `}

· q′
)

= Pr [H is picked] · q′

The equality holds when none of the items from v2 are hashed to t by H. Thus, we now

bound p1
p2

:

p1

p2
≤ p′

q′ ·
`′

max{|v1|, `}
+ max{|v1|, `} − `′

max{|v1|, `}

= 1 + `′

max{|v1|, `}
·
(

p′

q′ − 1
)

≤ 1 + `′

`
·
(
eε′ − 1

)
= 1 + `′

`
·
(

`

`′ · (e
ε − 1) + 1− 1

)
= eε.

The equality is achieved when H(v) = t for all v1 while H(v) 6= t for all v2.

95

Table 5.2. Numerical value of ε′ under different ε and `. The upper part is
for δ = 10−3, and the lower part is for δ = 10−9.

HHH
HHHε

` 2 5 10 20 50 100

0.1 0.10 0.10 0.11 0.13 0.15 0.15
0.5 0.50 0.50 0.54 0.62 0.68 0.80
1.0 1.00 1.00 1.24 1.35 1.59 1.73
2.0 2.00 2.20 2.62 3.10 3.71 4.28
4.0 4.00 4.50 5.19 5.88 6.80 7.20
0.1 0.10 0.10 0.10 0.10 0.12 0.14
0.5 0.50 0.50 0.50 0.52 0.59 0.65
1.0 1.00 1.00 1.00 1.07 1.30 1.51
2.0 2.00 2.00 2.00 2.38 2.93 3.49
4.0 4.00 4.00 4.50 5.04 5.82 6.51

The theorem above gives us the formula to calculate δ and ε′ for any `′. Therefore, if δ is

specified, we are able to come up with the highest ε′. Table 5.2 and Figure 5.5 give results

of ε′ given ε and `, under the condition δ equals 10−3 and 10−9, respectively. We can see

ε′ ≥ ε, the difference becomes more significant when ε or ` is large. However, the increased

amount is less than that for GRR, as shown in Table 5.1 and Figure 5.1 .

Note that however, the (ε, δ)-LDP notion is strictly weaker (less secure) than ε-LDP and

thus not directly comparable here.

5.5.2 Additional Results

Item Mining. We report experimental results of item mining for the datasets of Kosarak,

Online and Synthesize in Figures 5.6 and 5.7 . We can see similar trends as that of Figure 5.3 .

Note that performance on different dataset is slightly different, because of different size,

distribution, etc. Specifically, NCR and Var are worse in the Kosarak dataset, than that

on the others, because the original domain is big (42 thousand, while the others are 1

96

0.0

0.2

0.4

0.6

0.8

1.0

 0.5 1 1.5 2 2.5 3 3.5

nc
r

ε

(BLH,L),(SUE,2k)
(OLH,L),(OLH,2k)
(OLH,1),(OLH,2k)

(OLH,1),(Adap,2k)
(OLH,1),(Adap,L)

(OLH,1),(Adap,L)(c)

(a) Kosarak, NCR, vary ε, k = 64

0.0

0.2

0.4

0.6

0.8

1.0

 20 40 60 80 100

nc
r

k

(BLH,L),(SUE,2k)
(OLH,L),(OLH,2k)
(OLH,1),(OLH,2k)

(OLH,1),(Adap,2k)
(OLH,1),(Adap,L)

(OLH,1),(Adap,L)(c)

(b) Kosarak, NCR vary k, ε = 2

0.0

0.2

0.4

0.6

0.8

1.0

 0.5 1 1.5 2 2.5 3 3.5

nc
r

ε

(BLH,L),(SUE,2k)
(OLH,L),(OLH,2k)
(OLH,1),(OLH,2k)

(OLH,1),(Adap,2k)
(OLH,1),(Adap,L)

(OLH,1),(Adap,L)(c)

(c) Online, NCR, vary ε, k = 64

0.0

0.2

0.4

0.6

0.8

1.0

 20 40 60 80 100

nc
r

k

(BLH,L),(SUE,2k)
(OLH,L),(OLH,2k)
(OLH,1),(OLH,2k)

(OLH,1),(Adap,2k)
(OLH,1),(Adap,L)

(OLH,1),(Adap,L)(c)

(d) Online, NCR vary k, ε = 2

0.0

0.2

0.4

0.6

0.8

1.0

 0.5 1 1.5 2 2.5 3 3.5

nc
r

ε

(BLH,L),(SUE,2k)
(OLH,L),(OLH,2k)
(OLH,1),(OLH,2k)

(OLH,1),(Adap,2k)
(OLH,1),(Adap,L)

(OLH,1),(Adap,L)(c)

(e) Synthetic, NCR, vary ε, k = 64

0.0

0.2

0.4

0.6

0.8

1.0

 20 40 60 80 100

nc
r

k

(BLH,L),(SUE,2k)
(OLH,L),(OLH,2k)
(OLH,1),(OLH,2k)

(OLH,1),(Adap,2k)
(OLH,1),(Adap,L)

(OLH,1),(Adap,L)(c)

(f) Synthetic, NCR vary k, ε = 2

Figure 5.6. More results on singleton identification.

to 3 thousand). Overall, the proposed method SVIM works persistently better than its

competitors.

Itemset Mining. We also plot results for itemset mining in Figure 5.8 . Results for the

synthetic dataset is not included because there is no frequent itemset (the items from the

97

105

106

107

108

109

1010

1011

1012

 0.5 1 1.5 2 2.5 3 3.5

va
r

ε

(BLH,L),(SUE,2k)
(OLH,L),(OLH,2k)
(OLH,1),(OLH,2k)

(OLH,1),(Adap,2k)
(OLH,1),(Adap,L)

(OLH,1),(Adap,L)(c)

(a) Kosarak, Var, vary ε, k = 64

105

106

107

108

109

1010

1011

1012

 20 40 60 80 100

va
r

k

(BLH,L),(SUE,2k)
(OLH,L),(OLH,2k)
(OLH,1),(OLH,2k)

(OLH,1),(Adap,2k)
(OLH,1),(Adap,L)

(OLH,1),(Adap,L)(c)

(b) Kosarak, Var vary k, ε = 2

105

106

107

108

109

1010

1011

1012

 0.5 1 1.5 2 2.5 3 3.5

va
r

ε

(BLH,L),(SUE,2k)
(OLH,L),(OLH,2k)
(OLH,1),(OLH,2k)

(OLH,1),(Adap,2k)
(OLH,1),(Adap,L)

(OLH,1),(Adap,L)(c)

(c) Online, Var, vary ε, k = 64

105

106

107

108

109

1010

1011

1012

 20 40 60 80 100

va
r

k

(BLH,L),(SUE,2k)
(OLH,L),(OLH,2k)
(OLH,1),(OLH,2k)

(OLH,1),(Adap,2k)
(OLH,1),(Adap,L)

(OLH,1),(Adap,L)(c)

(d) Online, Var vary k, ε = 2

105

106

107

108

109

1010

1011

1012

 0.5 1 1.5 2 2.5 3 3.5

va
r

ε

(BLH,L),(SUE,2k)
(OLH,L),(OLH,2k)
(OLH,1),(OLH,2k)

(OLH,1),(Adap,2k)
(OLH,1),(Adap,L)

(OLH,1),(Adap,L)(c)

(e) Synthetic, Var, vary ε, k = 64

105

106

107

108

109

1010

1011

1012

 20 40 60 80 100

va
r

k

(BLH,L),(SUE,2k)
(OLH,L),(OLH,2k)
(OLH,1),(OLH,2k)

(OLH,1),(Adap,2k)
(OLH,1),(Adap,L)

(OLH,1),(Adap,L)(c)

(f) Synthetic, Var vary k, ε = 2

Figure 5.7. More results on singleton estimation.

generator are independent). For the others, we can still see similar trends and that our

proposed solution works persistently better.

98

0.0

0.2

0.4

0.6

0.8

1.0

 0.5 1 1.5 2 2.5 3 3.5

nc
r

ε

SVSM(LDPMiner) SVSM(SVIM)

(a) Kosarak NCR, vary ε, k = 64

0.0

0.2

0.4

0.6

0.8

1.0

 20 40 60 80 100

nc
r

k

SVSM(LDPMiner) SVSM(SVIM)

(b) Kosarak NCR vary k, ε = 2

0.0

0.2

0.4

0.6

0.8

1.0

 0.5 1 1.5 2 2.5 3 3.5

nc
r

ε

SVSM(LDPMiner) SVSM(SVIM)

(c) Online NCR, vary ε, k = 64

0.0

0.2

0.4

0.6

0.8

1.0

 20 40 60 80 100

nc
r

k

SVSM(LDPMiner) SVSM(SVIM)

(d) Online NCR vary k, ε = 2

105

106

107

108

109

1010

1011

1012

 0.5 1 1.5 2 2.5 3 3.5

va
r

ε

SVSM(LDPMiner) SVSM(SVIM)

(e) Kosarak Var, vary ε, k = 64

105

106

107

108

109

1010

1011

1012

 20 40 60 80 100

va
r

k

SVSM(LDPMiner) SVSM(SVIM)

(f) Kosarak Var, vary k, ε = 2

105

106

107

108

109

1010

1011

1012

 0.5 1 1.5 2 2.5 3 3.5

va
r

ε

SVSM(LDPMiner) SVSM(SVIM)

(g) Online Var, vary ε, k = 64

105

106

107

108

109

1010

1011

1012

 20 40 60 80 100

va
r

k

SVSM(LDPMiner) SVSM(SVIM)

(h) Online Var, vary k, ε = 2

Figure 5.8. More results on itemset mining results for Kosarak dataset.

99

6. MARGINAL RELEASE

(A version of this chapter has been previously published in ACM CCS 2018 [24].)

Marginal tables are the workhorse of capturing the correlations among a set of attributes.

Many analysis tasks require the availability of marginal statistics on multidimensional datasets.

For example, finding correlations or fitting sophisticated prediction models.

We consider the problem of constructing marginal tables given a set of user’s multi-

dimensional data while satisfying local differential privacy (LDP). In this case, the aggregator

is interested in marginal tables over some subsets of attributes.

6.1 Problem Definition and Existing Solutions

In the marginal release problem, we consider the setting where each user has multiple

attributes, and the aggregator is interested in the joint distribution of some attributes. Such

multi-dimension settings occur frequently in the situation where LDP is applied. In [25],

[26], researchers studied the problem of constructing marginals in the LDP setting.

6.1.1 Problem Definition: Centralized Setting

We assume that there are m attributes A = {a1, a2, . . . , am}. Each attribute ai has di

possible values. Wlog, we assume that the values for ai are [di] := {0, 1, · · · , di − 1}. Each

user has one value for each attribute. Thus user j’s value is a m-dimensional vector, denoted

by vj = 〈vj
1, vj

2, . . . , vj
m〉 such that vj

i ∈ [di] for each i. The full domain for the users’ values

is given by D = [d1]× [d2]× · · · × [dd], in which × denotes Cartesian product. The domain

D has size |D| = ∏m
i=1 di.

Let us first consider the setting of answering marginal queries in the centralized setting,

where the server has all users’ data. For a population of n users, the full contingency table

gives, for each value v ∈ D, the fraction of users having the value v. We use F to denote the

full contingency table, and call the fraction for each value v ∈ D a cell in the full contingency

table.

100

Gender Age
v1 male teenager
v2 female teenager
v3 female adult
v4 female adult
· · · · · · · · ·
vn male elderly

(a) Dataset.

v F(v)
〈male, teenager〉 0.20
〈male, adult〉 0.15
〈male, elderly〉 0.20
〈female, teenager〉 0.15
〈female, adult〉 0.20
〈female, elderly〉 0.10

(b) Full contingency table.

v M{gender}(v)
〈male,∗〉 0.55
〈female,∗〉 0.45

(c) Marginal table for gender.

v M{age}(v)
〈∗,teenager〉 0.35
〈∗,adult 〉 0.35
〈∗,elderly〉 0.30

(d) Marginal table for age.

Figure 6.1. Example of the dataset, the full contingency table, and the marginal tables.

The full contingency table gives the joint distribution of all attributes in A. However,

when the domain size is very large, e.g., when there are many attributes, computing the

full contingency table can be prohibitively expensive. Oftentimes, one is interested in the

joint distribution of some subsets of the attributes. Given a set of attributes A ⊆ A, we use

VA = {〈v1, v2, . . . , vm〉 : vi ∈ [di] if ai ∈ A, otherwise vi = ∗} to denote the set of all possible

values specified by A.

When given a set A of k attributes, the k-way marginal over A, denoted by MA, gives

the fraction of users having each value in VA. We call the fraction for each value v ∈ VA a

cell of the marginal table. MA contains fewer cells than the full contingency table F. Each

cell in MA can be computed from summing over the values in the cells in F that have the

same values on the attributes in A.

Figure 6.1 gives an example where each user has two attributes gender and age. In the

centralized setting, the server has access to the raw dataset Figure 6.1 a, from which, it can

compute the full contingency table (Figure 6.1 b). The two marginal tables (Figure 6.1 c, and

Figure 6.1 d) can be computed from the contingency table.

101

6.1.2 Problem Definition: Local Setting

In the local setting, the aggregator does not have access to the raw dataset, such as the

one shown in Figure 6.1 a. Instead, each user possesses one row of the dataset and sends

a randomly perturbed value based on it. Our goal is to have the aggregator to use the

perturbed reports to compute with reasonable accuracy any k-way marginal. Some methods

(such as those proposed in [25]) require a specification of the maximum k ahead of time.

Our proposed method can support queries of arbitrary k values.

To measure the utility empirically, we use sum of squared error (SSE), i.e., the square of

the L2 distance between the true marginal MA and the reconstructed TA. When we query

many k-way marginals, we calculate the SSE for each marginal, and use the average SSE as

the indicator of a method’s accuracy.

The reconstructed TA can be viewed as a random variable since random noises are added

in the process to satisfy LDP. When a method is able to produce an unbiased estimation, the

expected value of TA is the true marginal MA, and the expected value of SSE is the variance

of the random variable TA.

Figure 6.1 gives an example where each user has two attributes gender and age. The

goal is to construct all the marginal tables. Each user’s private value corresponds to a row

in Figure 6.1 a. No one has the full view of the whole dataset. To construct the marginal

tables Figure 6.1 c and Figure 6.1 d, one can let each user report the two values (using an

FO as described earlier), aggregate the users’ reports to construct the full contingency table

(with some noise), and build the marginal tables. This method is more formally described

in the following.

See Table 6.1 for the list of notations.

6.1.3 Full Contingency Table Method (FC)

To estimate M, one straightforward approach is to estimate the full contingency table F

first, and then construct M from F. We call this approach the Full Contingency (FC) table

method. In this method, each user reports her value v ∈ D using an FO protocol. The

102

Table 6.1. List of Notations
Symbol Description

n The total number of users
vj Value of user j
m Number of attributes
A The set of all attributes
ai Attribute i
di Number of possible values for attribute ai

F The full contingency table
A Some set of attributes

MA The marginal table of attribute set A
t Number of marginal tables output by our method
s Size of each marginal table in our method

aggregator estimates the frequency of each value in the full domain. Once having the full

contingency table, the aggregator can compute any k-way marginal.

The main shortcoming of FC is that, since one has to query the frequency of each value

in the full domain of all attributes, the time complexity and space complexity grows expo-

nentially with the number of attribute m and can be prohibitively expensive.

Furthermore, even when it is feasible to construct the full contingency table, computing

marginals from a noisy full contingency table can have high variance. For example, suppose

we have 32 binary attributes, the domain size is thus 232. When constructing a 4-way

marginal, each value in the 4-way marginal is the result of summing up 228 noisy entries in

the full contingency table. Let Var0 be the variance of estimating each single cell in the full

contingency table, the variance of each cell in the reconstructed marginal is then 228×Var0,

and the expected SSE is 24× 228×Var0 = 232×Var0. In general, the variance of computing

k-way marginals from the noisy full contingency table is

VarFC = 2m · Var0 (6.1)

103

6.1.4 All Marginal Method (AM)

To mitigate the exponential dependency on m, one can construct all the k-way marginals

directly. There are two alternatives, one is to divide the privacy budget ε into
(

m
k

)
pieces,

and have each user reports
(

m
k

)
times, once for each k-way marginal. The second is to divide

the user population into
(

m
k

)
disjoint groups, and have users in each group report one k-

way marginal. Under the LDP setting, it is generally better to divide the population than

dividing the privacy budget (Chapter 3.4.2).

Under LDP, estimating fraction frequencies is less accurate with a smaller group than

with a larger group, because the noises have larger impact when the true counts are small.

The variance is inversely proportional to the group size. Thus dividing the population into(
m
k

)
groups will add a

(
m
k

)
factor to the variance. This factor results in the following variance.

VarAM = 2k ·
(

m

k

)
· Var0 (6.2)

When k is relatively small (and hence
(

m
k

)
is small), AM performs better than FC; when

k is large, AM could perform worse than FC. Another limitation of this method is that one

has to specify the value k ahead of time. After the protocol is executed, there is no way to

answer any t-way marginal queries for t > k.

6.1.5 Fourier Transformation Method (FT)

Fourier Transformation (FT) was used for publishing k-way marginals in the centralized

setting [27]. Kulkarni et al. [25] applied the technique to the local setting. Effectively, it is

an optimization of the AM method. The motivation underlying FT is that, the calculation

of a k-way marginal requires only a few coefficients in the Fourier domain. Thus, users can

submit noisy Fourier coefficients that are needed to compute the desired k-way marginals,

instead of values in those marginals.

This method results in slightly lower variance than AM. However, in order to reconstruct

all k-way marginals, a large number of coefficients need to be estimated; thus this method

would still perform poorly when k is large. Furthermore, the method is designed to deal

104

with the binary attributes. Therefore, the non-binary attributes must be pre-processed to

binary attributes, resulting in more dimensions. For example, an attribute with d values has

to be transformed into dlog2 de binary attributes.

Here, we briefly analyze its variance. Specifically, there are ∑k
s=0

(
d
s

)
coefficients to be

estimated. Estimating TA(v) requires information for a selected set of 2k coefficients, each

multiplied by 2−k. Therefore, this method has variance

VarFT =
k∑

s=0

(
d

s

)
· Var0 (6.3)

6.1.6 Expectation Maximization Method (EM)

This method allows each user to upload the value for each attribute separately with split

privacy budget. The aggregator then conducts Expectation Maximization (EM) algorithm

to reconstruct the marginal tables. This approach is first introduced by Fanti et al. [14] for

estimating joint distribution for two attributes, and then generalized by Ren et al. [26] to

handle multiple attributes.

Specifically, denote yj = 〈yj
1, yj

2, . . . , yj
m〉 as the report from user j. The algorithm at-

tempts to guess the private value distribution TA, for any A, by maximizing the probability

yj are reported from user j.

The original EM algorithm runs slowly. Therefore, we use the algorithm proposed in

the appendix of [12] to help compute TA. In most cases, if the initial values are set using

the result returned by this algorithm, the EM algorithm finishes quickly. Specifically, this

algorithm first estimates the value distribution for any single attribute, and then uses that

estimation to estimate distribution for any pair of attributes, and so on. The method is

proven to produce unbiased estimation.

Overall, the EM method has the advantage of being able to compute t-way marginals for

any t. But since ε is split into each attribute, this method has large variance.

105

6.2 CALM: Consistent Adaptive Local Marginal

In this section, we describe our proposed method CALM (Consistent Adaptive Local

Marginal) for publishing k-way marginal via LDP. Our method is inspired by the PreView

method for publishing marginal under the centralized DP setting [28], so we describe PreView

first.

6.2.1 An Overview of PreView

The PreView method was designed for privately computing arbitrary k-way marginals for

a dataset with m binary attributes in the centralized setting. PreView privately publishes

a synopsis of the dataset. Using the synopsis, it can reconstruct any k-way marginal. The

synopsis takes the form of t size-s marginals that are called views. Below we give an overview

of the PreView method, using an example where there are m = 8 attributes {a1, a2, · · · , a8},

and we aim to answer all 3-way marginals. PreView has the following four steps. (See [28]

for complete specification of PreView.)

Choose the Set of Views. The first step is to choose which marginals to include in the

private synopsis as views. That is, one needs to choose t sets of attributes. PreView chooses

these sets so that each size-2 (or size-3) marginal is covered by some view. For example,

if aiming to cover all 2-way marginals, then one could choose the following m = 6 sets of

attributes to construct views:

{a1, a2, a3, a4} {a1, a5, a6, a7} {a2, a3, a5, a8}

{a4, a6, a7, a8} {a2, a3, a6, a7} {a1, a4, a5, a8}

Observe that any pair of two attributes are included in at least one set.

Generate Noisy Views. In this step, for each of the t attribute sets, PreView constructs

a noisy marginal over the attributes in the set, by adding Laplace noise L
(

m
ε

)
to each cell

106

in the marginal table. This is the only step that needs direct access to the dataset. After

this step, the dataset is no longer accessed.

Consistency Step. Given these noisy marginals/views, some 3-way marginals can be

directly computed. For example, to obtain the 3-way marginal for {a1, a2, a3}, we can start

from the view for {a1, a2, a3, a4} and marginalizes out a4. However, many 3-way marginal

are not covered by any of the 6 views. For example, if we want to compute the marginal for

{a1, a3, a5}, we have to rely on partial information provided by the 6 views. We can compute

the marginals for {a1, a3}, {a1, a5}, and {a3, a5}, and then combine them to construct an

estimation for {a1, a3, a5}.

Observe that {a1, a5} can be computed both by using the view for {a1, a5, a6, a7} and by

using the view for {a1, a4, a5, a8}. Since independent noises are added to the two marginals,

the two different ways to compute marginal for {a1, a5} most likely have different results.

In addition, the noisy marginals may contain negative values. PreView performs constrained

inference on the noisy marginals to ensure that the marginals in the synopsis are all non-

negative and mutually consistent.

Generating k-way Marginals. From the t consistent views, one can reconstruct any k-

way marginals. When given a set of k attributes, if all k attributes are included in one view,

then we can compute the k-way marginal directly. When no view includes all k attributes,

PreView uses Maximum Entropy estimation to compute the k-way marginal. For example,

when given the marginals for {a1, a3}, {a1, a5}, and {a3, a5}, Maximum Entropy estimation

finds among all possibles marginals for {a1, a3, a5} that are consistent with the three known

marginals, the one with the maximum entropy. Note that while the marginal for {a1, a3, a5}

have 7 unknowns (the 8 cells must sum up to 1), and each marginal over {a1, a3}, {a1, a5},

and {a3, a5} gives 3 equations, these equations are not independent. In this case, the three

2-way marginals together give 6 independent linear constraints on the 7 unknowns, leaving

one degree of freedom.

Discussions. Using the PreView method, one could answer k-way marginals for arbitrary

k values. For a k-way marginal computed by PreView, there are two sources of errors. Noise

107

Errors are due to the Laplacian noises added to satisfy DP. Reconstruction Errors are due

to the fact that one has to estimate a k-way marginal from partial information.

Two important algorithmic parameters affect the magnitude of these two kinds of errors.

They are the number t of marginals/views in the synopsis, and the size s (i.e., number of

attributes) of these views. With a larger s, the views cover more combinations of attributes,

reducing Reconstruction Errors. However, one would be summing over more noisy entries

to compute any marginal, increasing the Noise Errors. Similarly, a larger t means more

marginals and better coverage of combinations of attributes, which reduces Reconstruction

Errors. However, a larger t also means less privacy budget for each marginal and higher

Noise Errors. Consider the running example with 8 attributes, by using 14 (instead of 6)

size-4 marginals, one can ensure that any set of 3 attributes is covered by at least one of the

marginals, eliminating Reconstruction Errors. However, this is done at the cost of adding

noises sampled from L
(

14
ε

)
instead of L

(
6
ε

)
to each cell. Note that even if any set of 3

attributes is covered, answering 4-way marginals will still have Reconstruction Errors.

Analysis in [28] shows that the choice of optimal s (size of each marginal) is independent

from parameters such as dataset size n, privacy parameter ε, and dimensionality m. In

particular, setting s to be around 8 works well. The optimal choice of t (number of marginals),

however, depends on n, ε, d, and the nature of the dataset. In [28], t is chosen to fully cover

either all 2-way marginals or all 3-way marginals, using the concept of covering design.

6.2.2 Overview of the CALM Method

Ideas in the PreView method inspire the CALM method. In the LDP setting, we cannot

compute a noisy marginal by adding Laplace noise to the true marginal, and we need to use

FO protocols to do so. In PreView, data from all users are used for computing each of the t

views, and the privacy budget is split into t equal portions. But in the local setting, several

previous work pointed out that by partitioning users into groups, and having each group use

the full privacy budget, the overall error will be smaller [5], [12], [29]. We adopt this design

principle and split the user population into groups, with reports from users in each group to

estimate one marginal.

108

② Construct noisy
marginals

③ Ensure
consistency

& non-negativity

④Usemaximum
entropy

Marginal tables

① Specify
marginals

𝑻𝑨𝟏

𝑻𝑨𝒎

𝑻𝑨𝟐

Figure 6.2. Illustration of CALM. The users to the left are partitioned into
groups. The aggregator to the right first specifies the marginals to all the
users and aggregate the reports for each marginal table. Then the aggregator
process the data to publish the final results.

Figure 6.2 illustrates how CALM works. The aggregator first chooses a set of t marginals

and the FO protocol to be used (e.g., GRR or OUE, note that we can also use OLH to save

communication cost; but as the size of the marginals is typically not large, we use OUE to

save server-side computation cost). The choice of whether to use GRR or OUE is determined

by the number of cells in each marginal, because GRR is more accurate for domains of smaller

size and OUE is better for larger domains. CALM adaptively chooses which of GRR and OUE

to use, based on ε and the domain size for the marginals.

The aggregator then assigns each user to one of the marginals, and informs the user

which marginal she should report. How this assignment is done is outside CALM. The

aggregator can randomly partition the population into t groups of approximately the same

size, and assigns users in one group to each marginal. Alternatively, the aggregator can

use public information of the users (such as IP addresses) to help ensure that each group

is representative of the overall population. It is also possible that the aggregator sends

information of all t marginals to each user, having each user randomly select one and report

on that marginal.

Each user projects her private value v onto the marginal she is reporting and reports

the projected value of v via FO. On receiving users’ reports, the server uses the aggregation

109

algorithm of FO to obtain the noisy marginal tables. Then the server processes the data

via the consistency and reconstruction steps to obtain the final results, as in the PreView

method.

One main challenge is how to choose the set of t marginals, and in particular the param-

eters s (size of each marginal) and t (number of marginals). The analysis for PreView in [28]

is no longer valid for the local setting. We discuss this in Section 6.2.3 . In addition, we want

to deal with non-binary attributes, which we discuss in Section 6.2.4 .

6.2.3 Choosing the Set of Marginals

The most important algorithmic parameters for CALM are the marginal size s, i.e., the

number of attributes in each marginal, and the marginal number t, i.e., the number of

different marginals. For ease of analysis, we assume all marginals are of equal size and

receive equal number of users to contribute.

Similar to PreView, there are Noise Errors, which are caused by the addition of noises

in the FO protocol, and Reconstruction Errors, which are caused by the fact that a k-way

marginal may not be covered by any of the chosen marginal, and has to be estimated using

the Maximum Entropy principle.

CALM has one additional source of errors that do not exist in PreView. CALM splits the

user population into groups, and uses the marginal of one group as an estimation of the

marginal of the whole population. Errors may be caused by the fact that the marginal of

one randomly selected group is not representative of that for the whole population. We call

these Sampling Errors. We analyze these errors below.

Noise Errors. To understand Noise Errors, we analyze the total variance of estimating

1-way marginals when they are included in at least one selected marginal, and how they are

affected by the choice of t and s. For each s-way marginal table, there are n
m

users reporting

it. By Equation (3.10), the variance for each cell is inversely proportional to the group size

used to estimate it. More specifically, we have:

Varc =
(

4eε

(eε − 1)2 ,
L− 2 + eε

(eε − 1)2

)
· m

n

110

Here L is the number of cells in one marginal, and an s-way marginal with binary attributes

has L = 2s cells. Note that when each attribute has different number of possible values, L

is the expected number of cells in one marginal.

To construct a 1-way marginal from such an s-way marginal, each cell of the 1-way

marginal is the summation of some cells from the larger (s-way) marginal. By linearity of

variances, the variance for any 1-way marginal is Var1 = Varc · L.

The above shows that increasing t adds a linear factor to the variance. However, increas-

ing t also causes a 1-way marginal to be included more times. When a 1-way marginal is

included t times, we can obtain t estimations of the 1-way marginal, one from each size-s

marginal that includes it. Averaging these t estimations reduces the variance by a factor of

t. More specifically, each size-s marginal includes s attributes. Therefore, in expectation,

the information of each attribute will be contributed from m···
d

s-way marginals. The average

of these estimates are therefore

NE(n, d, ε, s) = Var1
m·s

d

= min
(

4eε

(eε − 1)2 ,
L− 2 + eε

(eε − 1)2

)
· m

n
· L · d

m · s

= min
(

4eε

(eε − 1)2 ,
L− 2 + eε

(eε − 1)2

)
· L

s
· d

n
(6.4)

The key observation here is that the magnitude of Noise Errors does not depend on t,

which is different from PreView. It does depend on s and ε, where ε affects the first term,

which is the variance of the FO protocol. The parameter s affects both the term L
s

and the

variance for the FO protocol.

Also note that when we estimate k-way marginals based on the estimation of marginals

of the k attributes, the estimation is affected by the errors for each of the k attributes, we

thus use k · NE(n, d, ε, s) as the Noise Errors when we optimize for a particular k value.

Reconstruction Errors. Reconstruction Errors occur when a k-way marginal is not

covered by any of the chosen marginal. The magnitude of Reconstruction Errors depends

on to what extent attributes are correlated. If all attributes are mutually independent, then

Reconstruction Errors do not exist. When attributes are dependent, the general trend is that

111

larger t and larger s will cover more combination of attributes, reducing reconstruction errors.

The reduction effect of Reconstruction Errors diminishes as t increases. For example, if all

k-ways marginals are already fully covered, Reconstruction Errors are already 0 and cannot

be further decreased. Even if not all k-ways marginals are fully covered, increasing t beyond

some reasonably large number will only cause diminishing return. Since Reconstruction

Errors are dataset dependent, there is no formula for estimating them.

Sampling Errors. Sampling Errors occur when a marginal in a group of users deviates

from the marginal in the whole population. The parameter s has no impact on Sampling

Errors. However, increasing t would cause each group size n
m

to be smaller, raising Sampling

Errors. When computing a marginal from a group of s = n/m users, each cell in the marginal

can be viewed as the sum of s independent Bernoulli random variables, divided by s. In

other words, each cell is a binomial random variable divided by s. Thus each cell has variance
MA(v)(1−MA(v))

s
, where MA(v) is the fraction of users with value v in the whole population.

The Sampling Errors for an s-way marginal A are thus

∑
v∈VA

MA(v)(1−MA(v))
s

= m×∑c∈VA
MA(v)(1−MA(v))

n

Since ∑v∈VA
MA(v) = 1, we have ∑v∈VA

MA(v)(1−MA(v)) <
∑

v∈VA
MA(v) · 1 = 1. Thus the

Sampling Errors are simply bounded by

SE(n, m) = m

n
(6.5)

Choosing t and s. Both t and s affect Reconstruction Errors. In addition, t affects

Sampling Errors, and s affects Noise Errors. Intuitively, we want to choose t and s to

minimize the maximum of the three kinds of Errors, since the maximum would dominate

the overall errors. However, we do not have a formula to estimate Reconstruction Errors,

which is dataset dependent.

We propose to choose a target error threshold θ, which serves as a rough estimation of

Reconstruction Errors when they are not zero, and choose t and s as follows:

• Compute the largest marginal size su, such that k · NE < θ.

112

• When su < k, one chooses su and the largest t such that SE < θ.

• Otherwise, one chooses t and st ∈ [k, su] such that the maximum of NE and SE is

minimized.

While θ intends to be a rough estimation of Reconstruction Errors, it does not need to

be chosen based on one particular dataset. One can run experiments with a public dataset

of similar nature under different parameters, the best level of SSE that can be achieved is

usually a good indicator of the magnitude of Reconstruction Errors. When a public dataset

is unavailable, one can generate a synthetic dataset under some correlation assumption and

run experiments. In experiments conducted for this paper, we choose θ = 0.001, and use it

for all datasets and settings.

Algorithm 2 Pseudocode to determine t and s

Input: Dataset parameters n, d, ε, k, error threshold θ.
Output: t and s.

