
COMPUTATIONAL METHODS IN POPULATION GENETICS

A Dissertation

Submitted to the Faculty

of

Purdue University

by

Aritra Bose

In Partial Fulfillment of the

Requirements for the Degree

of

Doctor of Philosophy

December 2019

Purdue University

West Lafayette, Indiana



ii

THE PURDUE UNIVERSITY GRADUATE SCHOOL

STATEMENT OF DISSERTATION APPROVAL

Dr. Petros Drineas, Co-chair

Department of Computer Science

Dr. Peristera Paschou, Co-chair

Department of Biological Sciences

Dr. Alex Pothen, Committee Member

Department of Computer Science

Dr. Hemanta K. Maji, Committee Member

Department of Computer Science

Approved by:

Dr. Christopher W. Clifton

Graduate Committee Chair, Department of Computer Science



iii

To Amma



iv

ACKNOWLEDGMENTS

This journey would not have been possible without the help and support of many

people. First and foremost, I would like to thank my advisor, Prof. Petros Drineas

for his continuous technical, logistical and personal support throughout the journey.

I am deeply indebted to Petros for introducing me to the wonderful interdisciplinary

world of population genetics, for trusting in my abilities and showing a great deal of

patience. Over the years, he has inspired me to think independently about research

problems and provided valuable critique while instilling a sense of optimism and

confidence in me. He took care of all logistical issues and resources by providing

generous funding 1 throughout my years at Purdue. His advice has helped me to

become a better researcher and most importantly, a better person. I feel honored to

have been advised by him and hope to continue this wonderful relationship.

In almost every respect, Prof. Peristera Paschou has served as a second advisor on

this dissertation. She has taught me the art of scientific writing and has helped me

with a lot of background in genetics which I lacked. She has patiently discussed

ideas, edited write-ups, rehearsed talks and helped me network with other peers and

collaborators in genetics conferences. I will always be grateful to her for mentoring

me and providing resources in the Department of Biological Sciences. I also want to

thank members of Prof. Drineas and Prof. Paschou’s group for helping me through

different stages of this dissertation.

I want to thank my two other committee members, Prof. Alex Pothen and Prof.

Hemanta K. Maji. Prof. Pothen has discussed some key ideas in this dissertation and

has nudged me into the right direction whenever I sought help. Prof. Maji enriched

1The research in this dissertation was supported by NSF grants IIS-1661756, IIS-1661760 and
IIS-1715202.



v

my understanding of the topics in this dissertation by asking the most insightful

questions.

Apart from my committee, I want to thank Dr. Laxmi Parida for hosting me for

three consecutive summers at the Computational Biology center in IBM T.J. Watson

Research Center, Yorktown Heights, NY. I would also like to thank Dr. Daniel Platt

for endless discussions about population genetics and beyond. Dan has been an

inspirational figure throughout the past four years that I have known him. His ideas

are instrumental to two chapters of this dissertation. Being mentored by Laxmi and

Dan had been one of the most fulfilling experiences.

I thank the administrative staff in the Computer Science department for their guid-

ance regarding the process. The folks at Purdue Research Computing also deserves

a special mention. They played a key role in maintaining Brown and Snyder clusters

on which most of my code was implemented. They were very helpful with the various

tricky issues I have faced when running and installing software in the clusters.

We all need support systems beyond academics in order to push through the ups and

downs of the graduate student life. I want to acknowledge that without my parents

this wouldn’t have been possible. Long before I started this, they showed utmost belief

in me and supported me throughout. Their encouragement and optimism in toughest

of situations helped me get through. Growing up in a middle-class background, Maa

and Babaiya provided beyond their wits to ensure that I achieve what I seek. For

that, and everything else, I will be forever grateful. To say that I would be nowhere

without their constant support is a huge understatement. I wish my grandparents

were there to see this dissertation come into life. Their influence on my life is immense

and there is not a passing day, that I spend without missing them. I dedicate this

thesis to Amma and my two Dadubhais. It is their blessing that has helped me push

through.



vi

TABLE OF CONTENTS

Page

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xii

ABBREVIATIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xxii

ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xxiii

1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

2 BACKGROUND . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1 Genetics Fundamentals . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1.1 Ploidy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1.2 Single Nucleotide Polymorphisms . . . . . . . . . . . . . . . . . 6

