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GLOSSARY 

Graph – “A mathematical representation of a set of objects and their relations. We denote a graph 

G as an ordered pair G = (V, E) where V represents the set of objects (also called nodes 

or vertices) and E represents the set of relations (also called edges, links or connections)” 

(Araujo, 2017, p.9). 

Community – “The division of network nodes into groups within which the network connections 

are dense, but between which are sparser” (Newman & Girvan, 2004, p. 1). 

Modularity – “The extent, relative to a null model network, to which edges are formed within the 

modules instead of between the modules” (Barber, 2007, p. 1). 
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ABSTRACT 

The detection of anomalies in real-world networks is applicable in different domains; the 

application includes, but is not limited to, credit card fraud detection, malware identification and 

classification, cancer detection from diagnostic reports, abnormal traffic detection, identification 

of fake media posts, and the like. Many ongoing and current researches are providing tools for 

analyzing labeled and unlabeled data; however, the challenges of finding anomalies and patterns 

in large-scale datasets still exist because of rapid changes in the threat landscape.  

In this study, I implemented a novel and robust solution that combines data science and 

cybersecurity to solve complex network security problems. I used Long Short-Term Memory 

(LSTM) model, Louvain algorithm, and PageRank algorithm to identify and group anomalies in 

large-scale real-world networks. The network has billions of packets. The developed model used 

different visualization techniques to provide further insight into how the anomalies in the network 

are related.  

Mean absolute error (MAE) and root mean square error (RMSE) was used to validate the 

anomaly detection models, the results obtained for both are 5.1813e-04 and 1e-03 respectively. 

The low loss from the training phase confirmed the low RMSE at loss: 5.1812e-04, mean absolute 

error: 5.1813e-04, validation loss: 3.9858e-04, validation mean absolute error: 3.9858e-04.   The 

result from the community detection shows an overall modularity value of 0.914 which is proof of 

the existence of very strong communities among the anomalies. The largest sub-community of the 

anomalies connects 10.42% of the total nodes of the anomalies.   

The broader aim and impact of this study was to provide sophisticated, AI-assisted 

countermeasures to cyber-threats in large-scale networks. To close the existing gaps created by the 

shortage of skilled and experienced cybersecurity specialists and analysts in the cybersecurity field, 

solutions based on out-of-the-box thinking are inevitable; this research was aimed at yielding one 

of such solutions. It was built to detect specific and collaborating threat actors in large networks 

and to help speed up how the activities of anomalies in any given large-scale network can be 

curtailed in time. 
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 INTRODUCTION 

1.1 Nature of the Problem 

Anomalies are often called outliers because they deviate from normal, standard, or 

expected patterns (Farias, Fabregas, Dormido-Canto, Vega, & Vergara, 2020). Anomalies in a 

network are not easy to identify until they have caused significant problems. The continuous and 

rapid increase in network traffic volumes is making the prevalence and sophistication of attacks 

more visible (Do and Gadepally, 2020).  

The use of traditional intrusion detection and intrusion prevention systems have initially 

slowed down the rate of cyber-attacks, but the systems are limited in terms of the kinds of attack 

they can handle. For example, the recent form of distributed denial of service attacks requires more 

intelligent and robust systems to handle them, especially due to the high volume and rate of attacks 

experienced in very short durations. Strategies involving different techniques such as Big data, 

Artificial Intelligence (AI) are evolving rapidly. They are currently being used to overcome the 

current limitations of traditional intrusion detection and intrusion prevention systems (Kai, Singtel 

& Balachandran, 2020).  

The provision of robust cybersecurity solutions requires the coordination of both machine 

and human endeavors. For example, the increase in the number of fileless malware attacks as 

indicated in the CrowdStrike Global Threat Report requires attention and a quick solution 

(CrowdStrike Inc., 2020). The fileless malware attacks are also known as “living-off-the-land” 

(LotL) attacks.  

These kinds of frequent changes in the attack landscape weaken and delay progress in the 

cybersecurity domain; many of the existing solutions have been rendered useless or irrelevant by 

the changes in the attack landscape. This research is proposing a community detection of anomalies 

(CDoA) solution that makes use of existing anomaly and community detection algorithms in 

identifying relationships and patterns of anomalies in a large-scale network. A simplified diagram 

of anomaly and community detection procedure is as shown in Figure 1.1 

The diagram shows that a hidden Change in Network Property will influence the behavioral 

pattern of the network traffic from normal to abnormal. For example, packets with manipulated 

Time-To-Live (TTL) can cause abnormal behavior in the network. This change in network 
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property would influence the process that generates the Observed Network Graphs which 

represents the network property’s factual information. The summarized graphs which are based on 

the Graph Statistics become the inputs to some Anomaly Detector system. The output of the 

detector will lead to conclusions as to when the change in the network property is abnormal. The 

assumption in this scenario is that a 1:1 mapping exists between the graph statistics and the network 

property. That is, no other property of the network is affecting the observed statistical values. 

 

Figure 1.1: A simplified diagram of anomaly and community detection process 

1.2 Statement of Problem 

Recent growth in cyber-attacks threatens personal credibility, security of nations, and the 

rights of ownership on intellectual properties globally. Network security-related incidences are 

great threats to private/personal data which include cards’ credentials, personal health and financial 

records, and other confidential information. All these are hijacked or stolen daily. Growth in 

cybercriminal activities brings destruction to innovations, disruption to the trading of stocks and 

government agencies by using ransomware to steal sensitive and crucial data (Zurier, 2021).  

The rate at which devices are now being connected on the internet is related to the rate at 

which adversaries and cyber-attacks increase. The adversaries are launching more attacks by the 
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day and getting more skillful and successful in their plots (Hoque, Bhuyan, Baishya, Bhattacharyya, 

& Kalita, 2014).  

Available research indicated the inability of the existing defenses to keep commensurable 

pace with the recent cyber-attacks (Reddy & Reddy, 2014). Sophisticated methods that combine 

human and artificial intelligence (AI) in detecting anomalies and patterns are required as the world 

experience data explosion (bigdata) through the proliferation of connected devices and automation 

(Berman, Buczak, Chavis, & Corbett, 2019). To address this problem, a robust technique for 

detecting communities of anomalies in large-scale networks with deep learning techniques was 

implemented. 

1.3 Research Questions 

The research answered the following related questions on community detection of 

anomalies with deep learning techniques: 

(i) Given a large-scale network with millions or billions of nodes, what level of accuracy of 

anomaly detection can be achieved with the CDoA model using deep learning long short-term 

memory (LSTM)?  

(ii) Can we identify strong communities of anomalies in a large-scale network using the CDoA 

model with the Modularity metric as a measure? 

1.4 Hypothesis 

The following hypotheses were proposed for this study: 

1. H0: The use of deep learning LSTM to detect anomalies in large-scale Internet traffics dataset 

with more than 20 billion packets will yield more than 10% each of mean absolute error and 

root mean square error, using time step size, batch size, and epoch of 100, 50 and 100 

respectively. 

HA:  The use of deep learning LSTM to detect anomalies in large-scale Internet traffics dataset 

with more than 20 billion packets will yield less than 10% each of loss, mean absolute error, 

validation loss, and validation mean absolute error using time step size, batch size and epoch 

of 100, 50 and 100 respectively. 
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2.  H0: When the quality function is used as a measure, the average modularity value of identified 

communities of anomalies in large-scale Internet traffic with billions of packets will be less 

than 0.6. 

HA:  When the quality function is used as a measure, modularity values of identified 

communities of anomalies in large-scale Internet traffic with billions of packets will be 

higher than 0.6. 

1.5 Significance of Problem 

Recent attacks on large cyber networks demonstrate a need for enhanced and combined 

solutions for network segmentation and monitoring. This approach will help cybersecurity 

specialists to alienate specific sections of network communities for proper investigation and 

control of network-based cyber threats.  

The community detection of anomalies (CDoA) model will help cybersecurity specialists 

to provide efficient and scalable solutions to prevalent cyber threats which include Botnets, LotL, 

and distributed denial of service attacks (DDoS). Some of these cyberattacks are gaining 

momentum with the use of proliferating IoT devices.  

1.6 Statement of Purpose 

From works of literature, deep learning techniques have not been featured frequently in 

community detection processes but have in anomaly detection (Gao, Song, Wen, Wang, Sun, Xu, 

& Zhu  2020; Farias et al., 2020; Maimo, Gomez, Clemente, Perez, & Perez, 2018; Malhotra, Vig, 

Gautam, & Agarwal, 2015; Shipmon, Gurevitch, Piselli, & Edwards, 2017). Recently, deep neural 

networks have gained widespread attention with methods such as kernel machines in numerous 

important applications. Both feedforward (acyclic) neural networks (FNNs) and recurrent (cyclic) 

neural networks (RNNs) have been very popular in deep neural networks (Schmidhuber, 2015). 

According to Alla &Adari (2019), anomaly detection types include supervised anomaly detection, 

semi-supervised anomaly detection, and unsupervised anomaly detection. All these include the 

development of suitable models for detecting anomalies, training the models, and testing the 

models with targeted datasets. 
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To evaluate these models, a confusion matrix is often used along with accuracy, recall, F1 

score, and precision (Alla &Adari, 2019); a 2x2 confusion matrix has historically been sufficient 

to evaluate anomaly detection models using true positive (TP), True Negative (TN), False Positive 

(FP), and False Negative (FN). Deep learning anomaly detection models that have been developed 

and used successfully include Isolation Forest, Support Vector Machine (SVM), Convolutional 

Neural Network (CNN), Variants of Auto-Encoder, Deep Belief Networks (DBN), Recurrent 

Neural Network (RNN), and Long Short-Term Memory (LSTM) (Berman, Buczak, Chavis, & 

Corbett, 2019). A study on “time series anomaly detection” shows RNN to be more effective in 

handling false positives (Shipmon, Gurevitch, Piselli, & Edwards, 2017). However, strengthening 

defensive measures against threat actors requires additional efforts such as combining the RNN 

with a community detection approach. This gave birth to the CDoA model.  

Community detection generally employs the use of graph theory to solve complex 

problems (Liao, Deng & Wang, 2019). For example, using partitional clustering essentially 

involves the identification of different communities in a given network and minimizing the loss 

function according to the distances that exist among the points and/or identified communities 

(Fortunato, 2010). This technique is utilized by k-means, minimum-k clustering, k-medoids, and 

other classical algorithms. Its drawback is its requirement for the prior specification of a certain 

number of clusters as inputs; in a real-world network, this may not be possible. A hierarchical 

clustering algorithm was developed to overcome this drawback. The algorithm has two popular 

classes known as Agglomerative and Divisive algorithms (Fortunato, 2010). The agglomerative 

class was used for community detection in this study. It recursively merged nodes with high 

similarity to form communities. Using this together with the LSTM anomaly detection model 

significantly helped in solving high-dimensional and complex security challenges.  

1.7 Scope 

This research’s scope was based on the following: 

1. Detect anomalies in a given real-world large-scale cyber network using a deep learning 

algorithm. 

2. Identify subnetworks of anomalies in the given network using a community detection 

algorithm.  
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3. Formulate an extended modularity metric to define the quality function for the identified 

subnetworks. 

4. Confirm relationships among the anomalies in the identified subnetworks. 

5. Evaluate CDoA Model. 

1.8 Assumptions 

The following assumptions were made for this study: 

1. The same execution environment was used for the anomaly and community detection in the 

given large-scale network dataset. 

2. IP address represents the network nodes which could represent either source nodes or target 

nodes in this study.  

3. Center for Applied Internet Data Analysis (CAIDA) dataset was used to represent a real-world 

large-scale network. 

4. The network traffic dataset was not manipulated under any circumstances. 

5. The size and number of the community of anomalies detected were not known a priori. 

6. The variety and size of the network traffic anomalies detected were not known a priori 

7. The results of this study which was carried out with the use of existing algorithms in related 

studies are genuine, and this study was based on this assumption. 

1.9 Limitation and Delimitation 

The limitations and delimitation of this research were: 

1. One limitation of this study is that the speed of execution and analysis for this study varied based 

on the available high-performance machine (HPC) infrastructure provided by Purdue University. 

2. The only metric that was taken into consideration to evaluate the strength/structure of the 

communities that were discovered is modularity. 

3. Community detection in this research is limited to only overlapping and non-overlapping 

networks. 

4. The network traffic anomalies discovered were limited to the traces provided by CAIDA. 

5. Weighted and directed graphs only were used in this study. 
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6. Multiple links from a node to the same destination were treated as redundant and were therefore 

considered as a single link. 

1.10 Summary 

The statement of problems and the research questions that were answered in this dissertation were 

presented in this chapter. The chapter started with the introduction and explained the scope, 

purpose statement and the significance of this research. The chapter also identified specific 

limitations, delimitations, and assumptions of this study.   
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 REVIEW OF LITERATURE  

This chapter presents an overview of relevant works of literature that were reviewed in this 

research. It gives a general and summarized introduction to the concepts of anomalies and 

detection approaches. The chapter zoomed in on Botnet (as an example of malware attack that is 

common in a large-scale network), IoT (Internet of Things) devices, and network traffic anomalies. 

Deep learning approaches to anomaly detection, community structures/types, community 

detection techniques, and algorithms were also discussed. 

2.1 Introduction 

Application of community detection of anomalies in large networks has the possibility of 

alleviating cyber-attacks in the global arena. This application leveraged existing deep learning 

anomaly detection algorithms, especially those that have been successfully used to address 

problems in given real-world complex networks.  

2.2 Anomaly detection in Large-scale Network 

Anomalies in any domain of human endeavors are usually not friendly. An anomaly was 

defined intuitively as “a surprising or unusual occurrence” and as a deviation from the normal 

(Marteau, 2021; Farias et al., 2020; Noble & Cook, 2003 p.632). A system with outliers in its data 

output (or input) generally raises concern that requires further investigation. Some systems use 

anomaly scores to determine if anomalies exist in a network based on previously set thresholds on 

an intrusion detection system (Marteau, 2021; Peddabachigari, Abraham, Grosan, & Thomas, 

2007).    

Every standard system is expected to behave and exhibit some predefined set of functions, 

deviation from such expectations are regarded as anomalies. An adding machine that generates 

number-three as the result of the addition of double number-two (i.e. 2+2 = 3) is anomalous in its 

operation. Anomalies are usually caused by hidden factors that can be discovered by further 

diligent research. Further investigation into the causes of anomalies can expose the factors and 

reasons behind such anomalies. For example, graph solution has been used in community detection 
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to investigate and detect anomalous subgraphs in graphs that have single attributes (Jie, Wang, 

Chen, Li & Wu, 2020; Shao, Li, Chen & Chen, 2018; Noble & Cook, 2003, p.634).   

Depending on the field of consideration and point of view, anomalies can be categorized and 

expressed based on various related variables and thresholds. According to this thesis, anomalies 

were categorized to be based on expectation, impact, and time. In other related studies, anomalies 

have also been categorized to be based on a data point, pattern, and context. Anomaly detection 

styles are supervised anomaly detection, semi-supervised anomaly detection (Marteau, 2021), and 

unsupervised anomaly detection (Alla and Adari, 2019). The category of anomalies that is related 

to this study is based on nodes and edges and the style adopted is semi-supervised anomaly 

detection. 

The sensitive nature of data handling in the present age requires anomalies to be prevented 

at all costs. In situations where prevention is not possible, greater efforts should be made to detect 

or notice anomalies on time before they cause irreversible or untold problems in any network of 

concern. Computer networks have become an essential tool since their inception; they have been 

playing significant roles in the daily activities of almost everybody in the world today. A computer 

network was described as a model of human transactive memory (Wegner, 1995, p.319). Computer 

networks have been very significant in data and resource sharing. For example, the use of mobile 

communication technologies for telecommunication purposes is based on a computer network; the 

voice or text signals from the phones are sent as network traffic on dedicated networks. According 

to Katz & Aakhus, 2001, p.3, “Mobile communication technologies are already modifying well-

established communication patterns, amplifying and substituting for them.” Maintaining a 

computer network and its traffic against the disruption that could be caused by anomalies requires 

constant effort and research.    

2.2.1 Network traffic anomalies 

Network traffic anomalies have the potential to disrupt and destabilize the operation and 

activities of any organized system. Network traffic anomalies can be traced to faults in the network 

devices or intentional disruptions on the devices through cyber-attacks such as DDOS (Zhou & Li, 

2019). Cyber-attacks are usually carried out with malicious intent by adversaries that are within or 

without an organization. Cyber-attacks threaten businesses, government entities, and individuals’ 

Intellectual Property (IP) and Personal Identity Information (PII) for espionage and monetary gain.  
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Variants of cyber-attacks are still evolving and becoming more sophisticated and efficient in the 

last 30 years. These threats are growing and becoming more prevalent every day (Gupta, Tewari, 

Jain, & Agrawal, 2016). Cyber-attacks are successful when a cyber threat is used to exploit known 

vulnerabilities in any of the devices on the network. The world of cyber networks is evolving fast 

in recent times because of diverse IoT devices that are being manufactured and connected on the 

Internet. As the network evolves, the data generation increases, as a result, the need for network 

and data security increases. An example of the common attacks that thrive on IoT is known as the 

Botnet attack (Hussain, Abbas, Fayyaz, Shah, Toqeer & Ali, 2020).  

2.2.2 Anomalies caused by Botnet Attack and IoT devices 

Internet of Things (IoT) was reported to have fueled one of the biggest attacks in Internet 

history; “A giant botnet made up of hijacked internet-connected things like cameras, lightbulbs, 

and thermostats was used to launch the largest Distributed Denial of Service (DDoS) attack ever 

against a top security blogger in October 2016.” (Greene, 2016). A botnet is a cyber-attack that 

makes use of networked compromised devices to perform malicious remote operations in an 

organized environment. It is a group of compromised computers that are running one or more 

computer application programs that are being controlled and manipulated only by the owner of the 

software source called Bot Controller or Herder (Sikorski & Honig, 2012).  

A botnet attack consists of a master that covertly controls the activities of compromised 

devices or systems. A Bot Herder or Bot Master gives commands to the compromised devices 

which are referred to as a robot, bot, zombie, or a drone, the devices are usually compromised via 

a Trojan (Marcus, 2013). “Some attackers have botnets of thousands of compromised machines 

under their control and use the IP addresses of the compromised hosts as an underground Internet 

currency, with stealth routines to hide them from prying eyes” (Rhodes-Ousley, 2013). 

Information gathering on Botnet involves “the process of creating a blueprint or map of an 

organization’s network and systems, which are attackable by a botnet. It also involves determining 

the target systems, applications, or physical locations of the botnet target.” This will then lead to 

the use of non-intrusive methods in gathering information about the botnet (Kimberly, 2010). All 

the operations performed by Botnet are generally covert by nature.  

Botnets have been known to cause many of the catastrophic cyber-attacks in recent times 

(Greene, 2016). Anomalies are not uncommon in any environment where botnets are in operation. 
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In other words, botnets are one of the significant sources of network anomalies. The major problem 

of a botnet is that it can be in operation on a network for long without being noticed or discovered 

except there are strong measures for its discovery and prevention. 

Security researchers have warned for years that poor security for IoT devices could have 

serious consequences. “Botnets made up of compromised IoT devices are capable of launching 

distributed denial-of-service attacks of unprecedented scale” (Constantin, 2016). Recent Juniper 

Research revealed that the number of IoT-connected sensors and devices will exceed 50 billion in 

2022, up from 21 billion estimated for 2018; this will be a rise of about 140% within four years 

(Sorrell, 2018). Figure 2.1 shows the split distribution of 51 Billion IoT connected units by 8 key 

regions in 2022. North America and West Europe take the largest shares of the distribution while 

Africa & Middle East and the rest of Asia Pacific will not exceed the 1 billion-barrier by the end 

of the shown forecast period (Sorrell, 2018).  

 

Figure 2.1: The split distribution of 51 Billion IoT connected units by eight key regions in 2022.  

Source: (Sorrell, 2018) 

 

According to Grau (2015, p. 52), IoT devices can be subjected to various attacks that are 

categorized into three parts; the ‘take control’ kind, meaning unauthorized applications or actions 
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that are not permitted by the owner is executed and this may lead to serious incidents. The ‘steal 

information’ kind of attack means that hackers sniffed data transmitted and gain private 

information like location and personal data. The third way of attempting an attack on the IoT 

device is to disrupt its services; this prevents the IoT device from executing a normal operation, 

stopping its function, causing incidents like a non-stoppable auto vehicle, or insulin pump not 

acting while it should. 

