Purdue University Graduate School
ALMOUSA_E4.pdf (1.93 MB)


Download (1.93 MB)
posted on 2019-06-10, 19:23 authored by Rashed Abdulaziz R AlmousaRashed Abdulaziz R Almousa

A Polyvinylchloride surface was modified by coating a biocompatible, hydrophilic and antibacterial polymer by a mild surface modification method. The surface was first activated and then functionalized, followed by coating with polymer. The surface functionality was evaluated using cell adhesion, bacterial adhesion and bacterial viability for polymers with antibacterial properties. 3T3 mouse fibroblast cells were used for cell adhesion, Pseudomonas aeruginosa, Escherichia coli, and Staphylococcus aureus were used for bacterial adhesion in the first study, Pseudomonas aeruginosa and Staphylococcus aureus were used for bacterial adhesion and antibacterial activity in the second study.

Chapter 2 reports how we synthesized, immobilized and evaluated a novel hydrophilic polymer with anti-fouling properties onto surface of polyvinylchloride via an effective and mild surface coating technique. The polyvinylchloride surface was first activated by azidation as well as amination, and then tethering a newly synthesized hydrophilic and biocompatible polyvinylpyrrolidone having pendent reactive succinimide functionality onto the surface. Results show that the coated hydrophilic polymer significantly reduced the 3T3 fibroblast cell adhesion as well as the adhesion of the three bacterial species.

Chapter 3 reports how we prepared, immobilized and evaluated an antibacterial and anti-fouling polymer onto polyvinylchloride surface following an efficient and simple method of surface modification. The surface coated with a terpolymer constructed with N-vinylpyrrolidone, 3,4-Dichloro-5-hydroxy-2(5H)-furanone derivative and succinimide residue was evaluated with cell adhesion, bacterial adhesion and bacterial viability. Surface adhesion was evaluated with 3T3 mouse fibroblast cells and two bacterial species. Also, antibacterial activity was evaluated by bacterial viability assay with the two bacterial species. Results showed that the polymer-modified polyvinylchloride surface exhibited significantly decreased 3T3 fibroblast cell adhesion and bacterial adhesion. Furthermore, the modified polyvinylchloride surfaces exhibited significant antibacterial functions by inhibiting bacterial growth with bactericidal activity.

Altogether, we have successfully modified the surface of polyvinylchloride using a novel efficient and mild surface coating technique. The first hydrophilic polymer-coated polyvinylchloride surface significantly reduced cell adhesion as well as adhesion of three bacterial species. The second hydrophilic and antibacterial polymer-coated polyvinylchloride surface demonstrated significant antibacterial functions by inhibiting bacterial growth and killing bacteria in addition to significantly reduced 3T3 fibroblasts and bacterial adhesions.


Degree Type

  • Master of Science in Biomedical Engineering


  • Biomedical Engineering

Campus location

  • Indianapolis

Advisor/Supervisor/Committee Chair

Dong Xie

Additional Committee Member 2

Sungsoo Na

Additional Committee Member 3

Jiliang Li