2.1.3 Human Genetic Variation . . . . . . . . . . . . . . . . . . . . . 6

2.1.4 Population Structure . . . . . . . . . . . . . . . . . . . . . . . . 7

2.1.5 Tests for Admixture . . . . . . . . . . . . . . . . . . . . . . . . 10

2.1.6 Linkage Disequilibrium . . . . . . . . . . . . . . . . . . . . . . . 14

2.1.7 Ancestral Recombination Graph . . . . . . . . . . . . . . . . . . 15

2.1.8 Association Studies . . . . . . . . . . . . . . . . . . . . . . . . . 16

3 RECONSTRUCTING GENETIC POPULATION HISTORY . . . . . . . . . 19

3.1 Genetics of the Peloponnesean Populations . . . . . . . . . . . . . . . . 19

3.1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.1.2 Materials and Methods . . . . . . . . . . . . . . . . . . . . . . . 21

3.1.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.1.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32



vii

Page

3.2 Integrating Linguistics, Social Structure and Geography to Model Gene
Flow in India . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.2.2 Materials and Methods . . . . . . . . . . . . . . . . . . . . . . . 37

3.2.3 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.2.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.2.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

4 TERAPCA: A FAST AND SCALABLE SOFTWARE PACKAGE TO STUDY
GENETIC VARIATION IN TERA-SCALE GENOTYPES . . . . . . . . . . 66

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

4.2 Materials and Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

4.2.1 Simulated Datasets . . . . . . . . . . . . . . . . . . . . . . . . . 69

4.2.2 Real Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

4.2.3 TeraPCA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

4.2.4 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

4.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

4.3.1 Synthetic Datasets . . . . . . . . . . . . . . . . . . . . . . . . . 77

4.3.2 Real Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

4.3.3 Multithreading . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

4.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

5 SSIMRA: MULTIPLE LOCI SELECTION WITH MULTIWAY EPISTASIS
IN COALESCENCE WITH RECOMBINATIONS . . . . . . . . . . . . . . . 85

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

5.2 Materials and Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

5.2.1 Modeling Multiple Loci Selection with Multiway Epistasis . . . 87

5.2.2 Backward Simulator Model . . . . . . . . . . . . . . . . . . . . 88

5.2.3 Forward Simulator Model . . . . . . . . . . . . . . . . . . . . . 93

5.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99



viii

Page

5.3.1 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

5.3.2 Comparison Study . . . . . . . . . . . . . . . . . . . . . . . . . 99

5.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

6 STRUCTURE INFORMED CLUSTERING FOR POPULATION STRAT-
IFICATION AND GENETIC RISK PREDICTION . . . . . . . . . . . . . 103

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

6.2 Materials and Methods . . . . . . . . . . . . . . . . . . . . . . . . . . 106

6.2.1 Simulated Datasets . . . . . . . . . . . . . . . . . . . . . . . . 106

6.2.2 Cochran-Armitage trend χ2 . . . . . . . . . . . . . . . . . . . 108

6.2.3 EIGENSTRAT . . . . . . . . . . . . . . . . . . . . . . . . . . 108

6.2.4 CluStrat . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

6.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

6.3.1 BN model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

6.3.2 PSD model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

6.3.3 TGP model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

6.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

7 CONCLUSION AND FUTURE WORK . . . . . . . . . . . . . . . . . . . 126

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

Appendix A: Supplementary Material for Chapter 3 . . . . . . . . . . . . . . . 151

A.1 Genetics of the Peloponnesean Populations . . . . . . . . . . . . . . . 151

A.1.1 Supplementary Information . . . . . . . . . . . . . . . . . . . 151

A.2 Integrating linguistics, social structure and geography to model gene
flow in India . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157

A.2.1 Supplementary Information . . . . . . . . . . . . . . . . . . . 157

Appendix B: Supplementary Material for Chapter 4 . . . . . . . . . . . . . . . 175

A.3 Supplementary Information . . . . . . . . . . . . . . . . . . . . . . . 175

Appendix C: Supplementary Material for Chapter 5 . . . . . . . . . . . . . . . 180



ix

Page

A.4 Supplementary Information . . . . . . . . . . . . . . . . . . . . . . . 180

VITA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184



x

LIST OF TABLES

Table Page

3.1 Correlations between geographic coordinates and principal components . . 25

3.2 Shared ancestry between Peloponnesean populations and Slavic, Italian
and other European populations. (The first number for each pair of populations

indicates the average shared ancestry for values of K between 4 and 8, while the number

in parenthesis indicates the standard deviation) . . . . . . . . . . . . . . . . . . . 30