Research on anomaly detection is very important because it is aimed at solving many 

problems that exist in various application domains. Many of the techniques that were developed 

over time for detecting anomalies have been somewhat specific to application domains, while 

some were developed for more generic purposes (Chandola, Banerjee & Kumar, 2007). 

Several reports of IoT devices being routinely hacked and used as weapons in launching 

big-scale cyber-attacks due to poor security measures and insecure encryption mechanisms in IoT 

infrastructures have called for a proactive measure in tackling security-related issues with IoT 

devices generally. For instance, the reported massive DDoS attack that occurred on October 21, 

2016, against Dyn servers “brought down much of America’s internet. It affected many sites 

including Twitter, Spotify, PayPal, the Guardian, Netflix, Reddit, CNN, and many other websites” 

(Raj, 2016). This section describes the previous works on anomaly detection and IoT. 

Gendreau & Moorman (2016) proposed a safeguard solution to networks by detecting 

unauthorized intruders within the constraints of each type of device or subnetwork ahead of 

information leakage incidents. The proposed solution presented “a survey of Intrusion Detection 

Systems (IDS) using the most recent ideas and methods proposed for the IoT.” The survey tried to 

separate “IDS platform differences and the current research trend towards a universal, cross-

platform distributed approach.” This was done by historical examination of intrusion detection 

systems to provide better understanding and illustration. 

IoT devices have some vulnerabilities to different types of attacks, such as routing/insider 

attacks. Bostani and Sheikhan (2017) proposed “a novel real-time hybrid intrusion detection 

framework. The framework consists of anomaly-based and specification-based intrusion detection 

modules for detecting two well-known routing attacks in IoT”. The two routing attacks are known 

as a sinkhole and selective-forwarding attacks. The specification-based intrusion detection agents 

and anomaly-based intrusion detection agents were used; the agent employed the unsupervised 

optimum-path forest algorithm for projecting clustering models by using incoming data packets. 
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The agent used in this study was based on the MapReduce architecture (Bostani and Sheikhan, 

2017). 

One of the increasingly popular solutions applicable for network intrusion detection 

systems (NIDS) is the Neural Networks (Mirsky, Doitshman, Elovici & Shabtai, 2018). Neural 

networks have a very suitable capability of learning complex patterns and behaviors, this capability 

has made them a useful tool for differentiating between normal traffic and network attacks. One 

of the major limitations of neural networks is the number of resources needed to train them in a 

supervised manner. Mirsky et al. (2018) tried to overcome the limitation of neural networks by 

proposing “Kitsune: a plug and play NIDS, which can learn to detect attacks on the local network, 

without supervision, and in an efficient online manner”. 

 The “need to develop new methods for detecting attacks launched from compromised IoT 

devices and differentiate between an hour and millisecond long IoT-based attacks” led to another 

study by Meidan, Bohadana, Mathov, Mirsky, Breitenbacher, Shabtai & Elovici (2018). The study 

proposed and empirically evaluated a novel network-based anomaly detection method. The 

method “extracts behavior snapshots of the network and uses deep autoencoders to detect 

anomalous network traffic emanating from compromised IoT devices”. Anomaly-based 

approaches to intrusion detection are one of the major approaches in use today. It has the potential 

to detect a zero-day attack and other new forms of attack (Harish, 2016) 

2.2.3 Anomaly Detection approaches in Network Traffic 

Many methods have been used to address the issue of anomaly detection in network traffics. 

For example, deep learning methods have been used for anomaly detection in social networks by 

utilizing multimodal data and multidimensional networks (Chaabene, Bouzeghoub, Guetari & 

Ghezala, 2021). Another method for anomaly detection in a network is graph-based. Existing 

research has classified graph-based anomaly detections into two broad categories, “white crow” 

and “in-disguise” as shown in Figure 2.2 (Chen, Hendrix & Samatowa 2011, p. 2). Detected nodes, 

edges, subgraphs are classified as white crow anomalies while unusual patterns in the network 

which comprises uncommon nodes and entity alterations are the indicators of an in-disguise class 

of anomalies.  

The CDoA model focused on the later path of anomaly detection. Further research on white 

crow anomalies has been carried out to identify various types of anomalies (Moonesinghe & Tan, 
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2006; Sun. Qu, Chakrabarti, & Faloutsos, 2005; Hautamäki, Kärkkäinen, & Fränti, 2004; Noble 

& Cook, 2003; Lin & Chalupsky, 2003). In-disguise anomalies were further researched by Shetty 

and Adibi (2005) and Eberle & Holder (2007).  

The significant role of computing networks has required the need to develop means of 

protecting specific networks and their components. Anomalies in the network traffic are indicators 

of the existence of background or not-so-obvious challenges facing the network. The majority of 

the network anomalies are usually caused by cyber-attacks even in situations where preventive 

measures have been put in place on the network. Such preventive measures include the use of 

firewalls, intrusion detection systems (IDS), intrusion prevention systems (IPS), and other security 

measures.  Many methods are now being used to detect network traffic anomalies on top of these 

preventive measures (Marteau, 2021). 

 

Figure 2.2: A summary of the various research directions in graph-based anomaly detection. 

(Source: Chen, Hendrix & Samatowa 2011, p. 2) 
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The recent growth of the internet of connected things has led to surprisingly large data 

generation, transportation, and storage. The generated data from the large-scale network of several 

connected ‘things’ or devices have produced huge data that is now popularly being referred to as 

‘Big data’. Big data has been very useful for several purposes such as weather forecast, anomaly 

detection, and so on (Kai, Singtel & Balachandran, 2020; Bendre, Thool & Thool, 2015). To ensure 

the integrity of big data that is generated by the community of connected things, the community 

itself must be properly observed. One of the best ways to effectively manage and monitor large-

scale networks is the use of anomaly detection. 

  Chandola, Banerjee & Kumar (2007) provided a survey on available anomaly detection 

techniques. The provided survey gave a more structured and comprehensive overview of various 

anomaly detection research by grouping existing techniques into different categories. The 

underlying approach that was adopted by each technique served as the basis for the grouping. The 

survey identified key assumptions of each of the techniques that were used to differentiate between 

normal and anomalous behavior. The goal of the survey was to provide a better understanding of 

the different directions on anomaly detection research. It also discussed how developed techniques 

could be used in other domains that are different from the ones where they were created.  

Such developed techniques in recent times include the use of artificial intelligence in 

addressing the problems of anomalies in large datasets. Anomalies in a large data set can be 

detected using different AI approaches and methods, one of the efficient approaches being used in 

recent times is deep learning. 

2.3 Anomaly Detection with Deep Learning 

 Defining deep learning is challenging because it has been changing form gradually in the 

past decade. It could be defined as “neural networks that have a large number of parameters and 

layers in one of the following fundamental network architectures, unsupervised pre-trained 

networks, convolutional neural networks, recurrent neural networks and recursive neural networks” 

(Patterson and Gibson, 2017).  

 Deep learning autoencoders have been used for anomaly detection in recent studies. Fan, 

Zhang & Li (2020) used dual autoencoder for anomaly detection on attributed networks. Deep 

autoencoders have been used to detect anomalous network traffics emanating from compromised 
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IoT devices (Meidan et al., 2018).  KitNet algorithm, an ensemble of autoencoders which is based 

on a neural network was used to develop a plug-and-play network intrusion detection system that 

can collectively differentiate between normal and abnormal patterns (Mirsky, Doitshman, Elovic 

& Shabtai, 2018).  Recently, deep neural networks have gained wide-spread attention, because it 

outperforms alternative machine learning methods such as kernel machines in numerous important 

applications. Both feedforward (acyclic) neural networks (FNNs) and recurrent (cyclic) neural 

networks (RNNs) have been very popular in deep neural networks (Schmidhuber, 2015). 

A study on Time series anomaly detection was carried out by Shipmon, Gurevitch, Piselli, 

& Edwards, (2017). The study used an RNN model to detect and predict anomalies in time series. 

Apart from RNN, DNN and LSTM were used in the anomaly detection and all of the models have 

the same performance on the dataset that was used. RNN was more effective in handling false 

positives encountered in the study. 

Wang & Paschalidis (2017) conducted a study on a two-stage approach for detecting the 

presence of botnet and identifying nodes that are compromised and controlled by Botnet. 

Anomalies were detected by observing large deviations of an empirical distribution. The study 

used a flow-based approach to estimate the histogram of quantized flow and a graph-based 

approach to estimate the degree distribution of node interaction graphs. The study was very 

effective in detecting anomalies based on large deviations results, but the drawback is in the 

inability of the approach to detect small deviations that could also be anomalous.  

Several other deep learning-related anomaly detection methods were presented by Chalapathy & 

Chawla (2019). The study was based on a survey that presented a structured and comprehensive 

overview of research methods in deep learning-based anomaly detection. It also assessed the 

effectiveness of the adoption of the methods for anomaly detection across various application 

domains. Recurrent neural network shares the same family with FNNs, RNNs’ major difference 

from FNN is that they can send information over time-steps (Patterson and Gibson, 2017). 

According to Schmidhuber (2015), RNNs are regarded as the deepest of all neural networks among 

others, they are more powerful than FNNs in terms of computation and can create and process 

memories of arbitrary sequences of input patterns in principle. 

A confusion matrix is used to evaluate the performance of RNN and other deep learning 

models using accuracy, recall, and precision. A 2x2 confusion matrix is enough to evaluate 

anomaly detection models using true positive (TP), True Negative (TN), False Positive (FP), and 
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False Negative (FN) (Wu, Wei & Feng, 2020). Deep learning anomaly detection models that have 

been developed and used successfully include Isolation Forest, Support Vector Machine (SVM), 

Convolutional Neural Network (CNN), Variants of Auto-Encoder, Deep Belief Networks (DBN), 

Recurrent Neural Network (RNN), and Long Short-Term Memory (LSTM) (Chalapathy & Chawla, 

2019). A study on “time series anomaly detection” shows RNN to be more effective in handling 

false positives (Shipmon, Gurevitch, Piselli, & Edwards, 2017). 

One of the most used deep learning approaches in the detection of anomalies is the RNN. 

A type of RNN known as long short-term memory (LSTM) networks was used by Malhotra, Vig, 

Gautam & Agarwal (2015) for anomaly detection in time series. The study trained a network on 

non-anomalous data, the trained network was used as a predictor over several time steps. 

Multivariate Gaussian distribution was used in the study to assess the existence of anomalous 

behavior. 

2.4 Prediction of Anomaly and its connections 

The last part of this study will focus on the discovery of anomalous nodes’ relationships 

and forecasting of potential anomalous connections. Anomaly prediction involves the use of 

existing data to forecast the possibilities of anomalies on a network. Data sources today are 

heterogeneous and characterized by different types of entities and relations that could be leveraged 

for dataset enrichment (Araujo, 2017).  

Tan, Gu & Wang (2010) presented a novel adaptive runtime anomaly prediction system. 

The system was called ‘ALERT’. The system aimed to raise anomaly alerts in advance of 

occurrence to provide for just-in-time anomaly prevention.  To achieve this, a novel context-aware 

anomaly prediction scheme was proposed, the ALERT system was meant to improve prediction 

of accuracy in dynamic hosting infrastructures. 

Araujo (2017), proposed the modeling of heterogeneous graphs as Coupled Tensors to 

predict the evolution of some interaction in a network.  The ability to study interactions between 

edges and vertices in networks will provide strong leverage for identifying and predicting 

anomalies in such networks. Deep learning will make such observation easier in large-scale 

networks.  Forecasting the tensors jointly was expected to generate better predictions than when 

the tensors are considered independently. TensorCast method was proposed for this study and it 

achieved over 20% higher precision in top-1000 queries. It also doubled the precision when finding 
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new relations than comparable alternatives. The method was tested in datasets with over 300M 

interactions and it scaled well with the input size at (E + N log N). The main advantage of 

TensorCast is its ability to be simultaneously contextual and time-aware. 

LSTM network for anomaly detection models behaviors that are dependent on time or 

sequence. “The output of a neural network layer at a time (t) to the input of the same network layer 

at a time (t)+1. It is more efficient than typical RNN because it solves the vanishing gradient 

problem that exists in typical RNN” (Alla & Adari, 2019). LSTM belongs to the gated recurrent 

unit (GRU) class of RNN; its components are forget gate (Ft), input gate (It), output gate (Ot), and 

memory cell. A detailed LSTM Network is as shown in Figure 2.3.  

 

 

Figure 2.3: A detailed LSTM Network.  

(Source: commons.wikimedia.org) 

 

This study will implement LSTM in developing the CDoA model because of its strong 

efficiency in capturing the long-term dependencies across a large number of instants of time. The 

first part of the network is the forget gate, it decides the amount of information from a prior stage 

to be remembered or forgotten. The input gate is responsible for the decision of the amount of 

information to be passed to the current stage by using activation functions known as sigmoid and 

tanh. The output gate decides the amount of information the hidden state of a particular stage can 

retain and pass to the next stage. To strengthen defensive measures against threat actors, the CDoA 
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model requires additional efforts such as combining the LSTM with community detection 

approach in this study. 

2.5 Community Detection 

 Community detection has gathered increasing attention lately because of the significance 

of its application to different domains of human endeavors. Community detection aims to partition 

networks edges and nodes into sets of clusters, this is to make related nodes within the same cluster 

more densely connected to themselves than to those in other clusters (Sun, He, Huang, Sun, Li, 

Wang, He, Sun, and Jia, 2020). Its application has been observed to have a significant impact in 

computer science, biology, sociology, physics, and other science and social science disciplines 

(Chakraborty, Dalmia, Mukherjee, & Ganguly, 2017). 

Community detection is regarded as an ill-defined concept according to Fortunato (2010) 

because the nature of the communities is not known in advance. Barabasi (2016) defined 

community detection as subgraphs that are connected densely in a network and further classified 

communities as either strong or weak.  

Community detection is based on the use of graphs in solving real-world problems. Graphs 

have been used over several years to model relationships between entities; such entities can be 

represented with real or abstract objects as shown in Figure 2.4a, b & c. Graphs have been used in 

biology, geography, and computing to model the relationship between neuron and their synapses, 

roads and their links, and compute nodes and their networks respectively (Fortunato, 2010). 

The aim of using community detection for anomalies is to discover patterns and 

relationships of anomalies in a given network. Consider a network graph G(V, E), where V 

represents a set of vertices or nodes in the graph and E represents a set of edges or links between 

the nodes in the network. Every edge in the set of edges of the network can be represented by ei,j 

∈   [0, 1] where i and j are the endpoints of that edge, forming the |V | × |V |-sized matrix E. Graph 

can also be represented by a weighted graph G = (V,W) where matrix W replaces matrix E. Rather 

than having 0-1 values, cells wij are continuous variables.  The weight of the edge is the magnitude 

of communication or relationship between the two endpoints of the edge. An exponentially or 

hyperbolically large number of possible sub-communities can be found in a given network. These 

sub-communities can be called subgraphs of any network represented by a graph solution. 
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(a) (b) 

 

(c) 

Figure 2.4: The use of graphs for modeling real-life scenarios.  

(a) Social network (b) Neuron and synapses relationship (c) Roads and their links. 

(Sources: Creusefond et al., 2017; Petersen, 2015) 

 

The simplest measurable statistics from a network are the node and edge count. The node 

count |N| is the number of nodes and the edge count |E| represents the number of edges. For this 

research, edge count refers to |W|, the total weight of the edges 

 In consideration of the network modeling, modularity function is used in a graph to 

determine the number of edges that are internal or external with respect to the original graph and 

to evaluate the difference in the number of such edges if null graph (random graph with identical 
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degree distribution as the original graph). For the given graph, the null graph was expected to be 

the most appropriate quality function that outputs the maximum modularity with the graph.  

Modularity according to Newman (2006) is therefore defined as: 

                                                               

(Eq. 2.1)                                                

Where Aij is the adjacency matrix, di and dj are the degree of nodes i and j, ω is the community of 

node, m is the number of edges on the graph, δωi,ωj is the Kronecker delta function, the function 

returns 1 if ωi = ωj, or if i and j belong to the same community, and 0 if otherwise. The value of 

modularity lies between -1 and 1. A modularity value that is closer to 1 indicates a strong 

community structure while it shows a weak community structure if the values get closer to -1.              

According to Araujo (2017), other metrics for measuring communities’ quality are: 

(a) Normal Cut or Conductance: it gives the best communities to the ones that are densely 

linked and connected with few edges to the rest of the network (Shi and Malik 2000). 

(b) Partitioning: this method involves the process of splitting the graph into two groups 

of predefined sizes and repeated application to find groups of similar sizes. It is 

related to the label propagation method (Gregory, 2009). This method is not 

considered good for community detection because they require the definition of the 

number of groups and their sizes beforehand (Fortunato, 2010). 

(c) Random-Walk: This method groups nodes of the network by their score when doing 

a random walk with restart (RWR) (Tong, Faloutsos, & Pan, 2008). This method is 

similar to PageRank (Page, Brin, Motwani & Winograd, 1999). 

(d) Spectra: This method uses eigenvalues to partition a graph (Gkantsidis, Mihail, & 

Zegura, 2003). It has been well extended over time, its extension includes spectral 

clustering methods in the presence of node-attributes (Günnemann, Färber, Boden, 

& Seidl, 2014). 

(e) Generative Models: These “models start by representing the network as a group of 

communities, then rely on inference methods to learn the most appropriate parameters 

to fit the model to the network” (Araujo, 2017, p. 29). An example of this is block 

modeling (Wasserman & Faust, 1994). 
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(f) Information Theory: Information-theoretic modules were proposed by Rosvall and 

Bergstrom (2007). The proposed modules try to maximize mutual information. Some 

approaches rely on this module at their core. 

2.6 Community Structure 

Community structure was defined as “the division of network nodes into groups within 

which the network connections are dense, but between which they are sparser” (Newman & Girvan, 

2004, p.1). The efficiency of identified community structures in a given network can be measured 

with modularity metric (Q) as expressed in Equation 1. It is to be noted that networks in the real 

world contain more than a single subnetwork. Modularity in a random graph is different from that 

of a non-random graph. For random graph, Q = 0, but for non-random, Q lies between 0.3 and 0.7.  

The formation of communities was based on the structural or functional similarities among 

the vertices in the network (Newman, 2004). Research on community structures in networks has a 

very wide and rich history (Newman & Girvan, 2004). Proper understanding of how communities 

are formed with nodes in a network will give a broad and deeper view of the network structure 

formation through the interaction of the nodes with identical nature (Mahoney, Dasgupta, Lang, 

& Leskovec, 2009; Faltings, Leyton-Brown, & Ipeirotis, 2012; Abbe & Sandon, 2015; Benson, 

Gleich, & Leskovec, 2016). 

Chakraborty et al. (2017) illustrated a toy example to illustrate community structure as 

shown in Figure 2.5. The example was used to categorize communities in the real-world networks 

into different types as follows: 

(a) Nonoverlapping or disjoint, (e.g. a lecturer teaching classes in a school from Mondays 

to Thursday and consulting for industries on Saturday and Sunday) 

(b) Overlapping (e.g. a staff functioning in different committees in the same department) 

(c) Hierarchical (e.g. team members in an organization being supervised by team leaders 

who are in turn supervised by departmental leaders and so on) 

(d) Local (e.g. a faculty in a college having uneven interactions between certain members 

of staff within a department in a University)  

This research is considering large-scale networks which contain millions or billions of 

nodes, which can be regarded as complex networks. The community structure of such networks 

can be narrowed down to overlapping and non-overlapping. 
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Figure 2.5: Illustration of different types of communities with toy examples. 

(a) non-overlapping (b) overlapping (c) hierarchical and (d) local. 

(Source: Chakraborty et.al, 2017) 

 

The structure is considered overlapping when nodes in the given network can exhibit the 

characteristics of more than one community at a time while it is considered non-overlapping when 

nodes in the network belong to a single community per time.  