1: procedure Inference(n, d, ε, θ)
2: Assign mu ← θ · n, su ← 2
3: while k · NE(n, d, ε, su + 1) ≤ θ do
4: Increment su ← su + 1
5: if su < k then
6: return min(mu,

(
d

su

)
), su

7: Assign sb ← su

8: while sb > k and CoverDesign(d, k, sb − 1) ≤ mu do
9: Decrement sb ← sb − 1

10: if sb == su then
11: return min(mu,

(
d

su

)
), su

12: Assign E← 1, m← mu, s← su

13: for st in [sb, su] do
14: Assign mt ← CoverDesign(d, k, st)
15: if max(SE(n, mt), k · NE(n, d, ε, st)) < E then
16: Update E← max(SE(n, mt), k · NE(n, d, ε, st))
17: Update m← mt, s← st

18: return m, s

Algorithm 2 gives the pesudocode for determining t and s. The algorithm uses the

formula to calculate Noise Errors NE from Equation (6.4), and Sampling Errors SE as in

113

0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0

ε

10−5

10−4

10−3

10−2

10−1

100

N
oi

se
E

rr
or

s

2

3

4

5

6

7

8

Figure 6.3. Noise Errors times k when n = 216, m = 8, k = 3.

Equation (6.5). CoverDesign is an external procedure to calculate the number of s-way

marginals that can fully include all k-way marginals. Note that NE is for a single attribute;

one can multiply NE by k to approximate the Noise Errors for the k-way marginals.

For example, Figure 6.3 gives the Noise Errors times k (i.e., k · NE) for n = 216, m = 8,

and k = 3 when ε ranges from 0.2 to 2.0. If we fix θ = 10−3, we can read from the figure

that when ε ≤ 1.4, only s = 2 can be used. Because larger s will make NE even larger; and

we choose to allow some RE to exist. When ε is larger, e.g., ε = 2.0, NE is already very small

that we can tolerate more NE to eliminate RE. In this case, both s = 3 and s = 4 will give an

k ·NE < θ, so the goal is to choose an s so that the maximum of k ·NE and SE is minimized.

Specifically, when s = 3, CoverDesign gives m =
(

8
3

)
= 56 to cover all the 3-way marginals,

rendering max(NE = 0.00032, SE = 0.00085) = 0.00085; when s = 4, CoverDesign gives

m = 14 (meaning that 14 4-way marginals suffice to cover all 3-way marginals when m = 8),

thus giving max(NE = 0.00076, SE = 0.00021) = 0.00076. Thus s = 4 and m = 14 is used.

6.2.4 Consistency between Noisy Marginals

When different marginals have some attributes in common, those attributes are actu-

ally estimated multiple times. Utility will increase if these estimates are utilized together.

Specifically, assume a set of attributes A is shared by s marginals, A1, A2, . . . , As. That is,

114

A = A1 ∩ . . . ∩ As. Now we can obtain s copies of TA by summing from cells in each of the

TA’s, i.e., TAi
(v) = ∑

v′∈VAi
,v′

A=vA
TAi

(v′).

To obtain a better estimation of TA, we use the weighted average of TAi
for all marginal

Ai. That is,

TA(v) =
∑

i

wi · TAi
(v).

Since each TAi
is unbiased, their average TA(v) is also unbiased. To determine the distribu-

tion of the weights, the intuition is to put more weights to the more accurate estimations.

Specifically, we minimize the variance of TA(v), i.e., Var [TA(v)] = ∑
i w2

i · Var [TAi
(v)] =∑

i w2
i · Li · Var0, where Li is the number of cells from Ai that contribute to A, i.e., Li =

|{v′ : v′ ∈ VAi
, v′

A = vA}|, and Var0 is the basic variance for estimating a single cell (we

assume each marginal has a similar amount of users, but the analysis can be easily changed

to different number of users). Formally, we have the following problem:

minimize ∑
i w2

i · Li

subject to ∑
i wi = 1

According to KKT condition [30], [31], we can derive the solution: Define L = ∑
i w2

i ·

Li + µ · (∑i wi − 1), by taking the partial derivative of L for each of wi, we have wi = − µ
2Li

.

The value of µ can be solved by the equation ∑
i wi = 1. As a result, µ = − 2∑

i
1

Li

, and

wi =
1

Li∑
i

1
Li

. Therefore, the optimal weighted average is

TA(v) =
∑

i
1

Li
· TAi

(v)∑
i

1
Li

Once the accurate TA is obtained, all TAi
’s can be updated. For any marginal Ai, we

update all v′ ∈ VAi
using the result of v where v ∈ V A and v′

A = vA. Specifically,

TAi
(v′)← TAi

(v′) + 1
Li

(
TA(v)− TAi

(v)
)

115

The remaining reconstruction operations are borrowed from PreView. After that, one can

obtain the k-way marginals.

6.2.5 Discussion

We claim that CALM satisfies ε-LDP because all the information from each user to the

server goes through an FO with ε as privacy budget, and no other information is leaked.

Although CALM is inspired from PreView, there are several differences between the two.

Among the differences, many are because the two methods work under different privacy

requirements. That is, PreView works in the centralized setting of differential privacy, while

CALM works in the local setting. We summarize the differences as follows.

• In PreView, all the information are accessible to the server. The server operates on

the dataset, adds noise, and then derive the answers. On the other hand, in CALM,

each user sends noisy information to the server, who aggregates the reports, and then

calculate the answers.

• CALM can handle non-binary datasets, while PreView is designed to handle only binary

attributes.

• In PreView, each view is estimated through the information of all users, with split

privacy budget. While in the local setting, it is known that it is better to partition

users into groups. Therefore, in CALM, each marginal is estimated by only a group of

users.

• Because of the above, CALM faces Sampling Errors, in addition to Noise Errors and

Reconstruction Errors.

• In PreView, the number of marginals is critical and is dependent on the dataset. On

the other hand, CALM is much less sensitive to the number of views (marginals).

• In PreView, the optimal view size does not depends on ε, and is around 8. However, in

CALM, view size affects which FO protocol to be used and depends on ε.

116

6.3 Evaluation

We use experiments to empirically evaluate the effectiveness of our proposed method

CALM, and to verify our analysis.

6.3.1 Experimental Setup

Our experimental setup is largely influenced by that in [25], which introduced the Fourier

Transformation method and ran extensive comparisons of several methods for this problem.

Environment. All algorithms are implemented in Python 3.5 and all the experiments are

conducted on a PC with Intel Core i7-4790 3.60GHz and 16GB memory.

Datasets. We run experiments on the following four datasets.

• POS [32]: A dataset containing merchant transactions of half a million users.

• Kosarak [10]: A dataset of click streams on a Hungarian website that contains around

one million users.

• Adult [33]: A dataset from the UCI machine learning repository. After removing

missing values, the dataset contains around 50 thousands records. The numerical

attributes are bucketized into categorical attributes.

• US [34]: A dataset from the Integrated Public Use Microdata Series (IPUMS). It has

around 40k records of the United States census in 2010.

The first two are transactional datasets where each record contains some items. We

treat each item as a binary attribute. Thus these two datasets are binary. When running

experiments with k binary attributes, we pre-process a dataset to include only the top m

most frequent items. The later two are non-binary datasets, i.e., each attribute contains

more than two categories.

Evaluation Methodology. To evaluate the performance of different methods, the Sum of

Squared Error (SSE) of the marginals is reported. That is, we compute the ground truth and

calculate the sum of squared difference in each cell. For each dataset and each method, we

117

choose 50 random k-way marginal queries and measure their SSE. This procedure is repeated

20 times, with result mean and standard deviation reported.

Competitors. The FC, AM, and EM methods can be directly applied. For a fair compar-

ison, the FO used in those methods are also chosen adaptively.

The FT method is unable to deal with the non-binary attributes. Therefore, we implement

the non-binary version of FT by encoding each non-binary attribute into several binary

attributes.

As a baseline comparison, we also plot the SSE of the Uniform method (Uni in the

figures), which always returns a uniform distribution for any marginal tables. Clearly, if the

performance of one method is worse than the Uniform method, the marginal constructed

from that method is meaningless.

Experimental Settings. Different methods scale differently with respect to m, the

number of attributes, and k, the size of marginals. Also, the error depends on n, the size

of the dataset. We use three values of m: 8, 16, and 32. We consider k = 3 for all three

settings of m. We consider k = 6 only for d ∈ {16, 32}, and k = 8 only for m = 32. This is

because a larger k value makes more sense with a larger m value.

We consider two dataset sizes n = 216 and n = 218, which were used in [25]. Since all

methods benefit similarly when n increases, the comparison results remain valid for other n

sizes.

6.3.2 SSE on Binary Datasets

Figure 6.4 illustrates the results for comparing CALM against existing methods we dis-

cussed in Section 6.1 on two binary datasets Kosarak and POS.

118

0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0

ε

10−3

10−2

10−1

100

S
qu

ar
e

er
ro

r

(a) n = 216, m = 8, k = 3

0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0

ε

10−3

10−2

10−1

100

S
qu

ar
e

er
ro

r

(b) n = 216, m = 16, k = 3

0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0

ε

10−3

10−2

10−1

100

S
qu

ar
e

er
ro

r

(c) n = 216, m = 32, k = 3

0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0

ε

10−3

10−2

10−1

100

S
qu

ar
e

er
ro

r

(d) n = 218, m = 16, k = 6

0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0

ε

10−3

10−2

10−1

100

S
qu

ar
e

er
ro

r

(e) n = 218, m = 32, k = 6

0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0

ε

10−3

10−2

10−1

100

S
qu

ar
e

er
ro

r

(f) n = 218, m = 32, k = 8
Kosarak

0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0

ε

10−3

10−2

10−1

100

S
qu

ar
e

er
ro

r

(g) n = 216, m = 8, k = 3

0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0

ε

10−3

10−2

10−1

100

S
qu

ar
e

er
ro

r

(h) n = 216, m = 16, k = 3

0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0

ε

10−3

10−2

10−1

100

S
qu

ar
e

er
ro

r

(i) n = 216, m = 32, k = 3

0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0

ε

10−3

10−2

10−1

100

S
qu

ar
e

er
ro

r

(j) n = 218, m = 16, k = 6

0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0

ε

10−3

10−2

10−1

100

S
qu

ar
e

er
ro

r

(k) n = 218, m = 32, k = 6

0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0

ε

10−3

10−2

10−1

100

S
qu

ar
e

er
ro

r

(l) n = 218, m = 32, k = 8
POS

CALM FC AM FT EM Uni

Figure 6.4. Comparison of different methods on binary datasets. We only
plot the methods that are scalable in each setting, Uni method is a baseline
method. Results are shown in log scale.

119

In all settings, CALM significantly outperforms all existing algorithms, and the advantage

of CALM increases for larger m and larger k values, and for smaller ε values. For most settings,

the difference between CALM and FT, the closest competitor, is between one and two orders

of magnitude. When ε is small, e.g., when ε = 0.2, all existing algorithms perform close

to the Uniform baseline, meaning they can provide very little information when the privacy

budget is small. Whereas CALM can still provide enough information even for very small ε.

Furthermore, many methods simply do not scale to the case of m = 32.

EM performs poorly, in fact it is often worse than the Uniform baseline. This is because

EM requires each user to report information on all m attributes, in order to perform inference.

This means dividing the privacy budget by m, which results in large perturbation. The

other methods can split the population into groups, instead of splitting privacy budget, thus

performing better. Also, when k is larger than 5, the computation time for EM method is

too long to run efficiently (about 20 minutes each query). We thus do not plot EM for the

k = 6, 8 cases.

Among the competitors, FT performs the best. When m = 8, k = 3, we can compute the

variance for FC, AM and FT using Formulas (6.1), (6.2), and (6.3). The results are 256 ·Var0

for FC, 448 ·Var0 for AM, and 93 ·Var0 for FT. From Figures 6.4a and 6.4g , we can see that

the experimental results match the analytical comparison.

For m = 16, CALM’s performance is similar to the case of m = 8. Other methods,

however, have significantly larger error. For example, in Figure 6.4b , when ε = 0.2, the

squared error of CALM is 0.0055, which is 41 times better than the state-of-the-art method,

i.e., FT with squared error of 0.2266.

The performance of FC does not depends on k, since it constructs a full contingency

table.

When m = 32, most of the existing methods are unable to scale, especially when k =

8. For the AM method, the number of possible marginals are
(

32
8

)
= 10518300. As a

result, the average number of users that contribute information to each marginal is less

than one when we choose n = 216 and 218. Similarly, the number of Fourier coefficients

required to reconstruct 8-way marginals are ∑8
s=1

(
32
s

)
= 15033173, resulting less than one

user contributes to each coefficient.

120

0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0

ε

10−3

10−2

10−1

100

S
qu

ar
e

er
ro

r

(a) m = 8, k = 3

0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0

ε

10−3

10−2

10−1

100

S
qu

ar
e

er
ro

r

(b) m = 15, k = 3

0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0

ε

10−3

10−2

10−1

100

S
qu

ar
e

er
ro

r

(c) m = 15, k = 6
Adult, n = 216

0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0

ε

10−3

10−2

10−1

100

S
qu

ar
e

er
ro

r

(d) m = 8, k = 3

0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0

ε

10−3

10−2

10−1

100

S
qu

ar
e

er
ro

r

(e) m = 16, k = 3

0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0

ε

10−3

10−2

10−1

100

S
qu

ar
e

er
ro

r

(f) m = 16, k = 6
US, n = 216

CALM FC AM FT BE Uni

Figure 6.5. Comparison of different methods in two non-binary datasets.
We only plot the methods that are scalable in each setting, Uni method is a
baseline method, BE method is the binary encoding version of CALM. Results
are shown in log scale.

6.3.3 SSE on Non-binary Datasets

The experimental results for non-binary datasets, i.e., Adult and US, are shown in Fig-

ure 6.5 . To reduce computational complexity, we pre-process all attributes to contain at

most 3 categories.

The experimental results show the superiority of CALM, which achieves around 1 to 2

orders magnitude of improvement over existing methods.

By comparing the m = 8 and k = 3 setting in Figure 6.4 with Figure 6.5 , we observe that

FT performs better than FC and AM in the binary datasets, whereas performs worse in the

non-binary datasets. The bad performance in the non-binary datasets is due to the binary

121

encoding process, which dramatically increases the number of Fourier coefficients required

to reconstruct marginals. Considering the case where all the 8 attributes have 3 categories,

m and k becomes 16 and 6 after the binary encoding. By variance analysis, the variance

becomes 14893 · Var0, which is much larger than 93 · Var0 in the binary datasets.

To demonstrate the impact of handling non-binary attributes in CALM, we also utilize

the idea of binary encoding to implement CALM, to which the consistent step of PreView

can be directly applied. We call the binary encoding version of CALM the BE method. We

observe that the CALM performs better than BE. The reason is that m and k becomes very

large after binary encoding, which increase the variance. When m = 16, k = 6, the BE takes

too much time in the Maximum Entropy estimation step. Thus, we do not plot BE in this

case.

6.3.4 Classification Performance

To demonstrate the practical utility of the proposed method, we train the SVM classifiers

using the Adult and US datasets. The goal of the classifier is to predict whether a user’s

annual income is above 50k.

To train the model, we pick five attributes (features) and have each method output the 6-

way marginals (five features plus the annual income label). The features for the Adult dataset

are age, workclass, education, education-num, and occupation, as features; and the features

for the US dataset are WRKRECAL (informed of work recall), GRADEATT (grade level

attending), SCHLTYPE (public or private school), SCHOOL (school attendance), DIFF-

PHYS (ambulatory difficulty). Note that we pick features by their semantic relationships to

the label. After the noisy marginal is obtained, a synthetic dataset is generated based on

this marginal. The synthetic dataset is then used to train the SVM classifier. There are also

two baselines: NoNoise represents the method without enforcing ε-LDP, it is the best case to

aim for (using the same set of attributes). Majority represents the naive method that blindly

predict the label by the majority label.

122

0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0

ε

0.2

0.3

0.4

0.5

0.6
M

is
cl

as
si

fic
at

io
n

ra
te

(a) Binary partition, n = 216

0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0

ε

0.2

0.3

0.4

0.5

0.6

M
is

cl
as

si
fic

at
io

n
ra

te

(b) Binary partition, n = 218

0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0

ε

0.2

0.3

0.4

0.5

0.6

M
is

cl
as

si
fic

at
io

n
ra

te

(c) Binary partition, n = 220

0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0

ε

0.2

0.3

0.4

0.5

0.6

M
is

cl
as

si
fic

at
io

n
ra

te

(d) Non-binary partition, n = 216

0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0

ε

0.2

0.3

0.4

0.5

0.6

M
is

cl
as

si
fic

at
io

n
ra

te

(e) Non-binary partition, n = 218

0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0

ε

0.2

0.3

0.4

0.5

0.6

M
is

cl
as

si
fic

at
io

n
ra

te

(f) Non-binary partition, n = 220

Adult, m = 15, k = 6

0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0

ε

0.2

0.3

0.4

0.5

0.6

M
is

cl
as

si
fic

at
io

n
ra

te

(g) Binary partition, n = 216

0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0

ε

0.2

0.3

0.4

0.5

0.6

M
is

cl
as

si
fic

at
io

n
ra

te

(h) Binary partition, n = 218

0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0

ε

0.2

0.3

0.4

0.5

0.6

M
is

cl
as

si
fic

at
io

n
ra

te

(i) Binary partition, n = 220

0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0

ε

0.2

0.3

0.4

0.5

0.6

M
is

cl
as

si
fic

at
io

n
ra

te

(j) Non-binary partition, n = 216

0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0

ε

0.2

0.3

0.4

0.5

0.6

M
is

cl
as

si
fic

at
io

n
ra

te

(k) Non-binary partition, n = 218

0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0

ε

0.2

0.3

0.4

0.5

0.6

M
is

cl
as

si
fic

at
io

n
ra

te

(l) Non-binary partition, n = 220

US, m = 16, k = 6
CALM FC AM NoNoise Majority FT

Figure 6.6. Comparison on classification performance. We only plot the
methods that are scalable in each setting. NoNoise is the baseline where no
noise is added; Majority is the naive method to always answer the majority
label.

123

All the methods are evaluated following the typical process, where 80% of the records

are sampled as training set, and the other 20% are used as the testing set. And we evaluate

its utility by the misclassification rate on the testing set, i.e., the fraction of records in the

testing set that are incorrectly classified. Figure 6.6 illustrates the misclassification rate of

SVM classifier trained by different methods. It is shown that in most cases, the average

misclassification rate of CALM is close to NoNoise. When ε is small, the classification model

trained by FC and AM is not better than Majority (some times even worse than 50%, which

is even worse than random guess, and thus useless).

In the right two columns of Figure 6.6 , we duplicate the datasets 4 times and 16 times to

boost the accuracy. It can be seen that more users will help with accuracy. For example, for

the binary case of the Adult dataset, the accuracy of CALM is almost optimal when ε = 1.4

when the dataset is duplicated 4 times; while when the dataset is duplicated 16 times, the

accuracy of CALM is almost optimal when ε = 0.8. We also observe that when the dataset

is non-binary (in the even rows of Figure 6.6), the performance is slightly worse than if the

dataset is binary. This is because in the non-binary setting, there are more possible values

in each attribute, thus making the result worse.

6.3.5 Verifying Marginal Parameters

In Figure 6.7 , we use heatmaps to illustrate the impact of marginal size s, number of

marginals t and the privacy budget ε on the squared error.

124

1 2 3 4 5 6 7 8
View size

31
29

27
25

23
21

19
17

15
13

11
9

7
5

3
1

N
um

be
ro

fv
ie

w
s

0.0058 0.0022 0.0068 0.0055 0.0056 0.0081 0.0121 0.0150

0.0050 0.0023 0.0075 0.0062 0.0051 0.0095 0.0106 0.0181

0.0052 0.0020 0.0063 0.0071 0.0063 0.0082 0.0107 0.0222

0.0053 0.0020 0.0073 0.0049 0.0062 0.0111 0.0121 0.0150

0.0059 0.0028 0.0059 0.0065 0.0069 0.0097 0.0123 0.0206

0.0057 0.0022 0.0055 0.0060 0.0060 0.0099 0.0121 0.0262

0.0054 0.0024 0.0061 0.0055 0.0048 0.0065 0.0108 0.0176

0.0052 0.0027 0.0073 0.0068 0.0076 0.0067 0.0125 0.0179

0.0054 0.0036 0.0068 0.0069 0.0059 0.0079 0.0143 0.0180

0.0055 0.0029 0.0060 0.0068 0.0091 0.0070 0.0116 0.0203

0.0053 0.0029 0.0070 0.0077 0.0057 0.0090 0.0144 0.0125

0.0054 0.0035 0.0079 0.0071 0.0070 0.0082 0.0153 0.0143

0.0037 0.0054 0.0096 0.0074 0.0120 0.0173 0.0224

0.0043 0.0075 0.0078 0.0117 0.0152 0.0154 0.0164

0.0049 0.0065 0.0086 0.0141 0.0110 0.0160

0.0180

0.005

0.010

0.015

0.020

0.025

(a) POS, s vs t, m = 8, k = 3, n = 216, ε = 0.6

1 2 3 4 5 6 7 8
View size

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

1.
4

1.
6

1.
8

2.
0

ε

0.0070 0.0038 0.0274 0.0369 0.0319 0.0456 0.0632 0.0770

0.0067 0.0031 0.0121 0.0114 0.0132 0.0143 0.0306 0.0297

0.0067 0.0033 0.0057 0.0087 0.0073 0.0087 0.0166 0.0192

0.0069 0.0029 0.0030 0.0047 0.0043 0.0053 0.0098 0.0116

0.0064 0.0026 0.0028 0.0025 0.0039 0.0044 0.0066 0.0104

0.0065 0.0031 0.0029 0.0021 0.0018 0.0027 0.0034 0.0053

0.0065 0.0029 0.0029 0.0015 0.0016 0.0021 0.0029 0.0037

0.0066 0.0025 0.0008 0.0008 0.0011 0.0015 0.0019 0.0028

0.0069 0.0029 0.0008 0.0007 0.0010 0.0013 0.0018 0.0021

0.0065 0.0025 0.0007 0.0007 0.0007 0.0011 0.0015 0.0021

0.015

0.030

0.045

0.060

0.075

(b) POS, s vs ε, n = 216, m = 8, k = 3, m = 16

1 2 3 4 5 6 7 8
View size

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

1.
4

1.
6

1.
8

2.
0

ε

0.0044 0.0042 0.0595 0.0652 0.0707 0.1158 0.1112 0.1184

0.0048 0.0042 0.0221 0.0252 0.0388 0.0437 0.0568 0.0705

0.0044 0.0037 0.0186 0.0184 0.0256 0.0254 0.0336 0.0402

0.0045 0.0036 0.0037 0.0137 0.0123 0.0177 0.0227 0.0352

0.0044 0.0035 0.0031 0.0065 0.0107 0.0146 0.0161 0.0247

0.0043 0.0036 0.0036 0.0061 0.0051 0.0069 0.0104 0.0197

0.0043 0.0030 0.0029 0.0040 0.0048 0.0049 0.0133 0.0167

0.0041 0.0031 0.0031 0.0030 0.0045 0.0039 0.0071 0.0088

0.0040 0.0033 0.0027 0.0022 0.0037 0.0043 0.0042 0.0061

0.0041 0.0033 0.0027 0.0024 0.0028 0.0033 0.0035 0.0061

0.02

0.04

0.06

0.08

0.10

(c) POS, s vs ε, n = 216, m = 16, k = 3, m = 16

1 2 3 4 5 6 7 8
View size

31
29

27
25

23
21

19
17

15
13

11
9

7
5

3
1

N
um

be
ro

fv
ie

w
s

0.0089 0.0034 0.0053 0.0056 0.0062 0.0080 0.0130 0.0237

0.0086 0.0052 0.0058 0.0052 0.0060 0.0069 0.0109 0.0175

0.0088 0.0042 0.0065 0.0053 0.0042 0.0096 0.0121 0.0164

0.0089 0.0041 0.0061 0.0059 0.0049 0.0076 0.0063 0.0126

0.0086 0.0033 0.0055 0.0061 0.0051 0.0091 0.0147 0.0155

0.0086 0.0039 0.0056 0.0057 0.0065 0.0082 0.0103 0.0127

0.0089 0.0036 0.0063 0.0048 0.0050 0.0084 0.0106 0.0160

0.0085 0.0040 0.0061 0.0051 0.0059 0.0061 0.0142 0.0142

0.0088 0.0054 0.0047 0.0052 0.0059 0.0077 0.0110 0.0123

0.0087 0.0056 0.0051 0.0050 0.0062 0.0068 0.0099 0.0121

0.0088 0.0070 0.0055 0.0071 0.0066 0.0092 0.0098 0.0196

0.0086 0.0071 0.0053 0.0067 0.0089 0.0098 0.0126 0.0152

0.0075 0.0080 0.0081 0.0057 0.0122 0.0120 0.0107

0.0085 0.0071 0.0065 0.0102 0.0120 0.0121 0.0220

0.0045 0.0073 0.0099 0.0162 0.0111 0.0130

0.0146 0.004

0.008

0.012

0.016

0.020

(d) Kosarak, s vs t, m = 8, k = 3, n = 216, ε = 0.6

1 2 3 4 5 6 7 8
View size

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

1.
4

1.
6

1.
8

2.
0

ε

0.0055 0.0041 0.0274 0.0317 0.0255 0.0430 0.0826 0.1027

0.0053 0.0044 0.0110 0.0122 0.0100 0.0160 0.0310 0.0287

0.0054 0.0037 0.0048 0.0052 0.0050 0.0115 0.0139 0.0153

0.0053 0.0030 0.0030 0.0041 0.0049 0.0089 0.0087 0.0079

0.0054 0.0029 0.0029 0.0037 0.0021 0.0036 0.0034 0.0070

0.0052 0.0029 0.0029 0.0017 0.0020 0.0027 0.0028 0.0042

0.0052 0.0031 0.0031 0.0018 0.0015 0.0022 0.0031 0.0036

0.0052 0.0029 0.0011 0.0009 0.0010 0.0016 0.0017 0.0027

0.0053 0.0031 0.0007 0.0006 0.0007 0.0012 0.0013 0.0023

0.0053 0.0030 0.0005 0.0005 0.0007 0.0009 0.0015 0.0015

0.02

0.04

0.06

0.08

0.10

(e) Kosarak, s vs ε, m = 8, k = 3, n = 216, m = 16

1 2 3 4 5 6 7 8
View size

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

1.
4

1.
6

1.
8

2.
0

ε

0.0023 0.0027 0.0791 0.0668 0.0728 0.0782 0.1113 0.1184

0.0023 0.0036 0.0227 0.0273 0.0251 0.0436 0.0566 0.0566

0.0021 0.0029 0.0197 0.0130 0.0166 0.0298 0.0300 0.0266

0.0018 0.0026 0.0041 0.0134 0.0115 0.0107 0.0223 0.0301

0.0020 0.0020 0.0025 0.0069 0.0075 0.0087 0.0154 0.0179

0.0018 0.0019 0.0021 0.0039 0.0051 0.0044 0.0099 0.0182

0.0018 0.0019 0.0020 0.0029 0.0049 0.0090 0.0120 0.0121

0.0018 0.0018 0.0019 0.0021 0.0038 0.0038 0.0059 0.0084

0.0019 0.0019 0.0015 0.0018 0.0026 0.0038 0.0050 0.0068

0.0016 0.0016 0.0014 0.0014 0.0019 0.0025 0.0052 0.0054

0.02

0.04

0.06

0.08

0.10

(f) Kosarak, s vs ε, m = 16, k = 3, n = 216, m =
16

Figure 6.7. Mutual effects of marginal size s, number of marginals t and the
privacy budget ε.

125

Figure 6.7a and 6.7d . shows the mutual effect of s and t on POS and Kosarak, respec-

tively. This is for the setting of m = 8, k = 3, ε = 0.6. The two heatmaps show that when s

is fixed to a value other than 1 and 8, increasing t will gradually decrease the error, which

is in accordance with the analysis in Section 6.2.3 , as increasing t leads to covering more

marginals, thus reducing Reconstruction Errors. While increasing t increases Sampling Er-

rors, the level of Sample Errors even when m = 32 is around 2−11 = 0.0005. Note that when

s = 1, each marginal includes a single attribute, increasing t does not reduce Reconstruction

Errors. Similarly, when s = 8 all 8 attributes are already covered in any marginal; increasing

t thus does not change the error.

Figures 6.7b , 6.7c , 6.7e , and 6.7f . show the mutual effect of s and ε when t is fixed.

We observe that when ε is small, it is better to choose smaller s. The reason is that in this

case the noise dominates the error; thus we should choose smaller s to reduce noise. When

ε is large, lager s is preferred since the effect of Reconstruction Errors is dominant. The

blue numbers show the squared errors under the optimal setting through analysis, which is

approximately approach to the experiment results.

6.3.6 Impact of k and the Local Setting

Figure 6.8 serves two purposes. One is to study the accuracy of CALM when one chooses

parameters t and s that are optimized for k′, but the query is for k-way marginals, where

k 6= k′. This is interesting to know because one may want to support k-way marginals for

different k values. The other is to compare the accuracy of CALM with the centralized setting

of PreView, to understand how much utility one is giving up for the enhanced privacy of the

local setting.

The first row of Figure 6.8 plots the effect of answering k-way marginals when optimized

for k′ ∈ {3, 6, 8} and when using centralized PreView. When k = 3 (the left sub-figure),

different settings of k′ perform similarly. When k = 6 (the middle sub-figure), optimizing

for k′ = 3 clearly is worse when ε = 1.2 and 1.4. This is because when optimizing for k′ = 3,

increasing ε from 1 to 1.2 causes s to increase from 2 to 3, because it is estimated that for

126

0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0

ε

10−5

10−4

10−3

10−2

10−1
S

qu
ar

e
er

ro
r

k′ =3 k′ =6 k′ =8 priview

(a) n = 216, m = 16, k = 3

0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0

ε

10−5

10−4

10−3

10−2

10−1

S
qu

ar
e

er
ro

r

k′ =3 k′ =6 k′ =8 priview

(b) n = 218, m = 16, k = 6

0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0

ε

10−5

10−4

10−3

10−2

10−1

S
qu

ar
e

er
ro

r

k′ =3 k′ =6 k′ =8 priview

(c) n = 218, m = 32, k = 8
Vary ε

2 4 6 8 10 12 14 16

k′

10−3

10−2

S
qu

ar
e

er
ro

r

ε =0.5 ε =1.0 ε =1.5 ε =2.0

(d) n = 216, m = 16, k = 3

2 4 6 8 10 12 14 16

k′

10−3

10−2

S
qu

ar
e

er
ro

r

ε =0.5 ε =1.0 ε =1.5 ε =2.0

(e) n = 218, m = 16, k = 6

2 4 6 8 10 12 14 16

k′

10−3

10−2

S
qu

ar
e

er
ro

r

ε =0.5 ε =1.0 ε =1.5 ε =2.0

(f) n = 218, m = 32, k = 8
Vary k′

Figure 6.8. Kosarak dataset. Using t and s optimized for different k′.

3-way marginals, the noise error when going to s = 3 is sufficiently low at ε = 1.2. However,

when optimizing for k′ = 6, the change of s from 2 to 3 occurs when ε = 1.6. This also

happens when k = 8 (the right sub-figure), where the setting of k′ = 3 performs bad when

ε = 1.6 and 1.8. Overall, we generally see the best result when k = k′. Also, it appears that

if one is unsure about k, the size of query marginals, one should optimize for a slightly larger

k′ value.

From first row of Figure 6.8 , we also see that PreView performs one to two magnitudes

better than CALM. This is mainly because much less noise is needed in the centralized

setting. Theoretically, the amount of noise added in the local setting is Θ
(

1√
n

)
, while in the

centralized setting, the amount of noise is Θ
(

1
n

)
.

The second row of Figure 6.8 plots the effect of answering k-way marginals while optimiz-

ing for a broader range of k′ values (from 2 to 16). We consider ε ∈ {0.5, 1.0, 1.5, 2.0}. When

a setting results in choosing the same pair of m, s as another configuration, we reuse the

127

1 2 3 4 5 6 7 8 9 10

k

10−5

10−4

10−3

10−2

S
qu

ar
e

er
ro

r

ε =1.0, k′ =3

ε =1.0, k′ =k

ε =2.0, k′ =3

ε =2.0, k′ =k

1 2 3 4 5 6 7 8 9 10

k

10−5

10−4

10−3

10−2

S
qu

ar
e

er
ro

r

ε =0.5, k′ =3

ε =0.5, k′ =k

ε =1.5, k′ =3

ε =1.5, k′ =k

Figure 6.9. Kosarak dataset, n = 218, m = 16.

accuracy number in the plot instead of running the experiments again; thus any difference

in a line is due to changes in m, s. We observe that when ε is small (i.e., ε ∈ {0.5, 1.0}) the

same parameters (m = 65, s = 2, to be precise) are chosen no matter which k′ one is opti-

mizing for. Also there is little difference in accuracy when computing k = 3. When ε = 1.5

and k = 6, optimizing for k′ ≥ 8 is sub-optimal. In the right sub-figure, we observe that to

compute k = 8-way marginals, optimizing for k′ ≤ 3 results in worse accuracy (especially

for ε = 1.5).

