Purdue University Graduate School
PanktiThakkar_MastersThesis_Final.pdf (2.32 MB)

Characterization and Development of an Enzymatically Signal-Enhanced Lateral Flow Assay Test for HIV Detection Using the P24 Antigen

Download (2.32 MB)
posted on 2023-04-28, 00:41 authored by Pankti Rajesh ThakkarPankti Rajesh Thakkar

In 2021, an estimated 1.5 million people were diagnosed with HIV globally, increasing the total to 38.4 million people. Approximately 16% of this population were unaware of their infected status and required HIV testing, which is a critical first step in HIV prevention, treatment, and care. Hence, there is a need to develop a rapid, user-friendly, and cost-effective point-of-care test for HIV detection. The time between HIV infection and a detectable host HIV antibody concentration can extend up to 90 days. By incorporating more sensitive testing for the HIV p24 antigen on the virus, the diagnosis lag can be reduced to 17 days. This window could be further shortened by using horseradish peroxidase (HRP) enzyme as a signal enhancement technique. The work herein focuses on developing an enzymatically signal-enhanced lateral flow assay test for the p24 antigen to detect HIV during the acute phase of infection. Conjugation chemistry for the sandwich assay was characterized using DLS and UV-Vis. Dot blots were then used to assess and enhance the functionality of the individual components via a visual color gradient formed by the protein coupled with antibody-conjugated gold nanoparticles. A quantitative analysis was performed using ImageJ software through signal pixel intensity analysis. A limit of detection (LoD) of 6 ng/mL was obtained for the detection of the p24 antigen. This LoD was improved to 0.2 ng/mL by incorporating HRP signal enhancement with the diaminobenzidine substrate. This 30x signal improvement could drive down the LoD even further to improve the sensitivity of the commercial p24 antigen tests. Different fabrication and scalability studies were performed to produce a cost- efficient, fully functional prototype of a paper-based lateral flow device incorporating the signal- enhanced p24 assay. This study serves as a solid foundation to research focused on creating more efficient point-of-care tests that can be used in resource-limited settings to provide early detection of HIV for the 6 million individuals who are currently unaware of their HIV status. 


Degree Type

  • Master of Science


  • Biomedical Engineering

Campus location

  • West Lafayette

Advisor/Supervisor/Committee Chair

Jacqueline Linnes

Additional Committee Member 2

Lia Stanciu

Additional Committee Member 3

Scott Bolton