2.7 Overlapping Community Detection 

According to Orgaz, Salcedo-Sanz, and Camacho (2018), overlapping communities exist 

in real-world networks.  Multi-Objective Genetic Algorithm (MOGA-OCD) can be used to detect 

overlapping communities. The algorithm used measures that are related to the network 

connectivity for the detection of overlapping communities. It used a phenotype-type edge 

information encoding and a new fitness function that focused on optimizing two classical 

objectives in a community detection problem. Although this approach generated a good result 

when used, the drawback is that modularity was not considered in both the internal and external 

metrics that were used in the approach. Using extended modularity density as a metric will enhance 

the possibilities of effective analyses of community structure. 

Finding overlapping community structures is also important in realistically analyzing large 

networks such as the social network. A link clustering-based memetic algorithm for overlapping 

community detection can be used to optimize the modularity density function (Li and Liu, 2018). 

The algorithm can detect groups of links that are densely connected on the weighted line graph 
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that is modeling the network. The algorithm then maps the link communities to node communities 

using a novel genotype representation. Though the algorithm has a very good state-of-the-art 

performance, it requires high execution time.  

According to Zhou, Liu, Wang & Li (2017), a density-based link clustering algorithm for 

overlapping community detection in networks is a good approach to solving problems related to 

excessive overlap. It can improve the accuracy of detecting overlapping communities in networks. 

The only setback of the algorithm is that it cannot handle weighted and directed networks. 

The high cost of computation is associated with providing the optimum solution to 

community detection in large datasets that are generated by social networks. One novel approach 

that was proposed to address the problem of detecting overlapping communities in a large dataset 

is the use of a parallel community forest model and sequential Nash equilibrium for large datasets 

implemented in parallel with spark (Sarswat & Guddeti, 2018). Markov chain clustering algorithm 

could also be used to detect overlapping communities in both real and artificial networks (Deng, 

Ma & Li, 2018). 

This project plans to set up an overlapping community detection experiment by using 

modularity in measuring the quality of a community structure and changes in the community 

structure in relation to network traffic anomalies. This will be carried out with a sampled large-

scale network dataset. It is expected that the use of an efficient community detection algorithm in 

the development of CDoA will overcome some of the drawbacks of the existing overlapping 

community detection algorithms. 

2.8 Community Detection Techniques and Algorithms 

Several community detection techniques and algorithms have been devised and used in 

different spheres of network science. For example, Nonnegative matrix factorization (NMF), is 

one of the emerging standard frameworks (Ye, Li, Lin, Chen, & Zheng, 2018). It has been 

employed widely for overlapping community detection, its operation is based on the factorization 

of the adjacency matrix into low-rank factor matrices to obtain node’s soft community membership 

(Wang, Wang, Zhu & Ding, 2011). The drawback of NMF is that it requires a very difficult task 

of post-processing the real-valued factor matrix by a manual threshold specification.  

A “discrete overlapping community detection pseudo supervision” approach was proposed 

by Ye, Chen, Zheng, Li & Yu (2019). The project used Discrete Nonnegative Matrix Factorization 
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(DNMF). The operation of this framework is by seeking a discrete (binary) community 

membership matrix directly. DNMF does not need post-processing, to assign explicit community 

memberships to nodes. Another strength of DNMF is that it is robust. The robustness is enhanced 

by its ability to “incorporate a pseudo supervision module to exploit the discriminative information 

in an unsupervised manner.” After a thorough evaluation of DNMF using both synthetic and real-

world networks, DNMF was reported to have “the ability to outperform state-of-the-art baseline 

approaches”. 

Dynamic complex networks are known for community structures that change over time or 

frequently. One of the recent dynamic community detection algorithms that were introduced to 

capture such dynamics of network community structure is “a detailed analysis of the dynamic 

community detection algorithms,” carried out by Singh, Haraty, Debnath & Choudhury (2020). 

The research tested dynamic algorithms such as quick community adaptation (QCA), BatchInc, 

GreMod, and learning-based targeted revision (LBTR) on small, medium, and large real-world 

network datasets. The research determined that some of the algorithms were best suited in terms 

of performance on certain networks than on the others. The comparative analysis will guide anyone 

who needs to choose the best dynamic community detection algorithms for various sizes of 

networks in the real world. 

Deshmukh (2018) summarizes some of the previously used community detection 

algorithms in this section. Louvain algorithm was formulated on heuristic technique constructed 

with modularity optimization and is useful for the discovery of high modularity clusters in large-

scale networks; it completely unrolls hierarchical community structure of the network (Blondel, 

Guillaume, Lambiotte & Lefebvre, 2008).  

Community detection employs the use of graph theory to solve complex problems. Graph 

partitioning technique was developed by Fortunato (2010), which divides “vertices into groups of 

a predetermined size such that edges lying between the groups are minimized.” The algorithms for 

this technique are unsuitable for detecting communities because they cannot reveal information 

about the structure of the community. 

Partitional clustering technique essentially involves “identifying different clusters in a 

network and minimizing the loss function based on the distances between the points and/or 

identified clusters” (Fortunato, 2010). This technique is utilized by k-means, minimum-k 

clustering, k-medoids, and other classical algorithms. Its drawback is its requirement to specify 
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the number of clusters as inputs; in a real-world network, this may not be possible. A hierarchical 

clustering algorithm was developed to overcome this drawback. The algorithm has two popular 

classes known as Agglomerative and Divisive algorithms (Fortunato, 2010).  

The Fast algorithm was developed as an agglomerative hierarchical clustering method 

(Newman 2004). Newman-Girvan’s modularity metric was observed by Chakraborty et al. (2017, 

p. 31) as “the most popular and widely accepted metric in the literature of community analysis”. 

It lays the foundation for many other metrics that are being used in community detection. Clauset-

Newman-Moore algorithm tried to overcome the time-consuming limitation of the Newman Fast 

algorithm (Newman, 2004) by focusing on maintaining and updating the matrix of modularity 

value instead of tracking the adjacency matrix and calculating modularity value every time. The 

algorithm achieved a better running time as proposed (Clauset, Newman & Moore, 2004).  

The Walktrap algorithm uses a hierarchical clustering approach and has an improved run 

time complexity (Pons & Latapy, 2006). Infomap algorithm’s formulation was based on analysis 

of information flow in a given network. As a method it uses, random walks on the given network 

to unroll the community structure of the network. Communities in the given network are identified 

using an optimal compression of the network structure (Rosvall & Bergstrom, 2007). Label 

propagation algorithm: In this algorithm, all the nodes are assigned unique labels that indicate the 

community that each of the nodes belongs. Nodes determine their community based on their 

neighbors’ community labels (Raghavan, Albert & Kumara, 2007). 

Community detection and graph clustering methods were classified into five broad classes 

by Papadopoulos, Kompatsiaris, Vakali, and Spyridonos (2011). The classes are: 

(a) Cohesive subgraph  

(b) Vertex clustering comprises of spectral clustering (Donetti & Munoz, 2004; Von 

Luxburg 2006); (Wasserman & Faust, 1994); Walktrap (Pons & Latapy 2006). 

(c) Community quality optimization  

(d) Divisive is based on the following works, seminal algorithm (Girvan & Newman 2002) 

(e)   Model-based class spin model (Reichardt and Bornholdt, 2006), and statistical 

inference (Hastings, 2006). 

 Important methods of traditional clustering include partitional clustering, neural network 

clustering, and multidimensional scaling (MDS); a respective example of each is k-means 



 

 

40 

clustering, self-organizing maps, and singular value decomposition (SVD), and principal 

component analysis (PCA) (Gan, Ma & Wu, 2007).   

Kernighan-Lin algorithm was proposed in 1970 as a heuristic procedure for partitioning 

electronic circuits into boards. The focus of the algorithm was to optimize Q, to achieve this, it 

uses the subset swap method. It begins by partitioning a graph into two predefined sizes, it then 

iteratively swaps the subsets that contain equal numbers of vertices between the two partitioned 

groups. It is best used as a supplement to high-quality partitions that are obtained by the use of 

other methods (Porter, Onnela & Mucha, 2009).  

Community detection algorithms can also be classified into global and local algorithms. 

Global assumes that the whole network structure is known and available, it defines communities 

with respect to the whole graph. Local algorithms assume no previous knowledge of the network, 

it starts from examining “some given seed nodes and expand them” to the network. Identified local 

communities “can be aggregated to uncover the global community structure of the network”. Local 

algorithms can result in many redundant communities and become costly in terms of computation 

if the algorithm starts naively from each of the nodes in the given network (Moradi, 2014). 

2.9 Implementation Plan 

 An agglomerative class of community detection algorithms will be used to build a CDoA 

model in this study. The agglomerative hierarchical algorithm recursively merges nodes with high 

similarity to form communities (Nugraha, Perdana, Santoso, Zeniarja, Luthfiarta & Pertiwi, 2018; 

Babichev, Taif & Lytvynenko, 2016). Using this together with the LSTM anomaly detection model 

will significantly help in solving high-dimensional and complex security challenges. PageRank 

algorithm is an example of an agglomerative algorithm that will be used in this study. PageRank 

can be used to solve large network graph problems (Page, Brin, Motwani & Winograd, 1999). A 

modified page rank algorithm has been used successfully in the area of information retrieval and 

sequencing of pages on the Web (Usha & Nagadeepa, 2018; Sen, Chaudhary & Choudhury, 2017)  

The problem of community detection of the anomalies will be implemented according to 

the Minimum Description Length (MDL) principle. The principle will use an approach that will 

group labeled nodes that are connected by edges with the main aim of minimizing the total 

description length of the labeled large network (consisting of millions/billions of nodes). To reduce 

the problem size and speed up the iterations, this part will be achieved with the implementation of 
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a variation of the PageRank algorithm on PySpark because it is naturally parallelizable and will 

scale easily to a massive dataset.  

In providing answers to the research questions of this study, this research identified the 

sub-communities of anomalies in the large-scale network and formulate ‘individual modularity 

values’ for each of the subgraphs. This will help in incorporating all the possible subnetworks of 

the given network in the composite modularity metric evaluation process.  For example, in a 

university campus scenario where several computers are being compromised due to various cyber-

attacks, the cyber-attacks can be due to worm infestation, botnet, distributed denial of service 

(DDoS), or phishing. There is no single cybersecurity solution that can resolve all the cyber threats 

at once. The ability to detect the available communities of threat actors in such a network will 

significantly help the cybersecurity specialist to handle the related attacks in groups, and also to 

provide appropriate solutions to each one of the detected communities of threats. 

A community structure with high modularity value among the threat actors will help the 

specialists to identify and rank the cyber-attacks in the order of severity, danger, complexity, and 

complication. The approach of community detection with modularity density metrics can also be 

used in a real-time network where network data changes with high velocity; time-series data apply 

to such problems. 

Clustering of available anomalies in a large-scale network into related communities will 

make it easier to evaluate the strength and severity of such anomalies in given large-scale networks. 

The formation of a community in this setting can be established when there is frequent interaction 

among individual anomalies within a group than to the anomalies outside the group (Aditya, Dhuli, 

Sashrika, Shivani & Jayanth, 2020; Bedi & Sharma, 2016, p. 116).  

2.10 Conclusion 

The literature review for this research provides a justification basis to address the research 

questions. The components of the community detection of anomalies (CDoA) model were 

explained with relevant pieces of literature, various techniques and algorithms were discussed and 

a strong basis for evaluation criterion was systematically mentioned. The review explored the 

importance of using modularity metrics to measure the result of this study. It gave a clearer picture 

of community detection of anomalies as specified in the research questions.  
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Understanding the pattern of relationship among compromised nodes in a botnet-infested 

network will serve as a good example of how a community detection approach can be used to 

classify anomalies into various clusters for further investigation. This study will use the CDoA 

model to identify anomalies in the network traffic dataset and study the significance of available 

anomalies and changes in the underlying community structure of the network. Analysis of how the 

variables of this study have been successfully used in other studies was presented in this chapter. 

The result of this study will assist cybersecurity specialists in providing scalable solutions to cyber-

attacks in a large-scale network. 
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 METHODOLOGY 

This chapter explains the methodology and the overall research framework that was 

adopted during this research. Approaches and procedures for implementing the techniques of 

CDoA were discussed. Lastly, the source of the dataset, variables used, and the environmental 

setup for the execution was described at the end of this chapter for replicability purpose. 

3.1 Research Framework 

In real-world large networks, communities change with time. Developing a model that can 

recognize minute changes and understand the cause and source of such changes will go a long way 

in helping to analyze the activities of anomalies and their effects on the community structure of 

large networks. Consistent observation of the pattern of network traffics and its impact on the 

community structure will expose anomalies in the community. This kind of observation can be 

achieved by using deep learning techniques that have been tested in other domains of big data 

analytics. This study utilized the combination of exploratory and constructive research in 

answering the research questions. Essentially, this study tried to address the following research 

questions: 

(i) Given a large-scale network with millions or billions of nodes, what level of 

accuracy of anomaly detection can be achieved with the CDoA model using deep 

learning long short-term memory (LSTM)?  

(ii) Can we identify strong communities of anomalies in a large-scale network using 

the CDoA model with the Modularity metric as a measure? 

In other words, the study investigates if the use of CDoA - a combination of deep learning 

technique for anomaly detection and community detection, can help identify anomalies in large-

scale networks, and group the anomalies into communities based on their behaviors or pattern of 

communication. The quality metric that I used to evaluate the community structure is modularity. 

The change in modularity values of the sub-communities was used to detect changes in underlying 

community structures of the network.  
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3.2 Research methodology and experimental setup 

The set of procedures that I followed in this research comprises data collection, data 

preprocessing, data training using deep learning algorithm, model generation with LSTM, and 

anomaly identification and separation based on TTL property of the network traffic data set. 

Community detection with Louvain and PageRank algorithms were also implemented. The 

workflow is as shown in Figure 3.1 and the processes are highlighted as follows. 

 

Figure 3.1: Community Detection of Anomalies Workflow  

3.3 Location of Study 

I carried out this study at the D.A.T.A laboratory of Purdue Polytechnic Institute, Purdue 

University, West Lafayette, Indiana. The HPC resources (Gilbreth) provided by the University 

were used for this study. Table 3.1 shows the detailed specification of the Purdue Gilbreth 

community cluster.  
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Table 3.1: Purdue Gilbreth Community Cluster Specification 

Front-Ends Number of Nodes Cores per Node Memory per Node GPUs per node 

With GPU 2 20 96 GB 1 P100 

Sub-Cluster Number of Nodes Cores per Node Memory per Node GPUs per node 

A 4 20 256 GB 2 P100 

B 16 24 192 GB 2 P100 

C 3 20 768 GB 4 V100 

D 8 16 192 GB 2 P100 

E 16 16 192 GB 2 V100 

F 5 40 192 GB 2 V100 

 

The Operating System that runs on each node is CentOS 7. For job and resource 

management, it uses “Moab Workload Manager 8 and TORQUE Resource Manager 5 as the 

portable batch system (PBS)”. Each node has 100Gbps InfiniBand interconnects and at least 

192GB of RAM (www.rcac.purdue.edu).  

I carried out this research under the supervision of Dr. John Springer. 

3.4 Data Collection 

Anonymized passive network traffic traces dataset from the Center for Applied Internet 

Data Analysis (CAIDA) Equinix-nyc monitor was used in the implementation of this framework 

because of its robustness. The location of the capturing monitor was at an “Equinix data center in 

New York, New York and it was connected to an OC192 backbone link (9953 Mbps) of a Tier1 

ISP between New York, NY and Sao Paulo, Brazil”. The data for this research was based on 

direction label A (Sao Paulo to New York), captured on 01/17/2019 between 13:00 UTC and 14:00 

UTC (www.caida.org).  Trace statistics of the dataset used for this research are as shown in Table 

3.2. The distribution is as shown in Figure 3.2. 
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Table 3.2: Trace statistics for the CAIDA dataset used in this research. 

(Source: “https://www.caida.org/data/passive/trace_stats/”) 

Duration 1hour and 02 minutes 

First timestamp 1547729950.467105016 

Last timestamp 1547733671.460902311 

Total number of packets 2366419918 

Total number of IPv4 packets 2339350262 

Total number of native IPv6 packets 27069656 

Total number of tunneled IPv6 packets 602 

 

CAIDA’s passive and active measurement infrastructures provide visibility into the 

behavior of the Internet globally. Collected data are curated, archived, and shared. CAIDA’s 

anonymized the data by using CryptoPan prefix-preserving anonymization and store the data in 

pcap format. The size of the trace is about 640GBytes. 

 

Figure 3.2: The distribution function of packet size for equinix-nyc.dirA.20190117-130000.UTC.  

(Source: “https://www.caida.org/data/passive/trace_stats/nyc-A/2019/equinix-

nyc.dirA.20190117-130000.UTC.df.xml”) 

https://www.caida.org/data/passive/trace_stats/nyc-A/2019/equinix-nyc.dirA.20190117-130000.UTC.df.xml
https://www.caida.org/data/passive/trace_stats/nyc-A/2019/equinix-nyc.dirA.20190117-130000.UTC.df.xml
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3.5 Data Storage 

 Data storage for this work was provided by Purdue D.A.T.A. Laboratory. Multiple data 

storage facilities were used for different levels of data wrangling and processing. The storage 

used includes: 

i. Purdue Fortress HPSS Archive:  A large system with a long-term, multi-tiered file 

caching and storage facility. It utilizes both robotic tape drives and an online disk. It 

uses an IBM T3584 robotic tape library with over 10PB capacity. This work enjoyed a 

limitless quota on Fortress.  

ii. Purdue Research Computing – Data Depot: A reliable, fast, high-capacity, and secure 

data storage service. It was purposefully designed, configured, and operated for the 

Purdue researchers’ needs. It is usable in any field of research and is shareable with 

collaborators on-campus and off-campus. It provides 100GB space free of charge and 

could also be purchased in increments of 1 TB. 

iii. Purdue Scratch Parallel Filesystem: Scratch storage consists of several redundant and 

high-availability disk spaces filesystem. Scratch filesystem for Gilbreth was used. It 

consists of 2.3PB of redundant, high-availability disk space. It has a quota of 200TB 

and 2,000,000 files. 

3.6 Data Preprocessing and Analysis 

In this phase, I carried out several activities to fit the data into formats that are most 

appropriate for each level of analysis. Some activities that were carried out and tools used are 

described in the following section.  

3.6.1 Data Wrangling 

 This part of the research took a whole lot of time compared to other phases of this research. 

It requires a very careful approach because a mistake at this point will negatively affect the 

whole result of this research. The original network traffic trace from the CAIDA dataset were 

all in pcap format. The dataset with a total file size of 640GBytes was zipped in small chunks 

for easy download and transmission. First, I extracted all the data with Bash scripting into 

Fortress storage. The needed direction A dataset was then separated from the whole chunk of 
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the dataset. The data were further converted into CSV format to enable the easy manipulation 

of the dataset by different software tools. I cleaned the data by removing all the not available 

(NA) and null parameters from the dataset.  

3.6.2 Variables for Anomaly Detection 

For the first part of this study I used 23 parameters/variables for model building in the 

LSTM layer for anomaly detection, this include units, activation, recurrent_initializer, 

reccurent_activation, use_bias, bias_initializer, kernel_initializer, unit_forget_bias, 

kernel_regularizer, bias_regularizer, recurrent_regularizer, activity_regularizer, kernel_constraint, 

recurrent_constraint, bias_constraint, dropout, recurrent_dropout, implementation, 

return_sequences, go_backwards, return_state, , stateful and unroll. The model would be trained 

with time-steps, learning rate, batch size, threshold cutoff, epochs of the neural network, and 

hidden layer.  

For the second part, I used some features of the network traffic traces as variables. These 

are outlined in Table 3.3. 

 

Table 3.3: Network Traffic Variables to be used in Anomaly Detection 

Features Description 

Source_IP Packet Source IP Address (Node) 

Destination_IP Packet Destination IP Address (Node) 

Packet_Length Length of the captured packet 

Time  Time duration of the captured frame 

Time-To-Live (TTL) Time-to-Live of each packet 

Protocol L3 Protocols: Internet Protocol, (UDP), andTCP 

3.6.3 Variables for Community Detection 

The variables that I used in this study for the community detection part are displayed in 

Table 3.4.  
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Table 3.4: Variables used in the study for community detection 

Variable Description 

N_anom The total number of unique anomaly nodes/vertices available in the dataset 

L_anom The total number of unique anomaly links/edges available in the dataset 

N_link The total number of links (edges) between the nodes in each community 

N_nodes The total number of unique nodes/vertices available in each community 

𝑸 The value of modularity for the community structure of the anomaly graph 

according to Newman (2006).  