Figure 6.9 shows SSE for different k-way marginals fixing n = 218 and m = 16. For

ε ∈ {0.5, 1, 1.5, 2}, we plot results for two settings: t and s optimized for k′ = 3; and t and

s optimized for k′ = k. We found that in most cases, the results for the two settings are

similar, because the t and s settings are the same. For ε = 1.5, when k > 7, the difference

becomes significant. This is mainly because the s values are different: when k′ = 3, s = 3

by Algorithm 2 ; but when k′ = k ∈ {8, 9, 10}, s = 2 by Algorithm 2 .

128

7. QUERY ANSWERING

(A version of this chapter has been published in ACM SIGMOD 2018 [35].)

We identify that local differential privacy (LDP) fits the class of analytical applications well.

Suppose a number of individuals use a service in the cloud, and each user generates some

multi-dimensional data during the service. Some dimensions, called measure attributes, about

the service usage are naturally known to the service provider, e.g., active time and purchase

amount (for the billing purpose); some other dimensions are sensitive, e.g., income and loca-

tion, and users prefer to have them collected by the service provider in an privacy-preserving

way; the remaining dimensions are non-sensitive. On the other side, the provider wants

to analyze how the service performs by issuing analytical queries that aggregate measure

attributes under constraints on sensitive dimensions. While all the dimensions will never

be released to the public and the analytics are conducted internally by the provider, the

provider needs to guarantee that the sensitive dimensions are handled properly by providing

an LDP collection algorithm that runs on each user’s device. A motivating example follows.

Example 1. The multi-dimensional data model of users in an online shopping app is shown

in Table 7.1 . Users are anonymous. Measure attributes ActiveTime (how much time a user

spent in the app) and Purchase (amount of money spent in the app), are inherently known

to the service provider. Age, Salary, and State are sensitive dimensions, and attribute OS is

non-sensitive. The service provider wants to analyze how much money is spent by a specific

group of users using a query:

SELECT SUM(Purchase) FROM T (7.1)

WHERE Age ∈ [30, 40] AND Salary ∈ [50K, 150K].

We study how to (approximately) answer a class of multi-dimensional analytical (MDA)

queries, while each user’s sensitive data is collected under LDP. An MDA query is a SQL

query with aggregation (e.g., COUNT, SUM, or AVG) on measure attributes (accessible by

service provider), and a predicate with equality and range constraints on sensitive dimensions

(to be collected under LDP).

129

Table 7.1. A relational table T with sensitive dimensions
Age Salary State OS ActiveTime Purchase
D1 D2 D3 D4 M1 M2

t1 30 50K NY Win 1.6h $120
t2 60 80K WA iOS 1.2h $100
t3 50 90K NY Win 1.0h $100
t4 40 70K NY iOS 1.8h $100

7.1 Preliminaries

7.1.1 Multi Dimensional Model and Analytics

Each user contributes a tuple t to a table with a set of attributes, called dimensions or

measures. A dimension, denoted by D, appears in predicates, and a measure, denoted by

M , is aggregated in analytical questions. We also use D or M to denote the domain (the

set of possible values) of an attribute, and t[D] and t[M] are the attribute values in a tuple.

Multi-dimensional analytical (MDA) queries. Let T be the relational table, called

fact table. We focus on the following class of multi-dimensional analytical queries:

QT (F(M), C) : SELECT F(M) FROM T WHERE C (7.2)

• Aggregation F is COUNT(∗), SUM(M), or AVG(M), where M is a public measure. We

focus on SUM(M) in the main text (COUNT is a special case and AVG can be derived

from the other two). We will introduce how to use our solution for the other aggregate

functions in Section 7.6 .

• Predicate C consists of point constraints “Di = vi” for categorical dimensions, and range

constraints “Di ∈ [li, ri]” for ordinal dimensions. We will first focus on conjunctions

(AND-only) of one or more such constraints, and generalize our solutions for AND-OR

expressions in Section 7.6 .

130

7.1.2 Definition of LDP Revisited

A server collects tuples from users into T . In the introduced application scenarios, some

dimensions are considered sensitive by users, and thus need to be collected in a privacy-

preserving way; measures are public or known to the server (e.g., how much time a user

spends on a service is known to the service provider for the billing purpose). More formally,

suppose D1, . . . , Dd are sensitive dimensions, we provide the following LDP guarantee:

Definition 7.1.1 (General ε-Local Differential Privacy). An algorithm A(·) satisfies ε-local

differential privacy (ε-LDP) if and only if for any, if for any pair of different tuples t and t,

with t[Di] 6= t[Di] for at least one i ∈ {1, . . . , d}, we have,

∀T ⊆Range(A) : Pr [A(t) ∈ T] ≤ eε · Pr [A(t) ∈ T] .

Compared to the traditional Definition 2.2.1 , this definition is more general but also

realistic.

Example 2. The multi-dimensional data model in Table 7.1 has six attributes. D1 and D2

are ordinal dimensions; D3 and D4 are categorical dimensions. There are also two numeric

measures M1 and M2. The query in Example 1 is an MDA query with two range constraints

on D1 and D2.

D1-D3 are sensitive dimensions, and thus need to be collected under LDP. LDP guarantees

that we cannot distinguish between two users with (30, 50K, NY) and (40, 70K, NY) based

on their LDP reports, and thus, their dimension values are protected.

7.2 Weighted Frequency Oracle

We introduce building blocks used in our LDP mechanisms for MDA. We first introduce

weighted frequency queries and their relationship to MDA. We then introduce how to estimate

weighted frequencies if a random sample of users send their LDP reports – this twist will be

used (in Sections 7.3 -7.4) to boost the accuracy of MDA. Finally, a marginal-based solution

for answering MDA is presented.

131

7.2.1 Weighed Frequency Queries and MDA

In a multi-dim data model, each user t has a private dimension t[D] ∈ D and a public

measure t[M] ∈ R. A weighted frequency query asks, for a set of users S, what is the total

measure of users with a given dimension value v, i.e.,

fM
S (v; D) =

∑
t∈S∧t[D]=v

t[M] (7.3)

⇔ SELECT SUM(M) FROM S WHERE D = v. (7.4)

We write fM
S (v; D) as fM

S (v) if D is clear from the context.

Since t[D] is private, each user uses an ε-LDP algorithm AFO to encode t[D] as AFO(t[D])

before sending it to the server. For a user set S, the server obtains an estimator f̂M
S (v) of

fM
S (v) from the LDP reports AFO(S) = {AFO(t[D])}t∈S and the public measure M . An LDP

weighted frequency oracle refers to a pair of encoder and estimator (AFO, f̂M).

When t[M] = 1 for all users, fM
S (v) is equal to the (unweighted) frequency of v, fS(v),

which is equivalent to a COUNT query:

fS(v) =
∑

t∈S∧t[D]=v

1 = | {t ∈ S | t[D] = v} |

⇔ SELECT COUNT(∗) FROM S WHERE D = v. (7.5)

Our Weighted Frequency Oracle (AFO, f̂M)

We use an unweighted frequency oracle OLH (presented in Chapter 3) as a building block,

and we show how to generalize it into a weighted frequency oracle.

The idea behind (AFO, f̂M) is to partition users into groups by their measures. Let

Sx = {t ∈ S | t[M] = x} be the group of users in S with measure equal to x. For a

dimension value v, we establish the relationship between f and fM via Sx:

fM
S (v) =

∑
distinct x

fM
Sx

(v) =
∑

distinct x

x · fSx(v). (7.6)

132

We use an unweighted frequency oracle (AFO, f̂Sx) to encode t[D] = v in each Sx. We

can then approximate fM
S (v) with the estimator f̂M by combining the frequency estimates:

f̂M
S (v) =

∑
distinct x

x · f̂Sx(v), (7.7)

Example 3. Consider such a query against T in Table 7.1 :

SELECT SUM(Purchase) FROM T WHERE State = NY

The answer is 120+100+100+ We have defined S120 = {t1} and S100 = {t2, t3, t4}. The

frequency of “NY” in S120, fS120(NY) = 1, and, in S100, fS100(NY) = 2. Thus, the answer

can be also calculated 120× 1 + 100× 2 + . . ., and to estimate the answer, we can estimate

fS120(NY) and fS100(NY) instead.

Proposition 7.2.1 (Weighted Frequency Oracle). Mechanism (AFO, f̂M) is ε-LDP. For a set

of users S and a value v ∈ D, f̂M
S (v) is an unbiased estimator of fM

S (v). Let M2
S = ∑

t∈S t[M]2

and M2
S(v) = ∑

t∈S∧t[D]=v t[M]2. The error is

Err(f̂M
S (v)) = E

[(
f̂M

S (v)− fM
S (v)

)2
]

= 4M2
Seε

(eε − 1)2 + M2
S(v)

≤ M2
S(eε + 1)2

(eε − 1)2 = O
(
|S|∆2

ε2

)
when ε is small,

where ∆ is the range of M , i.e., ∆ = max(M)−min(M). Moreover, estimation errors for

two different values are additive:

Var
[

f̂M
S (u) + f̂M

S (v)
]

= Var
[

f̂M
S (u)

]
+ Var

[
f̂M

S (v)
]

.

Note that the above result does not depend on how large or how small each Sx is; in an

extreme case, even if every distinct value of measure M appears only once (|Sx| = 1 for each

x), we still have the same expected error.

133

7.2.2 Oracle Running on Random Samples

If we ask a random sample of users to report their private values t[D] using AFO, we can

still estimate the weighted frequency of a value v in this sample using f̂M , and then scale

the estimate up for the whole population – what is the accuracy loss in this procedure? This

twist will be used in our mechanisms to boost its performance.

More formally, for a set of users S, we first randomly partition S into S1, . . . , Sk (each

user in S randomly chooses i ∈ {1, . . . , k}, with equal probability 1/k, and joins Si). We

run the weighted frequency oracle (AFO, f̂M) only on one sample, say, S1. For a dimension

value v, we can estimate its weighted frequency fM
S (v) in S using f̂M on S1. Define

f̃M
S,1/k(v) = k · f̂M

S1 (v), (7.8)

where S1 (or any of S1, . . . , Sk generated above) is a random sample of S with sampling rate

1/k. f̃M
S,1/k(v) in (7.8) is an unbiased estimator of weighted frequency fM

S (v), because

E
[

f̂M
S1 (v)

]
= E

[
E
[

f̂M
S1 (v)

∣∣∣ S1
]]

= E [[] S1]fS1(v) = 1
k
· fS(v).

The second equality is from the unbiasedness of f̂M and the third one is due to the sampling

process. The error in f̃M
S,1/k(v) comes from two sources, one due to LDP noise and the other

due to sampling process. We can bound it as follows.

Proposition 7.2.2 (Accuracy Loss on Samples). f̃M
S,1/k(v) is an unbiased estimator of fM

S (v),

and the error is bounded as

Err(f̃M
S,1/k(v)) = 4kM2

Seε

(eε − 1)2 + (2k − 1)M2
S(v)

≤2kM2
S(e2ε + 1)

(eε − 1)2 = O
(

k|S|∆2

ε2

)
when ε is small,

where ∆ is the range of M , i.e., ∆ = max(M)−min(M).

134

7.2.3 Answering MDA via LDP Marginals

Mechanisms to estimate LDP marginals (Chapter 6) focus on COUNT queries. However,

they can be adapted to handle MDA queries via a transition that is similar to (7.6).

(AMG, PMG): To answer an MDA query QT (F(M), C) in (7.2), we first partition T by measure

M into sub-tables Tx = {t ∈ T | t[M] = x}. We use marginals estimated under LDP to count

how many tuples in Tx satisfy the predicate C as n̄x by summing up cells in the marginal on

dimensions in C. For a SUM query QT , its answer can be estimated as ∑x x · n̄x.

Let’s consider the SUM query in Example 1 . We partition T by Purchase. In a sub-table,

e.g., T$100, estimate the marginal

SELECT COUNT(∗) FROM T$100 GROUP BY Age, Salary.

Sum up (11×101) rows in the above 2-way marginal with Age ∈ [30, 40]∧Salary ∈ [50K, 150K]

to obtain n̄$100, which contributes a term ($100 · n̄$100) in the estimated answer.

Error analysis. We can analyze errors in the above marginal-based solution for data with

one sensitive dimension using Proposition 7.2.1 . Let D be a sensitive ordinal dimension, and

we want to handle MDA queries with range constraints,

q : SELECT SUM(M) FROM T WHERE D ∈ [l, r].

We partition T by M . For each distinct x ∈ M , in the estimated LDP marginal of Tx on

the dimension D, we sum up rows with D ∈ [l, r], each contributing x in the answer. Since

a 1-way marginal can be optimally estimated with a frequency oracle, the estimated answer

to q is equivalent to:

∑
distinct x

(
∑

v∈[l,r]
x · f̂Tx(v)) =

∑
v∈[l,r]

f̂M
T (v). (7.9)

135

1 3 4 5 6 7 82

t1[L
l]

ID1

t2[D1] = 6t1[D1] = 3

L
0

L1

L2

L
3

t2[L
l] (l = 0, 1, 2, 3)

Figure 7.1. Hierarchy of intervals and the HI mechanism

The error now depends on how many distinct values of D we have within [l, r]. If D has m

distinct values, from Proposition 7.2.1 , the error of the above estimation is:

(r − l + 1) · Err(f̂M
T) = Θ

(
m|T |∆2/ε2

)
(7.10)

with a linear dependency on r − l + 1 or m.

Suppose there are d sensitive dimensions, each with m distinct values, the worst-case

error in the above solution is proportional to md, as we may need to sum up md marginal

rows under range constraints on these dimensions.

In Sections 7.3 -7.4 , we propose new mechanisms to remove the linear/polynomial depen-

dency on m in the error, via careful query decomposition and privacy-budget partitioning.

Their error is poly-logarithmically dependent on m.

7.3 MDA with One Private Dimension

7.3.1 Hierarchical-Interval (HI) Mechanism

We propose a mechanism (AHI, PHI), whose one-dimensional version is inspired by the

structure of a binary search tree, to ensure that the error is sublinear in m. Similar structures

have also been used by previous work, e.g., [17], [36], to answer range counting queries in

the centralized DP setting. We focus on the one-dimensional version in this section, and will

generalize it to multi-dimensional MDA in Section 7.4 .

136

Hierarchy of intervals. Suppose the ordinal dimension D has m distinct values, in the

order of z1, z2, . . . , zm. We construct a hierarchical collections of intervals with a fan-out b,

which can be viewed as a perfect b-way tree: each node corresponds to an interval, and has

b children (except leaves), corresponding to b equally sized subintervals. We assume m = bh

(if not, we can add some dummy values in D).

Level 0 in the hierarchy is L0 = {[z1, zm]}. [z1, zm] corresponds to the root, and is

recursively partitioned into b equally sized subintervals until we reach the leaves, i.e., intervals

with unit length Lh = {[z1, z1], . . . , [zm, zm]}. There are bl intervals on level l, each covering

m/bl values:

Ll = {[z(i−1)·m/bl+1, zi·m/bl] | i = 1, 2, . . . , bl}.

Let ID = {L0, . . . ,Lh} be the whole hierarchy (h = logb m).

Example 4. Consider an ordinal dimension D1 with 8 values. Figure 7.1 shows its hierar-

chical intervals (with b = 2).

Query rewriting with HI. In a query q = QT (SUM(M), D ∈ [l, r]), the interval [l, r] can

be decomposed into 2(b − 1) logb m (or less) disjoint intervals, I1, . . . , Ip, in the hierarchy

ID. q can be decomposed into sub-queries on these intervals. If every user tells the server

whether her/his dimension value is in each interval in ID, in an LDP way, each sub-query

QT (SUM(M), D ∈ I i) can be estimated (i = 1, 2, . . . , p). The query q can be answered by

assembling estimates for the p ≤ 2(b−1) logb m sub-queries, and thus with a polylogarithmic

factor in the error. A rewriting example follows.

Example 5. Assume that the ordinal dimension D1 in Table 7.1 takes values in {1, 2, …,

8}. Consider the query

q1 : SELECT SUM(M1) FROM T WHERE D1 ∈ [2, 7].

[2, 7] is decomposed into 4 intervals (the blue ones in Figure 7.1); correspondingly, q1 is

rewritten as the sum of four queries with “D1 ∈ [2, 2]”, “D1 ∈ [3, 4]”, “D1 ∈ [5, 6]”, and

“D1 ∈ [7, 7]”.

137

In a naive implementation of the above strategy, each user sends Θ(m) LDP reports (as

there are Θ(m) intervals in ID). We will show that, in fact, Θ(log m) LDP reports suffice.

The main idea is that the dimension value t[D] of a user t belongs to exactly h + 1

intervals in ID, one on each level: suppose t[D] belongs to I l ∈ Ll on level l, we let t[Ll] = I l.

We only need h frequency oracles, each encoding and collecting the interval t[Ll] on level l,

for l = 1, . . . , h.

In general, [l, r] is partitioned into p disjoint intervals: [l, r] = Ik1 ∪ Ik2 ∪ . . . ∪ Ikp (Iki is

on level Lki). We rewrite

QT (SUM(M), D ∈ [l, r]) =
p∑

i=1
QT (SUM(M), D ∈ Iki) (7.11)

where each sub-query QT (SUM(M), D ∈ Iki) can be estimated by the weighted frequency

oracle on Lki as f̂M
T (Iki).

Example 6. In the hierarchy of D1 in Figure 7.1 , a tuple t1 with t1[D1] = 3 belongs to one

interval on each level (those crossed by the dashed arrowed line): t1[L3] = [3, 3], t1[L2] = [3, 4],

t1[L1] = [1, 4], and t1[L0] = [1, 8]. The first three intervals are encoded and collected using

frequency oracles.

As in Example 5 , q1 is decomposed into four sub-queries: the one with “D1 ∈ [3, 4]” can

be estimated with f̂M
T ([3, 4]).

HI mechanism (AHI, PHI). On the client side, the privacy budget is partitioned evenly

for the h levels L1, . . . ,Lh, and the interval a tuple t belongs to on each level (i.e., t[Li]) is

encoded using AFO in a weighted frequency oracle.

On the server, for a query q, we estimate each sub-query QT (SUM(M), D ∈ Iki) in (7.11)

using the weighted frequency estimator f̂M(Iki), and sum them up as an estimation to q.

PHI(q) =
p∑

i=1
f̂M

T (Iki). (7.12)

138

Theorem 7.3.1 (1D-HI). i) AHI satisfies ε-LDP. ii) PHI(q) is an unbiased estimator of q,

and the expected squared error

Err(PHI(q)) ≤ 2(b− 1) logb m ·M2
T ·

(eε/ logb m + 1)2

(eε/ logb m − 1)2 (7.13)

= O
(

n∆2 log3 m

ε2

)
when ε is small,

where n = |T | is the number of users, ∆ is the range of M , M2
T = ∑

t∈T t[M]2, and the

constant b is the fan-out.

7.3.2 Better Accuracy via Level Partitioning

In AHI, the privacy budget ε is partitioned evenly for the h levels. An alternative is to

randomly partition the users into h groups instead of partitioning the privacy budget: users

in a group Sl, corresponding to level l, can be regarded as a random sample with sampling

rate 1/h, and spend all the privacy budget on only level l. A bit surprisingly, this alternative

has the accuracy boosted by orders of magnitude. The intuition behind this is: we gain

accuracy by spending more privacy budget on each level, but lose accuracy as each level is

supported for a random sample of users (refer to Proposition 7.2.2 in Section 7.2.2); as long

as the accuracy gain overcomes the loss, the overall accuracy can be boosted.

Query q = QT (SUM(M), D ∈ [l, r]) is decomposed in the same way as (7.11). For a

sub-query QT (SUM(M), D ∈ Iki) in (7.11), we refer to the user group Ski
corresponding to

level ki. As introduced in Section 7.2.2 , we can run frequency oracles on the random sample

Ski
, and scale up the estimation f̂M

Ski
(Iki) by a factor of h, to approximate the sub-query’s

answer. The mechanism (AHIO, PHIO) based on the above idea is described in Algorithm 3 .

Its error bound is given in Theorem 7.3.2 .

139

Algorithm 3 1D HI Optimized (AHIO, PHIO)
Client side: Encode private dimension t[D].
1: Randomly pick l ∈ {1, 2, . . . , h} with equal prob.
2: Suppose t[D] is in interval I l ∈ Ll: t[Ll]← I l;
3: Create LDP report:

AHIO(t)←
(
l,Aε

FO(t[Ll])
)

. (7.15)

Server side: MDA query q = QT (SUM(M), D ∈ [l, r]).
1: Let user groups Sl ← ∅ for l = 1, . . . , h.
2: For each user t. if we get

(
l0,Aε

FO(t[Ll0])
)
:

3: Sl0 ← Sl0 + {t};
4: Decompose [l, r] into p disjoint intervals Ik1 ∈ Lk1 , Ik2 ∈ Lk2 , …, Ikp ∈ Lkp in the

hierarchy ID.
5: For each i = 1, 2, . . . , p:
6: Estimate fM

T (Iki) as f̃M
T,1/h(Iki) (using (7.8));

f̃M
T,1/h(Iki) = h · f̂M

Ski
(Iki), (7.16)

7: Output an estimation to q as:

PHIO(q) =
p∑

i=1
f̃M

T,1/h(Iki). (7.17)

Theorem 7.3.2 (1D-HIO). i) AHIO satisfies ε-LDP. ii) PHIO(q) is an unbiased estimator of

q with expected squared error

Err(PHI(q)) ≤ 4(b− 1) log2
b m ·M2

T ·
(e2ε + 1)
(eε − 1)2 (7.14)

= O
(

n∆2 log2 m

ε2

)
when ε is small,

where n = |T |, ∆ is the range of M , and M2
T = ∑

t∈T t[M]2.

The HIO mechanism boosts the accuracy by a factor of logb m in comparison to the HI

mechanism (7.13). We use b = 5 in our implementation to minimize RHS of (7.14).

140

1 3 4 5 6 7 82 1 3 4 5 6 7 82

�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�L0

D1

L1

D1

L2

D1

L3

D1

t[D1] = 3

L0

D2

L1

D2

L2

D2

L3

D2

⊗ L2

D1
L1

D2
×ID1

ID2

t[D2] = 5

t[L2

D1
× L1

D2
]

, L2

D1
× L2

D2
, . . . }= {. . . ,

×

Figure 7.2. 2D hierarchy of intervals, query decomposition, and HI mechanism

7.4 Multiple Private Dimensions

We now introduce how to handle multiple private dimensions in MDA queries. We will

first focus on the case when we have multiple ordinal dimensions and range constraints in

an MDA query, for which we extend our HI/HIO mechanism in Section 7.3 to a multi-

dimensional one. We will then introduce how to handle a combination of ordinal and cate-

gorical dimensions. Finally, when there are many sensitive dimensions in the data model and

the worst-case error blows up, we will introduce a split-and-conjunction mechanism which is

still able to handle low-dimensional queries.

7.4.1 Multiple Ordinal Dimensions

In order to extend our HI mechanism for multiple dimensions, let’s first introduce a multi-

dimensional hierarchy of intervals, which naturally generalizes the one-dimensional hierarchy

in Section 7.3.1 . An MDA query can be decomposed into a polylogarithmic (in dimension

cardinalities) number of sub-queries in this hierarchy, and they together are aggregated to

answer the original MDA query without blowing up the worst-case error. Similar user-

partitioning techniques as in Section 7.3.2 can be applied to boost the accuracy.

Multi-dimensional Hierarchical Intervals

Recall that ID = {L0
D, . . . ,Lh

D} is the hierarchy for dimension D: level 0 is L0
D = {[z1, zm]}

and Ll+1
D is obtained by partitioning each interval in Ll

D into b equally sized subintervals.

141

W.l.o.g., assume each dimension has the same cardinality m = bh (i.e., # distinct values)

for the simplicity of explanation.

Two-dimensional hierarchy. Let’s first focus on two dimensions. Define a 2-dim hierarchy

to be:

ID1 ⊗ ID2 =
{
Ll1

D1 × L
l2
D2

∣∣∣ 0 ≤ l1, l2 ≤ h
}

.

Each Ll1
D1 ×L

l2
D2 is called a 2-dim level. There are a total of (h + 1)2 2-dim levels in a 2-dim

hierarchy. Each pair 〈I1, I2〉 ∈ Ll1
D1 ×L

l2
D2 is called a 2-dim interval. We will write I1I2 . . . Id

as a shorthand for 〈I1, I2, . . . , Id〉 in the rest part.

Consider a tuple t, for each l1 and l2, t[D1] and t[D2] belong to exactly one interval in

Ll1
D1 and Ll2

D2 : let them be I l1
1 and I l2

2 , respectively. We augment t with a new dimension

“Ll1
D1 × L

l2
D2” for the corresponding 2-dim level: let

t[Ll1
D1 × L

l2
D2] = I l1

1 I l2
2 ,

which means that t[D1] ∈ I l1
1 ∧ t[D2] ∈ I l2

2 . Indeed, we have

QT (SUM(M), D1 ∈ I l1
1 ∧D2 ∈ I l2

2)

=QT (SUM(M),Ll1
D1 × L

l2
D2 = I l1

1 I l2
2) = fM

T (I l1
1 I l2

2).

In an MDA query q = QT (SUM(M), D1 ∈ [l1, r1]∧D2 ∈ [l2, r2]), [l1, r1] can be decomposed

into p1 disjoint intervals in ID1 : [l1, r1] = I1
1 ∪ . . . ∪ Ip1

1 , and similarly [l2, r2] = I1
2 ∪ . . . ∪ Ip2

2 .

We can then decompose q into p1 × p2 sub-queries:

QT (SUM(M), D1 ∈ [l1, r1] ∧D2 ∈ [l2, r2])

=
∑

1≤a≤p1,1≤b≤p2

QT (SUM(M), D1 ∈ Ia
1 ∧D2 ∈ Ib

2)

=
∑

1≤a≤p1,1≤b≤p2

fM
T (Ia

1 Ib
2). (7.18)

142

Since p1, p2 ≤ 2(b − 1) logb m, there are O(log2 m) sub-queries. Each sub-query can be

estimated as f̂M
T (Ia

1 Ib
2) using a weighted frequency oracle on the corresponding 2-dim level,

and then we just need to sum up these estimates to answer q.

Example 7. Suppose the two ordinal dimensions D1 and D2 take values in {1, 2, . . . , 8}. A

2-dim hierarchy on them is shown in Figure 7.2 . Their individual 1-dim hierarchies ID1 and

ID2 are on the left, each with 4 levels. The 2-dim hierarchy is a Cartesian product of the

two, with 4× 4 2-dim levels. In particular, the 2-dim level, L2
D1 ×L

1
D2, depicted on the right,

is a Cartesian product of two 1-dim interval sets L2
D1 and L1

D2, with 4 × 2 2-dim intervals,

each of which is a pair of 1-dim intervals, with one from L2
D1 and the other from L1

D2. For

example, the 4th one (top-to-bottom) in the figure is [3, 4][5, 8].

Consider a tuple t with t[D1] = 3 and t[D2] = 5. It belongs to the above 2-dim interval as

t[D1] ∈ [3, 4] and t[D2] ∈ [5, 8]. Thus, the augmented dimension t[L2
D1 × L

1
D2] = [3, 4][5, 8].

Consider the following MDA query:

q2 :SELECT SUM(M1) FROM T

WHERE D1 ∈ [2, 7] AND D2 ∈ [3, 8]

As shown in Figure 7.2 , [2, 7] can be partitioned into 4 intervals in ID1 (blue ones), and [3, 8]

partitioned into 2 in ID2 (green ones). Thus, q2 can be decomposed into 4 × 2 disjoint sub-

queries: e.g., two on the 2-dim level L2
D1 ×L

1
D2, one with “D1 ∈ [3, 4] AND D2 ∈ [5, 8]” and

one with “D1 ∈ [5, 6] AND D2 ∈ [5, 8]”. If each user reports all the augmented dimensions

with LDP weighted frequency oracles, answers to such sub-queries (with 2-dim intervals in

their predicates) can be approximated.

d-dim hierarchy. The construction of a 2-dim hierarchy can be easily extended for more

dimensions. Define:

ID1 ⊗ . . .⊗ IDd
=
{
Ll1

D1 × . . .× Lld
Dd

∣∣∣ 0 ≤ l1, l2, . . . , ld ≤ h
}

143

to be a hierarchy of d-dim levels (there are (h+1)d levels). Each I1I2 . . . Id ∈ Ll1
D1× . . .×Lld

Dd

is a d-dim interval.

An MDA query q = QT (SUM(M), D1 ∈ [l1, r1]∧. . .∧Dd ∈ [ld, rd]) can be thus decomposed

into p1 × . . .× pd sub-queries:

QT (SUM(M), D1 ∈ [l1, r1] ∧ . . . ∧Dd ∈ [ld, rd])

=
∑

1≤i1≤p1,...,1≤id≤pd

fM
T (I i1

1 I i2
2 . . . I id

d), (7.19)

where p1, p2, . . . , pd ≤ 2(b− 1) logb m.

Multi-dimensional HI Mechanism (AHI, PHI)

On the client side, an augmented dimension tells which d-dim interval a user belongs to.

We use AFO in a weighted frequency oracle to encode all the (h+1)d augmented dimensions,

each of which uses a privacy budget of ε/(h+1)d. On the server side, from how q is rewritten

in (7.19), we can estimate the weighted frequency of each d-dim interval and sum up the

estimates to approximate the answer to q:

PHI(q) =
∑

1≤i1≤p1,...,1≤id≤pd

f̂M
T (I i1

1 I i2
2 . . . I id

d). (7.20)

Theorem 7.4.1 (HI). i) AHI satisfies ε-LDP. ii) PHI(q) is an unbiased estimator of q with

expected squared error

Err(PHI(q)) ≤ (2(b− 1) logb m)dqM2
T ·

(eε/(logb m+1)d + 1)2

(eε/(logb m+1)d − 1)2

= O
(

n∆2 logdq+2d m

ε2

)
when ε is small, (7.21)

where n = |T | is the number of users, d (dq) is the number of sensitive dimensions (in the

query q), ∆ is the range of M , M2
T = ∑

t∈T t[M]2, and the constant b is the fan-out.

144

Algorithm 4 d-dim HI Optimized (AHIO, PHIO)
Client side: Encode dimensions t[D1], . . . , t[Dd].
1: Randomly pick (l1, . . . , ld) ∈ {0, 1, . . . , h}d.
2: Suppose t[Di] is in interval I li

i ∈ Lli
Di

(i = 1, . . . , d); let t[Ll1
D1× . . .×Lld

Dd
]← I l1

1 I l2
2 . . . I ld

d .
3: Create LDP report:

AHIO(t)←
(
(l1, . . . , ld),Aε

FO(t[Ll1
D1 × . . .× Lld

Dd
])
)

. (7.22)

Server side: MDA query q = QT (SUM(M), D1 ∈ [l1, r1] ∧ . . . ∧Dd ∈ [ld, rd]).
1: Let S(l1,...,ld) ← ∅ for each (l1, . . . , ld) ∈ {0, 1, . . . , h}d.
2: For each user t, if we get ((l1, . . . , ld),Aε

FO(·)): S(l1,...,ld) ← S(l1,...,ld) + {t};
3: For i = 1 to d do:
4: Decompose [li, ri] into pi disjoint intervals [li, ri]→
5: I1

i ∪ I2
i ∪ . . . ∪ Ipi

i in the hierarchy IDi
;

6: For each (i1, . . . , id) ∈ {1, . . . , p1} × . . .× {1, . . . , pd}:
7: Estimate fM

T (I i1
1 I i2

2 . . . I id
d) as (suppose I ik

k ∈ L
lk
Dk

):

f̃M
T,1/(h+1)d(I i1

1 I i2
2 . . . I id

d) = (h + 1)d · f̂M
S(l1,...,ld)

(I i1
1 I i2

2 . . . I id
d); (7.23)

8: Output an estimation to q as:

PHIO(q) =
∑

1≤i1≤p1,...,1≤id≤pd

f̃M
T,1/(h+1)d(I i1

1 I i2
2 . . . I id

d). (7.24)

Boosting Accuracy via User Partitioning

Similar to the 1-dim case in Section 7.3.2 , HI’s accuracy can be boosted by randomly

partitioning users by levels. On the client, a user picks one of the (h + 1)d d-dim levels

randomly, and encodes only the d-dim interval in this level with privacy budget ε. On the

server, we estimate the weighted frequency fM
T (I i1

1 I i2
2 . . . I id

d) in (7.19) with LDP reports in

the corresponding level from a random 1/(h + 1)d portion of users (as in Section 7.2.2).

The resulting mechanism (AHIO, PHIO) is in Algorithm 4 . Theorem 7.4.2 shows that the

gain from a larger privacy budget spent on the picked level per user overcomes the error due

to running weighted frequency oracles on samples. PHIO has a significant accuracy boost over

PHI.

145

Theorem 7.4.2 (HIO). i) AHIO satisfies ε-LDP. ii) PHIO(q) is an unbiased estimator of q

with expected squared error

Err(PHIO(q)) (7.25)

≤(2(b− 1)(logb m + 1))dq(logb m + 1)dM2
T ·

(e2ε + 1)
(eε − 1)2

=O
(

n∆2 logdq+d m

ε2

)
when ε is small,

where n = |T | is the number of users, d (dq) is the number of private dimensions (in the

query q), ∆ is the range of M , M2
T = ∑

t∈T t[M]2, and the constant b is the fan-out.