 

Explanatory/Independent variables are N_anom, L_anom, N_link, and N_nodes while the 

dependent variable is, 𝑸. 

3.6.4 Software Packages, Libraries, and Tools 

 An anaconda 5.1.0 environment was loaded on the Purdue Gilbreth cluster for this research. 

The following software packages, libraries, and tools were installed in the environment.  Python 

3.8.3 was chosen to be used for this work because it is the most recent version that is available on 

the cluster, it is lightweight and easy to use and debug. Scikit-learn 0.23.2 (sklearn) which is a 

machine learning library was used with Python because it contains almost all the algorithm needed 

for this work and has an extensive background. Pandas 1.0.5 powerful library on Python was used 

to perform different operations such as filtering, bulk deletion, replacement, and addition. 

Matplotlib 3.2.2 was used for visualization such as graph creation. Numpy 1.18.5 was used for 

mathematical and logical operations. Seaborn 0.10.1 and Tensorflow 2.3.0 were also used in 

collaborations with many other packages such as Keras 2.4.3 in this environment. 

3.7 Anomaly Detection Modeling 

LSTM sequential model was implemented with Keras. This model has an LSTM layer and 

a dense (fully connected) layer. To get the final output between 0 and 1, I applied sigmoid and 

tanh activation functions to the dense layer. 
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Sigmoid activation function 

     (Eq 3.1) 

tanh activation function  

         (Eq 3.2) 

For the loss function, I used the Adam optimizer and the mean squared error. Some 

parameters like threshold cutoff, time-steps number, epochs of the neural network, hidden layer, 

and batch size were varied to analyze different results of the model in this study. The study 

employed the distributed algorithm approach for the identification and analysis of anomalies in the 

network traffic associated with the time series in the dataset. The following procedures were used 

in this modeling: 

i. To select the dataset, data was loaded from the dataFilePath as a CSV file using 

Pandas data frame. 

ii. To describe the value column, describe( ) command was run on the dataset to 

understand the data more. 

iii.  To normalize the data, a seaborn KDE plot was used to plot the dataset. This 

reveals the minimum and maximum data points of the dataset; scaling was used for 

the normalization. Scaling = (x-Min) / (Max-Min). 

iv. The anomaly detection model was formed with a sequential model with Keras. The 

formed model has the LSTM layer as the hidden layer, while its dense layer forms 

the output layer. The LSTM layer’s output was used as the input of the dense layer. 

Sigmoid activation was applied to make the final output range between 0 and 1. 

v. The model was trained for 100 epochs, the training set was used as the validation 

data. 

vi. The loss and mean absolute error graphs were plotted during the training process. 

vii. After training the model, data for testing was predicted, and the root means square 

error (RMSE) was computed. 

viii. The predicted dataset and the test dataset were used to arrive at the value of the 

difference, this value was passed through vector norms. 
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ix. The difference values were sorted, and a cut-off value was used to select the 

threshold for the anomaly. 

x. Any value outside the range of the threshold was considered an anomaly.  

TTL was used as the pivotal variable to identify anomalies in the dataset (Patel, Srinivasan, 

Chang, Gupta & Kataria, 2020). The threshold picked after model training were in three 

different ranges, they are (1 < TTLA ≤ 30), (64 < TTLA ≤ 98), and (128 < TTLA ≤ 255) 

where TTLA is abnormal TTL value. This agrees with previous research such as Scheitle, 

Gasser, Emmerich & Carle (2016); Yamada & Goto (2012). All the detected anomalies 

were extracted and aggregated in preparation for community detection. 

3.8 Community Detection of Anomalies 

As previously discussed, one of the main aims of this research is to investigate the 

relationship that may exist between anomalies in large-scale networks. It is believed that the ability 

to establish communication between anomalies may provide a good insight into possible threats to 

cybersecurity specialists. This will help them to narrow down their investigation to specific areas 

of concern, as a result, associated resources, cost, and time spent on solving such risks would not 

be a waste. 

Community detection involves the use of graph-based solutions to address real-world 

network problems. This research followed used Louvain algorithm and PageRank for the 

community detection part of this study.  

3.8.1 Community Detection with Louvain 

Louvain algorithm is a greedy optimization method with complexity O(NlogN) that 

identifies disjoint communities in a network. It seeks to maximize the value of modularity (Q) for 

each community. The values of modularity range from -1 to 1. Modularity value closer to 1 

signifies quality community.  

The two stages of the Louvain algorithm were implemented. At the first stage, all the nodes 

were assigned a community of their own, then for each node i, the gain in modularity is computed 

by moving the node to its neighbor j with the highest modularity gain, if there is no modularity 

gain the node remains in its initial community. This process was repeated for all the nodes in the 



 

 

52 

anomaly dataset. The second stage of the algorithm groups all the nodes in the same community 

to form a new single node. Intra-edges are collapsed into a single self-loop edge and the weight is 

the sum of the weight of all the intra-edges. Multiple inter-edges between two communities are 

collapsed into a single edge and the weight is the sum of the edges between them, a new network 

was formed when the second stage was completed. The algorithm then iteratively called the first 

stage again and the cycle is repeated until there was no more modularity gain. 

3.8.2 Community Detection with PageRank 

 The principle used here is an approach that grouped labeled nodes that are connected by 

edges with the main aim of minimizing the total description length of the labeled large network. 

To reduce the problem size and speed up the iterations, this part was achieved with the 

implementation of a variation of the PageRank algorithm. PageRank is good because it is naturally 

parallelizable and will scale easily to a massive dataset. The following rules were followed in 

implementing PageRank: 

3.9 Assessment Instrument 

The quality of the results of anomaly detection with LSTM deep learning can be evaluated 

using different metrics. The metrics used for evaluation are determined by the structure of the data 

and the goal of the experiment. The quality of the LSTM model can be evaluated based on a 

confusion matrix using true positive (TP), true negative (TN), false positive (FP), and false-

negative (FN) to estimate the accuracy and precision of the model.  

Another method for calculating the accuracy of the deep learning LSTM model involves 

the use of mean absolute error (MAE) and root mean square error (RMSE). This method was used 

to determine the accuracy of the deep learning LSTM model that was used for anomaly detection 

in this research. The method was chosen because of the nature of the dataset; the dataset was not 

pre-classified. The presence of anomalies in the dataset was assumed before the experiment was 

carried out. The anomalies in the dataset were being sought out of the wild. 

Modularity, a measure of goodness of partitioned network was used to evaluate the quality 

of the identified community of anomalies. Gephi and Tableau were used for data visualization of 

detected communities. An example of Gephi visualization of identified communities is shown in 
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Figure 3.3. Different communities of anomalies detected can be represented with distinct colors as 

shown in the diagram. 

3.10 Conclusion 

This chapter provided insight into the execution workflow of this study. It presented a 

detailed description of the variables that were considered for the study. The location of the study 

and the available resources for the study were also outlined in this chapter.  

This study explains the efforts made on the implementation of AI to speed up the 

identification of anomalies in large network traffic. It described how AI can be used to analyze the 

existing relationships among identifiable communities of anomalies in a given network. Lastly, it 

described how AI can be used to gain insight into the pattern of anomalous connections in the 

network.  

 

Figure 3.3: Gephi visualization of different communities.  

(Source: Bolaji, 2018) 
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 RESULTS AND DISCUSSIONS 

This chapter provides the result from various implementations I carried out in this study. 

As mentioned in previous chapters, the major aim of this research was to identify the presence of 

anomalies in large network traffic datasets and to study the relationship between the discovered 

anomalies. These were achieved by using deep learning LSTM and community detection 

algorithms. The results of this study are presented and discussed in this chapter. 

4.1 Data Presentation and Analysis 

As mentioned in chapter 3, an anonymized passive network traffic traces dataset from the 

CAIDA Equinix-nyc monitor was used in the implementation of this framework because of its 

robustness. The robustness of the CAIDA dataset has been helpful in many studies such as “cache 

snooping rare domains at large public domain name service (DNS) resolvers” by Randall, Liu, 

Akiwate, Padmanabhan, Voelker, Savage & Schulman, (2020); finding outbound addresses in 

traceroute (Marder,  Luckie, Huffaker & Claffy, 2020). The data were zipped in about 65 pcap 

files. Each of the pcap files was first unzipped and later converted to CSV files for easy data 

manipulation and evaluation. The size of each of the pcap files is about 4.6GB on average. Each 

has an average of 29 million rows and 7 columns. The sample of the specific columns and their 

data are as shown in Table 4.1. 

 The source, destination, and info columns contain the most important parameters that were 

used in this study. The TTL values were extracted from the info column. 

 

Table 4.1: Embedded information in each of the pcap files used in the study 
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4.2 Implementation Requirements 

 The whole study was implemented in an environment on the Purdue Gilbreth cluster. The 

first research question of this study was based on anomaly detection while the second research 

question focused on community detection of discovered anomalies. The following were carried 

out as research experiments: 

i. Anomaly detection with LSTM Deep Learning 

ii. Community Detection with Louvain and PageRank Algorithm 

4.3 Anomaly detection with LSTM Deep Learning 

LSTM is known to be very good with time-series datasets; the dataset in use has a 

timestamp that can easily be plotted for all the data points. LSTM has shown the highest 

performance for time-series classification in the studies of Xu, Zhao, Liu & Sun (2020), and 

Hashida & Tamura (2019). Since the dataset used in this research is time series as can be seen in 

the plots of TTL against date time as shown in Figure 4.1, 4.2, and 4.3. The plots were shown for 

the first 1,000 rows, the first 10,000 rows, and a big chunk of the whole dataset containing millions 

of rows. The plots show discrete changes in the values of TTL with time for each of the received 

packets of the dataset. 

 

Figure 4.1: Plot of TTL against date time for the first 1000 rows 
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Figure 4.2: Plot of TTL against date time for the first 10000 rows 

 

 

Figure 4.3: Plot of TTL against date time for the millions of rows 

 

The anomaly detection process was implemented using Python as formulated by Alla & 

Adari (2019). Different packages such as Keras, sklearn, seaborn, matplotlib, sys, pandas, NumPy, 

and TensorFlow were imported into the environment. The data was loaded from the dataFilePath 
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(/depot/datalab/bolaji/Anoms/AnomaliesAll.csv) as a CSV using Pandas. The describe () 

command was used to look at the structure of the data for a better understanding of its packet 

length and TTL values. It yielded the value column of the data as shown in Table 4.2. Data 

understanding in cybersecurity is very essential because it can expose hidden trends of breaches.  

The value column for both packet length and TTL values before scaling and after scaling 

were plotted with KDE as shown in Figures 4.4 and 4.5 respectively. The minimum value for the 

packet length is 28 while that of TTL is 2. The maximum values for both are 1,500 while that of 

TTL is 225. The formula used for calculating scaling is (x-Min) / (Max-Min) (Alla & Adari, 2019; 

Domingos & Hulten, 2001). The scaling process includes the derivation of upper and lower bound 

for the learning loss as a function. The function is for the number of examples that were used in 

each of the steps of the algorithm. The KDE plotted graph shows that the shape of the dataset 

remains the same before and after scaling. Big data scaling reduces the number of resources that 

are required for analysis in data analytics. Scaling also speeds up the data interpretation process, 

this is huge in security provisioning in cyber networks. 

4.3.1 Calculating the MAE and RMSE of the model 

The goal of the whole process is to find anomalous data points, that is, data points that are out of 

order among the dataset. In detecting the anomalies, an LSTM deep learning model that was built 

for this purpose was implemented. 

 

Table 4.2: Description of the value column based on packet length and TTL values 

 ip.len ip.ttl 

count 1.358340e+07 1.358340e+07 

mean 6.491317e+02 9.145724e+01 

std 6.350038e+02 4.470046e+01 

min 2.800000e+01 2.000000e+00 

25% 5.200000e+01 8.300000e+01 

50% 2.190000e+02 8.700000e+01 

75% 1.450000e+03 8.900000e+01 
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Figure 4.4: The plot of value column of packet length and TTL values before scaling  

 

  

Figure 4.5: The plot of scaled value column of packet length and TTL values  

 

The model was used to classify and separate anomalies from the dataset. A very important 

question to ask about the model is, “how accurate is the built model and can the model’s accuracy 

be measured?” This is where the use of mean absolute error and calculated loss serve as metrics 

for testing deep learning models. Root mean square error (RMSE) and Mean absolute error (MAE) 

are useful in measuring the accuracy of LSTM models as can be seen in the studies of Ali & 

Hassanein (2020), Wang, Guo & Chen (2019). An inaccurate model, for example, can lead to 

massive problems in data security. The integrity of data cannot be guaranteed, high-level 

confidentiality and privacy can also be jeopardized as a result of an inaccurate model. Spending a 

huge amount of money to purchase a security system that cannot be tested for accuracy poses a 

very high risk to cyber networks. 

The mean absolute error of any test dataset is the same as the average of the absolute values 

of error of prediction on all data points of the test dataset. Mean absolute error was used to measure 

the accuracy of the anomaly detection model. The attempt was to predict a data point at a time (t) 
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based on the history of the existing data until the time (t-1). This helped to compare an expected 

value to an actual value; to determine if the data is within the expected range of values for time (t). 

The difference between predicted and actual values produced a sequence of errors as a distribution. 

The mean absolute error (MAE) is achieved by using the following approach: 

        Actual Value - Predicted Value = Prediction Error                                        (Eq. 4.1) 

The prediction error is recorded for each of the predictions after all errors have been 

converted to positive using the absolute value for each of the errors. That is, 

Absolute Error = |Prediction Error|             (Eq. 4.2) 

To arrive at MAE, the mean for all the recorded absolute errors was calculated with the 

formula in equation 4.3. 

                                (Eq. 4.3) 

 

The process was achieved by building a sequential model (anomaly detection model) using 

Keras. LSTM layer was used as the hidden layer of the model while a dense layer (connected layer) 

was used as the output layer. The time series dataset was fed into the LSTM layer, the layer learned 

the values of the dataset with respect to time. The output of the LSTM layer was used as the input 

for the dense layer, the dense layer transformed the input values into a fully connected one. 

Sigmoid activation was applied on the dense layer to get the final output between 0 and 1.  

For loss function, adam optimizer and mean squared error were used. When output that is 

produced from the model is different from the input, the loss function penalizes the network that 

creates them. The loss metric was used to distinguish between the anomalies and the normal 

datapoint because anomalies do have higher reconstruction error as can be seen in Figure 4.6. 

Reconstruction error reflects the characteristic of anomalies (Chang, Du & Zhang, 2019). The 

reconstruction error plot of the dataset revealed that data points that are above the threshold 

(anomalies) had higher errors point compared to the normal points.  
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The anomaly detection model was trained until the best accuracy was achieved; this was at 

100 epochs. The training dataset was used as the validation data. The loss during the training and 

validation process was plotted as shown in Figure 4.7. It could be deduced from the plot that there 

is a healthy correlation between training loss and validation loss. They are both reducing around a 

constant value. This serves as an indication that the model is well trained and that the model is 

good on both the hidden and training data. 

 

Figure 4.6: Reconstruction error plot 

 

 

Figure 4.7: Training and validation loss graph 
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4.3.1 Anomaly Detection Model Validation 

To validate this model, regression loss functions were used instead of the confusion matrix. 

The structure of the dataset is not compatible with using a confusion matrix because the anomalies 

in the dataset are not pre-labeled. Therefore, MAE and RMSE were computed to estimate the 

accuracy of the model. After the model was trained, a test dataset was used. The test dataset was 

split into subsequences of the same length according to the time steps, and this was used as the 

training dataset. Root mean square error (RMSE) was computed after this and it has an output of 

0.001. 

 

 

                 (Eq. 4.4) 

 

 The RMSE value was quite low, this agrees with the findings in the studies of Ibrahim & 

Hossain (2020), and Ali & Hassanein (2020). The low error loss from the training phase after 100 

epochs confirmed the low RMSE at loss: 5.1812e-04, mean absolute error: 5.1813e-04, validation 

loss: 3.9858e-04, validation mean absolute error: 3.9858e-04. The low validation values achieved 

in the study are supported by the values gotten with the LSTM model by Roy, Roy, Gupta & 

Sharma (2020), Tandon, Tripathi, Saraswat & Dabas (2019), and Liu, Jiang & Wang (2020). 

4.3.2 Calculating the cutoff value/threshold 

To identify an anomaly in the dataset, the distribution of the calculated loss in the training 

dataset was used to determine a threshold value. As a regularization method in deep learning, it is 

usually a requirement to calculate the magnitude (length) of vectors. After sorting the diffs, a cut 

of value was used to pick the threshold. The threshold was set above the noise level to prevent the 

triggering of false positives. The chosen threshold was 0.0072. Any data point above this value 

was considered an anomaly. The plot of the dataset with respect to the chosen threshold is as shown 

in Figure 4.8. 

 The data points colored red are regarded as the anomalies while the ones in green color are 

the normal data points according to the chosen threshold. The anomalies were chosen based on 

TTL values of each of the packets as explained in chapter 3. This agreed with the position of Patel 
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et.al., (2020), Gasser et.al., (2016), and Yamada & Goto (2012). The position indicated that 

malicious IP packets can be identified by abnormal TTL values. Using LSTM deep learning 

methods for anomaly detection with TTL values shows that this is a worthy cause. 

4.4 Conclusion for Research Question Number 1 

  The accuracy of the model performance, as evaluated by measurements of the two loss 

functions, MAE and RMSE is very high as can be proven by other studies such as Sunny, Maswood 

& Alharbi (2020); Ibrahim & Hossain (2020); and Ali & Hassanein (2020).  The values of mean 

absolute error at 5.1813e-04 and that of root mean square error at 1.0000e-03 shows high accuracy 

in the difference between the actual values observed and the anomalies values predicted by the 

deep learning LSTM model. 

 

Figure 4.8: Plot of the data points with respect to the chosen threshold 

 

This result shows that a high level of accuracy can be achieved with the CDoA model when 

deep learning long short-term memory (LSTM) is used on a large-scale network with millions or 

billions of nodes. The deep learning LSTM model will be significant and useful in determining 
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anomalous packets in a large-scale network using the Internet protocol Time-To-Live value as the 

basis of the determination. Separating anomalous packets in big data will significantly help 

cybersecurity specialists in narrowing down their search beacon in big data; as a result, 

investigation time is saved for more purposeful use, and the cost is reduced. 

4.5 Community Detection with Louvain and PageRank Algorithm 

 After the anomalous packets were separated in the experiment as previously described. An 

attempt was made to discover communities among the identified anomalous packets. This was to 

investigate the existence of a relationship among the components of the identified anomalous 

packets. To achieve this, a new dataset was formed using the identified anomalies in the pcap files. 

The combined size of the anomaly dataset is 1.02GB. It contains few columns that may be used in 

community detection and visualization of the communities. The columns are ip.src (relabeled as 

Source), ip.dst (relabeled as Target), ip.len (relabeled as PacketLen), and ip.ttl (relabeled as TTL) 

as shown in Table 4.1 

 

Table 4.3: Overview of newly formed Anomaly Dataset 

PacketLen Source Target TTL 

40 55.36.90.123 171.223.205.255 225 

314 52.30.36.94 131.96.28.128 225 

40 55.36.90.123 171.223.205.255 225 

40 55.36.90.123 171.223.205.255 225 

40 55.36.90.123 171.223.205.255 225 

4.5.1 Community Detection with Louvain Algorithm 

Louvain algorithm optimizes modularity, that is, it seeks to maximize the value of 

modularity (Q) for each community. The values of modularity range from -1 to 1. Modularity 

value close to 1 signifies quality community. To achieve this, unique IP addresses were identified 

from both the source and target columns of the anomaly dataset. These IP addresses were used as 

nodes. The edge list was made using the rows that indicated communications between a source 
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and destination(s) or target(s) that were extracted from the dataset. There were 149,001 nodes and 

1,048,576 edges. 

All the nodes and edges were used to generate a graph with Python-NetworkX. The graph 

generated is as shown in Figure 4.9. It represented the connectivity between various nodes and 

edges. Gephi was also used to generate the anomaly graph with resolution setting at 1.0 and 2.0. 

The generated graph at resolutions 1.0 and 2.0 are as shown in Figure 4.10a and b respectively. 

Different colors were used to represent identified communities of anomalies in the graph. 

It could be observed that all the graphs maintained the same shape. However, the size of 

the dataset makes it difficult to analyze the identified communities in the graph. Different colors 

were used to represent each of the identified communities. Further analysis was carried out with 

Gephi and Tableau to better visualize the graphs and the sub-communities that were formed in the 

graph. 

About 1,920 sub-communities were identified in the graph. The measured modularity value 

of the graph is 0.91, this is considered very high. This agrees with various studies on modularity 

optimization such as Newman (2006) and Wang, Sun, Sun & Chen (2020), and Huang, Wang & 

Chao (2018). 

 

Figure 4.9: The Graph of the Anomaly dataset (Q = 0.914) 
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(a) (b) 

Figure 4.10a and b: The generated graph at resolution (a)1.0 and (b) 2.0 

 

Modularity maximization devises approximate and heuristic schemes because the search 

space is exponential with respect to the number of nodes (Papadopoulos et al., 2011). As a result, 

the greedy solution of Louvain merges the majority of the identified sub-communities that are 

negligible based on the number of nodes that are involved. For example, the largest identified sub-

community in the graph has 10.41% of all the nodes that made up the graph. It is as shown in 

Figure 4.11. The communities with similar features were merged to optimize the modularity value 

of the graph. Figure 4.12 represents this with a bubble chart (circle packing diagram). A bubble 

chart uses circles to represent categories, colors to represent differences, and the size of the circle 

to represent the proportion of quantities. The diagram shows that 39 clusters were generated as a 

result of the merge. The largest cluster contains all the sub-communities with 0.01% of all the 

nodes. Different colors represent different classes, while the sizes represent modularity class count 

in each cluster. 
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Figure 4.11: The largest sub-community in the graph with 10.41% (15, 600) of all the nodes 

 
Figure 4.12: The sub-communities in the graph after merging the ones with related features. 
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4.5.2 Community Detection with PageRank Algorithm 

 The importance of the PageRank algorithm started with its use to count the number and 

quality of links to a page, and to generate a ranking score for the pages. PageRank was used in this 

research to generate a ranking score (r) for each of the nodes in the dataset. It specifically iterates 

over every node to check for its neighbors and out edges.  As mentioned earlier Python NetworkX 

was used to create the graph. The probability for damping factor (D) was chosen to be 0.85. The 

graph was iterated over 95 times. 

 The abridged version of the PageRank score generated for each of the nodes is listed in 

Appendix A of this report. The value of the PageRank score is the probability between 0 and 1, 

just like the modularity value used in the previous section. Individual node PageRank’s value was 

based on the number of nodes that are connected to it (Zhang, Xia, Xu, Yu, Wu, Yu & Wei (2020) 

and Page, Brin, Motwani & Winograd (1999). 

 The highest PageRank score observed is 0.03502 for a node with IP address 

146.206.121.50 while the one with the lowest score was given as 0.00002 with an IP address of 

175.84.136.42. The implication of these scores shows that the device with IP address 

146.206.121.50 has the highest influence on the network; it is the device with the highest number 

of connectivity. The highest-ranking devices are the ones with the most connections as expected. 

The visualization of the PageRank is as shown in Figure 4.13 the list of the first 1,000 PageRank 

score of the 149,001 nodes is listed in Appendix A.  

 The dynamic nature of present-day network traffics due to the growing numbers of 

connected devices makes it difficult to study community structure and find hierarchical 

overlapping community structure in large-scale networks. The implementation and result of this 

section show that PageRank can be used to tackle the community detection problems in the large-

scale network (Zhang et.al., 2020). 

4.5.3 Community Detection Result Validation 

 Many other quantitative measures have been used in previous research for validating the 

output of the community detection algorithm (Li, 2016). A detailed study showed that using 

metadata as a test for community detection algorithm has a lot of shortcomings (Peel, Larremore 

& Clauset) but, modularity has been reported to be the most widely used accepted metric (Newman 
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& Girvan, 2004). The modularity achieved in this study is very high at 0.91, this validates the 

existence of strong communities in the graph of discovered anomalies. The validation result agrees 

with previous studies on community detection, such as validation of community robustness 

(Carissimo, 2016), Community detection: effective evaluation on large social networks (Lee 

&Cunningham, 2014), and Fagnan, Abnar, Rabbany & Zaiane (2018). 

 

 

Figure 4.13: Visualization of the PageRank Score for the Graph of the Anomalies. 
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4.6 Conclusion for Research Question Number 2 

As previously mentioned in chapter 2, it was stated in the literature that the Louvain 

algorithm is one of the fastest community detection algorithms. It can handle large networks while 

preserving the quality of the communities detected. The modularity measure was used as the 

quality function to assess the community detection implementation in this study. The result of the 

modularity value which is equal to 0.91 is very high. This is an indication that the graph of the 

anomaly dataset has a very strong community. The Modularity value shows that there is strong 

compartmentalization of the communities discovered in the dataset. This agrees with the position 

of previous studies by Newman (2004), Newman (2006), Newman & Girvan, 2003, and Wang, 

Sun, Sun & Chen (2020). 

4.7 Conclusion 

 This chapter discussed the experimental results of various implementations that were 

carried out to answer the research questions of this study. The results showed high accuracy for 

the LSTM deep learning anomaly detection model that was used in this study. The communities 

discovered in the study have very high modularity value which indicates a strong network. The 

result of the implementation of the PageRank algorithm yielded good ranking scores for all the 

nodes in the graph. 
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 CONCLUSIONS, SUMMARIES AND 

RECOMMENDATIONS 

This chapter provides the concluding thoughts and summary of the attempts made to fulfill 

the goal of this study. It discusses further the results of this research and provides answers to each 

of the research questions of this study. This chapter emphasizes the importance of CDoA to the 

field of cybersecurity by discussing its applicability to present-day networks. It explains the 

possible future direction of this research and ties the whole process together. This chapter discusses 

anomaly detection with deep learning, community detection of anomalies, contribution, and future 

research direction.  

5.1 Anomaly Detection with Deep Learning in Large-scale Network 

The original goal of this study was to use artificial intelligence to design, develop and 

implement a multilayered enterprise cybersecurity solution. However, after much studies, 

discussions with the research advisor, and data gathering, it was discovered that the goal was not 

research-driven.  The initial goal was eventually redirected into formulating research questions 

and hypothesis which can be addressed within the specific timeframe on available resources. 

Despite many fruitful academic kinds of research on anomaly detection in large networks, 

cyber-attacks have continued to plague most of the well know big technologies. The detection of 

anomalies in real-world networks has applications in various domains of human endeavor; the 

application includes, but is not limited to, credit card fraud detection, malware identification and 

classification, cancer detection from diagnostic reports, abnormal traffic detection, identification 

of fake media posts, and the like. Many ongoing and current researches are providing tools for 

analyzing labeled and unlabeled data; however, the challenges of finding anomalies and patterns 

in large-scale datasets still exists because of rapid changes in the threat landscape(Arisoy, 

Nasrabadi & Kayabol, 2021; Araujo, 2017 and Yao, Shu, Cheng & Stolfo, 2017). 

As a result, we have a host of related challenges. How can we speedily identify sources of 

compromise or infections in large networks with millions or billions of nodes? Is it possible to 

predict the next employee that will fall for a phishing attack? What pattern of intrusion can be 

identified with artificial intelligence in a power distribution grid system? Can we stop the 
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fraudulent transfer of a large amount of money in and out of a country? How do we know if a 

machine learning algorithm is infected? This study was carried out to model large network traffic 

using appropriate matrix, parameters, and tensor representation to gain insights into these 

questions. 

The use of the CAIDA dataset for the study provided a good representation of real-world 

network traffic scenarios. Big Data analytics is one of the main challenges facing the domain of 

cybersecurity in recent times. This is because of the rapid growth in the amount of data that are 

generated daily and the required expertise for data analytics. The increasing adoption of artificial 

intelligence in solving complex problems in different domains has made it possible for machine 

learning and deep learning implementation to gain wider adoption in cybersecurity.  

For this study, the raw dataset from CAIDA was used. The raw nature of the data posed a 

lot of refactoring challenges for the researcher. Turning the unstructured dataset into usable sets 

of data for deep learning algorithms is the most appropriate thing for this study. The data wrangling 

part covered about 60% of the whole time that was spent on this research. The initial research 

hypotheses included a section that plans to use a confusion matrix in measuring the performance 

of the existing deep learning model that was adopted for this study. However, after getting 

preliminary results from the experiments of this study, it was discovered that the confusion matrix 

cannot be used because of the raw and unclassified nature of the dataset that was used. There was 

no way to calculate true positive and false positive using the available data because anomalies have 

not been previously discovered or classified. The hypothesis eventually changed to using mean 

absolute error and root mean square error to estimate the accuracy of the model. 

As discussed in the previous chapter, the accuracy of this implementation was high. This 

is a significant milestone in addressing the problem of big data analytics in cybersecurity. This 

proves that many of the attacks that are currently being experienced in large networks can be 

tackled by using artificial intelligence-based algorithms.  

5.2 Community Detection of Anomalies 

One of the major interests of this study is to understand the relationship that may exist 

between threat actors in large networks. Providing a general overview of linkages between 

compromised devices on the network can lead to the provision of fast solutions for safeguarding 

the whole network. This is synonymous with what is called “contact tracing” activity which 
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became a very significant method in stemming the tide of the recent COVID-19 infection (Tanaka, 

Ramachandran & Krishnamachari, 2020 and  Wang, Lin, Obaidat, Yu, Wei & Zhang 2021). A 

node that is observed to be in proximity with another infected node is assumed to be likely infected 

or compromised also. These can be separated for further vulnerability assessment. 

This study was able to provide a CDoA model which combined the deep learning model 

with a community detection approach that can be used to provide a first-hand overview of the 

relationship among different sources of threats to a security responder. The use of Louvain and 

Pagerank algorithms demonstrated that attacks in large networks can be ranked according to their 

levels of severity based on the number of connections their host has. 

The result of the experiments indicates that CDoA can be used to provide quick guidance 

on priority areas or areas of concentration to cybersecurity specialists in a cyber-attack scenario. 

For example, Figure 5.1 shows the modularity class of communities that exist in the anomaly 

dataset that was used in this study. The class with ID 239 indicates the community covers 10.41% 

of nodes that made up the network. The severity of attacks on a larger community is high compared 

to the severity of attacks on the class with ID 97 which shows that the class only covers 0.33% of 

the nodes present in the large network. Each of the classes is represented with different colors as 

previously displayed in Figure 4.10a & b and Figure 4.11. The classes are arranged according to 

their sizes, that is, the number of node connectivity each has in the overall network. 
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Figure 5.1: Ranking of communities discovered in the anomaly dataset 

5.3 Contribution 

Previous research studies have shown that variants of machine learning and deep learning 

algorithms can be combined to provide robust anomaly detection models for network traffic. 

Anomaly detection models with deep learning have evolved from semi-supervised models, 

unsupervised models to other combinations like hybrid models and one-class neural networks 

(Ruff, Kauffmann, Vandermeulen, Montavon, Samek, Kloft, Dietterich  & Müller (2021); 

Chalapaty & Chawla (2019); Singh, Hand & Alexis (2020); Kabir & Luo (2020); Dawoud, 

Shahristani & Raun (2018)).  

However, to the best of the researcher’s knowledge, very few or no research studies have 

combined community detection algorithms with deep learning anomaly detection to study 
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anomalies in unstructured data of large-scale networks. Most studies have used existing data that 

have been classified into benign or malignant data for their studies.  Others have collected both 

normal data and injected data in a controlled environment for their studies. Very few or no 

researchers are known to have used uncontrolled ‘wild’ datasets for anomaly detection study.  

The main contribution of this research is to fill the existing gap of combining proven 

anomaly and community detection algorithms on an unstructured dataset to study the relationship 

between identified anomalies in a large-scale network. For example, most anomaly detection 

models have been used to classify anomaly detection, few or no one was known to have moved 

beyond model training, identification, and classification of the anomalies to the investigation of 

the relationship between the anomalies.  

The high and quick overview of packets sent or received by each node in a large-scale 

network as shown in Figure 5.2 is one of the main contributions of this work. It shows the load 

distribution on the network per node. For example, the IP address 16.136.231.132 has sent out 

more than 38 million packets within few hours of captured traces, this within a network calls for 

great concern.  

Visualization of such a source and others like it will provide quick direction of threat 

investigation to a cybersecurity specialist. It will make it easier for a cybersecurity specialist to 

investigate large networks in time and plan adequate remediation. The nodes with high packet 

transfer rates can represent a case of data infiltration or distributed denial of service attacks if such 

devices with high packet rate transmission are not known to be load balancers or servers on the 

given network. It can also represent the presence of botnet activities based on the number of 

devices it is connected to. The size of each circle in the diagram represents the total length of 

packets being sent out during the observed hours. The number represents the IP address of the 

devices on the network. I used the same color for all the nodes to show that they have similar 

attributes on the network. 

 Depending on the characteristics of the data points of the anomaly dataset, each modularity 

class of the dataset can also be used to represent different threats that may be existing in the large 

network as shown in Figure 5.3. It illustrates an example of how the CDoA model could be used 

to present a quick overview of known, discovered, or confirmed threats in a typical large-scale 

network traffic dataset.   
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Figure 5.2: Visualization of packets distribution by nodes 

 

The broader aim and impact of this study is to provide sophisticated, AI-assisted 

countermeasures to cyber-threats in large-scale networks. To close the existing gaps created by the 

shortage of skilled and experienced cybersecurity specialists and analysts in the cybersecurity field, 

solutions based on out-of-the-box thinking are inevitable; this research aimed at yielding one of 

such solutions. It was built to detect specific and collaborating threat actors in large networks and 

to help speed up how the activities of anomalies in any given large-scale network can be curtailed 

in time. 

5.4 Future Research Direction 

Future research studies should focus on using other parameters in the network for 

community detection of anomaly study. Other parameters such as protocols, the pattern of data 
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distribution, IP length, data frame time, and IP versions can be used as a basis for anomaly 

detection and community detection in large-scale networks in future studies. Moreover, it would 

be interesting to use the CDoA model on a pre-classified anomaly dataset. This will make it 

possible to use the confusion matrix as one of the metrics of evaluation of this model. 

 Future research studies should also consider using the hybrid deep learning model in 

conjunction with a community detection algorithm to build a CDoA model to check if this would 

improve the performance of the model. One other approach is to vary the community detection 

algorithm to test for the effectiveness of the CDoA model. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.3: Representation of the Real-life Application of the CDOA Model Output 
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APPENDIX A. CODES 

A.1 Unzipping Multiple PCAP Files From CAIDA 

The following source code was used to unzip the pcap files. 

from platform import python_version 

 

print(python_version()) 

# app.py 

 

import zipFile 

import os 

import gzip 

import shutil 

 

os.chdir("/scratch/gilbreth/abolaji/passive-2019/equinix-nyc/20190117-

130000.UTC/" ) 

search_path = os.getcwd() 

file_type = ".gz" 

for fname in os.listdir(path=search_path): 

    if fname.endswith(file_type): 

        with gzip.open(fname,'rb') as f_in: 

            with open(fname+'.pcap','wb') as f_out: 

                shutil.copyfileobj(f_in,f_out) 

 

A.2 Extracting needed Data from PCAP Files into CSV 

The following source code was used to extract the files to csv on the cluster. 

#!/bin/sh -l 

###########################################################################

# 

# Number of cores and gpus 

# Sub-Cluster A: 20, 2 

# Sub-Cluster B: 24, 2 
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# Sub-Cluster C: V100 GPUs 20, 4 

# Sub-Cluster D: 16, 2 

# Sub-Cluster E: V100 GPUs 16, 2 

# F: 40, ? 

###########################################################################

# 

#SBATCH --job-name=tshark-convert 

##SBATCH --mail-type=ALL 

#SBATCH --mail-type=END 

#SBATCH --mail-user=jaspring@purdue.edu 

#SBATCH --account=partner 

#SBATCH --time=23:59:00 

#SBATCH --nodes=1 

#SBATCH --gpus-per-node=1 

#SBATCH --output=%x.%j.out 

#SBATCH --mem-per-cpu=64GB 

tshark -r $FILENAME -T fields -e ip.len -e ip.len -e ip.id -e ip.ttl -e ip.proto -e ip.src -e ip.dst -e 

tcp.srcport -e tcp.dstport -e tcp.seq -e tcp.len -e tcp.stream -e tcp.time_relative -e tcp.time_delta -E 

header=y -E separator=, -E quote=d -E occurrence=f > $FILENAME.csv 

Script: 

#!/bin/sh 

for filename in *.pcap 

do 

sbatch --export=ALL,FILENAME=$filename tshark.command.sub 

done 

 

A.3 Merging the CSV Files into a Single File  

import os 

import glob 

import pandas as pd 

os.chdir(r"/depot/datalab/bolaji/Anoms/") 

extension = 'csv' 
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all_filenames = [i for i in glob.glob('*.{}'.format(extension))] 

Final = (pd.concat([pd.read_csv(f) for f in all_filenames])) 

Final.to_csv("AnomaliesAll2.csv", index=False, sep=',',encoding='utf-8-sig

') 

 

 

A.4 Code for LSTM Deep Learning Anomaly Detection Model 

/******************************************************************** 

* This code is an adaptation of the code from a book  

*Title: Beginning Anomaly Detection Using Python-Based Deep Learning 

*Author: Alla, S., & Adari, S. K. 