7.4.2 Ordinal and Categorical Dimensions

A categorical dimension D can be regarded as a hierarchy with two levels: L0
D = {∗} and

L1
D = {[v1], [v2], . . . , [vc]}, where ‘∗’ means ‘anything’, and v1, v2, . . . , vc are distinct values

D. As there are only point constraints on D, e.g., “D = vi”, all the intermediate levels are

unnecessary. Such a categorical hierarchy can be incorporated into the multi-dimensional

hierarchy of intervals introduced in Section 7.4.1 .

7.4.3 Split-and-Conjunction: When the Dimensionality is High

HI and HIO mechanisms have errors exponentially depending on both the number of

dimensions in the query (dq) and the total number of sensitive dimensions in the data model

(d). On the client side, they partition privacy budget ε or users into Θ(logd m) portions, one

for each d-dim level, and thus may introduce too much LDP noise for large d. When dq � d,

there is room for improvement: whether it is possible to remove the exponential dependency

on d.

We introduce our split-and-conjunction (SC) mechanism in this section. Instead of en-

coding a tuple on the d-dim hierarchy, a user maintains d one-dim hierarchies, on which

the d dimensions are encoded and reported independently. The privacy budget ε is thus

partitioned into Θ(d log m) portions (d dimensions each with Θ(log m) one-dim levels). The

146

question is, while all dimensions are reported independently, whether we can estimate how

many rows have, e.g., t[D1] = v1 and t[D2] = v2 conjunctively. To this end, we will first

introduce a new class of estimators in frequency oracles, called conjunctive estimators as a

building block of SC.

Conjunctive Estimators f̄ and f̄M

Let D1 and D2 be two sensitive dimensions. A conjunctive weighted frequency query asks,

for a set of users S, and v1 ∈ D1 and v2 ∈ D2, the total measure of users with t[D1] = v1

and t[D2] = v2, i.e., weighted frequency fM
S (v1v2) = ∑

t∈S∧t[D1]=v1∧t[D2]=v2 t[M] of 〈v1, v2〉 on

the domain D1 ×D2, or unweighted frequency

fS(v1v2) = | {t ∈ S | t[D1] = v1 ∧ t[D2] = v2} |.

Given two sets of independently-generated LDP reports {AFO(t[D1])}t∈S, {AFO(t[D2])}t∈S,

we want to estimate fM
S (v1v2), for any v1 ∈ D1 and v2 ∈ D2. More generally, we can esti-

mate fM
S (v1 . . . vk) from reports on k dimensions. For this purpose, we introduce conjunctive

estimators f̄ and f̄M .

States and transition. Recall that an LDP report AFO(t[Di]) = 〈H, y〉 is a pair of a

random hash function H and a randomly perturbed value y (refer to Section 3.3.5).

We define two indicator variables for the query term vi:

input state: Bi(t) =

0, if t[Di] 6= vi

1, if t[Di] = vi

and (7.26)

output state: Ai(t) =

0, if H(vi) 6= y

1, if H(vi) = y

(for i = 1, 2). (7.27)

147

Input state Bi(t) is deterministic and depends on vi; output state Ai(t) is a random

variable and depends on both vi and randomness in AFO. We can define the following

transition probabilities:

Pb→a , Pr [Ai(t) = a | Bi(t) = b] (for a, b ∈ {0, 1}).

A tuple with two dimensions has 4 possible 2-dim input states: “11” (meaning B1(t) =

1 ∧ B2(t) = 1), “01”, “10”, and “00”. After applying AFO, the LDP report has 4 possible

2-dim output states “11” (meaning A1(t) = 1 ∧ A2(t) = 1), “01”, “10”, and “00”. We can

derive 2-dim transition probabilities:

Pb1b2→a1a2 (for a1, a2, b1, b2 ∈ {0, 1})

, Pr [A1(t) = a1 ∧ A2(t) = a2 | B1(t) = b1 ∧B2(t) = b2]

= Pb1→a1 · Pb2→a2 (as A1(t) and A2(t) are independent),

since dimensions are encoded independently.

Estimation via transition matrix. For a set S of users and their reports {AFO(t[D1])}t∈S

and {AFO(t[D2])}t∈S, we observe the frequency of each 2-dim output state. With them, we

can estimate the frequencies of input states via transition probabilities, and in particular,

the frequency of 2-dim input state “11” is equal to unweighted frequency fS(v1v2).

The frequencies of input states are, for b1b2 = 11, 01, 10, 00:

bS(b1b2) = |{t ∈ S | B1(t) = b1 ∧B2(t) = b2}|.

And those of output states are, for a1a2 = 11, 01, 10, 00:

aS(a1a2) = |{t ∈ S | A1(t) = a1 ∧ A2(t) = a2}|.

148

Consider the corresponding frequency vectors of input and output states,

b = [bS(11), bS(01), bS(10), bS(00)]> and a = [aS(11), aS(01), aS(10), aS(00)]>. We can

establish the relationship between b and a through transition matrix P:

P · b ,

P11→11 P01→11 P10→11 P00→11

P11→01 P01→01 P10→01 P00→01

P11→10 P01→10 P10→10 P00→10

P11→00 P01→00 P10→00 P00→00

bS(11)

bS(01)

bS(10)

bS(00)

= E [a] ,

from the property of P and the linearity of expectation. By observing the frequency vector

a, we can estimate b as:

b̂ = [b̂S(11), b̂S(01), b̂S(10), b̂S(00)]> = P−1 · a (7.28)

and, in particular, f̄S(v1v2) = b̂S(11). (7.29)

From the linearity of expectation, we have E
[

b̂
]

= P−1 · E [a] = P−1P · b = b, and thus

E
[

f̄S(v1v2)
]

= bS(11) = fS(v1v2).

Similar to (7.7), for the weighted case, we can derive

f̄M
S (v1v2) =

∑
distinct x

x · f̄Sx(v1v2), (7.30)

where Sx = {t ∈ S | t[M] = x}. Its unbiasedness is from f̄ ’s.

In order to extend f̄ and f̄M from two dimensions to d dimensions, we extend 2-dim

input/output states to d-dim input/output states. Correspondingly, their frequencies are:

bS(b1 . . . bd) = |{t ∈ S | B1(t) = b1 ∧ . . . ∧Bd(t) = bd}|,

aS(a1 . . . ad) = |{t ∈ S | A1(t) = a1 ∧ . . . ∧ Ad(t) = ad}|.

The transition matrix P is a 2d × 2d one, as there are 2d states. The errors in f̄ and f̄M

can be bounded as follows.

149

Proposition 7.4.1 (Conjunction of Oracles). Run an ε-LDP encoder Aε
FO on each of the

d dimensions independently (overall, the procedure is (dε)-LDP). For any k dimensions and

values v1, . . . , vk on them, we have unbiased estimators f̄S and f̄M
S of conjunctive unweighted

and weighted frequencies, respectively,

with error Err(f̄S(v1 . . . vk)) = O
(
|S|/ε2k

)
and

Err(f̄M
S (v1 . . . vk)) = O

(
|S|∆2/ε2k

)
,

where ∆ = max(M) − min(M). If we guarantee ε-LDP across all the d dimensions, each

dimension gets a privacy budget ε/d, and thus, the error of f̄M
S is O

(
|S|∆2/(ε/d)2k

)
.

Split-and-Conjunction (SC) Mechanism

We now describe our SC mechanism (ASC, PSC). On the client side, a user reports each

one-dim interval s/he belongs to (one per level) in each one-dim hierarchy IDi
using AFO

independently, with a privacy budget of ε/(dh). The estimator on the server side is the same

as the one in HI mechanism, except that, instead of f̂M , the conjunctive estimator f̄M (from

Section 7.4.3) is used as we have no access to the (LDP version of) d-dim hierarchy. Error

in the estimated answer to an MDA query is exponentially dependent on only dq (number

of private dimensions in q).

Theorem 7.4.3 (SC). i) ASC satisfies ε-LDP. ii) PSC(q) is an unbiased estimator of q with

expected squared error

Err(PSC(q)) = O
(

n∆2d2dq log3dq m

ε2dq

)
when ε is small, (7.31)

where n = |T | is the number of users, d (dq) is the number of private dimensions (in the

query q), and ∆ is the range of M .

150

7.4.4 Performance Comparison

While the accuracy of mechanisms introduced so far depends on some common param-

eters, e.g., ε and data size, they depends on others, e.g., number/sizes of dimensions, in

different ways. We try to identify the analytical turning points of their performance (the

best ones in different settings). These analytical results will be verified in our experiments

later.

Marginal/FO v.s. HIO. Worst-case errors in the marginal or FO-based solution (in-

troduced in Section 7.2.3) depend on ε, |T |, and ∆ in the same way as errors in HIO

asymptotically.

Consider the marginal with all the dimensions in the predicate. Define the volume vol(q)

of a query q to be the ratio of marginal rows satisfying its predicate to all marginal rows. A

1-dim query with a range constraint D ∈ [l, r] has volume vol(q) = (r− l+1)/m, From (7.10)

in Section 7.2.3 and Theorem 7.3.2 , HIO is better than the marginal/FO-based solution if

(r − l + 1) ≥ Θ(log2 m)⇔ vol(q) ≥ Θ(log2 m/m). (7.32)

If there are d sensitive dimensions, from Section 7.2.3 and Theorem 7.4.2 , HIO is better than

the marginal-based solution if

vol(q) ≥ Θ(log2d m/md) (when dq = d). (7.33)

HIO v.s. SC. Comparing Theorem 7.4.3 to Theorem 7.4.2 , SC removes d from the power

of log m in the error, but incurs an additional term d2dq . Only when (from Theorems 7.4.2

and 7.4.3)

(d log m/ε)2dq ≤ Θ(logd m/ε2), (7.34)

i.e., dq is small enough relative to d, SC is better than HIO.

151

7.5 Evaluation

We evaluate our mechanisms in various settings. In short, HIO performs the best most of

time, with a normalized absolute error less than 5% in most queries, and a relative error less

than 5% if the predicate is not too selective; SC performs better in high-dimensional settings

if the number of dimensions in the query is much less than the total number of dimensions.

We also conduct a case study in a big-data platform. Mechanisms are implemented in Python

and evaluated on an Intel Xeon E5 2682 v4 PC with 64GB memory.

Datasets. We conduct experiments on three datasets:

• Adult [37]: A dataset from the UCI ML repository [33] with around 45 thousand tuples

after removing missing values.

• IPUMS [34]: A 2016 US census dataset from the IPUMS repository [33]. It contains

around 3 million records.

• A real dataset with 150 million records from an e-commerce application. Details are

deferred to Section 7.5.2 .

Experiment settings. We compare the four mechanisms:

• MG: Processing MDA queries with the state-of-the-art LDP marginal-releasing tech-

nique [24] (described in Section 7.2.3).

• HI: Hierarchical-interval mechanism (AHI, PHI).

• HIO: HI Optimized (AHIO, PHIO).

• SC: Split-and-conjunction mechanism (ASC, PSC).

We use fan-out b = 5 for HI, HIO, and SC; and we test SUM/COUNT/AVG queries (SUM

by default).

Error measures. We use two error measures:

152

• Mean Normalized Absolute Error MNAE = AVGq(|P(q)−q|
ΣS

), where the absolute error is

normalized by ΣS = ∑
t |t[M]| to [0, 1]. It is used for SUM queries, and measures how

large errors are relative to the maximum possible answer (ΣS).

• Mean Relative Error MRE = AVGq(|P(q)−q|
|P(q)|). It is used for SUM/COUNT/AVG queries,

and measures how large the error is relative to the true answer for each query.

In Section 7.5.1 , we use MNAE for SUM queries to verify theoretical results and compare

the mechanisms, as they all have theoretical guarantees about absolute errors, which are

independent of (or not dominated by) query sizes/answers. MRE is a query-dependent

metric: for queries with very small, e.g., 0, (or very large) true answers, MRE is very large,

e.g., infinity, (or very small) in all the mechanisms, and thus sometimes barely gives a clear

distinction of their accuracy.

In Section 7.5.2 , we use relative error MRE to demonstrate the utility of our mechanisms

for SUM/COUNT/AVG queries. Queries are partitioned into groups by selectivity of their

predicates: in each group, queries have similar sizes and answers, and thus MRE’s for differ-

ent queries are comparable. MRE is also reported in a case study to demonstrate the utility

of our mechanism in a real-world deployment.

For each data point in every figure, we test 30 random queries and plot their MNAE or

MRE (Y-axis) with 1-std.

7.5.1 Experimental Comparison

We compare different mechanisms for varying factors that potentially influence the accu-

racy: i) query volume vol(q) (defined in Section 7.4.4), ii) number of dimensions, iii) domain

sizes (cardinalities of dimensions), iv) data size, and v) ε.

One Ordinal Dimension

We start from MDA queries with one sensitive ordinal dimension: q = QT (SUM(M), D ∈

[l, r]). We create the ordinal dimension with size m = 1024 by bucketizing a numeric column

of the table.

153

0.01 0.1 0.25 0.5 0.80.00

0.03

0.07

0.10

0.0420950993952235

0.066458531111840230.06653748142990712
0.074839880663814390.07885799313861595

0.013279646188088893

0.031820624132537990.028791297008023560.025889915504258810.029616469384921112

0.009671429468274232

0.03175253417296255
0.041118463894761884

0.05150170780477038

0.07200776008786434

HI HIO MG

(a) Adult: vary vol(q)

0.01 0.1 0.25 0.5 0.80.00

0.01

0.020.02

0.009346708287823857
0.0120627954805917460.013702863473936590.01403348215328963

0.016920793411111933

0.003029485709016318
0.0056338940415985860.0059399807478915570.0057807726597911270.006810605216217892

0.0019830890273885766

0.007012142221190245
0.0096340762138811230.010800054895511236

0.021218844874911068

HI HIO MG

(b) IPUMS 1M: vary vol(q)

0.1 0.2 0.5 2 30.00

0.02

0.03

0.05

0.060986192931931624

0.029271260969954162

0.018157279055008742
0.0096352774015569550.009552142245406197

0.016197612382186286
0.012428065925537938

0.007230237144462217
0.00360781026331873570.0033561468140995243

0.03242520199613998
0.026658492297593334

0.0110337082409818680.0078368588429149590.00451359681684122

HI HIO MG

(c) IPUMS: vary |T | (million)

Figure 7.3. Comparing different mechanisms: vary query volume and data
size (ε = 2 and d = 1)

Varying query volume. Figures 7.3a -7.3b show the MNAE for different query volumes on

Adult and IPUMS (1M sample). The interval [l, r] is generated randomly with r − l + 1 =

m · vol(q). The accuracy of MG deteriorates quickly as vol(q) increases. Only when vol(q) is

as small as 0.01, MG is better than HIO (the errors of both are small, too); vol(q) = 0.1 is

the break-even point, which conforms with our analysis in Section 7.4.4 ; when vol(q) = 0.8,

error of MG is ∼ 3× that of HIO. The performance of different methods on IPUMS is better

than that on Adult, because the data size is larger.

Varying data size. We sample 0.1, 0.2, 0.5, 2 and 3 million rows from IPUMS (without

replacement), and test queries with volume 0.25. As can be seen in Figure 7.3c , the larger

the dataset, the better the estimation accuracy, which is consistent with our theorems. HIO

always performs best.

Varying privacy budget ε. Figure 7.4 shows performance of different mechanisms on

IPUMS for varying ε. All methods benefit from larger ε, with HIO performing the best.

154

0.5 1 2 50.00

0.01

0.02

0.03

0.05917473632788461

0.032938631292642934

0.015951725680786656

0.005798612776704501

0.02364262621990275

0.014898795689857655

0.007124026434078034

0.0008052625342527644

0.04156712930333612

0.02715181735275967

0.013090357650612157

0.0024236431099498345

HI HIO MG

Figure 7.4. IPUMS 1M: vary ε (d = 1)

0.5 1 2 50.00

0.05

0.10

0.15

0.20

0.949301611111285

0.30037023817890113

0.13857135663126907

0.060767531415513

0.14368113462139673

0.06239419532980384

0.022888983671628584
0.007293465615487904

0.4317251271021796

0.21196857893837207

0.08242506302577265

0.01749846188870373

HI HIO MG

(a) m1 ×m2 = 256× 256: vary ε

0.1 0.2 0.5 2 30.00

0.05

0.10

0.15

0.20

0.5213744277590611

0.4388683127998408

0.19624455973148902
0.1711639054611651

0.13015206270232785
0.10090065737524187

0.0578707148953238260.04518419623163067
0.0301573017392808770.025459508730352957

0.2685628492999714

0.1892723151176523

0.11767031736196197

0.045465961061114010.044531390084275486

HI HIO MG

(b) m1 ×m2 = 256× 256: vary |T | (million)

Figure 7.5. Two sensitive ordinal dimensions: vary ε and data size (d = 2)

In the rest of Section 7.5.1 , we will use vol(q) = 0.25, data size |T | = 1 million, and ε = 2,

as their default values.

Two Ordinal Dimensions

We create two ordinal dimensions on IPUMS with sizes m1 and m2 by bucketizing numeric

columns. Two configurations of m1 ×m2 are tested: 256 × 256 and 1024 × 64. The query

predicate is the conjunction of two range constraints: D1 ∈ [l1, r1]∧D2 ∈ [l2, r2], with volume

vol(q) = (r1 − `1 + 1)× (r2 − `2 + 1)/(m1 ×m2).

Figures 7.5 -7.6 shows the results of different mechanisms for the two configurations, when

varying ε, |T |, and vol(q). When vol(q) ≤ 0.01, MG is better, which is consistent with our

analysis in Section 7.4.4 ; otherwise, MG is much worse than HIO for varying ε and |T |, as

an MDA query with two range constraints can be decomposed into too many marginal cells,

whose errors accumulate when being aggregated.

155

0.01 0.1 0.25 0.5 0.80.00

0.05

0.10

0.15

0.20

0.11799914173986671

0.1775517819524483

0.22309420802038993

0.2906548667872239

0.3629393827714415

0.0230315663427951640.0359810848311058750.043541969174874710.040941191677760040.04401637117678422
0.019662791974501454

0.04080435124891856
0.06832599071318152

0.10308422637706152
0.13773788996553715

HI HIO MG

(a) m1 ×m2 = 256× 256: vary vol(q)

0.01 0.1 0.25 0.5 0.80.00

0.05

0.10

0.15

0.20

0.09689873985641187

0.17139103198202996
0.13993759256444002

0.24154098887698190.25183291730566704

0.0223226949193107570.0253449060343643450.034930604884928280.0470830870747615750.04316781309612886
0.014787396172908291

0.06387076613970749
0.07905042522254607

0.10715053601316739

0.15360713011784213

HI HIO MG

(b) m1 ×m2 = 1024× 64: vary vol(q)

Figure 7.6. Two sensitive dimensions: vary query volume (ε = 2 and d = 2)

0.01 0.1 0.25 0.5 0.80.00

0.12

0.23

0.35

0.059809992725902705
0.087942738766465880.07331418533555560.0845618739517473

0.11198547255404792
0.07599578436234752

0.11373495802821229

0.21994409855505348

0.3074921231458976
0.3384801206763552

HIO MG

Figure 7.7. Three sensitive dimensions: vary query volume (ε = 2 and d = 3)

Table 7.2. One-run estimations (using HIO) of sample AVG queries and true answers
ε = 0.5 1 2 5 true
Q1 26.29 24.36 26.81 26.07 26.32
Q2 36.97 32.36 33.77 32.79 33.11
Q3 27.07 34.69 24.22 26.68 27.01

Three Ordinal Dimensions

We create three sensitive ordinal dimensions on IPUMS with sizes 256× 256× 64. The

query predicate is the conjunction of the two range constraints. Errors in HI are much larger

than those in HIO, so we omit it here. Figure 7.7 shows the results of HIO and MG, when

varying vol(q). Errors in MG highly depend on vol(q), which is consistent with our analysis

in Sections 7.2.3 and 7.4.4 . On the other hand, although more challenging, HIO can still

work, with consistently better estimations than MG. When vol(q) ≥ 0.5, HIO is at least 3×

more accurate.

156

0.040.070.110.150.180.220.260.300.00

0.02

0.04

0.06

0.08

0.20739381353357075

0.14338420501826293

0.08702270154904264

0.062853950672083870.05850376291724779
0.049517795984118526

0.031494863824108290.03255482674047605
0.04417068443080101

0.031606834202795885
0.017340605108968470.0152253972724283470.0108772443906388520.0102994371661355410.0091210481685446710.0073839789878327455

= 2 = 5

(a) SUM queries

0.040.070.110.150.180.220.260.300.00

0.02

0.04

0.06

0.08

0.2101265013825048

0.03614733991100746

0.019517359209014780.0172786320450961270.016551317416544470.0115417875719354620.0089501780896705070.0073348155068052460.0102400547251891680.005456676231811660.0035925783786744190.0039792214806077220.00287469423277437930.00276804673394089260.0024835754813496220.001829133953528197

= 2 = 5

(b) AVG queries

Figure 7.8. Relative error of HIO: vary selectivity

52 53 54 55 560.00

0.04

0.08
0.11

0.15

0.007525354089285210.00695227075482919040.017921363760406590.021889042997460370.027498723045793653
0.0123209697902817840.0114605964319860820.018742323079002730.022202486385643615

0.03958445026182940.027329034689325963
0.0577537737820818

0.0826674968443011

0.135292126353543

0.1810507685684228

0.07064779941668173

0.1464759602037872

0.23768615147407082

0.34093433393866285

0.46339800265782727

1+0
1+1

2+0
2+2

(a) ε = 2: vary domain size

52 53 54 55 560.00

0.02
0.03
0.04

0.06

0.00182369762397917040.00193113309896119860.00330160653605116430.00374147419322724570.0076499939207146685
0.00173768852733366160.003651594649877090.0059341304033599460.0061511554257954280.0066140725645051510.0062220948160362450.010723730185147218

0.023230585586474640.02191312708684582

0.04483593905076432

0.016865235747022592
0.030002616830704078

0.04580987527932783
0.05810594401506419

0.09747180309926509

1+0
1+1

2+0
2+2

(b) ε = 5: vary domain size

Figure 7.9. Relative error of HIO on 2 (ordinal) + 2 (categorical) dimensions:
vary domain sizes and query types (SUM queries)

0+1 1+0 0+2 2+0 1+1 1+2 2+10.00
0.02

0.05

0.08
0.10

SC HIO

Figure 7.10. Relative error of HIO and SC on 4 (ordinal) + 4 (categorical)
dimensions: vary query types (ε = 5)

7.5.2 Relative Error and Practical Usage

We now focus on the utility of our mechanisms in more real settings and conduct a case

study. We will report their relative errors (MRE). We consider data models with four or

more sensitive (both ordinal and categorical) dimensions, but MDA queries may or may not

contain all of them. When there are more than two sensitive dimensions, HI and MG already

give much worse accuracy than HIO does. Thus, their performances are not reported here.

We will evaluate HIO and SC, as their benefit is more pronounced when there are more

sensitive attributes (analyzed in Section 7.4.4).

157

Two Ordinal and Two Categorical Dimensions

We start with four sensitive dimensions in IPUMS. We let both ordinary dimensions

have the same domain size m (54 by default). We can change m through finer or looser

bucketization.

Sample queries on with varying ε. Three sample queries Q1-Q3 are processed using HIO,

and their estimated/true answers shown in Table 7.2 . The relative errors of estimations are

within 5% most of the time. Q3 has the most selective predicate, and error in its estimated

answers is also the largest among the three.

Varying selectivity of predicate. Since our theorems give guarantees on absolute errors

for COUNT and SUM queries (e.g., Theorem 7.4.2), relative errors are highly impacted by

sizes of query answers, which in-turn depend on the selectivities of predicates. We test

COUNT, SUM, and AVG queries with four types of predicates, 1+0, 1+1, 2+0, and 2+2

(a+b means a ordinal dimensions and b categorical dimensions), and varying selectivities.

We plot the results in Figure 7.8 (COUNT queries have very similar trends to SUM). Their

relative error decreases with increasing selectivity. AVG is estimated as SUM/COUNT, and

thus, its relative error has a similar trend. As long as predicates are not too selective, we

get reasonable relative errors for both ε = 2 and 5.

Varying query type and domain size. For varying domain sizes and different types of

predicates, we evaluate HIO and SC on queries with selectivity around 0.1. SC is worse in

almost all types. Errors of HIO are reported in Figure 7.9 . The errors are larger when the

domains are larger due to the log m term in the error bounds. Also, queries of types 1+0

and 1+1 can be answered more accurately than 2+0 and 2+2 queries, which is consistent

with Theorems 7.4.2 and 7.4.3 – the error increases as dq increases.

Four Ordinal and Four Categorical Dimensions

We evaluate HIO and SC in the 8-dim setting, for different query types, and report

the results in Figure 7.10 . In this high-dim setting, according to Section 7.4.4 , SC should

give better estimations for queries with fewer dimensions in the predicates. Empirically, SC

158

Table 7.3. One-run estimated answers in the case study
ε = 0.5 1 2 5 true selectivity
Q4 0.185 0.154 0.178 0.167 0.168 0.049

rel. err. 0.102 0.081 0.061 0.005 - -
Q5 0.157 0.148 0.160 0.170 0.171 0.011

rel. err. 0.086 0.138 0.066 0.008 - -

performs better than HIO for the almost all the query types except 2+1. This is consistent

with our analytical results and is the purpose of introducing SC.

Case Study: E-Commerce Analytics

We test HIO for a real-world application in an e-commerce company, who wants to collect

delivery information from users in a privacy-preserving way. The table T collected via HIO

contains more than 150 million users with four attributes. Attributes about each user’s

location (Region) and the product s/he bought (Category, Price) are sensitive dimensions,

and the postage fee (Postage) is a public measure attribute. Suppose we want to analyze

the postage distribution for certain group of users and products, Table 7.3 gives the answers

estimated by HIO for different ε. With the a large number of users, the accuracy is much

improved.

7.6 Extensions and Discussion

Other space partitioning techniques. Frequency oracles can be combined with QuadTree

to handle MDA queries: intuitively, a user can encode the tree nodes containing her/his tuple

locally via frequency oracles. However, QuadTree incurs larger errors, because, to answer a

2D range query, in the worst case, the entire QuadTree needs to be traversed and thus too

many noisy counts (the number is linear in the domain size) are added up which amplifies

the error.

Coefficients in wavelet transforms (used in Privelet [38]) can be encoded using frequency

oracles. Each user randomly selects a level in the decomposition tree of the wavelet transform,

159

and reports his location on that level. However, as each level has a different weight in the

estimation, it is unclear how to partition users across levels to optimize the utility.

In general, the idea proposed in this paper can also be used in other space partitioning

techniques. Basically, each user has a local view of the data structure (with one data point),

and report this structure under LDP. This can be optimized by having each user randomly

select a sub-structure that has a fixed sensitivity (e.g., a level). The server collects and

adds up the LDP data structure from users, and then uses the result to answer queries. It is

interesting future work to customize frequency oracles for different space indexing techniques

and compare them systematically.

Non-sensitive + private dimensions in predicates. If an MDA query has both pri-
vate and public dimensions in the predicate, the server can evaluate the public part first,
and, process the remaining rows/users with estimation processor P in our mechanisms. For
example, in Table 7.1 , the query

SELECT SUM(Purchase) FROM T WHERE

Age ∈ [30, 40] AND OS = Win; ⇔ can be evaluated as:

Tpub = SELECT ∗ FROM T WHERE OS = Win;

SELECT SUM(Purchase) FROM Tpub WHERE Age ∈ [30, 40];

where Tpub can be evaluated using a normal query processor, and the last line is processed

with P in our mechanisms.

Handling other aggregation functions. As long as the aggregation function can be

rewritten as SUM() functions, our mechanisms can be extended to handle it. For example,

STDEV(M) can be computed from SUM(M2), SUM(M), and COUNT. We can also support

aggregations on multiple measures, e.g., SUM(a ·M1 + b ·M2), as long as M1 and M2 are

public (conceptually, define M = a ·M1 + b ·M2).

160

AND-OR expressions. An MDA query with OR in the predicate can be rewritten as
sub-queries with only AND using the inclusion-exclusion principle. For example,

SELECT SUM(Purchase) FROM T

WHERE Age ∈ [30, 40] OR Salary ∈ [50K, 150K]

can be rewritten as three sub-queries: “. . . Age ∈ [30, 40]” + “. . . Salary ∈ [50K, 150K]”

− “. . . Age ∈ [30, 40] AND Salary ∈ [50K, 150K]”, each to be estimated using P in our

mechanisms. More generally, an AND-OR expression can be converted into a disjunctive

normal form, and we apply the inclusion-exclusion principle over clauses as in the above

example.

161

8. POST PROCESSING

(A version of this chapter has been previously published in NDSS 2020 [39].)

While existing state-of-the-art frequency oracles developed in Chapter 3 are designed to

provide unbiased estimations while minimizing the variance, it is possible to further reduce

the variance by performing post-processing steps that use prior knowledge to adjust the

estimations. In particular, there are two consistency requirements for frequency:

1. The estimated frequency of each value is non-negative.

2. The sum of the estimated frequencies is 1.

For example, exploiting the property that all frequency counts are non-negative can

reduce the variance; however, simply turning all negative estimations to 0 introduces a

systematic positive bias in all estimations. By also ensuring the property that the sum of

all estimations must add up to 1, one ensures that the sum of the biases for all estimations

is 0. However, even though the biases cancel out when summing over the whole domain,

they still exist. There are different post-processing methods that were explicitly proposed

or implicitly used. They will result in different combinations of variance reduction and bias

distribution. Selecting a post-processing method is similar to considering the bias-variance

tradeoff in selecting a machine learning algorithm.

8.1 Towards Consistent Frequency Oracles

We study the property of several post-processing methods, aiming to understand how

they compare under different settings, and how they relate to each other. Our goal is

to identify efficient post-processing methods that can give accurate estimations for a wide

variety of queries. We first present the baseline method that does not do any post-processing.

• Base: We use the standard FO to obtain estimations of each value.

Base has no bias, and its variance can be analytically computed (e.g., using [5]).

162

8.1.1 Baseline Methods

When the domain is large, there will be many values in the domain that have a zero or

very low true frequency; the estimation of them may be negative. To overcome negativity,

we describe three methods: Base-Pos, Post-Pos, and Base-Cut.

• Base-Pos: After applying the standard FO, we convert all negative estimations to 0.

This satisfies non-negativity, but the sum of all estimations is likely to be above 1. This

reduces variance, as it turns erroneous negative estimations to 0, closer to the true value.

As a result, for each individual value, Base-Pos results in an estimation that is at least as

accurate as the Base method. However, this introduces systematic positive bias, because

some negative noise are removed or reduced by the process, but the positive noise are never

removed. This positive bias will be reflected when answering subset queries, for which Base-

Pos results in biased estimations. For larger-range queries, the bias can be significant.

Lemma 1. Base-Pos will introduce positive bias to all values.

Proof: The outputs of standard FO are unbiased estimation, which means for any v,

fv = E
[

f̃v

]
= E

[
f̃v · 1f̃v≥0

]
+ E

[
f̃v · 1f̃v<0

]

where fv is the true frequency of value v and f̃v is the estimated frequency of value v (or the

result of Base). As Base-Pos changes all negative estimated frequencies to 0, we have

E [fv] = E
[

f̃v · 1f̃v≥0

]

After enforcing non-negativity constraints, the bias will be E [fv]− fv > 0.

• Post-Pos: For each query result, if it is negative, we convert it to 0.

This method does not post-process the estimated distribution. Rather, it post-processes

each query result individually. For subset queries, as the results are typically positive, Post-

163

Pos is similar to Base. On the other hand, when the query is on a single item, Post-Pos is

equivalent to Base-Pos.

Post-Pos still introduces a positive bias, but the bias would be smaller for subset queries.

However, Post-Pos may give inconsistent answers in the sense that the query result on A∪B,

where A and B are disjoint, may not equal the addition of the query results for A and B

separately.

• Base-Cut: After standard FO, convert everything below some sensitivity threshold to

0.

The original design goal for frequency oracles is to recover frequencies for frequent values,

and oftentimes there is a sensitivity threshold so that only estimations above the threshold

are considered. Specifically, for each value, we compare its estimation with a threshold (also

presented in Equation 3.13)

T = Φ−1
(

1− α

d

)√
Var∗ (8.1)

where d is the domain size, Phi−1 is the inverse of cummulative distribution function of the

standard normal distribution, and Var∗ is the standard deviation of the LDP mechanism

(i.e., as in Equation (3.3)). By Base-Cut, estimations below the threshold are considered to

be noise. When using such a threshold, for any value v ∈ D whose original count is 0, the

probability that it will have an estimated frequency above T (or the probability a zero-mean

Gaussian variable with standard deviation δ is above T) is at most α
d
. Thus when we observe

an estimated frequency above T , the probability that the true frequency of the value is 0 is

(by union bound) at most d × α
d

= α. In [2], it is recommended to set α = 5%, following

conventions in the statistical community.