*Date:2019 

*Code version:  

*Availability: Link 

********************************************************************/ 

 

import sys 

import seaborn as sns 

import pandas as pd 

import matplotlib.pyplot as plt 

print("pandas: ", pd.__version__) 

print("seaborn: ", sns.__version__) 

print("matplotlib.pyplot: ", plt.__version__) 

filename= r"/depot/datalab/bolaji/A1/equinix-nyc.dirA.20190117-125910.UTC.

anon.pcap.csv" 

df =pd.read_csv(filename,error_bad_lines=False, engine="python") 

data_s = df[['frame.time','ip.len','ip.src','ip.dst','ip.ttl']].copy() 

print('Shape:' , data_s.shape[0]) 

data_s = data_s.dropna() 

doi:10.1007/978-1-4842-5177-5
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print('Shape:' , data_s.shape[0]) 

data_s["frame.time"].str[:-4].astype("datetime64[ns]") 

fig, (ax1) = plt.subplots(ncols=1, figsize=(8, 5)) 

ax1.set_title('Before Scaling') 

sns.kdeplot(data_s['ip.ttl'], ax=ax1) 

class Visualization: 

    labels = ["Normal", "Anomaly"] 

    def draw_anomaly(self, y, error, threshold): 

        groupsDF = pd.DataFrame({'error': error, 

                                 'true': y}).groupby('true') 

 

        figure, axes = plt.subplots(figsize=(12, 8)) 

 

        for name, group in groupsDF: 

            axes.plot(group.index, group.error, marker='x' if name == 1 el

se 'o', linestyle='', 

                    color='r' if name == 1 else 'g', label="Anomaly" if na

me == 1 else "Normal") 

        axes.hlines(threshold, axes.get_xlim()[0], axes.get_xlim()[1], col

ors="b", zorder=100, label='Threshold') 

        axes.legend() 

        plt.title("Anomalies") 

        plt.ylabel("Error") 

        plt.xlabel("Data") 

        plt.show() 

 

    def draw_error(self, error, threshold): 
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        plt.figure(figsize=(10, 8)) 

        plt.plot(error, marker='o', ms=3.5, linestyle='', 

                 label='Point') 

        plt.hlines(threshold, xmin=0, xmax=len(error)-1, colors="r", zorde

r=100, label='Threshold') 

        plt.legend() 

        plt.title("Reconstruction error") 

        plt.ylabel("Error") 

        plt.xlabel("Data") 

        plt.show() 

i = 0 

 

tensorlog = tensorlogs[i] 

dataFilePath = dataFilePaths[i] 

print("tensorlog: ", tensorlog) 

print("dataFilePath: ", dataFilePath) 

df = pd.read_csv(filepath_or_buffer=dataFilePath, header=0, sep=',') 

print('Shape:' , df.shape[0]) 

print('Head:') 

print(df.head(5)) 

df['Datetime'] = pd.to_datetime(df['frame.time']) 

#print(df.head(3)) 

#df.shape 

#df.plot(x='Datetime', y='ip.len', figsize=(12,6)) 

#plt.xlabel('Date time') 

#plt.ylabel('ip.len') 

#plt.title('Time Series of ip.len by date time') 
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fig, (ax1) = plt.subplots(ncols=1, figsize=(8, 5)) 

ax1.set_title('Before Scaling') 

sns.kdeplot(df['ip.len'], ax=ax1) 

from sklearn.preprocessing import MinMaxScaler 

scaler = MinMaxScaler(feature_range = (0, 1)) 

df['scaled_ip.len'] = pd.DataFrame(scaler.fit_transform(pd.DataFrame(df['i

p.len'])),columns=['ip.len']) 

print('Shape:' , df.shape[0]) 

df.head(5) 

fig, (ax1) = plt.subplots(ncols=1, figsize=(8, 5)) 

ax1.set_title('After Scaling') 

sns.kdeplot(df['scaled_ip.len'], ax=ax1) 

data_s = df[['Datetime','ip.len','ip.src','ip.dst','ip.ttl','scaled_ip.len

']].copy() 

print('Shape:' , data_s.shape[0]) 

data_s.head(5) 

time_steps = 48 

metric = 'mean_absolute_error' 

 

model = Sequential() 

model.add(LSTM(units=32, activation='tanh', input_shape=(time_steps, 1), r

eturn_sequences=True)) 

 

model.add(Dense(1, activation='sigmoid')) 

 

model.compile(optimizer='adam', loss='mean_absolute_error', metrics=[metri

c]) 
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print(model.summary()) 

sequence = np.array(data_s['scaled_ip.len']) 

print(sequence) 

time_steps = 48 

samples = len(sequence) 

trim = samples % time_steps 

subsequences = int(samples/time_steps) 

sequence_trimmed = sequence[:samples - trim] 

 

print(samples, subsequences) 

sequence_trimmed.shape = (subsequences, time_steps, 1) 

print(sequence_trimmed.shape) 

training_dataset = sequence_trimmed 

print("training_dataset: ", training_dataset.shape) 

 

batch_size=32 

epochs=100 

 

history = model.fit(x=training_dataset, y=training_dataset,batch_size=batc

h_size,epochs=epochs, 

          verbose=1,validation_data=(training_dataset,training_dataset)) 

 

acc = history.history['mean_absolute_error'] 

val_acc = history.history['val_mean_absolute_error'] 

loss = history.history['loss'] 

val_loss = history.history['val_loss'] 

plt.figure(figsize=(8, 8)) 
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plt.subplot(2, 1, 1) 

plt.plot(acc, label='Training Mean Absolute Error') 

plt.plot(val_acc, label='Validation Mean Absolute Error') 

plt.legend(loc='upper right') 

plt.ylabel('Mean Absolute Error') 

plt.title('Training and Validation Mean Absolute Error') 

plt.subplot(2, 1, 2) 

plt.plot(loss, label='Training Loss') 

plt.plot(val_loss, label='Validation Loss') 

plt.legend(loc='upper right') 

plt.ylabel('Mean Absolute Error') 

plt.title('Training and Validation Loss') 

plt.xlabel('epoch') 

plt.show() 

import math 

from sklearn.metrics import mean_squared_error 

 

sequence = np.array(data_s['scaled_ip.len']) 

print(sequence) 

time_steps = 48 

samples = len(sequence) 

trim = samples % time_steps 

subsequences = int(samples/time_steps) 

sequence_trimmed = sequence[:samples - trim] 

 

print(samples, subsequences) 

sequence_trimmed.shape = (subsequences, time_steps, 1) 
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print(sequence_trimmed.shape) 

 

testing_dataset = sequence_trimmed 

print("testing_dataset: ", testing_dataset.shape) 

 

testing_pred = model.predict(x=testing_dataset) 

print("testing_pred: ", testing_pred.shape) 

 

testing_dataset = testing_dataset.reshape((testing_dataset.shape[0]*testin

g_dataset.shape[1]), testing_dataset.shape[2]) 

print("testing_dataset: ", testing_dataset.shape) 

 

testing_pred = testing_pred.reshape((testing_pred.shape[0]*testing_pred.sh

ape[1]), testing_pred.shape[2]) 

print("testing_pred: ", testing_pred.shape) 

errorsDF = testing_dataset - testing_pred 

print(errorsDF.shape) 

rmse = math.sqrt(mean_squared_error(testing_dataset, testing_pred)) 

print('Test RMSE: %.3f' % rmse) 

 

#based on cutoff after sorting errors 

dist = np.linalg.norm(testing_dataset - testing_pred, axis=-1) 

 

scores =dist.copy() 

print(scores.shape) 

scores.sort() 

cutoff = int(0.999 * len(scores)) 
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print(cutoff) 

#print(scores[cutoff:]) 

threshold= scores[cutoff] 

print(threshold) 

plt.plot(testing_dataset, color='green') 

plt.plot(testing_pred, color='red') 

z = zip(dist >= threshold, dist) 

 

y_label=[] 

error = [] 

for idx, (is_anomaly, dist) in enumerate(z): 

    if is_anomaly: 

        y_label.append(1) 

    else: 

        y_label.append(0) 

    error.append(dist) 
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A.5 Code for Louvain Algorithm  

/******************************************************************** 

* This code is an adaptation of the code from  

*Title: Exploring and Analyzing Network Data with Python 

*Author: John R. Ladd, Jessica Otis, Christopher N. Warren, and Scott Weingart  

 

*Date:2020 

*Code version:  

*Availability: Link 

********************************************************************/ 

 

 

import networkx as nx 

import pandas as pd 

import csv 

from operator import itemgetter 

from networkx.algorithms import community 

 

with open('/depot/datalab/bolaji/Anoms/AnoUni/Nodes.csv', 'r') as nodecsv:

 # Open the file 

    nodereader = csv.reader(nodecsv) # Read the csv 

    # Retrieve the data (using Python list comprehension and list slicing 

to remove the header row, see footnote 3) 

    nodes = [n for n in nodereader][1:] 

node_names = [n[0] for n in nodes] # Get a list of only the node names 

 

https://doi.org/10.46430/phen0064
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with open('/depot/datalab/bolaji/Anoms/AnoUni/Edges2.csv', 'r') as edgecsv

: # Open the file 

    edgereader = csv.reader(edgecsv) # Read the csv 

    edges = [tuple(e) for e in edgereader][1:] # Retrieve the data 

G.add_nodes_from(node_names) 

G.add_edges_from(edges) 

print(nx.info(G)) 

 

import community as community_louvain 

import matplotlib.cm as cm 

import matplotlib.pyplot as plt 

partition = community_louvain.best_partition(G) 

%%time 

# draw the graph 

pos = nx.spring_layout(G) 

# color the nodes according to their partition 

cmap = cm.get_cmap('viridis', max(partition.values()) + 1) 

nx.draw_networkx_nodes(G, pos, partition.keys(), node_size=40, 

                       cmap=cmap, node_color=list(partition.values())) 

nx.draw_networkx_edges(G, pos, alpha=0.5) 

plt.show() 

#Graphtype = nx.Graph() 

#G = nx.from_pandas_edgelist(df, 'Source', 'Target', ['TTL']) 
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A.6 Code for PageRank Algorithm Implementation 

/******************************************************************** 

* This code is an adaptation of the code from  

*Title: PageRank algorithm 

*Author: Unknown. 

*Date:2021 

*Code version:  

*Availability: Link 

********************************************************************/ 

  

from scipy.sparse import coo_matrix 

import numpy as np 

import csv 

nodesID = {} 

n = 0 

line_count = 0 

%%time 

with open('/depot/datalab/bolaji/Anoms/AnoUni/Edges2.txt', 'r') as edges: 

# Open the file 

    for line in edges: 

        line_count += 1 

        if line.startswith('#') : continue 

        tokens = line.strip().split('\t') 

        #print tokens 

        if tokens[0] not in nodesID:  

            nodesID[tokens[0]] = n 

            n += 1 

https://notebook.community/shngli/Data-Mining-Python/Mining%20massive%20datasets/PageRank%20algorithm
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        if tokens[1] not in nodesID:  

            nodesID[tokens[1]] = n 

            n += 1 

col = [] 

row = [] 

value = [] 

line_count = 0 

with open('/depot/datalab/bolaji/Anoms/AnoUni/Edges2.txt','r') as edges: 

    for line in edges: 

        line_count += 1 

        if line.startswith('#') : continue 

        tokens = line.strip().split('\t') 

        url1 = nodesID[tokens[0]] 

        url2 = nodesID[tokens[1]] 

 

        col.append(url1) 

        row.append(url2) 

        value.append(1.0) 

 

print (M) 

M.shape 

inLink = M.sum(1) 

inLink 

outLink = M.sum(0).T 

outLink 

outLink.shape 

value = [1.0 / outLink[col[i], 0] for i, v in enumerate(value)] 
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M = coo_matrix((value, (row,col)), shape=(n, n)) 

print (M) 

print (M.shape) 

beta= 0.8 

epsilon = 1./(10**11) 

r = np.ones([n,1]) 

r = r/n 

print (np.sum(r)) 

r 

a_file = open(r"C:\Users\FOLA-BUNMI\Downloads\test.txt", "w") 

for row in r: 

    np.savetxt(a_file, row) 

a_file.close() 

for _ in range(250): 

    old_r = r 

    r  = beta * M * r 

    for j in range(n): 

        if inLink[j,0] == 0 : 

            r[j] = 0 

    S = r.sum() 

    r = r +  (1 - S)/n 

     

    if np.sum(np.abs(old_r - r)) < epsilon: 

        print ("{} iterations".format(_)) 

        old_r = r 

        break 

    else: 
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        old_r = r 

 

#print((r), [nodesID]) 

print(my_dict) 

with open('test3.csv', 'w') as f: 

    for key in my_dict.keys(): 

        f.write("%s,%s\n"%(key,my_dict[key])) 

 

 

A.7 PageRank score for the first 1,000 nodes 

SN PageRank (r) Source Node No. 

1 0.035017014 146.206.121.50 232 

2 0.027379503 161.39.9.234 11 

3 0.002681855 52.30.35.134 66 

4 0.002519125 61.94.210.119 47 

5 0.00179733 203.253.164.213 1392 

6 0.001670975 161.72.147.65 3169 

7 0.001534544 162.198.28.36 3958 

8 0.001440519 16.136.249.221 695 

9 0.001222921 161.90.117.125 3895 

10 0.00106154 175.241.100.26 265 

11 0.001007772 161.89.82.225 4385 

12 0.000997523 154.158.26.111 3951 

13 0.000862354 182.22.78.12 3201 

14 0.000794486 136.9.100.66 935 

15 0.000756392 45.174.112.221 402 

16 0.000711271 162.198.30.92 758 

17 0.000687681 175.84.137.216 1868 

18 0.000596885 161.185.16.201 1815 

19 0.000590405 161.159.172.201 41 

20 0.000571148 203.253.164.194 1368 

21 0.000568642 161.158.26.29 3851 

22 0.000565097 161.89.80.40 137 

23 0.000553186 113.201.161.82 1873 

24 0.000552511 180.211.115.96 5567 

25 0.000536379 161.190.162.49 96 

26 0.000536379 161.40.201.135 841 
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27 0.000536379 161.195.232.249 1680 

28 0.000529342 164.172.28.39 1799 

29 0.000512181 146.206.109.220 578 

30 0.000498565 16.136.243.221 492 

31 0.000496054 52.76.82.239 12104 

32 0.000455721 52.31.77.43 1701 

33 0.000448053 177.125.196.20 12142 

34 0.000439589 182.245.239.8 3526 

35 0.000439589 173.251.247.153 5082 

36 0.000431111 182.22.75.34 570 

37 0.000428756 203.66.190.180 1317 

38 0.00042678 122.252.42.103 1811 

39 0.000419912 25.111.51.13 1509 

40 0.000419262 171.222.165.65 2494 

41 0.000399336 170.237.67.207 1499 

42 0.000391194 173.136.104.188 734 

43 0.000391194 161.5.164.130 1355 

44 0.000384838 55.87.248.82 13299 

45 0.000383128 170.230.43.141 1641 

46 0.000375062 113.201.213.247 2043 

47 0.000375062 162.160.48.202 5260 

48 0.000366418 16.136.247.134 184 

49 0.00035893 203.21.182.107 2246 

50 0.00035893 175.84.140.91 4984 

51 0.00035893 173.219.98.240 10293 

52 0.000350864 170.199.92.207 8559 

53 0.000341848 85.171.48.156 1917 

54 0.00034175 167.104.87.169 993 

55 0.000338054 180.229.155.199 21669 

56 0.000327882 104.150.50.154 3446 

57 0.000327389 175.68.135.97 443 

58 0.000326667 161.5.163.239 1920 

59 0.000326667 170.238.213.189 6704 

60 0.000326667 167.6.25.195 10485 

61 0.000325418 55.49.253.216 2115 

62 0.000310535 179.163.208.82 4665 

63 0.000294404 52.55.168.212 2129 

64 0.000294404 175.240.30.234 30819 

65 0.000289661 202.118.75.59 2266 

66 0.000288426 171.168.6.173 3831 

67 0.000285187 180.222.92.75 4968 

68 0.000278477 173.178.117.220 174 

69 0.000278272 180.211.112.179 423 
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70 0.000278272 161.185.236.13 3032 

71 0.000278272 170.199.231.214 3739 

72 0.000275602 161.146.182.57 5527 

73 0.000264456 169.77.36.139 3001 

74 0.000263042 203.93.247.140 1476 

75 0.000262387 180.120.208.121 5011 

76 0.00026214 13.71.229.205 2567 

77 0.00026214 143.143.105.224 5532 

78 0.000255822 221.228.62.130 1273 

79 0.000250041 16.136.226.91 8298 

80 0.000248631 146.206.134.241 4212 

81 0.000246008 52.18.155.118 1833 

82 0.000246008 13.73.120.195 2881 

83 0.000246008 145.122.186.46 3891 

84 0.000246008 175.84.132.251 4528 

85 0.000246008 136.28.170.224 10316 

86 0.000245928 170.238.248.102 2021 

87 0.000243466 173.214.39.173 1351 

88 0.00022997 34.245.72.251 3073 

89 0.000229877 16.136.226.67 197 

90 0.000229877 171.129.182.189 651 

91 0.000229877 164.172.28.72 1591 

92 0.000229877 175.84.149.163 2589 

93 0.000229877 180.120.246.58 6700 

94 0.000228969 113.201.206.108 2428 

95 0.000226316 171.199.171.70 1383 

96 0.000221612 182.10.60.120 1574 

97 0.000218571 131.14.142.66 5484 

98 0.000217637 13.240.165.102 2507 

99 0.000215583 161.130.10.187 858 

100 0.000213947 131.251.199.162 1726 

101 0.000213745 66.35.161.128 9 

102 0.000213745 203.34.60.4 1553 

103 0.000213745 173.141.34.43 4948 

104 0.000213745 135.56.168.159 5297 

105 0.000213745 202.127.153.85 5409 

106 0.000213745 34.205.112.197 10178 

107 0.000210191 30.239.0.80 1478 

108 0.000208456 175.84.162.191 1805 

109 0.000205679 131.118.66.106 5929 

110 0.000203663 175.84.134.121 8852 

111 0.000197815 203.97.55.35 10971 

112 0.000197613 182.250.32.50 6232 
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113 0.000197613 13.69.50.179 1571 

114 0.000197613 175.84.141.231 7887 

115 0.000197613 173.136.99.20 11099 

116 0.000196486 2.229.3.110 1560 

117 0.000193118 52.86.120.79 1612 

118 0.000192255 175.84.136.230 4831 

119 0.000190827 132.252.197.238 183 

120 0.000189651 77.5.227.184 5432 

121 0.000186528 171.234.246.224 951 

122 0.000186206 161.80.108.160 7611 

123 0.000184296 182.245.236.238 635 

124 0.000181482 175.71.242.171 6044 

125 0.000181482 161.53.112.202 18271 

126 0.000179333 180.237.7.211 33692 

127 0.000179054 175.84.161.233 15144 

128 0.000176825 113.201.196.117 2239 

129 0.000169371 203.253.164.1 1512 

130 0.000168051 25.111.247.34 2081 

131 0.000166083 69.27.140.65 10640 

132 0.00016535 42.27.128.130 1124 

133 0.00016535 162.246.10.100 4862 

134 0.00016535 175.84.135.158 5095 

135 0.00016535 175.68.195.147 6247 

136 0.00016535 175.84.137.60 6733 

137 0.00016535 175.84.165.100 7015 

138 0.00016535 175.84.148.118 7558 

139 0.00016535 169.26.85.233 9279 

140 0.00016535 113.201.152.182 12986 

141 0.000162322 202.140.70.56 4379 

142 0.000159973 131.251.72.25 313 

143 0.000157435 182.250.24.143 1135 

144 0.000156686 45.235.3.175 873 

145 0.000154997 173.136.111.55 1353 

146 0.000150947 118.163.134.75 12206 

147 0.000149878 175.84.142.153 3416 

148 0.00014942 23.12.195.252 1377 

149 0.00014942 113.201.225.140 19870 

150 0.000149366 136.199.115.221 12204 

151 0.000149218 69.35.152.139 6727 

152 0.000149218 175.84.153.197 6941 

153 0.000149218 47.36.84.65 8813 

154 0.000148965 136.127.65.201 655 

155 0.000148527 177.125.214.33 13177 
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156 0.000145991 161.88.188.196 561 

157 0.000145646 153.62.125.73 33618 

158 0.000144999 182.19.217.203 1577 

159 0.000141669 161.80.67.136 10136 

160 0.000140703 180.120.246.99 1896 

161 0.000140115 52.18.143.139 1959 

162 0.00013993 160.219.74.44 8001 

163 0.000139351 173.31.235.58 919 

164 0.000137816 16.136.205.126 399 

165 0.000137707 158.48.141.194 1033 

166 0.000136825 161.40.202.25 845 

167 0.000135177 162.102.142.231 7445 

168 0.000135035 203.253.164.220 1401 

169 0.00013477 52.30.19.146 2395 

170 0.000133993 161.145.237.152 28171 

171 0.000133115 161.185.16.250 1887 

172 0.000133087 175.84.139.106 2010 

173 0.000133087 175.84.162.247 4905 

174 0.000133087 161.146.139.21 9377 

175 0.000133087 131.14.83.225 11812 

176 0.000133087 72.106.33.179 12793 

177 0.000133087 175.241.82.27 18244 

178 0.000133022 161.215.87.178 2636 

179 0.000132586 77.38.63.129 4901 

180 0.000132243 55.44.142.203 2484 

181 0.000131358 175.84.138.196 1666 

182 0.000130255 136.227.171.156 1678 

183 0.000129241 171.198.95.58 8598 

184 0.000129233 56.55.110.215 2213 

185 0.000129193 161.195.235.72 829 

186 0.000128821 180.212.185.134 1662 

187 0.000127709 126.74.191.161 932 

188 0.000126757 177.125.214.2 2806 

189 0.000125722 162.102.134.75 472 

190 0.000125675 161.190.11.221 16006 

191 0.000125406 175.70.102.10 2181 

192 0.000125089 195.192.187.139 838 

193 0.000125021 162.160.50.34 6401 

194 0.000124732 34.221.96.236 3160 

195 0.000123742 161.185.226.108 1845 

196 0.000122919 173.141.54.29 7032 

197 0.000122332 135.56.237.29 5699 

198 0.000118971 162.160.61.5 7170 
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199 0.000118893 66.84.56.228 4343 

200 0.000118725 171.191.225.93 5788 

201 0.000118221 175.84.142.234 4535 

202 0.000117061 16.136.252.22 3751 

203 0.000117 182.17.120.74 10611 

204 0.000116955 72.106.32.148 105 

205 0.000116955 177.125.214.123 2673 

206 0.000116955 113.201.208.21 3139 

207 0.000116955 70.251.239.212 7316 

208 0.000116955 126.255.163.24 8874 

209 0.000116955 161.195.225.62 14477 

210 0.000116955 162.67.187.31 15942 

211 0.000116955 180.120.208.81 16823 

212 0.000116955 161.55.27.20 21149 

213 0.00011695 99.11.157.14 9536 

214 0.000114827 175.84.160.184 4171 

215 0.000113794 77.226.254.216 34681 

216 0.000113711 184.255.249.69 1670 

217 0.000113055 170.199.90.7 393 

218 0.000113039 171.198.7.158 663 

219 0.000113005 61.18.60.155 12439 

220 0.000112432 131.106.82.17 1790 

221 0.000112295 175.84.135.67 1566 

222 0.000112079 118.49.145.71 33627 

223 0.00011168 113.201.183.224 13051 

224 0.000111559 13.219.169.185 2786 

225 0.000111158 34.210.255.150 1911 

226 0.000110998 161.61.122.33 1102 

227 0.000110156 175.70.12.172 13676 

228 0.000109573 52.214.80.87 2513 

229 0.000108573 69.35.151.255 7580 

230 0.000108318 173.196.54.7 1071 

231 0.000108292 182.232.27.224 62 

232 0.000107326 171.198.20.109 2079 

233 0.000107055 114.131.79.222 9292 

234 0.000106382 175.84.138.68 3255 

235 0.000106274 37.0.229.184 1251 

236 0.0001062 45.224.106.3 6761 

237 0.000106021 180.211.115.0 4646 

238 0.000104003 161.30.51.62 35034 

239 0.000102592 161.185.234.112 3011 

240 0.00010236 175.71.184.115 2533 

241 0.000101759 175.73.181.56 1221 
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242 0.000101695 52.30.20.243 20051 

243 0.000101098 177.125.233.236 3064 

244 0.000100823 42.27.130.233 1192 

245 0.000100823 197.180.162.95 2501 

246 0.000100823 66.134.187.165 3085 

247 0.000100823 169.68.59.80 6239 

248 0.000100823 173.141.0.93 6558 

249 0.000100823 45.86.171.127 11402 

250 0.000100823 161.40.201.214 14471 

251 0.000100823 175.241.33.144 18756 

252 0.000100823 113.201.214.206 20148 

253 0.000100823 162.246.67.103 24134 

254 0.00010055 161.5.166.179 3366 

255 0.000100176 177.125.215.223 2553 

256 0.000100159 175.84.140.107 755 

257 9.97E-05 34.226.171.106 3081 

258 9.93E-05 45.62.240.219 2116 

259 9.88E-05 34.210.164.39 1860 

260 9.86E-05 175.84.159.23 3284 

261 9.85E-05 136.87.91.121 34822 

262 9.75E-05 55.60.251.122 2886 

263 9.74E-05 175.84.145.222 7678 

264 9.73E-05 196.43.146.120 2370 

265 9.72E-05 177.125.198.119 13117 

266 9.58E-05 42.27.128.228 990 

267 9.56E-05 175.84.147.224 4482 

268 9.54E-05 178.57.62.237 4569 

269 9.53E-05 161.185.239.157 1742 

270 9.46E-05 153.62.125.77 6482 

271 9.44E-05 175.69.146.15 9056 

272 9.42E-05 223.231.151.122 590 

273 9.30E-05 162.67.179.85 9005 

274 9.22E-05 55.68.32.228 12638 

275 9.21E-05 158.48.141.195 1089 

276 9.16E-05 175.241.98.34 5101 

277 9.14E-05 71.217.76.215 1035 

278 9.11E-05 161.34.214.231 6009 

279 9.09E-05 175.84.167.251 677 

280 9.07E-05 161.80.15.194 7650 

281 9.04E-05 161.80.21.16 29 

282 8.99E-05 171.129.179.50 1091 

283 8.95E-05 180.1.127.102 3457 

284 8.92E-05 37.24.12.122 3978 
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285 8.92E-05 16.136.231.152 4144 

286 8.88E-05 136.9.147.165 18398 

287 8.87E-05 170.227.6.22 31763 

288 8.81E-05 184.253.194.170 6433 

289 8.79E-05 170.249.198.42 13048 

290 8.73E-05 175.84.162.0 6389 

291 8.65E-05 109.87.242.88 10398 

292 8.56E-05 161.73.110.167 11782 

293 8.55E-05 175.73.163.133 1300 

294 8.54E-05 2.193.157.121 8880 

295 8.53E-05 161.145.254.28 33058 

296 8.52E-05 171.198.16.245 4685 

297 8.50E-05 175.71.19.30 5128 

298 8.50E-05 199.124.196.2 4846 

299 8.49E-05 202.73.26.224 7613 

300 8.48E-05 117.154.56.83 21089 

301 8.48E-05 175.84.142.175 15285 

302 8.48E-05 170.237.66.134 1439 

303 8.47E-05 175.241.66.34 1720 

304 8.47E-05 161.30.44.114 1718 

305 8.47E-05 113.201.216.252 2861 

306 8.47E-05 182.250.165.156 5811 

307 8.47E-05 202.136.44.161 5876 

308 8.47E-05 45.224.163.238 6419 

309 8.47E-05 161.40.201.48 6449 

310 8.47E-05 143.143.186.124 6479 

311 8.47E-05 161.5.163.201 6831 

312 8.47E-05 173.168.29.235 6855 

313 8.47E-05 180.232.18.139 7407 

314 8.47E-05 173.55.233.240 7808 

315 8.47E-05 75.201.73.153 7929 

316 8.47E-05 161.40.202.112 7962 

317 8.47E-05 161.127.77.23 11616 

318 8.47E-05 55.86.232.34 11808 

319 8.47E-05 171.198.22.195 13847 

320 8.47E-05 171.235.126.88 16884 

321 8.47E-05 175.84.135.162 17599 

322 8.47E-05 161.75.137.245 19038 

323 8.47E-05 175.84.161.196 20821 

324 8.47E-05 175.73.227.102 1063 

325 8.45E-05 161.89.80.249 3296 

326 8.44E-05 161.34.213.125 793 

327 8.43E-05 158.48.141.222 1219 
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328 8.42E-05 161.80.15.114 4705 

329 8.40E-05 180.237.55.118 10114 

330 8.39E-05 13.49.59.120 2232 

331 8.34E-05 112.98.126.124 1058 

332 8.33E-05 161.80.46.254 10401 

333 8.33E-05 182.250.166.246 653 

334 8.24E-05 45.22.118.155 8217 

335 8.23E-05 175.68.119.52 1054 

336 8.18E-05 7.23.50.233 1441 

337 8.16E-05 161.145.143.124 3068 

338 8.15E-05 175.84.164.20 8774 

339 8.14E-05 62.47.94.54 212 

340 8.14E-05 129.197.65.92 93 

341 8.09E-05 171.129.178.204 428 

342 8.02E-05 161.131.83.182 4271 

343 7.98E-05 113.201.203.53 12838 

344 7.98E-05 113.201.229.73 2144 

345 7.96E-05 175.71.106.137 12520 

346 7.91E-05 175.84.154.106 17649 

347 7.90E-05 171.176.21.97 20553 

348 7.84E-05 175.68.140.189 13763 

349 7.83E-05 171.222.163.13 23 

350 7.83E-05 173.168.17.208 4784 

351 7.80E-05 109.234.166.154 3504 

352 7.79E-05 16.136.252.33 717 

353 7.76E-05 200.7.28.69 4739 

354 7.74E-05 136.10.171.94 3699 

355 7.68E-05 175.71.43.0 28173 

356 7.66E-05 132.252.133.80 2216 

357 7.66E-05 175.84.133.171 8802 

358 7.66E-05 146.206.122.3 14401 

359 7.66E-05 175.84.137.128 17676 

360 7.63E-05 113.201.153.63 2251 

361 7.63E-05 42.27.129.231 3157 

362 7.61E-05 52.103.137.30 10877 

363 7.58E-05 47.52.147.0 3615 

364 7.57E-05 16.136.249.248 5018 

365 7.55E-05 161.5.248.122 37568 

366 7.53E-05 55.83.255.223 12152 

367 7.52E-05 161.89.82.3 2487 

368 7.47E-05 23.23.119.230 3374 

369 7.45E-05 69.104.35.55 974 

370 7.41E-05 164.172.28.86 1321 
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371 7.40E-05 143.48.213.220 36574 

372 7.40E-05 136.255.161.199 1643 

373 7.38E-05 146.206.103.177 3368 

374 7.37E-05 146.206.111.237 17333 

375 7.35E-05 34.243.94.245 2693 

376 7.26E-05 55.11.19.172 12133 

377 7.24E-05 161.130.5.120 19 

378 7.23E-05 203.80.10.188 693 

379 7.22E-05 182.16.8.210 6382 

380 7.20E-05 175.84.147.45 7183 

381 7.19E-05 180.212.218.0 1109 

382 7.16E-05 161.40.201.247 4804 

383 7.14E-05 99.116.52.166 14252 

384 7.13E-05 161.89.82.193 4455 

385 7.11E-05 161.34.211.200 13843 

386 7.11E-05 203.80.4.202 27115 

387 7.07E-05 182.22.77.190 5150 

388 7.07E-05 45.80.165.99 414 

389 7.06E-05 175.84.138.66 2957 

390 7.05E-05 161.34.216.199 11024 

391 7.04E-05 13.57.233.243 3042 

392 7.03E-05 175.73.177.63 6993 

393 6.98E-05 175.84.150.15 4993 

394 6.98E-05 203.253.164.234 1480 

395 6.92E-05 175.240.12.168 5522 

396 6.90E-05 201.222.50.139 1781 

397 6.90E-05 161.104.68.0 12465 

398 6.89E-05 146.206.111.221 8376 

399 6.86E-05 161.146.133.214 18606 

400 6.86E-05 173.136.103.220 3392 

401 6.86E-05 202.209.124.14 23226 

402 6.86E-05 175.84.157.180 14070 

403 6.86E-05 146.206.166.122 9724 

404 6.86E-05 203.244.242.151 1031 

405 6.86E-05 63.47.55.31 2689 

406 6.86E-05 34.235.250.164 2698 

407 6.86E-05 72.106.58.237 2873 

408 6.86E-05 170.238.213.157 6556 

409 6.86E-05 171.191.230.89 8515 

410 6.86E-05 175.69.188.176 8954 

411 6.86E-05 61.158.234.149 9149 

412 6.86E-05 69.35.149.97 9708 

413 6.86E-05 203.67.62.219 10215 
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414 6.86E-05 161.89.80.210 10615 

415 6.86E-05 131.175.72.28 10835 

416 6.86E-05 191.151.24.211 10917 

417 6.86E-05 167.104.87.176 10983 

418 6.86E-05 203.38.37.209 11840 

419 6.86E-05 136.185.4.113 12012 

420 6.86E-05 113.201.169.87 12975 

421 6.86E-05 143.143.105.247 17077 

422 6.86E-05 49.36.203.110 17263 

423 6.86E-05 182.22.238.22 18578 

424 6.86E-05 131.14.105.30 18730 

425 6.86E-05 203.140.147.225 18932 

426 6.86E-05 113.201.220.69 20577 

427 6.86E-05 180.212.217.82 26351 

428 6.86E-05 117.154.143.252 26611 

429 6.86E-05 113.201.139.154 26928 

430 6.86E-05 13.240.42.98 27435 

431 6.86E-05 175.84.142.53 28259 

432 6.86E-05 173.250.209.222 28698 

433 6.86E-05 180.90.99.80 30693 

434 6.86E-05 161.185.239.148 2049 

435 6.86E-05 52.117.186.251 13417 

436 6.83E-05 170.251.76.66 1634 

437 6.76E-05 42.27.129.217 3612 

438 6.75E-05 161.34.167.147 71 

439 6.70E-05 117.155.121.170 11035 

440 6.69E-05 45.169.199.230 598 

441 6.68E-05 162.190.51.56 7602 

442 6.65E-05 164.37.46.149 2586 

443 6.65E-05 173.168.29.4 3362 

444 6.65E-05 175.69.101.89 12438 

445 6.57E-05 175.68.171.136 5679 

446 6.56E-05 182.250.35.130 6257 

447 6.55E-05 161.31.199.1 213 

448 6.54E-05 175.240.22.218 27 

449 6.54E-05 175.68.242.114 9822 

450 6.54E-05 175.240.29.77 10733 

451 6.53E-05 164.88.118.203 10593 

452 6.52E-05 195.192.101.48 14384 

453 6.51E-05 175.73.97.129 5705 

454 6.47E-05 146.206.106.93 272 

455 6.45E-05 218.183.179.115 14481 

456 6.44E-05 113.201.197.30 85 
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457 6.44E-05 113.201.142.213 12416 

458 6.43E-05 173.136.103.61 270 

459 6.41E-05 175.240.19.130 25 

460 6.41E-05 113.201.152.212 2610 

461 6.40E-05 182.127.153.108 30988 

462 6.40E-05 113.201.199.100 12696 

463 6.39E-05 25.111.44.39 1314 

464 6.38E-05 203.24.248.14 5161 

465 6.37E-05 203.38.38.172 21504 

466 6.33E-05 146.206.112.136 374 

467 6.32E-05 175.84.132.186 4836 

468 6.32E-05 149.14.184.87 2870 

469 6.31E-05 96.126.217.23 5902 

470 6.31E-05 161.191.71.155 2482 

471 6.25E-05 180.229.153.50 43 

472 6.23E-05 203.253.166.231 1576 

473 6.23E-05 161.146.157.139 10803 

474 6.22E-05 171.232.87.24 30476 

475 6.20E-05 13.243.152.14 1673 

476 6.19E-05 171.198.4.59 6201 

477 6.17E-05 203.29.249.106 45 

478 6.16E-05 169.68.59.181 4008 

479 6.14E-05 171.235.127.4 3481 

480 6.10E-05 175.84.131.250 4713 

481 6.09E-05 161.90.153.12 23140 

482 6.06E-05 160.219.79.42 13996 

483 6.05E-05 175.70.12.189 463 

484 6.05E-05 201.67.248.4 6617 

485 6.04E-05 113.201.220.239 2917 

486 6.03E-05 175.84.137.29 5362 

487 6.01E-05 45.125.27.124 11230 

488 5.99E-05 175.84.161.145 12853 

489 5.95E-05 96.163.14.177 1698 

490 5.95E-05 162.188.201.69 10807 

491 5.94E-05 203.253.166.182 1501 

492 5.94E-05 174.110.86.7 4812 

493 5.93E-05 161.75.142.20 20555 

494 5.93E-05 113.201.155.91 19899 

495 5.92E-05 161.30.44.209 2850 

496 5.92E-05 136.28.84.105 36781 

497 5.91E-05 175.73.60.97 18272 

498 5.89E-05 45.235.120.227 1523 

499 5.89E-05 175.68.62.142 9966 
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500 5.89E-05 69.35.151.186 7345 

501 5.89E-05 171.128.144.2 2868 

502 5.89E-05 175.240.2.221 22389 

503 5.88E-05 190.26.240.64 11038 

504 5.85E-05 170.199.82.70 4397 

505 5.84E-05 52.205.189.139 19983 

506 5.82E-05 161.195.225.237 32899 

507 5.81E-05 16.136.248.125 4405 

508 5.78E-05 171.191.238.130 768 

509 5.77E-05 135.56.249.65 7721 

510 5.77E-05 66.84.63.11 5934 

511 5.76E-05 175.71.220.53 4875 

512 5.74E-05 161.185.230.184 1518 

513 5.74E-05 61.119.179.184 1077 

514 5.73E-05 161.40.201.61 254 

515 5.72E-05 87.88.34.35 10756 

516 5.71E-05 175.241.104.182 21829 

517 5.70E-05 161.31.223.65 19732 

518 5.69E-05 99.116.52.241 9454 

519 5.69E-05 175.84.153.206 3330 

520 5.68E-05 180.222.92.161 30625 

521 5.66E-05 55.46.187.192 12873 

522 5.65E-05 187.92.12.45 12408 

523 5.65E-05 182.250.165.252 4632 

524 5.63E-05 161.185.234.208 27413 

525 5.62E-05 175.84.128.58 17845 

526 5.62E-05 7.19.133.217 2001 

527 5.62E-05 161.34.217.226 4470 

528 5.62E-05 161.80.26.237 22392 

529 5.61E-05 203.253.165.9 1555 

530 5.60E-05 118.187.245.138 4038 

531 5.58E-05 175.84.160.58 1636 

532 5.57E-05 175.84.135.20 22950 

533 5.53E-05 175.240.28.219 19390 

534 5.53E-05 149.46.170.58 33828 

535 5.52E-05 175.241.123.112 820 

536 5.49E-05 161.146.132.170 3535 

537 5.48E-05 218.183.191.102 9317 

538 5.47E-05 35.124.60.27 2593 

539 5.47E-05 45.224.196.59 661 

540 5.46E-05 45.81.254.25 10957 

541 5.46E-05 113.201.210.185 1304 

542 5.46E-05 161.54.117.88 5233 
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543 5.45E-05 128.42.138.47 10769 

544 5.45E-05 171.168.34.114 4359 

545 5.44E-05 202.209.119.35 299 

546 5.44E-05 161.83.185.252 11143 

547 5.41E-05 166.146.141.2 10471 

548 5.40E-05 161.90.142.126 18266 

549 5.40E-05 52.205.249.22 31966 

550 5.39E-05 180.229.196.142 28652 

551 5.38E-05 135.56.113.198 7805 

552 5.37E-05 113.201.202.36 2332 

553 5.37E-05 16.136.205.115 4307 

554 5.36E-05 161.158.16.235 1185 

555 5.36E-05 171.176.23.228 25459 

556 5.35E-05 173.215.35.94 25885 

557 5.35E-05 55.163.84.27 12274 

558 5.33E-05 49.208.195.160 5021 

559 5.32E-05 164.172.28.87 1517 

560 5.31E-05 161.130.2.160 52 

561 5.31E-05 171.168.39.71 19248 

562 5.30E-05 55.64.116.216 12941 

563 5.29E-05 162.160.50.76 4617 

564 5.28E-05 175.84.137.21 1828 

565 5.28E-05 170.251.76.67 1632 

566 5.28E-05 170.250.216.79 5786 

567 5.27E-05 201.244.25.195 24849 

568 5.27E-05 113.201.128.184 2447 

569 5.26E-05 161.61.74.224 10059 

570 5.26E-05 161.72.151.220 25552 

571 5.26E-05 36.90.130.103 15308 

572 5.26E-05 182.244.58.120 22827 

573 5.26E-05 161.191.210.66 3126 

574 5.25E-05 182.250.165.179 168 

575 5.25E-05 161.75.179.83 30897 

576 5.25E-05 161.5.248.106 1179 

577 5.25E-05 161.89.81.139 7846 

578 5.25E-05 161.5.164.126 14729 

579 5.24E-05 175.73.200.12 14037 

580 5.24E-05 34.245.13.205 1563 

581 5.24E-05 161.40.204.7 413 

582 5.24E-05 216.2.118.156 1586 

583 5.24E-05 113.201.191.21 1599 

584 5.24E-05 72.106.40.247 1763 

585 5.24E-05 107.180.44.227 2411 
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586 5.24E-05 177.125.235.165 2441 