Empirically we observe that α = 5% performs poorly, because such a threshold can be too

high when the population size is not very large and/or the ε is not large. A large threshold

results in all except for a few estimations to be below the threshold and set to 0. We note

that the choice of α is trading off false positives with false negatives. Given a large domain,

there are likely between several and a few dozen values that have quite high frequencies,

164

with most of the remaining values having low true counts. We want to keep an estimation if

it is a lot more likely to be from a frequent value than from a very low frequency one. In this

paper, we choose to set α = 2, which ensures that the expected number of false positives,

i.e., values with very low true frequencies but estimated frequencies above T , to be around

2. If there are around 20 values that are truly frequent and have estimated frequencies above

T , then ratio of true positives to false positives when using this threshold is 10:1.

This method ensures that all estimations are non-negative. It does not ensure that

the sum of estimations is 1. The resulting estimations are either high (above the chosen

threshold) or zero. The estimation for each item with non-zero frequency is subject to two

bias effects. The negative bias effect is caused by the situation when the estimations are cut

to zero. The positive effect is when large positive noise causes the estimation to be above

the threshold, the resulting estimation is higher than true frequency.

8.1.2 Normalization Method

We now explore several methods that normalize the estimated frequencies of the whole

domain to ensure that the sum of the estimates equals 1. When the estimations are normal-

ized to sum to 1, the sum of the biases over the whole domain has to be 0.

Lemma 2. If a normalization method adjusts the unbiased estimates so that they add up to

1, the sum of biases it introduces over the whole domain is 0.

Proof: Denote fv as the estimated frequency of value v after post-processing. By

linearity of expectations, we have

∑
v∈D

(E [fv]− fv) = E
[∑

v∈D

fv

]
−
∑
v∈D

fv = E [1]− 1 = 0

One standard way to do such normalization is through additive normalization:

• Norm: After standard FO, add δ to each estimation so that the overall sum is 1.

165

The method is formally proposed for the centralized setting [17] of DP and is used in the

local setting, e.g., [16], [40]. Note the method does not enforce non-negativity. For GRR,

Hadamard Response, and Subset Selection, this method actually does nothing, since each

user reports a single value, and the estimations already sum to 1. For OLH, however, each

user reports a randomly selected subset whose size is a random variable, and Norm would

change the estimations. It can be proved that Norm is unbiased:

Lemma 3. Norm provides unbiased estimation for each value.

Proof: By the definition of Norm, we have ∑v∈D fv = ∑
v∈D(f̃v + δ) = 1. As the

frequency oracle outputs unbiased estimation, i.e., E
[

f̃v

]
= fv, we have

E
[∑

v∈D

fv

]
= 1 = E

[∑
v∈D

(f̃v + δ)
]

=
∑
v∈D

E
[

f̃v

]
+ d · E [δ] = 1 + d · E [δ]

=⇒ E [δ] = 0

Thus E [fv] = E
[

f̃v + δ
]

= E
[

f̃v

]
+ 0 = fv.

Besides sum-to-one, if a method also ensures non-negativity, we first state that it intro-

duces positive bias to values whose frequencies are close to 0.

Lemma 4. If a normalization method adjusts the unbiased estimates so that they add up to

1 and are non-negative, then it introduces positive biases to values that are sufficiently close

to 0.

Proof: As the estimates are non-negative and sum up to 1, some of the estimates must

be positive. For a value close to 0, there exists some possibility that its estimation is positive;

but the possibility its estimation is negative is 0. Thus the expectation of its estimation is

positive, leading to a positive bias.

166

Lemma 4 shows the biases for any method that ensures both constraints cannot be all

zeros. Thus different methods are essentially different ways of distributing the biases. Next

we present three such normalization methods.

• Norm-Mul: After standard FO, convert negative value to 0. Then multiply each value

by a multiplicative factor so that the sum is 1.

More precisely, given estimation vector f̃ (we use the bold font to denote the vector of values

that corresponds to all possible values in the domain, i.e., f = 〈fv〉v∈D), we find γ such that

∑
v∈D

max(γ × f̃v, 0) = 1,

and assign fv = max(γ×f̃v, 0) as the estimations. This results in a consistent FO. Kairouz et

al. [41] evaluated this method and it performs well when the underlying dataset distribution

is smooth. This method results in positive biases for low-frequency items, but negative

biases for high-frequency items. Moreover, the higher an item’s true frequency, the larger

the magnitude of the negative bias. The intuition is that here γ is typically in the range of

[0, 1]; and multiplying by a factor may result in the estimation of high frequency values to

be significantly lower than their true values. When the distribution is skewed, which is more

interesting in the LDP case, the method performs poorly.

• Norm-Sub: After standard FO, convert negative values to 0, while maintaining overall

sum of 1 by adding δ to each remaining value.

More precisely, given estimation vector f̃ , we want to find δ such that

∑
v∈D

max(f̃v + δ, 0) = 1

Then the estimation for each value v is fv = max(f̃v + δ, 0). This extends the method Norm

and results in consistency. Norm-Sub was used by Kairouz et al. [41] and Bassily [42] to

process results for some FO’s. Under Norm-Sub, low-frequency values have positive biases,

and high-frequency items have negative biases. The distribution of biases, however, is more

even when compared to Norm-Mul.

167

• Norm-Cut: After standard FO, convert negative and small positive values to 0 so that

the total sums up to 1.

We note that under Norm-Sub, higher frequency items have higher negative biases. One

natural idea to address this is to turn the low estimations to 0 to ensure consistency, without

changing the estimations of high-frequency values. This is the idea of Norm-Cut. More

precisely, given the estimation vector f̃ , there are two cases. When ∑v∈D max(f̃v, 0) ≤ 1, we

simply change each negative estimations to 0. When ∑v∈D max(f̃v, 0) > 1, we want to find

the smallest θ such that ∑
v∈D|f̃v≥θ

f̃v ≤ 1

Then the estimation for each value v is 0 if f̃v < θ and f̃v if f̃v ≥ θ. This is similar to

Base-cut in that both methods change all estimated values below some thresholds to 0. The

differences lie in how the threshold is chosen. This results in non-negative estimations, and

typically results in estimations that sum up to 1, but might result in a sum < 1.

8.1.3 Constrained Least Squares

From a more principled point of view, we note that what we are doing here is essentially

solving a Constraint Inference (CI) problem, for which CLS (Constrained Least Squares) is

a natural solution. This approach was proposed in [17] but without the constraint that the

estimates are non-negative (and it leads to Norm). Here we revisit this approach with the

consistency constraint (i.e., requirements of both non-negativity and sum-up-to-one).

• CLS: After standard FO, use least squares with constraints (summing-to-one and non-

negativity) to recover the values.

168

Specifically, given the estimates f̃ by FO, the method outputs f that is a solution of the

following problem:

minimize: ||f − f̃ ||2

subject to: ∀vfv ≥ 0∑
v

fv = 1

We can use the KKT condition [30], [31] to solve the problem. We first augment the

optimization target with the following equations:

minimize
∑

v

(fv − f̃v)2 + a + b

where
∑

v

fv = 1, ∀v : 0 ≤ fv ≤ 1,

a = µ ·
∑

v

fv, b =
∑

v

λv · fv,∀v : λv · fv = 0.

Since b = 0, and a = µ is a constant, the condition that minimizing the target is unchanged.

Given that the target is convex, we can find the minimum by taking the partial derivative

with respect to each variable:

∂
[∑

v(fv − f̃v)2 + a + b
]

∂fv

= 0

=⇒ 2(fv − f̃v) + µ + λv = 0

=⇒ fv = f̃v −
1
2(µ + λv)

Now suppose there is a subset of domain D0 ⊆ D s.t., ∀v ∈ D0, fv = 0 and ∀v ∈ D1 =

D \D0, fv > 0 ∧ λv = 0. By summing up fv for all v ∈ D1, we have

1 =
∑

v∈D1

f̃v −
|D1|µ

2

169

Thus for all v ∈ D1, we can use the formula

fv =f̃v −
1
|D1|

∑
v∈D1

f̃v − 1

to derive the estimate fv for value v ∈ D1, and fv = 0 for v ∈ D0. One can also find D0

using a similar approach when dealing with MLE. And it can also be verified ∑v fv = 1.

Given the derivation above, we can see that Norm-Sub is the solution to the Constraint

Least Square (CLS) formulation to the problem, and δ = − 1
|D1|

(∑
v∈D1 f̃v − 1

)
is the δ we

want to find in Norm-Sub.

8.1.4 Maximum Likelihood Estimation

Another more principled way of looking into this problem is to view it as recovering

distributions given some LDP reports. For this problem, one standard solution is Bayesian

inference. In particular, we want to find the f such that

Pr
[
f |̃f
]

=
Pr
[
f̃ |f
]
· Pr [f]

Pr
[
f̃
] (8.2)

is maximized. Note that we require f satisfies ∀vfv ≥ 0 and ∑
v fv = 1. In Equation (8.2),

Pr [f] is the prior, and the prior distribution influence the result. In our setting, as we assume

there is no such prior, Pr [f] is uniform. That is, Pr [f] is a constant. The denominator Pr
[
f̃
]

is also a constant that does not influence the result. As a result, we are seeking for f which

is the maximal likelihood estimator (MLE), i.e., Pr
[
f̃ |f
]

is maximized.

For this method, Peter et al. [41] derived the exact MLE solution for GRR and RAP-

POR [2]. We compute Pr
[
f̃ |f
]

using the approximation of f̃ , which is a set of independent

170

random variables, and each component f̃v follows Gaussian distribution with mean fv and

variance σ′2
v . The likelihood of f̃ given f is thus

Pr
[
f̃ |f
]

=
∏
v

Pr
[
f̃v|fv

]
≈
∏
v

1√
2πσ′2

v

· e− (fv−f̃v)2

2σ′2
v = 1√

2π
∏

v σ′2
v

· e−
∑

v

(fv−f̃v)2

2σ′2
v . (8.3)

To differentiate from [41], we call it MLE-Apx.

• MLE-Apx: First use standard FO, then compute the MLE with constraints (summing-

to-one and non-negativity) to recover the values.

From Equation (8.3), we first simplify the exponent plugging in the value of σv as in

Equation (3.2):

∑
v

(fv − f̃v)2

2σ′2
v

=n

2
∑

v

(fv − f̃v)2(p− q)2

q(1− q) + fv(p− q)(1− p− q)

The factor n
2 in the exponent ensures that for large n the exponent will vary the most with

f , which dominates the coefficient 1√
2π
∏

v
σ′2

v

. Thus approximately we find f that achieves

the following optimization goal:

minimize:
∑

v

(fv − f̃v)2(p− q)2

q(1− q) + fv(p− q)(1− p− q)

subject to:
∑

v

fv = 1,

∀v, 0 ≤ fv ≤ 1.

Now to solve this optimization problem, we can also use the KKT condition [30], [31],

We first augment the optimization target with the following equations:

minimize
∑

v

(fv − f̃v)2(p− q)2

q(1− q) + fv(p− q)(1− p− q) + a + b

where
∑

v

fv = 1, ∀v : 0 ≤ fv ≤ 1,

a = µ ·
∑

v

fv, b =
∑

v

λv · fv,∀v : λv · fv = 0.

171

Since b = 0, and a = µ is a constant, the condition for minimizing the target is unchanged.

Given that the target is convex, we can find the minimum by taking the partial derivative

with respect to each variable:

∂
[∑

v
(fv−f̃v)2(p−q)2

q(1−q)+fv(p−q)(1−p−q) + a + b
]

∂fv

=−(fv − f̃v)2(p− q)2 · (p− q)(1− p− q)
(q(1− q) + fv(p− q)(1− p− q))2

+ 2(fv − f̃v)(p− q)2

q(1− q) + fv(p− q)(1− p− q) + µ + λv = 0

Define a temporary notation

xv = (fv − f̃v)(p− q)
q(1− q) + fv(p− q)(1− p− q)

so that fv = q(1− q)xv + f̃v(p− q)
p− q − (p− q)(1− p− q)xv

(8.4)

With xv, we can simplify the previous equation:

(p− q)(1− p− q)x2
v − 2(p− q)xv − µ− λv = 0 (8.5)

Now suppose there is a subset of domain D0 ⊆ D s.t., ∀v ∈ D0, fv = 0 and ∀v ∈ D1 =

D \D0, fv > 0 and λv = 0. Thus for those v ∈ D1, solution of xv in Equation (8.5) does not

depend on v. We solve xv by summing up fv for all v ∈ D1:

∑
v∈D1

fv =1 =
∑

v∈D1

q(1− q)xv + f̃v(p− q)
p− q − (p− q)(1− p− q)xv

= |D1|q(1− q)xv +∑
v∈D1 f̃v(p− q)

p− q + (p− q)(1− p− q)xv

=⇒ xv =
∑

x∈D1 f̃v(p− q)− (p− q)
(p− q)(1− p− q)− |D1|q(1− q)

Given xv, we can compute fv from Equation (8.4) for each value v ∈ D1 efficiently; and

fv = 0 for v ∈ D0. It can be verified ∑v fv = 1.

172

Finally, to find D0, one initiates D0 = ∅ and D1 = D, and iteratively tests whether all

values in D1 are positive. In each iteration, for any negative ax, x is moved from D1 to D0.

The process terminates when no negative ax is found for all x ∈ D1.

In particular, we partition the domain D into D0 and D1, where D0 ∩ D1 = ∅ and

D0 ∪D1 = D. For v ∈ D0, fv = 0; for v ∈ D1,

fv = q(1− q)xv + f̃v(p− q)
p− q − (p− q)(1− p− q)xv

(8.6)

where

xv =
∑

x∈D1 f̃v(p− q)− (p− q)
(p− q)(1− p− q)− |D1|q(1− q)

We can rewrite Equation (8.6) as

fv =f̃v · γ + δ,

where

γ = p− q

p− q + (p− q)(1− p− q)xv

δ = q(1− q)xv

p− q + (p− q)(1− p− q)xv

Hence MLE-Apx appears to represent some hybrid of Norm-Sub and Norm-Mul. In eval-

uation, we observe that Norm-Sub and MLE-Apx give very close results, as γ ∼ 1. Fur-

thermore, when the fv component in variance is dominated by the other component (as in

Equation (3.3)), the CLS formulation is equivalent to our MLE formulation.

8.1.5 Least Expected Square Error

Jia et al. [43] proposed a method in which one first assumes that the data follows some

type of distribution (but the parameters are unknown), then uses the estimates to fit the

173

parameters of the distribution, and finally updates the estimates that achieve expected least

square.

• Power: Fit a distribution, and then minimize the expected squared error.

Formally, for each value v, the estimate f̃v given by FO is regarded as the addition of two

parts: the true frequency fv and noise following the normal distribution. The method then

finds fv that minimizes E
[

(fv − fv)2|f̃v

]
. To solve this problem, the authors estimate the

true distribution fv from the estimates f̃ (where f̃ is the vector of the f̃v’s).

In particular, it is assume in [43] that the distribution follows Power-Law or Gaussian.

The distributions can be determined by one or two parameters, which can be fitted from

the estimation f̃ . Given Pr [x] as the probability fv = x from the fitted distribution, and

Pr [x ∼ N (0, σ)] as the probability density function of x drawn from the Normal distribution

with 0 mean and standard deviation σ, one can then minimize the objective. Specifically,

for each value v ∈ D, output

fv =
∫ 1

0

Pr
[
(f̃v − x) ∼ N (0, σ)

]
· Pr [x] · x∫ 1

0 Pr
[
(f̃v − y) ∼ N (0, σ)

]
· Pr [y] dy

dx. (8.7)

We fit Pr [x] with the Power-Law distribution and call the method Power. Using this

method requires knowledge and/or assumption of the distribution to be estimated. If there

are too much noise, or the underlying distribution is different, forcing the observations to

fit a distribution could lead to poor accuracy. Moreover, this method does not ensure the

frequencies sum up to 1, as Equation (8.7) only considers the frequency of each value v

independently. To make the result consistent, we use Norm-Sub to post-process results of

Power, since Power is close to CLS, and Norm-Sub is the solution to CLS. We call it PowerNS.

• PowerNS: First use standard FO, then use Power to recover the values, finally use

Norm-Sub to further process the results.

174

8.1.6 Summary of Methods

In summary, Norm-Sub is the solution to the Constraint Least Square (CLS) formulation

to the problem. Furthermore, when the fv component in variance is dominated by the other

component (as in Equation (3.3)), the CLS formulation is equivalent to our MLE formulation.

In that case, Norm-Sub is equivalent to MLE-Apx.

Table 8.1. Summary of Methods.
Method Description Non-neg Sum to 1 Complexity
Base-Pos Convert negative est. to 0 Yes No O(d)
Post-Pos Convert negative query result to 0 Yes No N/A
Base-Cut Convert est. below threshold T to 0 Yes No O(d)

Norm Add δ to est. No Yes O(d)
Norm-Mul Convert negative est. to 0, then multiply γ to positive est. Yes Yes O(d)
Norm-Cut Convert negative and small positive est. below θ to 0. Yes Almost O(d)
Norm-Sub Convert negative est. to 0 while adding δ to positive est. Yes Yes O(d)
MLE-Apx Convert negative est. to 0, then add δ to positive est. Yes Yes O(d)

Power Fit Power-Law dist., then minimize expected squared error Yes No O(
√

n · d)
PowerNS Apply Norm-Sub after Power Yes Yes O(

√
n · d)

Table 8.1 gives a summary of the methods. First of all, all of the methods preserve the

frequency order of the value, i.e., fv1 ≤ fv2 iff f̃v1 ≤ f̃v2 . The methods can be classifies into

three classes: First, enforcing non-negativity only. Base-Pos, Post-Pos, Base-Cut, and Power

fall in this category. Second, enforcing summing-to-one only. Only Norm is in this class.

Third, enforcing the two requirement simultaneously. Norm-Mul, Norm-Cut, Norm-Sub,

and PowerNS satisfy both requirements.

8.2 Evaluation

As we are optimizing multiple utility metrics together, it is hard to theoretically compare

different methods. In this section, we run experiments to empirically evaluate these methods.

At the high level, our evaluations show that different methods perform differently in

different settings, and to achieve the best utility, it may or may not be necessary to exploit

all the consistency constraints. As a result, we conclude that for full-domain query, Base-Cut

performs the best; for set-value query, PowerNS performs the best; and for high-frequency-

value query, Norm performs the best.

175

8.2.1 Experimental Setup

Datasets. We run experiments on two datasets (one synthetic and one real).

• Synthetic Zipf’s distribution with 1024 values and 1 million reports. We use s = 1.5

in this distribution.

• Emoji: The daily emoji usage data. We use the average emoji usage of an emoji

keyboard 1
 , which gives the total count of n = 884427 with d = 1573 different emojis.

Setup. The FO protocols and post-processing algorithms are implemented in Python 3.6.6

using Numpy 1.15; and all the experiments are conducted on a PC with Intel Core i7-4790

3.60GHz and 16GB memory. Although the post-processing methods can be applied to any

FO protocol, we focus on simulating OLH as it provides near-optimal utility with reasonable

communication bandwidth.

Metrics. We evaluate three scenarios 1) estimate the frequency of every value in the

domain (full-domain), 2) estimate the aggregate frequencies of a subset of values (set-value),

and 3) estimate the frequencies of the most frequent values (frequent-value).

We use the metrics of Mean of Squared Error (MSE). MSE measures the mean of squared

difference between the estimate and the ground truth for each (set of) value. For full-domain,

we compute

MSE = 1
d

∑
v∈D

(fv − fv)2.

For frequent-value, we consider the top k values with highest fv instead of the whole domain

D; and for set-value, instead of measuring errors for singletons, we measure errors for sets,

that is, we first sum the frequencies for a set of values, and then measure the difference.

Plotting Convention. Unless otherwise specified, for each dataset and each method, we

repeat the experiment 30 times, with result mean and standard deviation reported. The

standard deviation is typically very small, and barely noticeable in the figures.
1↑ http://www.emojistats.org/ , accessed 12/15/2019 10pm ET

176

http://www.emojistats.org/

Because there are 11 algorithms (10 post-processing methods plus Base), and for any

single metric there are often multiple methods that perform very similarly, resulting their

lines overlapping. To make Figures 4–8 readable, we plot results on two separate figures on

the same row. On the left, we plot 6 methods, Base, Base-Pos, Post-Pos, Norm, Norm-Mul,

and Norm-Sub. On the right, we plot Norm-Sub with the remaining 5 methods, MLE-Apx,

Base-Cut, Norm-Cut, Power and PowerNS. We mainly want to compare the methods in the

right column.

8.2.2 Bias-variance Evaluation

Figure 8.1 shows the true distribution of the synthetic Zipf’s dataset and the mean of

the estimations. As we plot the count estimations (instead of frequency estimations), the

variance is larger (a n2 = 1012 multiplicative factor than the frequency estimations). We

thus estimate 5000 times in order to make the mean stabilize. In Figure 8.2 , we subtract

the estimation mean by the ground truth and plot the difference, which representing the

empirical bias. It can be seen that Base and Norm are unbiased. Base-Pos introduces

systematic positive bias. Base-Cut gives unbiased estimations for the first few most frequent

values, as their true frequencies are much greater than the threshold T used to cut off

estimation below it to 0. As the noise is close to normal distribution, the possibility that a

high-frequency value is estimated to be below T is exponentially small. The similar analysis

also holds for the low-frequency values, whose estimates are unlikely to be above T . On the

other hand, for values in between, the two biases compete with each other. At some point,

the two effects cancel out with each other, leading to unbiased estimations. But this point is

dependent on the whole distribution, and thus is hard to be found analytically. For Norm-

Cut, the similar reasoning also applies, with the difference that the threshold in Norm-Cut

is typically smaller. For Norm-Sub, each value is influenced by two factors: subtraction by

a same amount; and converting to 0 if negative. For the high-frequency values, we mostly

see the first factor; for the low-frequency values, they are mostly affected by the second

factor; and for the values in between, the two factors compete against each other. We see

an increasing line for Norm-Sub. Finally, Power changes little to the top estimations; but

177

0 200 400 600 800 1000

10
1

10
2

10
3

10
4

10
5

(a) Base (Post-Pos)

0 200 400 600 800 1000

10
1

10
2

10
3

10
4

10
5

(b) Base-Pos

0 200 400 600 800 1000

10
1

10
2

10
3

10
4

10
5

(c) Base-Cut

0 200 400 600 800 1000

10
1

10
2

10
3

10
4

10
5

(d) Norm

0 200 400 600 800 1000

10
1

10
2

10
3

10
4

10
5

(e) Norm-Mul

0 200 400 600 800 1000

10
1

10
2

10
3

10
4

10
5

(f) Norm-Cut

0 200 400 600 800 1000

10
1

10
2

10
3

10
4

10
5

(g) Norm-Sub

0 200 400 600 800 1000

10
1

10
2

10
3

10
4

10
5

(h) Power

0 200 400 600 800 1000

10
1

10
2

10
3

10
4

10
5

(i) PowerNS

Figure 8.1. Log-scale distribution of the Zipf’s dataset fixing ε = 1, the x-
axes indicates the sorted value index and the y-axes is its count. The blue line
is the ground truth; the green dots are estimations by different methods.

more to the low ones, thus leading to a similar shape as Norm-Cut. The shape of PowerNS

is close to Power because PowerNS applies Norm-Sub, which subtract some amount to the

estimations, after Power.

Figure 8.3 shows the variance of the estimations among the 5000 runs. First of all, the

variance is similar for all the values in Base and Norm, with Norm being slightly better

(smaller) than Base. For all other methods, the variance drops with the rank, because for

low-frequency values, their estimates are mostly zeros.

8.2.3 Full-domain Evaluation

Figure 8.4 shows MSE when querying the frequency of every value in the domain. Note

that The MSE is composed of the (square of) bias shown in Figure 8.2 and variance in

Figure 8.3 . We vary ε from 0.2 to 4. Let us fist focus on the figures on the left. Base performs

very close to Norm, since the adjustment of Norm can be either positive or negative as the

178

0 200 400 600 800 1000
400

200

0

200

400

(a) Base (Post-Pos), bias sum:
−1405

0 200 400 600 800 1000

0

500

1000

(b) Base-Pos, bias sum: 711932

0 200 400 600 800 1000
3000

2000

1000

0

(c) Base-Cut, bias sum: −137449

0 200 400 600 800 1000
400

200

0

200

400

(d) Norm, bias sum: 0

0 200 400 600 800 1000

150000

100000

50000

0

(e) Norm-Mul, bias sum: 0

0 200 400 600 800 1000

1500

1000

500

0

500

(f) Norm-Cut, bias sum: 0

0 200 400 600 800 1000

2000

1000

0

(g) Norm-Sub, bias sum: 0

0 200 400 600 800 1000

3000

2000

1000

0

(h) Power, bias sum: −96332

0 200 400 600 800 1000

3000

2000

1000

0

(i) PowerNS, bias sum: 0

Figure 8.2. Bias of count estimation for the Zipf’s dataset fixing ε = 1.

expected value of the estimation sum is 1. As Base-Pos (which is equivalent to Post-Pos in

this setting) converts negative results to 0, its MSE is around half that of Base (note the

y-axis is in log-scale). Norm-Sub is able to reduce the MSE of Base by about a factor of

10 and 100 in the Zipfs and Emoji dataset respectively. Norm-Mul behaves differently from

other methods. In particular, the MSE decreases much slower than other methods. This is

because Norm-Mul multiplies the original estimations by the same factor. The higher the

estimate, the greater the adjustment. Since the estimations are individually unbiased, this

is not the correct adjustment.

For the right part of Figure 8.4 , we observe that, Norm-Sub and MLE-Apx perform

almost exactly the same, validating the prediction from theoretical analysis. Norm-Sub,

MLE-Apx, Power, PowerNS, and Base-Cut perform very similarly. In these two datasets,

PowerNS performs the best. Note that PowerNS works well when the distribution is close

to Power-Law. For an unknown distribution, we still recommend Base-Cut. This is because

if one considers average accuracy of all estimations, the dominating source of errors comes

from the fact many values have true frequencies close or equal to 0 are randomly perturbed.

179

0 200 400 600 800 1000

3.4

3.6

3.8

4.0

(a) Base (Post-Pos)

0 200 400 600 800 1000
1

2

3

4

(b) Base-Pos

0 200 400 600 800 1000
0

5

10

(c) Base-Cut

0 200 400 600 800 1000
3.4

3.6

3.8

4.0

4.2

(d) Norm

0 200 400 600 800 1000
0

5

10

15

20

25

(e) Norm-Mul

0 200 400 600 800 1000
0

2

4

6

8

(f) Norm-Cut

0 200 400 600 800 1000
0

1

2

3

4

(g) Norm-Sub

0 200 400 600 800 1000
0

2

4

6

8

10

(h) Power

0 200 400 600 800 1000
0

2

4

6

8

10

(i) PowerNS

Figure 8.3. Variance of count estimation of the Zipf’s dataset fixing ε = 1.
The y-axes are scaled down by n = 106 (a value a in the figure represents
a · 106).

And Base-Cut maintains the high-frequency values unchanged, and converts results below a

threshold T to 0. Norm-Cut also converts low estimations to 0, but the threshold θ is likely

to be lower than T , because θ is chosen to achieve a sum of 1.

Benefit of Post-Processing. We demonstrate the benefit of post-processing by measuring

the relationship between n and n, so that n records with post-processing can achieve the

same accuracy for n records without it. In particular, we vary n and measure the errors

for different methods. We then calculate n using Equation 3.2 . In particular, the analytical

MSE for n records is

1
d

∑
v

σ2
v = q(1− q)

n(p− q)2 + 1
d

∑
v

fv(1− p− q)
n(p− q)

= q(1− q)
n(p− q)2 + 1

d

1− p− q

n(p− q) .

180

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

10
7

10
6

10
5

10
4

Base
Base-Pos

Post-Pos
Norm

Norm-Mul
Norm-Sub

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

10
7

10
6

10
5

Norm-Sub
MLE-Apx

Base-Cut
Norm-Cut

Power
PowerNS

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

10
7

10
6

10
5

10
4

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

10
7

10
6

10
5

Figure 8.4. MSE results on full-domain estimation, varying ε from 0.2 to 4.
The top row is for Zipf’s distribution and the bottom row is for the Emoji
dataset.

Given the empirical MSE, we can obtain n that achieves the same error analytically. Note

that the MSE does not depend on the distribution. Thus we only evaluate on the Zipf’s

dataset. The result is shown in Figure 8.5 . We vary the size of the dataset n and plot the

value of n (note that the x-axes are in the scale of 106 and y-axes are 107). The higher the

line, the better the method performs. Base and Norm are two straight lines with the slope of

1, verifying the analytical variance. The y value for Norm-Mul grows even slower than Base,

indicating the harm of using Norm-Mul as a post-processing method. The performance of

the other methods follow the similar trend of the full-domain MSE (as shown in the upper

row of Figure 8.4), with PowerNS gives the best performance, which saves around 90% of

users.

8.2.4 Set-value Evaluation

Estimating set-values plays an important role in the interactive data analysis setting

(e.g., estimating which category of emoji’s is more popular). Keeping ε = 1, we evaluate the

performance of different methods by changing the size of the set. For the set-value queries,

181

0.5 1.0 1.5 2.0
n 1e6

0.00

0.25

0.50

0.75

1.00

1.25

n′

1e7

Base
Base-Pos

Post-Pos
Norm

Norm-Mul
Norm-Sub

0.5 1.0 1.5 2.0
n 1e6

0.5

1.0

1.5

2.0

n′

1e7

Norm-Sub
MLE-Apx

Base-Cut
Norm-Cut

Power
PowerNS

Figure 8.5. MSE results on full-domain estimation on Zipfs dataset, com-
paring n with n, fixing ε = 1 while varying n from 0.2 × 106 to 2.0 × 106.
Three pairs of methods have similar performance: Base and Norm, Base-Pos
and Post-Pos, Norm-Sub and MLE-Apx.

we uniformly sample ρ% × |D| elements from the domain and evaluate the MSE between

the sum of their true frequencies and estimated frequencies. Formally, define Dsρ as the

random subset of D that has ρ% × |D| elements; and define fDsρ = ∑
v∈Dsρ

fv. We sample

Dsρ multiple times and measure MSE between fDsρ and fDsρ . Overall, the error MSE of

set-value queries is greater than that for the full-domain evaluation, because the error for

individual estimation accumulates.

Vary ρ from 10 to 90. Following the layout convention, we show results for set-value

estimations in Figure 8.6 , where we first vary ρ from 10 to 90. Overall, the approaches that

exploits the summing-to-1 requirement, including Norm, Norm-Mul, Norm-Sub, MLE-Apx,

Norm-Cut, and PowerNS, perform well, especially when ρ is large. Moreover, their MSE is

symmetric with ρ = 50. This is because as the results are normalized, estimating set-values

for ρ > 50 equals estimating the rest. When ρ = 90, the best norm-based method, PowerNS,

outperforms any of the non-norm based methods by at least 2 orders of magnitude.

For each specific method, it is observed the MSE for Base-Pos is higher than other

methods, because it only turns negative estimates to 0, introducing systematic bias. Post-

Pos is slightly better than Base, as it turns negative query results to 0. In the settings we

evaluated, Base-Cut also outperforms Base; this happens because converting estimates below

the threshold T to 0 is more likely to make the summation fD close to one. Finally, Power

182

10 20 30 40 50 60 70 80 90

10
4

10
3

10
2

10
1

Base
Base-Pos

Post-Pos
Norm

Norm-Mul
Norm-Sub

10 20 30 40 50 60 70 80 90

10
4

10
3

10
2

Norm-Sub
MLE-Apx

Base-Cut
Norm-Cut

Power
PowerNS

10 20 30 40 50 60 70 80 90
10

4

10
3

10
2

10
1

10
0

10 20 30 40 50 60 70 80 90
10

4

10
3

10
2

10
1

Figure 8.6. MSE results on set-value estimation, varying set size percentage
ρ from 10 to 90, fixing ε = 1. Top row is Zipf’s and bottom row is Emoji.

only converts negative estimations to be positive, introducing systematic bias; PowerNS

further makes them sum to 1, thus achieving better utility than all other methods.

Vary ρ from 1 to 10. Having examined the performance of set-queries for larger ρ, we

then vary ρ from 1 to 10 and demonstrate the results in Figure 8.7 . Within this ρ range,

the errors of all methods increase with ρ, which is as expected. When ρ becomes small, the

performance of different methods approaches to that of full-domain estimation.

Norm-Cut varies the threshold so that after cutting, the remaining estimates sum up to

one. Thus the performance of Norm-Cut is better than Base-Cut especially when ρ ≥ 2.

Intuitively, the norm-based methods should perform better answering set-queries. But Norm-

Mul does not. This is because the multiplication operation reduces the large estimates a

lot, making them biased. This also demonstrates that enforcing sum-to-one is not enough.

Different approaches perform significantly different.

Fixed set queries. Besides random set queries, we include a case study of fixed subset

queries for the Emoji dataset. The queries ask the frequency of each category2
 . There are 68

2↑ https://data.world/kgarrett/emojis

183

https://data.world/kgarrett/emojis

1 2 3 4 5 6 7 8 9 10

10
5

10
4

10
3

Base
Base-Pos

Post-Pos
Norm

Norm-Mul
Norm-Sub

1 2 3 4 5 6 7 8 9 10

10
5

10
4

Norm-Sub
MLE-Apx

Base-Cut
Norm-Cut

Power
PowerNS

1 2 3 4 5 6 7 8 9 10
10

5

10
4

10
3

10
2

1 2 3 4 5 6 7 8 9 10
10

5

10
4

10
3

Figure 8.7. MSE results on set-value estimation, varying set size percentage
ρ from 1 to 10, fixing ε = 1. Top row is Zipf’s and bottom row is Emoji.

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
10

6

10
5

10
4

10
3

Base
Base-Pos

Post-Pos
Norm

Norm-Mul
Norm-Sub

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
10

6

10
5

10
4

Norm-Sub
MLE-Apx

Base-Cut
Norm-Cut

Power
PowerNS

Figure 8.8. MSE results on set-case estimation for the Emoji dataset, varying
ε from 0.2 to 4.

categories with the mean of 10.4 items per set. The MSE varying ε is reported in Figure 8.8 .

It is interesting to see that the Post-Pos works best in the left sub-figure, and Norm-Cut

from the right performs even better, especially when ε < 3. This indicates the set-queries

contain values that are infrequent.

Choosing the method on synthetic dataset. As the optimal method in fixed set-values

(as shown in Figure 8.8) is different from random set-values (shown in Figure 8.6 and 8.7),

we investigate whether we can select the optimal post-processing method given the query

and the LDP reports. In particular, we first fit a synthetic dataset from the estimation,

184

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
10

6

10
5

10
4

Norm-Sub
Base-Cut

Norm-Cut
PowerNS

Syn(Norm-Sub)
Syn(PowerNS)

Figure 8.9. Synthetic estimation for set-case query on the Emoji dataset.

then we simulate the data collection and estimation process multiple times, with different

post-processing methods, and we calculate the errors taking the synthesized dataset as the

ground truth. Figure 8.9 shows the result. Note that as we generate the synthetic dataset

from the estimated distribution, the distribution itself should be consistent (non-negative

and sum up to 1). We select Norm-Sub and PowerNS to process the estimated distribution

first. These two methods perform well on full-domain and random set-value queries.

From the figure we can see that if the results are processed by Norm-Sub, the opti-

mal method can be find quite accurately; if PowerNS is used, PowerNS will be selected.

The reason is that PowerNS makes the distribution more close to the prior of Power-Law

distribution, while Norm-Sub does not.

8.2.5 Frequent-value Evaluation

Finally, we evaluate different methods varying the top values to be considered. Define

Dtk as {v ∈ D | fv ranks top k}. We measure MSE between (fv)v∈Dtk
and (fv)v∈Dtk

for

different values of k (from 2 to 32), fixing ε = 1. Note that neither the frequency oracle nor

the subsequent post-processing operation is aware of Dtk.

From the left column of Figure 8.10 , we observe that Base, Base-Pos, Post-Pos, and Norm

perform consistently well for different k, as the first three methods do nothing to the top

values, and Norm touches them in an unbiased way. Norm-Mul performs at least 10× worse

than any other methods because it reduces the higher estimations a lot. Norm-Sub performs

185

5 10 15 20 25 30
k

10
5

10
4

10
3

10
2

Base
Base-Pos

Post-Pos
Norm

Norm-Mul
Norm-Sub

5 10 15 20 25 30
k

10
5

4 × 10
6

6 × 10
6

Norm-Sub
Base

Base-Cut
Norm-Cut

Power
PowerNS

5 10 15 20 25 30
k

10
5

10
4

10
3

5 10 15 20 25 30
k

10
5

4 × 10
6

6 × 10
6

Figure 8.10. MSE results on top-k value estimation varying k from 2 to 32,
fixing ε = 1. Top row is Zipf’s and bottom row is Emoji.

worse than Base, but better than Norm-Mul, because the same amount is subtracted from

every estimate, regardless of k.

To give a better comparison, we plot both Base and Norm-Sub to the right (i.e., we

ignore MLE-Apx for now, as it performs the same as Norm-Sub). These two methods have

consistent MSE for different k. The rest four methods, Base-Cut, Norm-Cut, Power, and

PowerNS, all have MSE that grows with k. In particular, for Base-Cut, a fixed threshold

T (in Equation (3.13)) is used and estimates below it is converted to 0. This also suggests

that at ε = 1, around 10 values can be reliably estimated. This also happens to Norm-Cut

for the similar reason. As Norm-Cut is better than Base-Cut, it suggests the threshold used

in Norm-Cut is smaller than that in Base-Cut. If T is reduced, MSE of Base-Cut can be

lowered until it matches that of Norm-Cut. Thus T is actually a tradeoff between frequent

values and set-values. In practice, if the desired k is known in advance, one can set T to

be the k-th highest estimated value. Finally, the performances of Power and PowerNS are

similar, and they are worse than Base-Cut, especially when k > 10.

186

8.2.6 Discussion

In summary, we evaluate the 10 post-processing methods on different datasets, for dif-

ferent tasks, and varying different parameters. We now summarize the findings and present

guidelines for using the post-processing methods.

With the experiments, we verify the connections among the methods: Norm-Sub and

MLE-Apx perform similarly, and Base and Norm performs similarly.

The best choice for post-processing method depends on the queries one wants to answer.

If set-value estimation is needed, one should use PowerNS. When the set is fixed, one can

also choose the optimal method using a synthetic dataset processed with Norm-Sub. The

intuition is that PowerNS improves over the approximate MLE (i.e., Norm-Sub, which is a

theoretically testified method) by making the estimates closer to the underlying distribution.

If one just want to estimate results for the most frequent values, one can use Norm. While

Base can also be used, Norm reduces variance by utilizing the property that the estimates

sum up to 1. These two methods do not change any value dramatically. Finally, if one cares

about single value queries only, Base-Cut should be used. This is because when many values

in the dataset are of low frequency, converting low estimates to 0 benefit the utility. Overall,

one can follow the guideline for choosing post-processing methods.

• When single value queries are desired, use Base-Cut.

• When frequent values are desired, use Norm.

• When set-value queries are desired, use PowerNS or select one using synthetic datasets.

8.3 Related Work

There exist efforts to post-process results in the setting of centralized DP. Most of them

focus on utilizing the structural information in problems other than the simple histogram,

e.g., estimating marginals [28], [44] and hierarchy structure [17]. The methods do not con-

sider the non-negativity constraint. Other than that, they are similar to Norm-Sub and

minimize L2 distance. On the other hand, the authors of [45] started from MLE and propose

a method to minimize L1 instead of L2 distance, as the DP noise follows Laplace distribution.

187

In the LDP setting, Kairouz et al. [41] study exact MLE for GRR and RAPPOR [2]; and

empirically show exact MLE performs worse than Norm-Sub. In [42], Bassily proves the error

bound of Norm-Sub for the Hadamard Response mechanism. Jia et al. [43] propose to use

external information about the dataset’s distribution (e.g., assume the underlying dataset

follows Gaussian or Zipf’s distribution). We note that such information may not always be

available. On the other hand, we exploit the basic information in each LDP setting. That

is, first, the total number of users is known; second, negative values are not possible. We

found that in the LDP setting, on the contrary to [41], minimizing L2 distance achieves

MLE under the approximation that the noise is close to the Gaussian distribution. There

are also post-processing techniques proposed for other settings: Blasiok et al. [46] study the

post-processing for linear queries, which generalizes histogram estimation; but their method

only applied to a non-optimal LDP mechanism. [16] and [40] consider the hierarchy structure

and apply the technique of [17]. [47] considers mean estimation and propose to project the

result into [0, 1].

188

9. PRIVACY AMPLIFICATION VIA SHUFFLING

(A version of this chapter has been previously published in VLDB 2020 [48].)

Recently, researchers introduced settings where one can achieve a middle ground between DP

and LDP, in terms of both privacy and utility. This is achieved by introducing an additional

party [49]–[52]. The setting is called the shuffler model. In this model, each user adds LDP

noise to data, encrypts it, and then sends it to the new party called the shuffler. The shuffler

permutes the users’ reported data, and then sends them to the server. Finally the server

decrypts the reports and obtains the result. In this process, the shuffler only knows which

report comes from which user, but does not know the content. On the other hand, the server

cannot link a user to a report because the reports are shuffled. The role of the shuffler is to

break the linkage between the users and the reports. Intuitively, this anonymity can provide

some privacy benefit. Therefore, users can add less noise while achieving the same level of

privacy.

In this chapter, we study this new model from two perspectives. First, we examine from

the algorithmic aspect, and make improvement to existing techniques. More specifically,

in [51], it is shown the essence of the privacy benefit comes from a “noise” whose distribution

is independent of the input value, also called privacy blanket. While existing work leverages

this, it only works well when each user’s value is drawn from a small domain. To obtain a

similar privacy benefit when the domain is large, we propose to use the local hashing idea

(see Chapter 3). That is, each user selects a random hash function, and uses LDP to report

the hashed result, together with the selected hash function. By analyzing the utility and

optimizing the parameters with respect to the utility metric (mean squared error), we present

an algorithm that achieves accuracy orders of magnitude better than existing method. We

call it Shuffler-Optimal Local Hash (SOLH).

We then work from the security aspect of the model. We review the system setting

of this model and identify two types of attack that were overlooked: collusion attack and

data-poisoning attack. Specifically, as there are more parties involved, there might exist col-

lusions. While existing work assumes non-collusion, we explicitly consider the consequences

of collusions among different parties and propose a protocol Private Encrypted Oblivious

189

Shuffle (PEOS) that is safer under these colluding scenarios. The other attack considers the

setting where the additional party introduces calibrated noise to bias the result or break the

privacy protection. To overcome this, our protocol PEOS takes advantage of cryptographic

tools to prevent the shufflers from adding arbitrary noise.

9.1 Background

We briefly review the cryptographic primitives that will be used. Note that throughout

this paper, we assume that the cryptographic tools are secure.

Additive Homomorphic Encryption. In Additive Homomorphic Encryption (AHE) [53],

one can apply an algebraic operation (denoted by ⊕, e.g., multiplication) to two ciphertexts

c1, c2, and get the ciphertext of the addition of the corresponding plaintexts. More for-

mally, there are two functions, encrypt function Enc and decrypt function Dec. Given two

ciphertexts c1 = Enc(v1) and c2 = Enc(v2), we have c1 ⊕ c2 = Enc(v1 + v2).

Additive Secret Sharing. In this technique, a user splits a secret value v ∈ {0, . . . , d−1}

into r > 1 shares 〈si〉i∈[r], where r − 1 of them are randomly selected, and the last one is

computed so that ∑i si mod d = v. The shares are then sent to r parties, so that each party

only sees a random value, and v cannot be recovered unless all the r parties collaborate.

Oblivious Shuffle. In order to prevent the shuffler from knowing the mapping between

the input and the output, oblivious shuffle introduces multiple shufflers. A natural method

is to connect the shufflers sequentially; and each shuffler applies a random shuffle. Another

way of achieving oblivious shuffle is the resharing-based shuffle [54], [55] which utilizes secret

sharing. Suppose there are r shufflers. The users send their values to shufflers using secret

sharing. Define t = br/2c + 1 as the number of “hiders”, and r − t as the number of

“seekers”. The resharing-based oblivious shuffle [55] proceeds like a “hide and seek” game.

In particular, there are
(

r
t

)
partitions of the r auxiliary servers into hiders and seekers. For

each partition, the seekers each splits its vector of shares into t parts and sends them to the

t hiders, respectively. Then the hiders accumulate the shares and shuffle their vectors using

an agreed permutation. The shuffled vectors are then split into r shares and distributed to

all of the r auxiliary servers. Note that now only the t hiders know the permutation order.

190

The process proceeds for
(

r
t

)
rounds to ensure that none of the colluding r − t auxiliary

servers know about the final permutation order.

9.2 Summary of Existing Results

Throughout the chapter, we focus on the basic tool of histogram estimation.

The shuffling idea was originally proposed in Prochlo [56], where a shuffler is inserted

between the users and the server to break the linkage between the report and the user

identification. The privacy benefit was investigated in [49]–[51]. It is proven that when each

user reports the private value using GRR with εl-LDP, applying shuffling ensures centralized

(εc, δ)-DP, where εc < εl. Table 9.1 gives a summary of these results. Among them, [51]

provides the strongest result in the sense that the εc is the smallest, and the proof technique

can be applied to other LDP protocols.

Table 9.1. Privacy amplification result comparison. Each row corresponds
to a method. The amplified εc only differs in constants. The circumstances
under which the method can be used are different.

Method Condition εc

[50] εl < 1/2
√

144 ln(1/δ) · ε2
l

n

[49]
√

192
n

ln(4/δ) < εc < 1, binary
√

32 ln(4/δ) · eεl +1
n

[51]
√

14 ln(2/δ)d
n−1 < εc ≤ 1

√
14 ln(2/δ) · eεl +d−1

(n−1)

Privacy Blanket. The technique used in [51] is called blanket decomposition. The idea

is to decompose the probability distribution of an LDP report into two distributions, one

dependent on the true value and the other independently random; and this independent

distribution forms a “privacy blanket”. In particular, the output distribution of GRR given

in Equation (3.4) is decomposed into

∀y∈D Pr [GRR(v) = y] = (1− γ)Prv [y] + γ Pr [Uni(D) = y]

where Prv [y] is the distribution that depends on v, and Uni(D) is uniformly random with

Pr [Uni(D) = y] = 1/d. With probability 1−γ, the output is dependent on the true input; and

191

with probability γ, the output is random. Given n users, the n−1 (except the victim’s) such

random variables can be seen as containing some uniform noise (i.e., the γ Pr [Uni(D) = y]

part). For each value v ∈ D, the noise follows B (n− 1, γ/d). Intuitively, this noise makes

the output uncertain. The following theorem, which is derived from Theorem 3.1 of [51],

formalizes this fact.

Theorem 9.2.1 (Binomial Mechanism). Binomial mechanism adds independent noise B (n, p)

to each component of the histogram. It satisfies (εc, δ)-DP where

εc =
√

14 ln(2/δ)
np

In Theorem 9.2.1 , the larger γ is, the better the privacy. Given GRR, we can maximize γ

by setting Prv [y] = 1v=y, which gives us γ = d
eεl +d−1 . The binomial noise B

(
n− 1, 1

eεl +d−1

)
thus provides (

√
14 ln(2/δ) · eεl +d−1

(n−1) , δ)-DP [51]. One limitation of [51] is that as GRR is used,

the accuracy downgrades with domain size d.

Recent Results. Parallel to our work, [57], [58] propose mechanisms other than GRR

to improve utility in this model. They both rely on the privacy blanket idea. The method

in [57] gives better utility as it does not depend on |D|. However, the communication cost for

each user is linear in |D|, which is undesirable when |D| is large. Moreover, its accuracy is

worse than the method proposed in our paper. We will analytically and empirically compare

with [57].

9.3 Improving Utility of the Shuffler Model

In order to benefit from the shuffler model in the case when the domain size d is large,

the key is to derive a mechanism whose utility does not degrade with d.

9.3.1 Unary Encoding for Shuffling

We first revisit the unary-encoding-based methods, also known as the basic RAPPOR [2],

and show that this class of methods can enjoy the benefit of the privacy blanket argument.

In particular, in unary-encoding, the value v is transformed into a vector B of size d, where

192

B[v] = 1 and the other locations of B are zeros (note that this requires values of the domain

D be indexed from 1 to d). Then each bit b of B is perturbed to 1 − b independently. To

satisfy LDP, the perturbation probability is set to 1
eε/2+1 . Note that we use ε/2 because

for any two values v and v, their corresponding unary encodings differ by two bits. We

can apply the privacy blanket argument and prove that a εl-LDP unary-encoding method

satisfies (εc, δ)-DP after shuffling.

Theorem 9.3.1. Given an εl-LDP unary-encoding method, after shuffling, the protocol is

(εc, δ)-DP, where

εc = 2
√

14 ln(4/δ) · e
εl/2 + 1
n− 1

Proof: For any two neighboring datasets D ' D, w.l.o.g., we assume they differ in the

n-th value, and vn = 1 in D, vn = 2 in D. By the independence of the bits, probabilities

on other locations are equivalent. Thus we only need to examine the summation of bits

for location 1 and 2. For each location, there are n − 1 users, each reporting the bit with

probability

∀y∈{0,1} Pr [B[j]→ y] = (1− γ)1B[j]=y + γ Pr [Uni(2) = y]

where we slight abuse the notation and use Uni(2) for Uni({0, 1}). Given that the per-

turbation probability is Pr [1→ 0] = Pr [0→ 1] = 1
eεl/2+1 = γ/2, we can calculate that

γ = 2
eεl/2+1 . After shuffling, the histogram of n − 1 (except the victim’s) such random

variables follows B (n− 1, γ/2). As there are two locations, by Theorem 9.2.1 , we have

εc = 2
√

14 ln(4/δ) · eεl/2+1
n−1 .

9.3.2 Local Hashing for Shuffling

While sending B when d is large is fine for each user; with n users, receiving B’s from

the server side is less tolerable as it incurs O(d ·n) bandwidth. To reduce the communication

cost, we propose a hashing-based method, with a tradeoff between computation and commu-

193

nication. From the server side, it requires more computation cost than the unary-encoding

based methods; but the overall communication bandwidth is smaller. In what follows, we

prove the hashing-based method is private in the shuffler model.

We remind the readers that in local hashing, each user reports H and y = GRR(H(v)).

The hash function H is chosen randomly from a universal hash family and hashes v from a

domain of size d into another domain of size d′ ≤ d; and GRR will report H(v) with prob-

ability eεl

eεl +d′−1 , and any other value (from the domain of size d′) with probability 1
eεl +d′−1

(Equation (3.4)). In terms of blanket decomposition, the user reports truthfully with proba-

bility 1− γ = eεl −1
eεl +d′−1 ; and if the user reports randomly, any value from [d′] can be reported

with equal probability. We call this method SOLH, which stands for Shuffler-Optimal Local

Hash.

Theorem 9.3.2. Given the εl-LDP SOLH method, after shuffling, the protocol is (εc, δ)-DP,

where

εc =
√

14 ln(2/δ)(eεl + d′ − 1)
n− 1

Proof: Denote A as the algorithm of SOLH in the shuffler model. Let [〈Hi, yi〉]i∈[n]

be the outputs of all users before shuffling, and let [〈Ĥj, ŷj〉]j∈[n] be the output of A(D).

W.l.o.g., we assume D and D differ in the n-th value, i.e., vn 6= vn. We denote R as the

output from A(D). To prove A is (εc, δ)-DP, it suffices to show

PrR∼A(D)

[
Pr [A(D) = R]
Pr [A(D) = R] ≥ eεc

]
≤ δ

where the randomness is on coin tosses of all users’ LDP mechanism and the shuffler’s random

shuffle. We first upper bound Pr[A(D)=R]
Pr[A(D)=R] by assuming user n also report truthfully.

194

That is (we shorten the notation and use Pr [X(D)] to denote Pr [A(D) = R]),

Pr [X(D)]
Pr [X(D)]

=Pr [X(D) | Trun] · Pr [Trun] + Pr [X(D) | Rndn] · Pr [Rndn]
Pr [X(D) | Trun] · Pr [Trun] + Pr [X(D) | Rndn] · Pr [Rndn]

=Pr [Pr [X(D)] | Trun] · Pr [Trun] + c

Pr [X(D) | Trun] · Pr [Trun] + c
≤ Pr [Pr [X(D)] | Trun]

Pr [X(D) | Trun]

where c = Pr [X(D) | Rndn] · Pr [Rndn] = Pr [X(D) | Rndn] · Pr [Rndn] is a constant. Thus

we assume user n reports truthfully, and omit the conditional part for simplicity. The rest

of the proof proceeds in 5 steps:

• Step 1 (expand the probability expression):

Denote T as indices of the first n − 1 users who report truthfully (i.e., with probability

1 − γ = eεl −1
eεl +d′−1), and let RT denote their chosen hash functions and hashed results (RT =

[〈Hi, yi〉]i∈T). We examine the conditional probability Pr [A(D) = R | (T, RT)]:

Pr [A(D) = R | (T, RT)] =
∑

π

Pr [π] Pr [A(D) = R | (T, RT , π)]

=
∑

π

Pr [π]

∏
i∈T

Pr
[
Hπ(i)

]
1Hπ(i)=Ĥi∧yπ(i)=ŷi︸ ︷︷ ︸

reports from users in T

·
∏

i∈[n−1]\T

Pr
[
Hπ(i)

] 1
d′︸ ︷︷ ︸

reports from users in [n − 1] \ T

·Pr
[
Hπ(n)

]
1Hπ(n)(vn)=yπ(n)︸ ︷︷ ︸

report from user n

(9.1)

Pr [π] denotes the probability a specific random permutation is chosen (Pr [π] = 1/n!),

Pr
[
Hπ(i)

]
(short for Pr

[
Ĥi = Hπ(i)

]
) is the probability user i chooses hash function Hπ(i) (as-

suming there are h possible hash functions, Pr
[
Hπ(i)

]
= 1/h), and the summation is over all

permutation π. Users are divided into three groups. For i ∈ T , we know from RT that his/her

report is 〈Ĥi, ŷi〉, and it must match 〈Hπ(i), yπ(i)〉 (otherwise Pr [A(D) = R | (T, RT , π)] = 0).

We use the indicator function to denote this. Here as the user reports truthfully, ŷi = Ĥi(vi),

and 1Hπ(i)=Ĥi∧yπ(i)=ŷi
= 1Hπ(i)=Ĥi∧Hπ(i)(vi)=yπ(i)

. For user n and users who report randomly, their

probabilities can also be analyzed similarly.

• Step 2 (convert probabilities to counts):

195

Denote P = {π | ∀i ∈ T, Hπ(i) = Ĥi ∧ yπ(i) = ŷi}. Here P is the set of all possible

permutations that make the i ∈ T part of Equation (9.1) non-zero (i.e., all the indicator

functions for i ∈ T equal 1). Assuming the reports in R are distinct (i.e., @i, j ∈ [n] s.t.

Hi = Hj ∧ yi = yj), such permutations must map i ∈ T to π(i) s.t. Hπ(i) = Ĥi and yπ(i) = ŷi.

P can be partitioned into n − |T | equal-sized subsets each with π(n) = i. That is, for each

i ∈ [n] \ T , define Pi = {π | π ∈ P ∧ π(n) = i}. Each Pi is of size 1Ĥi(vn)=ŷi
· (n − 1 − |T |)!

because Pi left the mapping of [n − 1] \ T unspecified (and any random permutation is

possible). We now have:

Pr [A(D) = R | (T, RT)]
Pr [A(D) = R | (T, RT)] =

c1
∑

π∈P 1Hπ(n)(vn)=yπ(n)

c1
∑

π∈P 1Hπ(n)(vn)=yπ(n)

=
∑

i∈[n]\T

∑
π∈Pi

1Ĥi(vn)=ŷi∑
i∈[n]\T

∑
π∈Pi

1Ĥi(vn)=ŷi

=
∑

i∈[n]\T 1Ĥi(vn)=ŷi∑
i∈[n]\T 1Ĥi(vn)=ŷi

(9.2)

where c1 = Pr [π] (∏i∈[n] Pr
[
Hπ(i)

]
)(∏i∈[n−1]\T

1
d′) is a constant that does not depend on vn or

vn. Note that we previously assumed the reports in R are unique. If there are duplicated

reports, P could be larger, but the ratio stays the same.

To see this, define R−T = [〈Ĥi, ŷi〉]i∈[n]\T as reports from [n] \ T . We model a valid

permutation in P as a two-step process: for any report from user i ∈ [n] \ T , suppose there

are ai ≥ 0 reports in RT that is the same (both the hash function and the hash result are

same) as user i’s report, and bi ≥ 1 duplicated reports in R−T . We first choose ai from ai +bi

reports and “put” them to RT ; then we permute RT (there are c ≥ 1 valid permutations

within RT) and R−T (there are ∑i∈[n]\T 1Ĥi(vn)=ŷi
· (n− 1−|T |)! valid permutations in R−T).

It can be verified that this modeling covers exactly all permutations in P . Now for each

i ∈ [n] \ T : If ai = 0, there are xi = 1Ĥi(vn)=ŷi
· ∏i∈[n]\T

(
ai+bi

ai

)
· c · (n − 1 − |T |)! possible

permutations in P , where ∏i∈[n]\T

(
ai+bi

ai

)
denotes the number of possible choices for the

duplicated reports. If ai > 0, denote yi = xi/
(

ai+bi

ai

)
. We consider all these ai + bi duplicate

reports together. Index n can be mapped to match any of the ai + bi duplicated reports. For

each report, there are
(

ai+bi−1
ai

)
choices (because the permutation will first choose ai reports

and put them into RT , and the current report which n is mapped to cannot be put to RT ;

thus we choose ai from the remaining ai + bi − 1 reports to put to RT). Overall, we have

196

yi ·(ai+bi)·
(

ai+bi−1
ai

)
= yi ·bi ·

(
ai+bi

ai

)
= xi ·bi valid permutations, which equals to the case when

we sum all the bi values each with xi permutations. Therefore, there are xi = 1Ĥi(vn)=ŷi
· c

valid permutations for each i ∈ [n] \ T . Summarizing all xi’s gives us Equation (9.2).

• Step 3 (model the counts with Binomial RVs):

So far, we have proved that, fixing R, T and RT , the ratio only depends on the numbers of

reports that are random and matches vn and vn, respectively. The high level idea is to show

that knowing T and RT fixes the permutation on values from T ; and any valid permutation

only shuffles values from [n] \ T (informally, this can be thought of as the server removes

reports from T). Now define

NR,T,RT
=

∑
i∈[n]\T

(
1Ĥi(vn)=ŷi

)
and NR,T,RT

=
∑

i∈[n]\T

(
1Ĥi(vn)=ŷi

)
,

we want to prove

Pr(R,T,RT)∼A(D)

[
Pr [A(D) = R | (T, RT)]
Pr [A(D) = R | (T, RT)] ≥ eεc

]

(omit the (R, T, RT) ∼ A(D) part to simplify notations)

=Pr
[

NR,T,RT

NR,T,RT

≥ eεc

]

≤1− Pr
[
NR,T,RT

≤ θeεc/2 ∧NR,T,RT
≥ θe−εc/2

]
≤Pr

[
NR,T,RT

≥ θeεc/2
]

+ Pr
[
NR,T,RT

≤ θe−εc/2
]

where θ is some constant. For (R, T, RT) generated from a random run of A(D), we can

show NR,T,RT
and NR,T,RT

follow Binomial distributions. In particular, as we assumed user

n always report truth, there must be Hn(vn) = yn; the remaining n−1 users will first decide

whether to report truthfully (i.e., with probability (eεl−1)/(eεl +d′−1)), and if user i’s report

〈Hi, yi〉 is random, we have Pr [Hi(vn) = yi] = 1/d′. Each user’s reporting process are thus

modeled as two Bernoulli processes. As a result, NR,T,RT
follows the Binomial distribution

B (n− 1, 1/(eεl + d′ − 1)) plus a constant 1. Similarly, NR,T,RT
∼ B (n− 1, 1/(eεl + d′ − 1))+

1Hn(vn)=yn ≥ B (n− 1, 1/(eεl + d′ − 1)).

• Step 4 (bound the ratio of Binomials with Chernoff bounds):

197

Following the later part of the proof of Theorem 3.1 from [51] : set θ = n−1
eεl +d′−1 =

E [NR,T,RT
] = 14 log(2/δ)

ε2 ,

Pr
[
NR,T,RT

≥ θeεc/2
]

+ Pr
[
NR,T,RT

≤ θe−εc/2
]

=Pr
[
NR,T,RT

≥ θeεc/2 − 1
]

+ Pr
[
NR,T,RT

≤ θe−εc/2
]

≤Pr
[
NR,T,RT

− E [NR,T,RT
] ≥ θ(eε/2 − 1− 1/θ)

]
+Pr

[
NR,T,RT

− E [NR,T,RT
] ≤ θ(e−ε/2 − 1)

]
≤exp(−θ(eε/2 − 1− 1/θ)2/3) + exp(−θ(1− e−ε/2)2/2)

Assuming ε ≤ 1, both of them are less than or equal to δ/2: For the first term, θ ≥ 27
ε

implies

eε/2 − 1− 1/θ ≥ 25
54ε and 14 ≥ 3·542

252 . For the second term, 1− eε/2 ≥ (1− e1/2)ε ≥ ε/
√

7.

• Step 5 (put things together):

We have bound the conditional probability ratio. It also implies a bound on joint prob-

ability ratio, because Pr[A(D)=R|(T,RT)]
Pr[A(D)=R|(T,RT)] = Pr[A(D)=R∧(T,RT)]Pr[T,RT]

Pr[A(D)=R∧(T,RT)]Pr[T,RT] = Pr[A(D)=R∧(T,RT)]
Pr[A(D)=R∧(T,RT)] . For any

R, we say (T, RT) is “good” if eεc ≥ Pr[A(D)=R∧(T,RT)]
Pr[A(D)=R∧(T,RT)] and “bad” otherwise. Consider any

possible set S of output, we finally prove

Pr [A(D) ∈ S] =
∑

(T,RT)

∑
R∈S

Pr [A(D) = R ∧ (T, RT)]

=
∑

(T,RT) is good

∑
R∈S

Pr [A(D) = R ∧ (T, RT)]

+
∑

(T,RT) is bad

∑
R∈S

Pr [A(D) = R ∧ (T, RT)]

≤
∑

(T,RT) is good

∑
R∈S

eεPr [A(D) = R ∧ (T, RT)]

+
∑

(T,RT) is bad

∑
R

Pr [A(D) = R ∧ (T, RT)]

≤
∑

(T,RT)

∑
R∈S

eεPr [A(D) = R ∧ (T, RT)] + δ

=eεPr [A(D) ∈ S] + δ

198

9.3.3 Utility Analysis

Now we analyze the utility of different methods. We utilize the pure framework from

Chapter 3 to analyze the accuracy of estimating the frequency of each value in the domain.

In particular, we measure the expected squared error of the estimation f̃v, which equals

variance, i.e.,

∑
v∈D

E
[

(f̃v − fv)2
]

=
∑
v∈D

Var
[

f̃v

]

Fixing the local εl, the variances are already summarized in Chapter 3 ; our analysis extends

that into the shuffler setting. We fix εc and estimate variance for different methods.

Utility of Generalized Randomize Response. We first prove the variance of GRR.

Proposition 9.3.3. Given εc in the shuffler model, the variance of using GRR is bounded

by
ε2
c(n−1)

14 ln(2/δ) −1

n

(
ε2
c(n−1)

14 ln(2/δ) −d

)2 .

Proof: Given the domain size d and the LDP parameter εl, the variance is given in

Chapter 3 . Here for completeness, we present the full proof. We will omit these steps in the

following proofs. Denote p = eεl

eεl +d−1 , q = 1
eεl +d−1 , and yi is the report of user i, we have

Var
[

f̃v

]
= Var

 1
n

∑
i∈[n]

1v=yi
− q

p− q

 = 1
n2 Var

 ∑
i∈[n]

1v=yi

p− q

 =
∑

i∈[n] Var [1v=yi
]

n2 · (p− q)2

Here for each of the n users, if the true value is v (there are nfv of them) we have Var [1v=yi
] =

p(1 − p); otherwise, we have Var [1v=yi
] = q(1 − q) for the rest n(1 − fv) users. Together,

we have

Var
[

f̃v

]
=nfvp(1− p) + n(1− fv)q (1− q)

n2(p− q)2 = q(1− q)
n(p− q)2 + fv (1− p− q)

n(p− q)

199

Plugging in the value of p and q, and assuming fv is small on average, then we have

Var
[

f̃v

]
≤ q(1− q)

n(p− q)2 = eεl + d− 2
n(eεl − 1)2

From [51], we have eεl + d− 1 = ε2
c(n−1)

14 ln(2/δ) . Thus the variance becomes
ε2
c(n−1)

14 ln(2/δ) −1

n

(
ε2
c(n−1)

14 ln(2/δ) −d

)2 .

Utility of Unary Encoding (RAPPOR). Similarly, we can prove the variance of unary

encoding.

Proposition 9.3.4. Given εc in the shuffler model, the variance of using unary encoding

(RAPPOR) is bounded by
ε2
c(n−1)

56 ln(4/δ) −1

n

(
ε2
c(n−1)

56 ln(4/δ) −2
)2 .

Proof: According to [5], the variance of RAPPOR given εl is

eεl/2

n(eεl/2 − 1)2

From Theorem 9.3.1 , we have eεl/2 + 1 = ε2
c(n−1)

56 ln(4/δ) . Thus the variance becomes
ε2
c(n−1)

56 ln(4/δ) −1

n

(
ε2
c(n−1)

56 ln(4/δ) −2
)2 .