587 5.24E-05 175.84.167.200 2659 

588 5.24E-05 52.0.228.197 2755 

589 5.24E-05 161.124.191.125 2830 

590 5.24E-05 13.210.11.245 2983 

591 5.24E-05 55.44.135.96 3059 

592 5.24E-05 175.71.232.115 3095 

593 5.24E-05 161.40.202.196 3681 

594 5.24E-05 175.241.57.253 4158 

595 5.24E-05 173.214.39.23 4254 

596 5.24E-05 187.92.13.82 5405 

597 5.24E-05 161.5.163.96 5793 

598 5.24E-05 146.206.172.94 6175 

599 5.24E-05 180.232.112.188 7369 

600 5.24E-05 203.99.189.60 7908 

601 5.24E-05 175.84.159.19 8133 

602 5.24E-05 90.35.152.217 8622 

603 5.24E-05 173.164.225.39 8627 

604 5.24E-05 131.251.72.3 8663 

605 5.24E-05 42.27.130.95 8900 

606 5.24E-05 161.145.142.21 9309 

607 5.24E-05 175.84.167.69 9625 

608 5.24E-05 175.84.145.215 9635 

609 5.24E-05 46.215.222.34 10271 

610 5.24E-05 175.73.36.30 10360 

611 5.24E-05 161.55.85.18 10409 

612 5.24E-05 171.234.248.31 10613 

613 5.24E-05 91.36.232.224 10821 

614 5.24E-05 45.23.21.158 10853 

615 5.24E-05 162.103.190.77 10863 

616 5.24E-05 136.9.223.183 11072 

617 5.24E-05 161.40.187.175 11162 

618 5.24E-05 219.109.93.205 11297 

619 5.24E-05 175.71.245.238 11386 

620 5.24E-05 170.196.26.83 11605 

621 5.24E-05 175.240.17.57 11864 

622 5.24E-05 175.84.163.110 12442 

623 5.24E-05 34.196.221.19 12467 

624 5.24E-05 161.190.11.41 12492 

625 5.24E-05 113.201.205.125 12503 

626 5.24E-05 173.215.42.11 12536 

627 5.24E-05 214.148.89.178 12655 

628 5.24E-05 175.84.133.146 12787 
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629 5.24E-05 7.25.109.140 13222 

630 5.24E-05 52.214.145.151 13291 

631 5.24E-05 118.65.53.55 13370 

632 5.24E-05 113.201.188.222 13398 

633 5.24E-05 45.224.196.81 15391 

634 5.24E-05 171.168.47.197 15647 

635 5.24E-05 143.143.146.27 15710 

636 5.24E-05 171.168.20.1 16051 

637 5.24E-05 175.84.164.43 16110 

638 5.24E-05 201.83.205.135 17123 

639 5.24E-05 175.84.131.219 17231 

640 5.24E-05 180.222.199.101 17442 

641 5.24E-05 126.17.208.101 17540 

642 5.24E-05 143.143.60.21 18286 

643 5.24E-05 117.182.166.135 18520 

644 5.24E-05 170.250.24.1 18543 

645 5.24E-05 184.255.249.29 18549 

646 5.24E-05 162.67.227.37 18598 

647 5.24E-05 171.176.30.63 19156 

648 5.24E-05 37.62.229.216 19405 

649 5.24E-05 175.73.39.27 19449 

650 5.24E-05 131.14.107.10 19773 

651 5.24E-05 182.19.217.199 20077 

652 5.24E-05 13.56.54.165 20394 

653 5.24E-05 175.84.151.129 21552 

654 5.24E-05 184.253.82.66 23177 

655 5.24E-05 161.145.137.185 23328 

656 5.24E-05 175.73.103.108 23989 

657 5.24E-05 162.190.71.241 23998 

658 5.24E-05 135.56.93.41 24092 

659 5.24E-05 173.141.36.211 25045 

660 5.24E-05 136.127.111.6 25297 

661 5.24E-05 136.186.102.248 25433 

662 5.24E-05 161.190.163.201 25741 

663 5.24E-05 170.199.127.169 25745 

664 5.24E-05 161.146.184.245 26101 

665 5.24E-05 218.247.229.8 26262 

666 5.24E-05 171.176.28.126 26372 

667 5.24E-05 161.158.54.205 26550 

668 5.24E-05 161.31.202.230 26585 

669 5.24E-05 177.125.235.199 26720 

670 5.24E-05 146.7.148.109 26807 

671 5.24E-05 203.254.27.22 27032 
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672 5.24E-05 113.201.157.177 27366 

673 5.24E-05 136.34.92.147 27560 

674 5.24E-05 169.26.85.236 27631 

675 5.24E-05 195.192.215.89 27999 

676 5.24E-05 135.56.148.187 28007 

677 5.24E-05 171.198.93.159 29731 

678 5.24E-05 174.236.10.2 30500 

679 5.24E-05 173.129.186.137 30536 

680 5.24E-05 46.22.0.92 30668 

681 5.24E-05 171.220.0.205 30775 

682 5.24E-05 175.73.89.182 31055 

683 5.24E-05 103.96.207.254 31075 

684 5.24E-05 45.21.227.167 31316 

685 5.24E-05 173.136.99.93 31380 

686 5.24E-05 25.64.12.24 31884 

687 5.24E-05 55.160.190.4 32521 

688 5.24E-05 175.84.144.230 35052 

689 5.23E-05 60.77.138.58 20750 

690 5.21E-05 175.73.223.31 10299 

691 5.20E-05 171.198.21.254 7464 

692 5.19E-05 158.48.218.137 10192 

693 5.19E-05 161.40.201.161 22115 

694 5.19E-05 57.57.222.246 377 

695 5.17E-05 161.146.161.23 3244 

696 5.17E-05 34.192.136.182 2749 

697 5.15E-05 211.176.102.94 4090 

698 5.14E-05 171.222.160.19 91 

699 5.13E-05 202.209.114.107 3402 

700 5.12E-05 52.115.245.102 12158 

701 5.11E-05 170.238.221.203 5781 

702 5.11E-05 49.36.197.222 8617 

703 5.11E-05 175.84.148.239 7053 

704 5.10E-05 143.110.26.70 25389 

705 5.07E-05 175.68.147.234 14135 

706 5.07E-05 161.131.81.57 7227 

707 5.06E-05 201.240.78.94 351 

708 5.05E-05 180.211.115.111 2911 

709 5.04E-05 203.38.44.111 1423 

710 5.04E-05 175.73.29.76 30862 

711 5.04E-05 203.253.164.217 1363 

712 5.03E-05 171.198.3.99 3253 

713 5.01E-05 192.175.233.74 34275 

714 5.01E-05 177.125.198.100 2306 
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715 5.01E-05 190.202.169.114 5694 

716 5.00E-05 223.231.48.108 21638 

717 5.00E-05 180.1.127.184 143 

718 4.99E-05 175.84.151.3 6091 

719 4.98E-05 182.237.78.108 59 

720 4.98E-05 128.222.2.57 3988 

721 4.97E-05 175.84.159.205 7153 

722 4.97E-05 170.238.219.205 13784 

723 4.95E-05 171.168.1.86 9524 

724 4.95E-05 98.110.231.226 18987 

725 4.92E-05 175.70.123.230 18135 

726 4.92E-05 171.222.166.82 18985 

727 4.90E-05 161.5.163.58 4526 

728 4.90E-05 223.249.45.189 1525 

729 4.89E-05 180.1.127.205 35469 

730 4.88E-05 175.70.199.213 23424 

731 4.88E-05 16.136.226.93 4057 

732 4.87E-05 157.62.163.30 5797 

733 4.86E-05 173.31.236.23 21839 

734 4.84E-05 173.196.45.98 11160 

735 4.84E-05 203.94.159.252 13737 

736 4.83E-05 182.247.131.151 14454 

737 4.83E-05 52.118.34.253 25374 

738 4.81E-05 175.241.82.247 10197 

739 4.81E-05 61.119.179.174 10495 

740 4.79E-05 117.164.136.187 18260 

741 4.79E-05 140.152.217.245 1960 

742 4.78E-05 175.240.27.138 25977 

743 4.78E-05 175.84.146.248 21572 

744 4.78E-05 136.185.84.254 18264 

745 4.76E-05 175.84.162.224 6517 

746 4.76E-05 113.201.170.5 2109 

747 4.75E-05 161.190.175.22 799 

748 4.73E-05 161.185.239.150 2783 

749 4.73E-05 182.250.167.52 3716 

750 4.72E-05 210.200.42.157 9460 

751 4.71E-05 173.141.3.146 1333 

752 4.71E-05 161.145.137.5 7398 

753 4.70E-05 175.84.141.219 10089 

754 4.69E-05 146.206.114.34 698 

755 4.69E-05 161.53.63.135 4683 

756 4.68E-05 204.227.68.11 10130 

757 4.67E-05 162.173.237.136 2613 
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758 4.67E-05 175.84.160.18 21332 

759 4.65E-05 113.201.224.197 13272 

760 4.65E-05 171.168.7.220 5268 

761 4.65E-05 161.89.82.111 14262 

762 4.64E-05 175.68.237.97 25019 

763 4.64E-05 126.40.66.145 1256 

764 4.64E-05 170.231.102.97 5828 

765 4.63E-05 170.238.217.194 583 

766 4.63E-05 175.84.147.240 6210 

767 4.63E-05 175.84.156.138 2341 

768 4.61E-05 182.237.79.201 31 

769 4.60E-05 105.18.187.26 2421 

770 4.60E-05 45.226.119.98 21494 

771 4.60E-05 108.41.214.156 15783 

772 4.59E-05 161.55.84.198 2660 

773 4.57E-05 69.35.149.123 5647 

774 4.57E-05 175.84.161.160 12595 

775 4.57E-05 45.172.88.122 8232 

776 4.56E-05 175.84.156.67 5091 

777 4.54E-05 171.176.19.188 3668 

778 4.54E-05 175.241.13.208 23511 

779 4.53E-05 45.226.7.39 6933 

780 4.53E-05 161.159.173.4 1257 

781 4.53E-05 175.68.209.27 4290 

782 4.53E-05 175.84.162.165 20018 

783 4.52E-05 61.22.69.19 17362 

784 4.51E-05 175.84.141.24 9510 

785 4.51E-05 161.89.86.8 8471 

786 4.51E-05 223.231.106.161 7027 

787 4.51E-05 170.199.73.62 953 

788 4.50E-05 161.30.54.219 35 

789 4.50E-05 162.190.19.20 4285 

790 4.50E-05 45.23.226.189 36761 

791 4.50E-05 211.143.185.136 3192 

792 4.49E-05 113.201.142.240 26645 

793 4.49E-05 171.176.24.46 11239 

794 4.48E-05 45.175.66.2 14138 

795 4.48E-05 161.30.45.207 77 

796 4.48E-05 182.17.80.76 4923 

797 4.47E-05 136.199.114.44 9763 

798 4.47E-05 80.8.30.102 33987 

799 4.47E-05 161.40.203.205 3945 

800 4.47E-05 161.31.214.144 19997 
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801 4.45E-05 162.98.225.154 10940 

802 4.44E-05 161.130.10.14 12818 

803 4.44E-05 170.238.254.203 10536 

804 4.44E-05 113.201.149.231 12092 

805 4.44E-05 161.53.131.127 22504 

806 4.44E-05 161.145.143.3 25728 

807 4.44E-05 41.149.85.159 26497 

808 4.44E-05 171.235.116.20 27324 

809 4.44E-05 161.53.10.229 28493 

810 4.44E-05 177.125.214.167 32370 

811 4.42E-05 212.195.73.104 16603 

812 4.42E-05 162.161.21.25 1157 

813 4.41E-05 113.201.226.181 12563 

814 4.40E-05 175.84.164.76 6603 

815 4.39E-05 161.145.233.52 15814 

816 4.39E-05 175.84.141.246 6819 

817 4.39E-05 175.73.215.240 18783 

818 4.39E-05 113.201.207.39 37570 

819 4.38E-05 175.241.75.89 275 

820 4.38E-05 175.84.147.222 8718 

821 4.38E-05 161.144.97.216 31419 

822 4.38E-05 175.68.92.223 21416 

823 4.38E-05 161.34.214.24 114 

824 4.38E-05 45.62.144.11 11716 

825 4.36E-05 211.176.97.222 8389 

826 4.36E-05 42.27.131.111 267 

827 4.36E-05 166.194.196.29 10438 

828 4.36E-05 16.110.190.135 28990 

829 4.35E-05 173.196.126.143 4436 

830 4.35E-05 128.72.211.35 30736 

831 4.32E-05 202.209.114.244 18087 

832 4.32E-05 161.146.191.131 34047 

833 4.32E-05 161.80.58.84 4510 

834 4.32E-05 55.44.128.232 1409 

835 4.32E-05 116.100.240.235 10266 

836 4.32E-05 202.148.107.213 25815 

837 4.32E-05 223.231.21.33 6156 

838 4.31E-05 187.92.14.27 1928 

839 4.31E-05 69.35.147.85 8229 

840 4.31E-05 201.92.22.86 11885 

841 4.31E-05 180.211.1.240 13839 

842 4.31E-05 170.238.72.21 3554 

843 4.31E-05 173.141.2.155 1820 
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844 4.30E-05 25.74.174.165 12602 

845 4.30E-05 162.67.181.61 14552 

846 4.30E-05 37.232.225.142 12017 

847 4.30E-05 161.40.202.34 33963 

848 4.28E-05 175.84.140.113 2293 

849 4.27E-05 175.71.1.163 8938 

850 4.26E-05 55.63.179.121 13000 

851 4.25E-05 175.241.100.25 297 

852 4.25E-05 52.201.47.29 100 

853 4.25E-05 71.217.221.229 1080 

854 4.24E-05 35.79.178.51 20041 

855 4.24E-05 69.35.155.124 7179 

856 4.23E-05 170.227.13.31 795 

857 4.23E-05 52.218.22.236 12365 

858 4.23E-05 175.84.154.86 33722 

859 4.23E-05 175.84.132.87 17657 

860 4.23E-05 36.59.215.145 22669 

861 4.23E-05 161.39.15.102 10784 

862 4.22E-05 202.209.116.72 8932 

863 4.22E-05 223.166.150.244 11212 

864 4.21E-05 146.7.147.205 1386 

865 4.21E-05 49.36.159.243 8398 

866 4.21E-05 175.84.128.99 3343 

867 4.20E-05 202.209.125.142 815 

868 4.19E-05 45.170.193.77 37258 

869 4.19E-05 161.72.1.141 24210 

870 4.19E-05 201.244.17.53 6350 

871 4.18E-05 170.238.72.108 36394 

872 4.17E-05 202.118.35.6 20977 

873 4.17E-05 42.27.128.77 20987 

874 4.17E-05 162.103.88.227 25248 

875 4.16E-05 118.66.185.104 13346 

876 4.16E-05 45.172.78.83 11223 

877 4.15E-05 173.215.39.205 2611 

878 4.14E-05 175.84.132.245 1604 

879 4.14E-05 175.84.155.156 13874 

880 4.14E-05 175.240.10.56 6399 

881 4.13E-05 37.190.21.119 5242 

882 4.12E-05 201.194.10.94 8673 

883 4.12E-05 136.127.65.149 36822 

884 4.11E-05 162.160.153.28 14688 

885 4.11E-05 180.229.155.131 13813 

886 4.11E-05 171.235.120.182 21310 
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887 4.11E-05 177.125.214.27 2145 

888 4.10E-05 175.84.153.151 880 

889 4.10E-05 161.5.163.232 4136 

890 4.10E-05 175.70.105.76 23896 

891 4.10E-05 161.146.134.191 32584 

892 4.09E-05 161.83.182.175 12518 

893 4.09E-05 113.201.215.235 31620 

894 4.09E-05 175.84.140.10 4762 

895 4.09E-05 177.160.239.227 10274 

896 4.09E-05 161.75.133.153 554 

897 4.08E-05 179.163.203.99 331 

898 4.08E-05 143.45.162.123 19029 

899 4.07E-05 35.5.69.9 18246 

900 4.06E-05 161.185.231.254 10909 

901 4.06E-05 220.178.3.149 18486 

902 4.06E-05 187.92.213.3 6064 

903 4.06E-05 161.146.140.150 18524 

904 4.06E-05 175.69.130.10 33442 

905 4.05E-05 161.40.202.205 3394 

906 4.05E-05 16.136.247.143 538 

907 4.05E-05 161.80.16.160 3302 

908 4.04E-05 175.71.211.9 9945 

909 4.04E-05 113.201.219.212 1786 

910 4.03E-05 136.68.156.29 1319 

911 4.03E-05 113.201.201.246 1722 

912 4.03E-05 161.40.202.191 9152 

913 4.03E-05 161.83.253.244 20780 

914 4.03E-05 161.40.204.24 24794 

915 4.03E-05 175.84.155.225 30752 

916 4.03E-05 175.84.140.88 7756 

917 4.03E-05 135.56.61.236 21841 

918 4.03E-05 162.173.232.53 24418 

919 4.02E-05 175.73.57.187 11792 

920 4.01E-05 182.236.93.238 4252 

921 4.01E-05 131.14.10.51 5953 

922 4.01E-05 80.9.254.161 5178 

923 4.01E-05 161.53.10.162 30074 

924 4.00E-05 13.51.248.22 12325 

925 4.00E-05 170.227.4.52 9732 

926 4.00E-05 37.27.86.234 8808 

927 4.00E-05 175.71.182.14 23849 

928 4.00E-05 171.128.156.245 7143 

929 4.00E-05 167.104.87.168 1068 
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930 3.99E-05 175.84.134.115 28467 

931 3.98E-05 55.36.78.80 31695 

932 3.98E-05 170.238.203.236 5863 

933 3.98E-05 195.89.24.101 12399 

934 3.97E-05 162.102.118.153 22624 

935 3.97E-05 175.241.116.116 3464 

936 3.96E-05 113.201.216.125 2321 

937 3.96E-05 161.145.232.158 10950 

938 3.95E-05 118.65.59.110 20234 

939 3.95E-05 136.7.228.97 9025 

940 3.95E-05 180.211.115.29 14771 

941 3.95E-05 162.198.28.34 670 

942 3.95E-05 161.5.150.26 8221 

943 3.94E-05 175.84.132.203 3640 

944 3.94E-05 171.199.181.86 37196 

945 3.94E-05 200.28.218.248 29165 

946 3.93E-05 117.154.160.44 25963 

947 3.93E-05 175.84.136.10 13854 

948 3.93E-05 113.201.196.152 20390 

949 3.93E-05 161.80.4.220 8330 

950 3.93E-05 175.84.152.254 8681 

951 3.92E-05 161.40.202.119 8846 

952 3.92E-05 173.196.77.144 4628 

953 3.92E-05 170.230.42.53 34975 

954 3.92E-05 143.48.177.27 26051 

955 3.91E-05 113.201.151.195 1305 

956 3.91E-05 161.61.127.96 3439 

957 3.91E-05 13.219.210.141 13145 

958 3.90E-05 173.215.40.67 1826 

959 3.90E-05 179.160.58.204 10279 

960 3.90E-05 171.168.22.161 16136 

961 3.90E-05 158.48.141.156 1056 

962 3.90E-05 173.250.215.201 2804 

963 3.90E-05 75.201.73.155 7858 

964 3.90E-05 182.237.76.144 21813 

965 3.90E-05 113.201.192.116 31645 

966 3.89E-05 175.84.156.201 18000 

967 3.89E-05 161.5.161.34 5737 

968 3.88E-05 105.229.64.61 11029 

969 3.88E-05 203.253.164.255 1378 

970 3.88E-05 131.96.193.7 54 

971 3.88E-05 171.198.20.108 30884 

972 3.88E-05 170.227.3.236 32645 
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973 3.88E-05 161.130.5.34 4546 

974 3.88E-05 173.219.141.10 5504 

975 3.88E-05 113.201.191.7 12238 

976 3.88E-05 194.191.86.134 21603 

977 3.87E-05 45.62.83.102 2766 

978 3.86E-05 171.235.120.255 5541 

979 3.86E-05 175.70.191.45 10837 

980 3.86E-05 175.251.49.114 16993 

981 3.86E-05 175.84.155.232 611 

982 3.86E-05 135.56.51.68 5385 

983 3.86E-05 131.96.29.66 23086 

984 3.86E-05 170.230.40.14 3735 

985 3.85E-05 161.80.34.23 7797 

986 3.85E-05 175.84.151.186 5363 

987 3.85E-05 171.220.86.170 28879 

988 3.85E-05 42.27.130.163 21549 

989 3.84E-05 143.45.227.111 10501 

990 3.84E-05 162.191.104.189 30887 

991 3.84E-05 173.215.42.10 32006 

992 3.84E-05 170.199.101.4 475 

993 3.84E-05 99.11.157.100 28244 

994 3.84E-05 211.176.102.228 6864 

995 3.84E-05 113.201.208.82 20211 

996 3.84E-05 180.211.115.183 13811 

997 3.83E-05 202.118.33.252 18640 

998 3.83E-05 175.84.163.201 545 

999 3.83E-05 175.84.145.217 23339 

1000 3.83E-05 161.144.232.64 1664 

 