Utility of Local Hashing. Now we prove the variance of SOLH and instantiate d′.

Proposition 9.3.5. Given εc in the shuffler model, the variance of using SOLH is bounded

by

(
ε2
c(n−1)

14 ln(2/δ)

)2

n

(
ε2
c(n−1)

14 ln(2/δ) −d′
)2

(d′−1)
.

Proof: According to Equation (10) of [5], the variance of local hashing given εl is

(eεl + d′ − 1)2

n(eεl − 1)2(d′ − 1) (9.3)

200

From Theorem 9.3.2 , we have eεl +d′−1 = ε2
c(n−1)

14 ln(2/δ) . Thus the variance is

(
ε2
c(n−1)

14 ln(2/δ)

)2

n

(
ε2
c(n−1)

14 ln(2/δ) −d′
)2

(d′−1)
.

Optimizing Local Hashing. Note that d′ is unspecified. We can tune d′ to optimize

variance given a fixed εc. Denote m as ε2
c(n−1)

14 ln(2/δ) , our goal is to choose d′ that minimize this

variance Var(m, d′) = m2

n(m−d′)2(d′−1) . By making its partial derivative to 0, we can obtain

that when

d′ = m + 2
3 = ε2

c(n− 1)
42 ln(2/δ) + 2

3 (9.4)

the variance is minimized. Note that d′ can only be an integer. In the actual implementation,

we choose d′ to be b(m + 2)/3c. Thus the variance is optimized to Var(m, b(m + 2)/3c).

Comparison of the Methods. We first observe that the variance of GRR grows with

d (as shown in Proposition 9.3.3). When d is large, we should use unary encoding or local

hashing. Between the two, the variance of unary encoding is slightly better, however, its

communication cost is higher. Thus, between GRR and SOLH, we can choose the one with

better utility by comparing Proposition 9.3.3 and Var(m, b(m + 2)/3c).

9.3.4 Comparison with Parallel Work

Parallel to our work, [57], [58] also propose mechanisms to improve utility in this model.

Among them [57] gives better utility which does not depend on |D|. Similar to our method,

its proof also utilizes Theorem 9.2.1 . But the approach is different. In particular, [57]

first transforms the data using one-hot encoding, then independently increment values in

each location with probability p = 1 − 200
ε2

cn
ln(4/δ). We call this method AUE for appended

unary encoding. As each location is essentially a Bernoulli bit, its variance is p(1 − p) =
200
ε2

cn
ln(4/δ)

(
1− 200

ε2
cn

ln(4/δ)
)
. Compared with Lemma 9.3.5 , this gives comparable results

(differing by only a constant). But this protocol itself is not LDP. Moreover, as one-hot

encoding is used, the communication cost for each user is linear in |D|, which is even worse

than GRR. We will empirically compare with [57] in the experimental evaluation section.

201

More recently, [59] also proposed a similar unary-encoding-based method. We note

that [59] operate on a novel removal LDP notion. More specifically, previous (ours in-

cluded) LDP and shuffler-based LDP literature works with Definition 7.1.1 , which ensures

that for each user, if his/her value changes, the report distribution is similar. [59] intro-

duces a novel removal LDP notion inspired by the removal DP. In particular, removal DP

states that for any two datasets D and D−, where D− is obtained by removing any one

record from D, the output distributions are similar. Extending that idea to the local setting,

removal LDP states that for each user, whether his/her value is empty or not, the report

distribution is similar. Given that, a unary-encoding-based method similar to RAPPOR [2]

is proposed. The method is similar to the method we described in Section 9.3.1 , except that

privacy budget εl is not divided by 2. Interestingly, any ε-Removal LDP algorithm is also a

2ε-Replacement LDP algorithm, because

Pr [A(v) ∈ T] ≤ eεPr [A(⊥) ∈ T] ≤ e2εPr [A(v) ∈ T]

where ⊥ is a special “empty” input. As a result, in our LDP setting, the two methods

achieves the same utility.

9.4 Security Analysis

This section focuses on the analyzing the security implications of the shuffler model. We

identify different parties and potential attacks. Then we propose countermeasures using

secret sharing and oblivious shuffle in next section.

9.4.1 Parties and Attackers

There are three types of parties in the shuffler model: users, the server, and the auxiliary

servers (shufflers). The auxiliary servers do not exist in the traditional models of DP and

202

LDP; and in DP, the server may share result with some external parties. Figure 9.1 provides

an overview of the system model.

The Attackers. From the point of view of a single user, other parties, including the

auxiliary server, the server, and other users, could all be adversaries. We assume all parties

have the same level of background knowledge, i.e., all other users’ information except the

victim’s. This assumption essentially enables us to argue DP-like guarantee for each party.

The prominent adversary is the server. Other parties can also be adversaries but are not

the focus because they have less information. For example, in the shuffler-based approach,

there is only one auxiliary server. It knows nothing from the ciphertext.

Additional Threat of Collusion. We note that in the multi-party setting, one needs

to consider the consequences when different parties collude. In general, there are many

combinations of colluding parties. And understanding these scenarios enables us to better

analyze and compare different approaches.

In particular, the server can collude with the auxiliary servers. If all the auxiliary servers

are compromised, the model is reduced to that for LDP. Additionally, the server can also

collude with other users (except the victim), but in this case the model is still LDP. On

the other hand, if the server only colludes with other users, it is less clear how the privacy

guarantee will downgrade. Other combinations are possible but less severe. Specifically,

there is no benefit if the auxiliary servers collude with the users. We consider all potential

collusions and highlight three important (sets of) adversaries:

• Adv: the server itself.

• Advu: the server colluding with other users.

• Adva: the server with the auxiliary servers.

9.4.2 Privacy Guarantees of Existing Methods

Having identified the potential adversaries and the proving technique, now we examine

the shuffler-based DP. The key ideas are (1) We model each attack’s view using an algorithm,

203

Server

Auxiliary

Server 1

User n

…

User 1

Auxiliary

Server r

…

User n

Figure 9.1. Overview of parties and interactions. Users communicate with
the auxiliary servers. The auxiliary servers processes the users’ data, and
communicate with the server.

such that we can prove the DP guarantee. (2) We prove the DP guarantee for each party

separately. Existing work focuses on Adv, but we examine the privacy guarantee against each

of the Adv’s. This gives a comprehensive understanding of the system’s privacy guarantee.

In particular, existing work showed that if each user executes an εl-LDP protocol, the

view of Adv is (εc, δ)-DP. If the users collude with the server, the server’s view is composed

of two parts: the shuffled reports as in Adv, and all users’ reports except the victim’s. By

subtracting each user’s reports from the shuffled result, the server now knows the victim’s

LDP report; thus the model falls back to the original setting. Finally, if the shuffler colludes

with the server, the model also degrade to the LDP setting.

Note that we assume the cryptographic primitives are safe (i.e., the adversaries are com-

putationally bounded and cannot learn any information from the ciphertext) and there are

no side channels such as timing information. In some cases, the whole procedure can be

interactive, i.e., some part of the observation may depend on what the party sends out. For

this, one can utilize composition theorems to prove the DP guarantee. Moreover, the parties

are assumed to follow the protocol in the privacy proofs. If the parties deviate from the

prescribed procedure, we examine the possible deviations and their influences in the next

subsection.

204

9.4.3 Robustness to Malicious Parties

There could be multiple reasons for each party to be malicious to (1) interrupt the data

collection process, (2) infer more sensitive information from the users, and (3) degrade the

utility (estimation accuracy) of the server. In what follows, for each of the reasons, we

analyze the consequence and potential mitigation of different parties. Note that the server

will not deviate from the protocol as it is the initiator, unless to infer more information of

the users.

First, any party can try to interrupt the process; but it is easy to mitigate. If a user

blocks the protocol, his report can be ignored. If the auxiliary server denies the service, the

server can find another auxiliary server and redo the protocol. Note that in this case, users

need to remember their report to avoid averaging attacks.

Second, it is possible that the auxiliary server deviates from the protocol (e.g., by not

shuffling LDP reports), thus the server has access to the raw LDP reports. In these cases,

the server can learn more information, but the auxiliary server does not have benefits except

saving some computational power. And if the auxiliary server colludes with the server, they

can learn more information without any deviation. Thus we assume the auxiliary server

will not deviate in order to infer sensitive information. For the server, as it only sees and

evaluates the final reports; and the reports are protected by LDP, there is nothing the server

can do to obtain more information from the users.

Third, we note that any party can degrade the utility. Any party other than the server

has the incentive to do this. For example, when the server is interested in learning the

popularity of websites, different parties can deviate to promote some targeted website. This

is also called the data poisoning attack. To do this, the most straight-forward way is to

generate many fake users, and let them join the data collection process. This kind of Sybil

attack is hard to defend against without some kind of authentication, which is orthogonal to

the focus of this paper. Each user can change the original value or register fake accounts; and

this cannot be avoided. But any ability beyond it is undesirable. In addition, the protocol

should restrict the impact of the auxiliary server on the result.

205

To summarize, different parties can deviate from the protocol, but we argue that in most

cases, a reasonable party has no incentive to do this, other than poisoning the result. We

are mainly concerned about the users or the auxiliary server disrupting utility.

9.4.4 Discussion and Key Observations

In this section, we first systematically analyze the setting of the shuffler-based DP model.

In addition to the adversary of the server, we highlight two more sets of adversaries. We

then propose to analyze the privacy guarantee against different (sets of) adversaries. Finally,

we discuss the potential concern of malicious parties. Several observations and lessons are

worth noting.

When Auxiliary Server Colludes: No Amplification. When the server colludes with

the auxiliary servers, the privacy guarantee falls back to the original LDP model. When using

the shuffler model, we need to reduce the possibility of this collusion, e.g., by introducing

more auxiliary servers.

When Users Collude: Possibility Missed by Previous Literature. When proving

privacy guarantees against the server, existing work assumes the adversary has access to

users’ sensitive values but not the LDP output. While this is possible, we note that if an

adversary already obtains users’ sensitive values, it may also have access to the users’ LDP

reports. Such cases include the users (except the victim) collude with the server; or the

server is controlling the users (except the victim). Thus, the assumption in the shuffle-based

amplification work uncommon in real-world scenarios, which makes the privacy guarantee

less intuitive to argue.

When Parties Deviates: Avoid Utility Disruption. The protocol should be designed

so that each individual user or auxiliary server has limited impact on the estimation result.

206

Enc(a2+ a3 – ar)

Enc(b2+ b3 - br)

Enc(c2+ c3 – cr)

a2

b2

c2

Enc(a3)

Enc(b3)

Enc(c3)

a1

b1

c1

a1+ ar

b1+ br

c1+ cr

Enc(b2+ b3 - br)

Enc(a2+ a3 – ar)

Enc(c2+ c3 – cr)

b1+ br

a1+ ar

c1+ cr

Enc(b2')

Enc(a2')

Enc(c2')

b3'

a3'

c3'

b1'

a1'

c1'

Init Share Random Shuffle ReshareHide

Figure 9.2. Overview of EOS with r = 3 shufflers and n = 3 values a, b, c.
Each shuffler receives n shares; and one shuffler’s shares are encrypted by
additive homomorphic encryption. During hiding, one shuffler sends its shares
to the other two shufflers, who then shuffle the aggregated shares with an
agreed permutation. To reshare, each of the shufflers splits its shares and send
them to the other shufflers.

9.5 Defending against Attacks

We present a protocol that improves the security guarantee of existing work. The goal

is to simultaneously defend against three threats: (1) the server colludes with the users; (2)

the server colludes with the auxiliary servers; (3) data poisoning from each party.

9.5.1 Fake Response from Auxiliary Servers

To defend against the threat when the server colludes with the users, we propose to

have the auxiliary servers inject noise. There can be different ways to do this. Our ap-

proach utilizes uniform fake reports. The intuition of this approach is that (1) its analysis is

compatible with the privacy blanket argument, which will be more clear later; and (2) the

expected noise for each value in the domain is the same, thus suitable for obtaining a good

privacy amplification effect. On the server side, after obtaining the estimated frequency f̃ ,

the server recovers the frequency for the original dataset by subtracting the expected noise,

i.e.,

fv = n + nr

n
f̃v −

nr

n

1
d

(9.5)

Building on top of this, we present efforts to defend against the other two threats, i.e.,

the server colluding with the auxiliary servers, and data poisoning attack.

207

First Attempt: Sequential Shuffle

To improve the trust model of the shuffler-based model, one idea is to introduce a sequence

of shufflers, so that as long as one shuffler is trusted, the privacy guarantee remains. In this

case, the task of inserting nr fake reports can be divided equally among the r auxiliary servers

(shufflers). More specifically, the first shuffler receives the users’ LDP reports as input, and

draws nu = nr/r fake reports. It then shuffles all the reports and sends them to the second

shuffler, who draws another nu fake reports, shuffles all the reports, and sends them to the

next shuffler. This procedure proceeds until the last shuffler sends the result to the server.

Onion encryption is used during the process; each party decrypts one layer of encryption,

and the server obtains n + nr reports.

However, this approach is vulnerable to poison attacks by the shufflers. That is, the

auxiliary servers can replace the users’ reports with any report of their choice to change the

final result, and the fake reports each shuffler inserts can be chosen arbitrarily.

To mitigate the first threat, we can use an idea of spot-checking. That is, the server can

add dummy accounts before the system setup, then it can check whether the reports from his

accounts are tampered. For the second threat, we find that it hard to handle. Specifically,

a dishonest auxiliary server may draw fake reports from some skewed (instead of uniform)

distribution in order to mislead the analyzer and achieve a desired result; and there is no

way to self-prove the randomness he used is truly random.

Second Attempt: Oblivious Shuffle

To overcome the data poisoning attack, our approach is to construct the fake reports

using secret sharing, which ensures that as long as one shuffler is honest, the inserted fake

reports are uniformly random. To share an LDP report, we note that for both GRR and

SOLH, the domain of the report can be mapped to an ordinal group {0, 1, . . . , x}, where

each index represents one different LDP report. Thus the LDP reports can be treated as

numbers and shared with additive secret sharing.

In order to shuffle shares of secret, we utilize the oblivious shuffle protocol described in

Section 9.1 . More specifically, the n users each splits his/her LDP reports into r shares

208

among the r shufflers. Each of the shufflers then uniformly draws one share for each of the

nr fake reports. Thus the shufflers each has n + nr shares; and the sums of the shares equal

to the n reports from users and nr report that are random. An oblivious shuffle protocol

is then executed among the shufflers to shuffle the n + nr shares of reports. Finally the r

shufflers send their shares to the server, who combines the shares to obtain the results. Note

that the communication is assumed to be done via secure channels.

This solution suffers from a threat that, even without the server, half of the shufflers

can collude to recover the user reports. To mitigate this concern, we design a new oblivious

shuffle protocol EOS that uses additive homomorphic encryption (AHE).

Proposal: Private Encrypted Oblivious Shuffle

To ensure that the shufflers cannot infer the users’ reported data, a natural solution is

to encrypt the shares using the server’s public key. Moreover, the encryption needs to be

additively homomorphic in order to be compatible with the secret-sharing operations. In

what follows, we present a new protocol Encrypted Oblivious Shuffle (EOS) that utilizes

additive homomorphic encryption (AHE) in oblivious shuffle. We then present our proposal

Private Encrypted Oblivious Shuffle (shorted for PEOS) that uses EOS for DP.

Encrypted Oblivious Shuffle. Encrypted Oblivious Shuffle (EOS) works similarly to

oblivious shuffle. One difference is that in each round, one shuffler will possess the encrypted

shares. The encrypted shares can be shuffled and randomized just like normal shares except

that they are then processed under AHE.

Denote the shuffler who possess encrypted shares as E. In each round, E splits its

encrypted vector of shares into t new vectors so that t− 1 of which are plaintexts, and the

last one is still in the ciphertext form (this can be done because of AHE). The t shares

are randomly sent to the t hiders. Only one of them will receive the ciphertext share and

become the next E. After the group shuffling, the new E splits its vector of shares and

sends them to r parties. An example of EOS with r = 3 is demonstrated in Figure 9.2 . EOS

strengthens oblivious shuffle in that even if the r shufflers collude, they cannot figure out

the users’ original reports, because one share is encrypted.

209

Note that there is a crucial requirement for the AHE scheme: it should support a plaintext

space of Z2` where ` is normally 32 or 64 in our case. This is because the fake reports are

sampled locally as random `-bit shares, and later they will be encrypted and added in

AHE form, so that the decrypted result modulo 2` looks like other reports. Otherwise the

fakeness will be detected by the server. Such an AHE scheme can be instantiated to be the

full-decryption variant of DGK [60] using Pohlig-Hellman algorithm [61].

Corollary 9.5.1. Encrypted oblivious shuffle, instantiated with additive homomorphic en-

cryption of plaintext space Z2`, is a secure oblivious shuffle protocol in the semi-honest model.

Proof Sketch: The difference of EOS from oblivious shuffle is that AHE is used for one

hider’s computation in each round. As long as AHE does not leak additional information,

similar proof about the final shuffling order can be derived from oblivious shuffle [55].

For AHE, note that although we use AHE for one hider’s computation in each round, the

computation is translated into modulo 2` in the plaintext space, which is exactly the same

as normal secret sharing computation. Therefore, AHE does not leak additional information

as long as the security assumption of the AHE holds (hardness of integer factorization in the

case of DGK).

Using EOS for Differential Privacy. To use EOS for DP, each user encrypts one

share (w.l.o.g., the rth share) using the server’s public key pks before uploading. In addition,

we have the shufflers add fake reports. The full description of this protocol is given in

Algorithm 5 . There are three kinds of parties, users, shufflers, and the server. They all

agree to use some method FO with the same parameter (e.g., ε, domain size, etc); the FO

can be either GRR or SOLH, depending on the utility, as described in Section 9.3.3 . All the

communication is done through a secure channel. The users split their LDP reports into

r shares, encrypt only the r-th shares using AHE, and send them to the shufflers. Each

shuffler generate nr shares for fake reports; only the r-th shuffler encrypt the shares with

AHE. In this case, a malicious shuffler can draw its shares from a biased distribution; but

those shares will then be “masked” by other honest shufflers’ random shares and become

uniformly random. By Corollary 9.5.1 , the users’ reports are protected from the shufflers;

210

Algorithm 5 PEOS
User i: Value vi

1: Yi = FO(vi) . FO can be GRR or SOLH
2: Split Yi into r shares 〈Yi,j〉j∈[r]
3: for j ∈ [r − 1] do
4: Send Yi,j to auxiliary server j

5: Send ci,r ← Encpk(Yi,r) to auxiliary server r

Shuffler j ∈ [r − 1]: Shares 〈Yi,j〉i∈[n]
1: for k ∈ [nr] do . Generate shares of fake reports
2: Sample Yk,j uniformly from output space of FO
3: Participate in EOS with 〈Yi,j〉i∈[n] and 〈Yk,j〉k∈[nr] and send the shuffled result to the

server

Shuffler r: Encrypted shares 〈ci,r〉i∈[n]
1: for k ∈ [nr] do . Encrypted shares of fake reports
2: Sample Yk,r uniformly from output space of FO
3: ck,r ← Encpk(Yk,r)
4: Participate in EOS with 〈ci,r〉i∈[n] and 〈ck,r〉k∈[nr] and send the shuffled result to the server

Server: Shares from auxiliary servers
1: Decrypt and aggregate the shares to recover Y
2: For any v ∈ D, estimate fv using Y and Equation (9.5)

and the server cannot learn the permutation unless he can corrupt more than half of the

auxiliary servers.

9.5.2 Privacy Analysis

Now we analyze the privacy guarantee of PEOS. Because of the usage EOS protocol, the

server knows all the fake reports and each user’s LDP report if it can corrupt more than

br/2c of the shufflers. And in this case, each user’s privacy is only protected by εl-DP. On

the other hand, as long as the server cannot corrupt more than br/2c shufflers, the server

cannot gain useful information.

In what follows, we assume the server cannot corrupt more than br/2c shufflers and

examine the privacy guarantee of PEOS. The focus is on how the privacy guarantees change

after the addition of nr fake reports. With these injected reports, what the server can observe

211

is the reports from both users and the shufflers. If the users collude, the server can subtract

all other users’ contribution and the privacy comes from the fake reports. The following

corollaries give the precise privacy guarantee:

Corollary 9.5.2. If SOLH is used and SOLH is εl-LDP, then PEOS is εc-DP against the

server; and if other users collude with the server, the protocol is εs-DP, where

εs =
√

14 ln(2/δ) · d′

nr

εc =
√

14 ln(2/δ)/
(

n− 1
eεl + d′ − 1 + nr

d′

)
(9.6)

Proof: The proof is similar to the setting of with SOLH, but with nr more random

reports. More specifically, when other users collude, privacy is provided by the nr random

reports that are always random, and follow uniform distribution over [d′]. Plugging the

argument into Equation (9.2), these can be viewed as a random variable that follows Binomial

distribution with B
(
nr,

1
d′

)
. The rest of the proof follows from that for Theorem 9.3.2 .

Similarly, for the privacy guarantee against the server, there are n−1 random reports from

users, and nr reports from the auxiliary server. Their effects can be viewed as one Binomial

random variable: B (n− 1, 1/(eεl + d′ − 1))+B (nr, 1/d′) = B
(
n− 1 + nr,

(n−1)/(eεl +d′−1)+nr/d′

n−1+nr

)
.

One can also use GRR in PEOS, and we have a similar theorem:

Corollary 9.5.3. If GRR is used and GRR is εl-LDP, then PEOS is εc-DP against the server;

and if other users collude with the server, the protocol is εs-DP, where

εs =
√

14 ln(2/δ) · d

nr

εc =
√

14 ln(2/δ)/
(

n− 1
eεl + d− 1 + nr

d

)

The proof is similar to that for Corollary 9.5.2 and is thus omitted.

212

9.5.3 Utility Analysis

In Section 9.3.3 , we analyze the accuracy performance of different methods under the

basic shuffling setting. In this section, we further analyze the utility of these methods in

PEOS. The difference mainly comes from the fact that nr dummy reports are inserted, and

the server runs a further step (i.e., Equation (9.5)) to post-process the results. In what

follows, we first show that Equation (9.5) gives an unbiased estimation; based on that, we

then provide a general form of estimation accuracy.

We first show fv is an unbiased estimation of fv, where fv = 1
n

∑
i∈[n] 1vi=v.

Lemma 5. The server’s estimation fv from Equation (9.5) is an unbiased estimation of fv,

i.e.,E
[

f̃v

]
= fv.

Proof:

E [fv] =E
[

n + nr

n
f̃v −

nr

n

1
d

]
= n + nr

n
E
[

f̃v

]
− nr

n

1
d

(9.7)

Here f̃v is the estimated frequency of value v given the n + nr reports; among them, n of

them are from the true users, and nr are from the randomly sampled values. For the n

reports from users, nfv of them have original value v; and for the nr reports, in expectation,

nr/d of them have original value v. After perturbation, we have

E
[

f̃v

]
= nfv + nr/d

n + nr

Putting it back to Equation (9.7), we have E
[

f̃v

]
= fv.

Given that, we prove the expected squared error of fv:

Var [fv] = Var
[

n + nr

n
f̃v −

nr

n

1
d

]
= (n + nr)2

n2 Var
[

f̃v

]

Now plugging in the results of Var
[

f̃v

]
from Section 9.3.3 (note that we use replace n with

n + nr in the denominator as there are n + nr total reports), we obtain the specific variance

of different methods after inserting nr dummy reports.

213

Corollary 9.5.2 gives both εs and εc. For εs, d′ is fixed given nr and δ; but we can vary

d′ given εc. In particular, we can also derive the optimal value of d′ following the similar to

the analysis of Section 9.3.3 (after Proposition 9.3.5):

Given εc =
√

14 ln(2/δ)/
(

n−1
eεl +d′−1 + nr

d′

)
, we have

eεl + d′ − 1 = n− 1
14 ln(2/δ)/ε2

c − nr/d′

We denote it as m, and (to simplify the notations) use a to represent 14 ln(2/δ)/ε2
c and b to

represent n − 1. By the variance derived above, we have Var = m2

(m−d)2(d−1)
n+nr

n2 . Note that

this formula is similar to the previous one in Section 9.3.3 ; but here m also depends on d′.

Thus we need to further simplify Var:

(n + nr)
(

b
a−nr/d′

)2

n2
(

b
a−nr/d′ − d

)2
(d′ − 1)

= (n + nr)b2

n2 (b− (a− nr/d)d′)2 (d′ − 1)
= (n + nr)b2

n2a2 (d′ − (b + nr)/a)2 (d′ − 1)

To minimize Var, we want to maximize (d′ − (b + nr)/a)2 (d′ − 1). By making its partial

derivative to 0, we can obtain that when

d′ = (b + nr)/a + 2
3 = ε2

c(n− 1− nr)
42 ln(2/δ) + 2

3

the variance is minimized. Comparing to Equation (9.4), introducing nr will reduce the

optimal d′. We use the integer component of d′ in the actual implementation.

9.5.4 Discussion and Guideline

PEOS strengthens the security aspect of the shuffler model from three perspectives: First,

it provides better privacy guarantee when users collude with the server, which is a common

assumption made in DP. Second, it makes the threat of the server colluding with the shufflers

214

more difficult. Third, it limits the ability of data poisoning of the shufflers. We discuss

criteria for initiating PEOS.

Choosing Parameters. Given the desired privacy level ε1, ε2, ε3 against the three adver-

saries Adv, Advu, Adva, respectively. Also given the domain size d, number of users n, and δ,

we want to configure PEOS so that it provides εc ≤ ε1, εs ≤ ε2, and εl ≤ ε3.

Local perturbation is necessary to satisfy ε3-DP against Adva. To achieve ε2 when other

users collude, noise from auxiliary servers are also necessary. Given that, to satisfy εc ≤ ε1,

if we have to add more noise, we have two choices. That is, the natural way is to add noisy

reports from the auxiliary server, but we can also lower εl at the same time. As we have the

privacy and utility expressions, we can numerically search the optimal configuration of nr and

εl. Finally, given εl, we can choose to use either GRR or SOLH by comparing Theorem 9.3.2

and Theorem 9.3.3 .

9.6 Evaluation

The purpose of the evaluation is two-fold. First, we want to measure the utility of SOLH,

i.e., how much it improves over exsiting work. Second, we want to measure the commu-

nication and computation overhead of PEOS, to see whether the technique is applicable in

practice.

As a highlight, our PEOS can make estimations that has absolute errors of < 0.01%

in reasonable settings, improving orders of magnitude over existing work. The overhead is

small and practical.

9.6.1 Experimental Setup

Datasets. We run experiments on three real datasets.

• IPUMS [34]: The US Census data for the year 1940. We sample 1% of users, and use

the city attribute (N/A are discarded). This results in n = 602325 users and d = 915

cities.

215

• Kosarak [62]: A dataset of 1 million click streams on a Hungarian website that contains

around one million users with 42178 possible values. For each stream, one item is

randomly chosen.

• AOL [63]: The AOL dataset contains user queries on AOL website during the first

three months in 2006. We assume each user reports one query (w.l.o.g., the first

query), and limit them to be 6-byte long. This results a dataset of around 0.5 million

queries including 0.12 million unique ones. It is used in the succinct histogram case

study in Section 9.6.3 .

Competitors. We compare the following methods:

• OLH: The local hashing method with the optimal d′ in the LDP setting [5].

• Had: The Hadamard transform method used in [64]. It can be seen as OLH with d′ = 2

(utility is worse than OLH); but compared to OLH, its server-side evaluation is faster.

• SH: The shuffler-based method for histogram estimation [51].

• AUE: Method from [57]. It first transforms each user’s value using one-hot encoding.

Then the values (0 or 1) in each location is incremented w/p p = 1− 200
ε2

cn
ln(4/δ). Note

that it is not an LDP protocol, and its communication cost is O(d).

• RAP: The hashing-based idea described in Section 9.3.1 . Its local side method is

equivalent to RAPPOR [2]. Similar to AUE, it has large communication cost.

• RAPR: Method from [59]. Similar to AUE and RAP, it transforms each user’s value using

one-hot encoding. The method works in the removal setting of DP. When converting

to the replacement definition, it has the same utility as RAP.

• SOLH: The hashing-based idea introduced in Section 9.3.2 .

• PEOS: We focus on the perspective of the computation and communication complexity

in Section 9.6.4 .

216

• SS: As a baseline, we also evaluate the complexity of the sequential shuffling method

presented in 9.5.1 ; we call it SS.

Implementation. The prototype was implemented using Python 3.6 with fastecdsa 1.7.4,

pycrypto 2.6.1, python-xxhash 1.3.0 and numpy 1.15.3 libraries. For SS, we generate a

random AES key to encrypted the message using AES-128-CBC, and use the ElGamal

encryption with elliptic curve secp256r1 to encrypt the AES key. For the AHE in PEOS, we

use DGK [65] with 3072-bits ciphertext. All of the encryption used satisfy 128-bit security.

Metrics. We use Mean Squared Error (MSE) of the estimates as metrics. For each value v,

we compute its estimated frequency f̃v and the ground truth fv, and calculate their squared

difference. Specifically, MSE = 1
|D|
∑

v∈D(fv − f̃v)2.

Methodology. For each dataset and each method, we repeat the experiment 100 times,

with result mean and standard deviation reported. The standard deviation is typically very

small, and barely noticeable in the figures. By default, we set δ = 10−9.

9.6.2 Frequency Estimation Comparison

We first show the utility performance of SOLH. We mainly compare it against other

methods in the shuffler model, including SH, AUE, RAP, and RAPR. For comparison, we also

evaluate several kinds of baselines, including LDP methods OLH and Had, centralized DP

method Laplace mechanism (Lap) that represents the lower bound, and a method Base that

always outputs a uniform distribution.

Figure 9.3 shows the utility comparison of the methods. We vary the overall privacy

guarantee εc against the server from 0.1 to 1, and plot MSE. First of all, there is no privacy

amplification for SH when εc is below a threshold. In particular, when εc <
√

14 ln(2/δ)d
n−1 ,

εl = εc. We only show results on the IPUMS dataset because for the Kosarak dataset, d is

too large so that SH cannot benefit from amplification. When there is no amplification, the

utility of SH is poor, even worse than the random guess baseline method. Compared to SH,

our improved SOLH method can always enjoy the privacy amplification advantage, and gets

better utility result, especially when εc is small. The three unary-encoding-based methods

AUE, RAP, and RAPR are all performing similar to SOLH. But the communication cost of

217

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
c

10
12

10
10

10
8

10
6

10
4

M
SE

OLH
Had

Base
SH

SOLH
AUE

RAP
RAP_R

Lap

Figure 9.3. Results of MSE varying εc on the IPUMS dataset. Base always
outputs 1/d for each estimation. Lap stands for Laplace mechanism for DP.

Table 9.2. Comparison of SOLH and RAPR in Kosarak.

Metric
PPPPPPPPPMethod

εc 0.2 0.4 0.6 0.8

d′ SOLH 45 177 397 705

Utility

SOLH 5.27e-8 1.30e-8 5.76e-9 3.24e-9
RAPR (d′ = 10) 1.31e-7 1.17e-7 1.14e-7 1.13e-7
RAPR (d′ = 100) 1.73e-7 1.55e-8 1.22e-8 1.22e-8
RAPR (d′ = 1000) 1.02e-4 2.60e-5 4.02e-8 3.66e-9

RAPR 7.82e-9 1.92e-9 8.53e-10 4.78e-10

them are higher. The best-performing method is RAPR; but it works in the removal-LDP

setting. Because of this, its performance with εc is equivalent to RAP with 2εc.

Moving to the LDP methods, OLH and Had perform very similar (because in these

settings, OLH mostly chooses d′ = 2 or 3, which makes it almost the same as Had), and

are around 3 orders of magnitude worse than the shuffler-based methods. For the central

DP methods, we observe Lap outperforms the shuffler-based methods by around 2 orders of

magnitude.

In Table 9.2 , we list the value of d′ of SOLH and the utility of SOLH and RAPR for

some εc values. We also fix d′ in SOLH and show how sub-optimal choice of d′ makes

SOLH less accurate. The original domain d is more than 40 thousand, thus introducing a

large communication cost compared to SOLH (5KB vs 8B). The computation cost for the

users is low for both methods; but for the server, estimating frequency with SOLH requires

evaluating hash functions. We note that as this takes place on server, some computational

218

cost is tolerable, especially the hashing evaluation nowadays is efficient. For example, our

machine can evaluate the hash function 1 million times within 0.1 second on a single thread.

9.6.3 Succinct Histograms

In this section, we apply shuffle model to the problem of succinct histogram (e.g., [8], [15])

as a case study. The succinct histogram problem still outputs the frequency estimation; but

different from the ordinary frequency or histogram estimation problem, which we focused on

in the last section, it handles the additional challenge of a much larger domain (e.g., domain

size greater than 232). To deal with this challenge, [15] proposes TreeHist. It assumes the

domain to be composed of fixed-length binary strings and constructs a binary prefix tree.

The root of the tree denotes the empty string. Each node has two children that append the

parent string by 0 and 1. For example, the children of root are two prefixes 0∗ and 1∗, and

the grand children of root are 00∗, 01∗, 10∗, and 11∗. The leaf nodes represent all possible

strings in the domain.

To find the frequent strings, the algorithm traverses the tree in a breadth-first-search

style: It starts from the root and checks whether the prefixes at its children are frequent

enough. If a prefix is frequent, its children will be checked in the next round. For each

round of checking, an LDP mechanism (such as those listed in Chapter 3) is used. Note

that the mechanism can group all nodes in the same layer into a new domain (smaller than

the original domain because many nodes will be infrequent and ignored). Each user will

check which prefix matches the private value, and report it (or a dummy value if there is

no match). In this section, to demonstrate the utility gain of the shuffler model, we use

the methods SH, SOLH, AUE, and RAP as the frequency estimator (i.e., the framework of

TreeHist stays the same; but the frequency estimator is changed).

In what follows, we empirically compare them to demonstrate the applicability and bene-

fit of the shuffler model. Following the setting of [15], we consider the AOL dataset assuming

each user’s value is 48 bits. We run TreeHist in 6 rounds, each for 8 bits (1 character). We

set the goal to identify the the top 32 strings, and in each intermediate round, we identify

the top 32 prefixes. In the LDP setting, TreeHist divides the users into 6 groups, as that

219

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
c

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ec

is
io

n

OLH
Had

Lap
SH

SOLH
AUE

RAP
RAP_R

Figure 9.4. Comparison on the succinct histogram problem. The target is to
identify the top 32 most frequent values.

gives better results. In the shuffler case, a better approach is to avoid grouping users, but

rather dividing εc and δc by 6 for each round.

Figure 9.4 shows the results. We can observe that the except SH, the other shuffler-based

methods outperforms the LDP TreeHist (OLH and Had) . In addition to the capability of

reducing communication cost, another advantage of SOLH we observe here is that SOLH

enables non-interactive execution of TreeHist (note that this is also one reason why the

original TreeHist algorithm uses the local hashing idea). In particular, the users can encode

all their prefixes and report together. The server, after obtaining some frequent prefix, can

directly test the potential strings in the next round. On the other hand, using the unary-

encoding-based methods, users cannot directly upload all their prefixes, because the size of

a report can be up to 248 bits. Instead, the server has to indicate which prefixes are frequent

to the users and then request the users to upload.

9.6.4 Performance Evaluation

We evaluate the computational and communication costs of SS and PEOS, focusing on

the overhead introduced by the encryption and shuffling. We run the experiments on servers

running Linux kernel version 5.0 with Intel Xeon Silver 4108 CPU @ 1.80GHz and 128GB

memory. We assume there are r = 3 and r = 7 shufflers. The results are listed in Table 9.3 .

As both methods scales with n + nr, we fix n to be 1 million and ignore nr.

220

Table 9.3. Computation and communication overhead of SS and PEOS for
each user, each shuffler, and the server. We assume n = 106 and r = 3 or 7.

XXXXXXXXXXXXMetric
Method SS PEOS

r = 3 r = 7 r = 3 r = 7
User comp. (ms) 0.24 0.49 1.6 1.6

User comm. (Byte) 416 800 400 432
Aux. comp. (s) 49 50 0.2 0.7

Aux. comm. (MB) 224 416 429.8 3293.3
Server comp. (s) 49 49 65 65

Server comm. (MB) 128 128 392 408

Note that we the results are only for SOLH with report size fixed at 64 bits. If we use

RAP in this case, the communication cost will increase proportional to the size of the domain

d (by d/64).

User Overhead. Overall, the user-side computation and communication overhead are

small for both methods. The computation only involves sampling, secret-sharing, and r

times of encryption operations. All of them are fast. Note that in SS, as onion encryption

is used, its overhead is larger and grows linearly with respect to r. The communication cost

for each user is also very limited.

Shuffler Overhead. For each shuffler in SS, the computation cost lies in n decryptions

(for one layer), sampling nu random reports (with necessary encryption), and then shuffling.

Note that the decryptions is done in parallel. In this implementation, we use 32 threads for

demonstration. With more resources, the processing time can be shortened.

In SS, an ElGamal ciphertext is a tuple 〈P, C〉, P is a point in the secp256r1 curve

and thus can be represented by 256 × 2 bits; and C is a number in {0, 1}256. That is, we

need 96 bytes to store the encrypted AES key for each layer. For SOLH, we let each user

randomly select an 4-byte seed as the random hash function. After padding, each message is

32 + 96(r + 1) bytes, where r is the number of layers used for shufflers. One additional layer

is used for the server. Given n = 1 million users and r shufflers, there will be on average
1
r
× n×∑r

k=1(32 + 96(k + 1)) = 672 MB data sent to the three shufflers.

221

PEOS is made up of
(

r
br/2c+1

)
rounds of sorting. Since a well-implemented sorting on 1

million elements takes only several milliseconds, the computation cost of shuffling is minor for

the shufflers. In addition, our protocol require each shuffler do
(

r
br/2c+1

)
· n/r homomorphic

additions during shuffling. As Table 9.3 indicates, all of these cryptographic operations are

efficient. The cost is no more than one second with n = 1 million reports.

According to the analysis of oblivious shuffle from [55], each shuffler’s communication

cost is O(2r
√

rn). In addition, our protocol sends n encrypted shares each round, which

introduces another communication cost of O(2rn/
√

r) by similar analysis (multiplied with

a larger constant factor because of the 3072-bit DGK ciphertexts). In experiments with 1

million users and 3 shufflers, each shuffler needs to send 430 MB. In a more expensive case

with 7 shufflers, it becomes 3.3 GB. While the communication cost is higher than that of

SS, we note that the cost is tolerable in our setting, as the data collection does not happen

frequently.

Server Overhead. For SS, the server computation overhead is similar to that of the

shufflers, as they all decrypt one layer. The server’s communication cost (measured by

amount of data received) is lower though, as there is only one layer of encryption on the

data.

In PEOS, the server needs to collect data from all r shufflers. As only one share is en-

crypted by DGK, the communication overhead is mostly composed of that part and grows

slowly with r. The computation overhead is also dominated by decrypting the DGK cipher-

texts.

9.7 Related Work

Privacy Amplification by Shuffling. The shuffling idea was originally proposed in

Prochlo [56]. Later the formal proof was given in [49]–[51]. Parallel to our work, [57], [66]

propose mechanisms to improve utility in this model. They both rely on the privacy blanket

idea [51]. More recently, [59] considered an intriguing removal-based LDP definition and

222

work in the shuffler model. Besides estimating histograms, the problem of estimating the

sum of numerical values are also extensively investigated [58], [67], [68].

Crypto-aided Differential Privacy. Different from using shufflers, researchers also

proposed methods that utilize cryptography to provide differential privacy guarantees, in-

cluding [69]–[71]. One notable highlight is [52], which proposes Cryptε. In this approach,

users encrypt their values using homomorphic encryption, and send them to the auxiliary

party via a secure channel. The auxiliary server tallies the ciphertext and adds random noise

in a way that satisfies centralized DP, and sends the result to the server. The server decrypts

the aggregated ciphertext. More recently, researchers in [72] introduce several security fea-

tures including verification and malice detection. This line of work does not require LDP

protection, thus differs from our approach. Moreover, to handle the histogram estimation

when |D| is larger, the communication overhead is larger than that of ours.

Relaxed Definitions. Rather than introducing the shuffler, another direction to boost the

utility of LDP is to relax its semantic meaning. In particular, Wang et al. propose to relax

the definition by taking into account the distance between the true value and the perturbed

value [73]. More formally, given the true value, with high probability, it will be perturbed

to a nearby value (with some pre-defined distance function); and with low probability, it

will be changed to a value that is far apart. A similar definition is proposed in [74], [75].

Both usages are similar to the geo-indistinguishability notion in the centralized setting [76].

In [77], the authors consider the setting where some answers are sensitive while some not

(there is also a DP counterpart called One-sided DP [78]). The work [79] is a more general

definition that allows different values to have different privcay level. Our work applied to

the standard LDP definition, and we conjecture that these definitions can also benefit from

introducing a shuffler without much effort.

There also exist relaxed models that seem incompatible with the shuffler model, i.e., [80]

considers the inferring probability as the adversary’s power; and [35] utilizes the linkage

between each user’s sensitive and public attributes.

Distributed DP. In the distributed setting of DP, each data owner (or proxy) has access

to a (disjoint) subset of users. For example, each patient’s information is possessed by a

223

hospital. The DP noise is added at the level of the intermediate data owners (e.g., [81]). A

special case (two-party computation) is also considered [82], [83]. [84] studies the limitation

of two-party DP. In [85], a distributed noise generation protocol was proposed to prevent

some party from adding malicious noise. The protocol is then improved by [86]. [87] lays

the theoretical foundation of the relationship among several kinds of computational DP

definitions.

We consider a different setting where the data are held by each individual users, and

there are two parties that collaboratively compute some aggregation information about the

users.

DP by Trusted Hardware. In this approach, a trusted hardware (e.g., SGX) is utilized

to collect data, tally the data, and add the noise within the protected hardware. The result is

then sent to the analyst. Google propose Prochlo [56] that uses SGX. Note that the trusted

hardware can be run by the server. Thus [88] and [89] designed oblivious DP algorithms

to overcome the threat of side information (memory access pattern may be related to the

underlying data). These proposals assume the trusted hardware is safe to use. However,

using trusted hardware has potential risks (e.g., [90]). This paper considers the setting

without trusted hardware.

224

REFERENCES

[1] C. Dwork, F. McSherry, K. Nissim, and A. Smith, “Calibrating noise to sensitivity in
private data analysis,” in TCC, 2006.

[2] Ú. Erlingsson, V. Pihur, and A. Korolova, “RAPPOR: randomized aggregatable privacy-
preserving ordinal response,” in CCS, 2014.

[3] Apple Differential Privacy Team, Learning with privacy at scale, available at https:
//machinelearning.apple.com/research/ learning-with-privacy-at-scale , 2017.

[4] B. Ding, J. Kulkarni, and S. Yekhanin, “Collecting telemetry data privately,” in NIPS,
2017.

[5] T. Wang, J. Blocki, N. Li, and S. Jha, “Locally differentially private protocols for
frequency estimation,” in USENIX Security, 2017.

[6] T. Wang, J. Blocki, N. Li, and S. Jha, “Optimizing locally differentially private pro-
tocols,” arXiv preprint arXiv:1705.04421, 2017.

[7] Source code of rappor in chromium, https : / / cs . chromium . org / chromium / src /
components/rappor/public/rappor_parameters.h .

[8] R. Bassily and A. D. Smith, “Local, private, efficient protocols for succinct histograms,”
in STOC, 2015.

[9] Scikit-learn, http://scikit-learn.org/ .

[10] Frequent itemset mining dataset repository, http://fimi.ua.ac.be/data/ .

[11] T. Wang, N. Li, and S. Jha, “Locally differentially private heavy hitter identification,”
IEEE TDSC, 2019.

[12] T. Wang, N. Li, and S. Jha, “Locally differentially private heavy hitter identification,”
CoRR, vol. abs/1708.06674, 2017.

[13] T.-H. H. Chan, E. Shi, and D. Song, “Private and continual release of statistics,” ACM
Transactions on Information and System Security (TISSEC), vol. 14, no. 3, pp. 1–24,
2011.

[14] G. C. Fanti, V. Pihur, and Ú. Erlingsson, “Building a RAPPOR with the unknown:
Privacy-preserving learning of associations and data dictionaries,” PoPETs, vol. 2016,
no. 3, 2016.

225

https://machinelearning.apple.com/research/learning-with-privacy-at-scale
https://machinelearning.apple.com/research/learning-with-privacy-at-scale
https://cs.chromium.org/chromium/src/components/rappor/public/rappor_parameters.h
https://cs.chromium.org/chromium/src/components/rappor/public/rappor_parameters.h
http://scikit-learn.org/
http://fimi.ua.ac.be/data/

[15] R. Bassily, K. Nissim, U. Stemmer, and A. G. Thakurta, “Practical locally private
heavy hitters,” in NIPS, 2017.

[16] N. Wang, X. Xiao, Y. Yang, T. D. Hoang, H. Shin, J. Shin, and G. Yu, “Privtrie:
Effective frequent term discovery under local differential privacy,” in ICDE, 2018.

[17] M. Hay, V. Rastogi, G. Miklau, and D. Suciu, “Boosting the accuracy of differentially
private histograms through consistency,” PVLDB, vol. 3, no. 1, 2010.

[18] B. Avent, A. Korolova, D. Zeber, T. Hovden, and B. Livshits, “Blender: Enabling local
search with a hybrid differential privacy model,” in USENIX Security, 2017, pp. 747–
764.

[19] Quantcast top sites, https://www.quantcast.com/top-sites/ , 2016.

[20] T. Wang, N. Li, and S. Jha, “Locally differentially private frequent itemset mining,”
in 2018 IEEE Symposium on Security and Privacy (SP), IEEE, 2018, pp. 127–143.

[21] Z. Qin, Y. Yang, T. Yu, I. Khalil, X. Xiao, and K. Ren, “Heavy hitter estimation over
set-valued data with local differential privacy,” in CCS, 2016.

[22] N. Li, W. Qardaji, and D. Su, “On sampling, anonymization, and differential privacy or,
k-anonymization meets differential privacy,” in Proceedings of the 7th ACM Symposium
on Information, Computer and Communications Security, ACM, 2012, pp. 32–33.

[23] J. Tang, A. Korolova, X. Bai, X. Wang, and X. Wang, “Privacy loss in apple’s imple-
mentation of differential privacy on macos 10.12,” arXiv preprint arXiv:1709.02753,
2017.

[24] Z. Zhang, T. Wang, N. Li, S. He, and J. Chen, “Calm: Consistent adaptive local
marginal for marginal release under local differential privacy,” in CCS, 2018.

[25] G. Cormode, T. Kulkarni, and D. Srivastava, “Marginal release under local differential
privacy,” in SIGMOD, 2018.

[26] X. Ren, C. Yu, W. Yu, S. Yang, X. Yang, J. A. McCann, and P. S. Yu, “Lopub:
High-dimensional crowdsourced data publication with local differential privacy,” IEEE
Trans. Information Forensics and Security, vol. 13, no. 9, 2018.

[27] B. Barak, K. Chaudhuri, C. Dwork, S. Kale, F. McSherry, and K. Talwar, “Privacy,
accuracy, and consistency too: A holistic solution to contingency table release,” in
PODS, 2007.

226

https://www.quantcast.com/top-sites/

[28] W. Qardaji, W. Yang, and N. Li, “Priview: Practical differentially private release of
marginal contingency tables,” in SIGMOD, 2014.

[29] T. T. Nguyên, X. Xiao, Y. Yang, S. C. Hui, H. Shin, and J. Shin, “Collecting and ana-
lyzing data from smart device users with local differential privacy,” arXiv:1606.05053,
2016.

[30] H. W. Kuhn and A. W. Tucker, “Nonlinear programming,” in Traces and emergence
of nonlinear programming, Springer, 2014, pp. 247–258.

[31] W. Karush, “Minima of functions of several variables with inequalities as side con-
straints,” M. Sc. Dissertation. Dept. of Mathematics, Univ. of Chicago, 1939.

[32] Z. Zheng, R. Kohavi, and L. Mason, “Real world performance of association rule al-
gorithms,” in Proceedings of the seventh ACM SIGKDD international conference on
Knowledge discovery and data mining, ACM, 2001, pp. 401–406.

[33] D. Dua and C. Graff, UCI machine learning repository, 2017. [Online]. Available: http:
//archive.ics.uci.edu/ml .

[34] S. Ruggles, S. Flood, R. Goeken, J. Grover, E. Meyer, J. Pacas, and M. Sobek, Inte-
grated public use microdata series: Version 5.0 [machine-readable database], 2020.

[35] T. Wang, B. Ding, J. Zhou, C. Hong, Z. Huang, N. Li, and S. Jha, “Answering multi-
dimensional analytical queries under local differential privacy,” in SIGMOD, 2019.

[36] W. H. Qardaji, W. Yang, and N. Li, “Understanding hierarchical methods for differ-
entially private histograms,” PVLDB, vol. 6, no. 14, 2013.

[37] R. Kohavi, “Scaling up the accuracy of naive-bayes classifiers: A decision-tree hybrid.,”
in KDD, vol. 96, 1996.

[38] X. Xiao, G. Wang, and J. Gehrke, “Differential privacy via wavelet transforms,” in
ICDE, 2010.

[39] T. Wang, Z. Li, N. Li, M. Lopuhaä-Zwakenberg, and B. Skoric, “Consistent and accu-
rate frequency oracles under local differential privacy,” in NDSS, 2020.

[40] G. Cormode, T. Kulkarni, and D. Srivastava, “Answering range queries under local
differential privacy,” PVLDB, 2019.

[41] P. Kairouz, K. Bonawitz, and D. Ramage, “Discrete distribution estimation under local
privacy,” in ICML, 2016.

227

http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml

[42] R. Bassily, “Linear queries estimation with local differential privacy,” in AISTATS,
2019.

[43] J. Jia and N. Z. Gong, “Calibrate: Frequency estimation and heavy hitter identification
with local differential privacy via incorporating prior knowledge,” 2019.

[44] B. Ding, M. Winslett, J. Han, and Z. Li, “Differentially private data cubes: Optimizing
noise sources and consistency,” in SIGMOD, 2011.

[45] J. Lee, Y. Wang, and D. Kifer, “Maximum likelihood postprocessing for differential
privacy under consistency constraints,” in KDD, 2015.

[46] J. Blasiok, M. Bun, A. Nikolov, and T. Steinke, “Towards instance-optimal private
query release,” in SODA, 2019.

[47] Q. Ye, H. Hu, X. Meng, and H. Zheng, “Privkv: Key-value data collection with local
differential privacy,” in SP, 2019.

[48] T. Wang, B. Ding, M. Xu, Z. Huang, C. Hong, J. Zhou, N. Li, and S. Jha, “Improving
utility and security of the shuffler based differential privacy,” VLDB, 2020.

[49] A. Cheu, A. D. Smith, J. Ullman, D. Zeber, and M. Zhilyaev, “Distributed differential
privacy via shuffling,” in EUROCRYPT, 2019.

[50] Ú. Erlingsson, V. Feldman, I. Mironov, A. Raghunathan, K. Talwar, and A. Thakurta,
“Amplification by shuffling: From local to central differential privacy via anonymity,”
in SODA, 2019, pp. 2468–2479.

[51] B. Balle, J. Bell, A. Gascón, and K. Nissim, “The privacy blanket of the shuffle model,”
in Annual International Cryptology Conference, Springer, 2019, pp. 638–667.

[52] A. R. Chowdhury, C. Wang, X. He, A. Machanavajjhala, and S. Jha, “Crypte: Crypto-
assisted differential privacy on untrusted servers,” SIGMOD, 2020.

[53] P. Paillier, “Public-key cryptosystems based on composite degree residuosity classes,”
in International Conference on the Theory and Applications of Cryptographic Tech-
niques, Springer, 1999, pp. 223–238.

[54] D. Bogdanov, S. Laur, and J. Willemson, “Sharemind: A framework for fast privacy-
preserving computations,” in European Symposium on Research in Computer Security,
Springer, 2008, pp. 192–206.

228

[55] S. Laur, J. Willemson, and B. Zhang, “Round-efficient oblivious database manipula-
tion,” in International Conference on Information Security, Springer, 2011, pp. 262–
277.

[56] A. Bittau, U. Erlingsson, P. Maniatis, I. Mironov, A. Raghunathan, D. Lie, M. Rudominer,
U. Kode, J. Tinnes, and B. Seefeld, “Prochlo: Strong privacy for analytics in the crowd,”
in SOSP, ACM, 2017.

[57] V. Balcer and A. Cheu, “Separating local & shuffled differential privacy via his-
tograms,” in 1st Conference on Information-Theoretic Cryptography (ITC 2020), Schloss
Dagstuhl-Leibniz-Zentrum für Informatik, 2020.

[58] B. Ghazi, N. Golowich, R. Kumar, P. Manurangsi, R. Pagh, and A. Velingker, “Pure
differentially private summation from anonymous messages,” arXiv:2002.01919, 2020.

[59] Ú. Erlingsson, V. Feldman, I. Mironov, A. Raghunathan, S. Song, K. Talwar, and A.
Thakurta, “Encode, shuffle, analyze privacy revisited: Formalizations and empirical
evaluation,” arXiv preprint arXiv:2001.03618, 2020.

[60] I. Damgard, M. Geisler, and M. Kroigard, “Homomorphic encryption and secure com-
parison,” Int. J. Appl. Cryptol., vol. 1, no. 1, pp. 22–31, Feb. 2008.

[61] S. Pohlig and M. Hellman, “An improved algorithm for computing logarithms overgf(p)and
its cryptographic significance (corresp.),” IEEE Transactions on Information Theory,
1978.

[62] Frequent itemset mining dataset repository, Available at http://fimi.ua.ac.be/data/ .

[63] Web search query log downloads, Available at http://www.radiounderground.net/aol-
data/ .

[64] J. Acharya, Z. Sun, and H. Zhang, “Hadamard response: Estimating distributions
privately, eciently, and with little communication,” in AISTATS, 2019.

[65] I. Damgård, M. Geisler, and M. Krøigaard, “Efficient and secure comparison for on-line
auctions,” in Australasian Conference on Information Security and Privacy, Springer,
2007, pp. 416–430.

[66] B. Ghazi, N. Golowich, R. Kumar, R. Pagh, and A. Velingker, “On the power of
multiple anonymous messages,” arXiv:1908.11358, 2019.

[67] B. Ghazi, R. Pagh, and A. Velingker, “Scalable and differentially private distributed
aggregation in the shuffled model,” arXiv preprint arXiv:1906.08320, 2019.

229

http://fimi.ua.ac.be/data/
http://www.radiounderground.net/aol-data/
http://www.radiounderground.net/aol-data/

[68] B. Balle, J. Bell, A. Gascon, and K. Nissim, “Private summation in the multi-message
shuffle model,” in CCS, 2020.

[69] D. Froelicher, P. Egger, J. S. Sousa, J. L. Raisaro, Z. Huang, C. Mouchet, B. Ford, and
J.-P. Hubaux, “Unlynx: A decentralized system for privacy-conscious data sharing,”
Proceedings on Privacy Enhancing Technologies, vol. 2017, no. 4, pp. 232–250, 2017.

[70] T. Elahi, G. Danezis, and I. Goldberg, “Privex: Private collection of traffic statistics
for anonymous communication networks,” in Proceedings of the 2014 ACM SIGSAC
Conference on Computer and Communications Security, 2014, pp. 1068–1079.

[71] L. Melis, G. Danezis, and E. De Cristofaro, “Efficient private statistics with succinct
sketches,” in NDSS, 2016.

[72] E. Roth, D. Noble, B. H. Falk, and A. Haeberlen, “Honeycrisp: Large-scale differentially
private aggregation without a trusted core,” in Proceedings of the 27th ACM Symposium
on Operating Systems Principles, ACM, 2019, pp. 196–210.

[73] S. Wang, Y. Nie, P. Wang, H. Xu, W. Yang, and L. Huang, “Local private ordinal data
distribution estimation,” in INFOCOM 2017-IEEE Conference on Computer Commu-
nications, IEEE, IEEE, 2017, pp. 1–9.

[74] M. E. Gursoy, A. Tamersoy, S. Truex, W. Wei, and L. Liu, “Secure and utility-aware
data collection with condensed local differential privacy,” IEEE Transactions on De-
pendable and Secure Computing, 2019.

[75] X. Gu, M. Li, Y. Cao, and L. Xiong, “Supporting both range queries and frequency es-
timation with local differential privacy,” in 2019 IEEE Conference on Communications
and Network Security (CNS), IEEE, 2019, pp. 124–132.

[76] M. Andrés, N. Bordenabe, K. Chatzikokolakis, and C. Palamidessi, “Geo-indistinguishability:
Differential privacy for location-based systems,” in 20th ACM Conference on Computer
and Communications Security, ACM, 2013, pp. 901–914.

[77] T. Murakami and Y. Kawamoto, “Utility-optimized local differential privacy mecha-
nisms for distribution estimation,” in 28th USENIX Security Symposium, 2019.

[78] S. Doudalis, I. Kotsogiannis, S. Haney, A. Machanavajjhala, and S. Mehrotra, “One-
sided differential privacy,” arXiv preprint arXiv:1712.05888, 2017.

[79] X. Gu, M. Li, L. Xiong, and Y. Cao, “Providing input-discriminative protection for
local differential privacy,” in ICDE, 2020.

230

[80] A. Bhowmick, J. Duchi, J. Freudiger, G. Kapoor, and R. Rogers, “Protection against
reconstruction and its applications in private federated learning,” arXiv:1812.00984,
2018.

[81] B. McMahan and D. Ramage, “Federated learning: Collaborative machine learning
without centralized training data,” Google Research Blog, vol. 3, 2017.

[82] X. He, A. Machanavajjhala, C. Flynn, and D. Srivastava, “Composing differential pri-
vacy and secure computation: A case study on scaling private record linkage,” in Pro-
ceedings of the 2017 ACM SIGSAC Conference on Computer and Communications
Security, ACM, 2017, pp. 1389–1406.

[83] F.-Y. Rao, J. Cao, E. Bertino, and M. Kantarcioglu, “Hybrid private record linkage:
Separating differentially private synopses from matching records,” ACM Transactions
on Privacy and Security (TOPS), vol. 22, no. 3, p. 15, 2019.

[84] A. McGregor, I. Mironov, T. Pitassi, O. Reingold, K. Talwar, and S. Vadhan, “The
limits of two-party differential privacy,” in 2010 IEEE 51st Annual Symposium on
Foundations of Computer Science, IEEE, 2010, pp. 81–90.

[85] C. Dwork, K. Kenthapadi, F. McSherry, I. Mironov, and M. Naor, “Our data, ourselves:
Privacy via distributed noise generation,” in Annual International Conference on the
Theory and Applications of Cryptographic Techniques, Springer, 2006, pp. 486–503.

[86] J. Champion, J. Ullman, et al., “Securely sampling biased coins with applications to
differential privacy,” in Proceedings of the 2019 ACM SIGSAC Conference on Computer
and Communications Security, ACM, 2019, pp. 603–614.

[87] I. Mironov, O. Pandey, O. Reingold, and S. Vadhan, “Computational differential pri-
vacy,” in Annual International Cryptology Conference, Springer, 2009, pp. 126–142.

[88] T. H. Chan, K.-M. Chung, B. M. Maggs, and E. Shi, “Foundations of differentially
oblivious algorithms,” in SODA, SIAM, 2019.

[89] J. Allen, B. Ding, J. Kulkarni, H. Nori, O. Ohrimenko, and S. Yekhanin, “An algo-
rithmic framework for differentially private data analysis on trusted processors,” in
Advances in Neural Information Processing Systems, 2019, pp. 13 635–13 646.

[90] A. Biondo, M. Conti, L. Davi, T. Frassetto, and A.-R. Sadeghi, “The guard’s dilemma:
Efficient code-reuse attacks against intel sgx,” in 27th USENIX Security Symposium,
2018.

231

VITA

Tianhao Wang was born and raised in Zibo, China. He move to Shanghai and attended

High School Affiliated to Shanghai Jiao Tong University. He graduated from Fudan Univer-

sity with a Bachelor of Engineering in Software Engineering in 2015, under the supervision

of Dr. Yunlei Zhao. Tianhao entered Purdue University in the Fall of 2015, and worked

under the supervision of Dr. Ninghui Li in the Department of Computer Science. Tianhao’s

graduate research was in the area of differentially private data publishing. He received his

Ph.D. in computer science in Spring of 2021.

232

	TITLE PAGE
	COMMITTEE APPROVAL
	ACKNOWLEDGMENTS
	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	ABSTRACT
	INTRODUCTION
	BACKGROUND
	Differential Privacy
	Differential Privacy in the Local Setting

	FREQUENCY ORACLE
	Existing Work
	Basic Rappor
	Rappor
	Random Matrix Projection

	A Framework for LDP Protocols
	Optimizing LDP Protocols
	Direct Encoding (DE)
	Histogram Encoding (HE)
	Unary Encoding (UE)
	Binary Local Hashing (BLH)
	Optimal Local Hashing (OLH)

	Discussion
	Which Protocol to Use
	On Answering Multiple Questions

	Experimental Evaluation
	Verifying Correctness of Analysis
	Towards Real-world Estimation
	Accuracy on Frequent Values
	Distinguish True Counts from Noise
	On Information Quality

	HEAVY HITTER IDENTIFICATION
	Existing Solutions
	The Segment Pairs Method (SPM)
	The Multiple Channel Method (HASH)

	The Prefix Extending Method
	Overview of Prefix Extending Method (PEM)
	Instantiation and Analysis of PEM
	Concurrent work: PEM1.
	Concurrent work: PrivTrie.

	Choosing the Parameter g
	Impact of g
	The Sensitivity Threshold for LDP
	Choice of g
	Verifying the Analytical Results Empirically

	Evaluation
	Evaluation Setup
	Utility Metric
	Dataset
	Competitors

	Detailed Results
	Effect of ε
	Effect of k
	Evaluation of Threshold Version
	Effect of Partitioning Users
	Effect of g
	Comparison of Estimation Accuracy
	Effect of Distribution Assumption
	Comparison with PrivTrie

	FREQUENT ITEMSET MINING
	Existing Work
	LDPMiner

	Padding-and-Sampling-based Frequency Oracles
	Privacy Amplification of GRR
	No Privacy Amplification of other FO
	Utility of PSFO
	Adaptive FO
	Choosing ℓ

	Proposed Method
	Frequent Item Mining
	Frequent Itemset Mining

	Evaluation
	Experimental Setup
	Evaluation of Item Mining
	Evaluation of Itemset Mining

	Supplementary Results
	(ε,δ)-LDP and Limited Amplification Effect
	Additional Results

	MARGINAL RELEASE
	Problem Definition and Existing Solutions
	Problem Definition: Centralized Setting
	Problem Definition: Local Setting
	Full Contingency Table Method (FC)
	All Marginal Method (lm)
	Fourier Transformation Method (ft)
	Expectation Maximization Method (EM)

	CALM: Consistent Adaptive Local Marginal
	An Overview of PreView
	Overview of the CALM Method
	Choosing the Set of Marginals
	Consistency between Noisy Marginals
	Discussion

	Evaluation
	Experimental Setup
	SSE on Binary Datasets
	SSE on Non-binary Datasets
	Classification Performance
	Verifying Marginal Parameters
	Impact of k and the Local Setting

	QUERY ANSWERING
	Preliminaries
	Multi Dimensional Model and Analytics
	Definition of LDP Revisited

	Weighted Frequency Oracle
	Weighed Frequency Queries and MDA
	Our Weighted Frequency Oracle (, M)

	Oracle Running on Random Samples
	Answering MDA via LDP Marginals

	MDA with One Private Dimension
	Hierarchical-Interval (HI) Mechanism
	Better Accuracy via Level Partitioning

	Multiple Private Dimensions
	Multiple Ordinal Dimensions
	Multi-dimensional Hierarchical Intervals
	Multi-dimensional HI Mechanism (, PHI)
	Boosting Accuracy via User Partitioning

	Ordinal and Categorical Dimensions
	Split-and-Conjunction: When the Dimensionality is High
	Conjunctive Estimators barf and barf M
	Split-and-Conjunction (SC) Mechanism

	Performance Comparison

	Evaluation
	Experimental Comparison
	One Ordinal Dimension
	Two Ordinal Dimensions
	Three Ordinal Dimensions

	Relative Error and Practical Usage
	Two Ordinal and Two Categorical Dimensions
	Four Ordinal and Four Categorical Dimensions
	Case Study: E-Commerce Analytics

	Extensions and Discussion

	POST PROCESSING
	Towards Consistent Frequency Oracles
	Baseline Methods
	Normalization Method
	Constrained Least Squares
	Maximum Likelihood Estimation
	Least Expected Square Error
	Summary of Methods

	Evaluation
	Experimental Setup
	Bias-variance Evaluation
	Full-domain Evaluation
	Set-value Evaluation
	Frequent-value Evaluation
	Discussion

	Related Work

	PRIVACY AMPLIFICATION VIA SHUFFLING
	Background
	Summary of Existing Results
	Improving Utility of the Shuffler Model
	Unary Encoding for Shuffling
	Local Hashing for Shuffling
	Utility Analysis
	Comparison with Parallel Work

	Security Analysis
	Parties and Attackers
	Privacy Guarantees of Existing Methods
	Robustness to Malicious Parties
	Discussion and Key Observations

	Defending against Attacks
	Fake Response from Auxiliary Servers
	First Attempt: Sequential Shuffle
	Second Attempt: Oblivious Shuffle
	Proposal: Private Encrypted Oblivious Shuffle

	Privacy Analysis
	Utility Analysis
	Discussion and Guideline

	Evaluation
	Experimental Setup
	Frequency Estimation Comparison
	Succinct Histograms
	Performance Evaluation

	Related Work

	REFERENCES
	VITA