3.3 Shared ancestry between the populations of Mani and Tsakonia and Slavic,
Italian and other European populations. (The first number for each pair of

populations indicates the average shared ancestry for values of K between 4 and 8,

while the number in parenthesis indicates the standard deviation) . . . . . . . . . . 31

3.4 Top ten significant ethnic groups in India capturing the genetic structure
of the subcontinent as reflected by the RLS statistic (∗ Vysyas are classified
as in between SGA and SGB [81]). . . . . . . . . . . . . . . . . . . . . . . 53

3.5 f3(C;A,B) tests highlighting the Steppe and Dravidian mixture in Meghawal
and the negative f3 values and reasonably significant z-scores. This con-
firms the South India to Gujarat direction of gene flow. Steppe MLBA:

Middle to Late Bronze Age samples from the Steppes [42] . . . . . . . . . . . . . . 57

4.1 Data sets on which TeraPCA was evaluated (simulated and real) . . . . . . 69

4.2 Wall-clock running times comparisons for the datasets of Table 4.1 using
a single thread and 2 GBs of system memory ∗ indicates no convergence after

50 hrs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

5.1 Example with three loci under selection and all the possible different epis-
tasis, whether explicitly specified or simply neutral. All the user-specified
values are shown in red. The back-sSimRA algorithm uses the effective
population size as shown here. . . . . . . . . . . . . . . . . . . . . . . . . . 90

A.1 Districts of origin of the subjects . . . . . . . . . . . . . . . . . . . . . . 151



xi

Table Page

A.2 Top 10% of the significant f3 statistics (f3(C;A,B)) highlighting the most
admixed populations in India. Gounders, Manipuri Brahmins, Tharus and
Gonds are the most admixed among all tribes in India. . . . . . . . . . . 174

A.3 Accuracy of the ten leading eigenvalues computed by TeraPCA and Flash-
PCA2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177

A.4 K-S test statistics with corresponding p-values showing that the proba-
bility distributions of H as returned by fwd-sSimRA and back-sSimRA
abstracts each other very closely. . . . . . . . . . . . . . . . . . . . . . . 180



xii

LIST OF FIGURES

Figure Page

2.1 A. A population phylogeny with branches corresponding to F2 (green),
F3 (yellow), and F4 (blue); B. An admixture graph extends a population
phylogeny by allowing gene flow (red, solid line) and admixture events
(red, dotted line). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.2 ARG of four populations with three lineages (red, blue and green) showing
recombination (nodes splitting into two) and coalescence (nodes merging
into one). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.1 Substructure of the Peloponnesean populations. (a) PCA analysis without
the Maniot and Tsakones populations showing a partial separation of the
population of Laconia. (b) PCA illustrating the separation of Pelopon-
neseans in three groups. On the left is placed the population of Tsakones
(north: open circles, south: green dots). On the right are placed the
populations of Maniots (Deep Mani, East and West Tayetos.). All the
remaining Peloponneseans are clustered in the center. (c) Map of Pelo-
ponnese showing the populations studied. Each dot corresponds to the
origin of a participant. (d)ADMIXTURE analysis. Notice the distinct
structure of the Maniots and the Tsakones and their clear cut separation
from all other Peloponneseans in all values of K. . . . . . . . . . . . . . . 22

3.2 Genetic similarity of Peloponneseans and Europeans showing differentia-
tion from Slavs. (a) Network analysis illustrating the high connectivity
between the Peloponnesean populations as well as between the Pelopon-
neseans, the Sicilians and the Italians. Notice the distance between Pelo-
ponneseans and the Slavic, and Near Eastern populations. Peloponneseans
are connected with the Near Eastern populations through Crete and Do-
decanese. (b) Notice the north to south distribution of the populations
and that the Peloponneseans are placed to the far left of the graph, over-
lapping with the Sicilians and distinct from the Slavs (on the right side).
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26



xiii

Figure Page

3.3 Testing the theory of replacement of medieval Peloponesians by Slavs and
Asia Minor settlers. (a) PCA analysis shows the broad separation of Pelo-
ponneseans from four populations of the Slavic homeland (Ukrainians,
Polish, Russians and Belarusians). (b) PCA comparisons of the Pelopon-
neseans with three Greek-speaking Asia Minor populations shows only
partial overlap with the population of the Asia Minor Aegean coast. (c)
ADMIXTURE analysis illustrates the wide separation of Peloponneseans
from the Slavs in all values of K. . . . . . . . . . . . . . . . . . . . . . . . 27

3.4 A. Map of India showing the locations of the 835 Indian samples, from 84
well-defined population groups, that were used as the starting point of this
study; B. PCA plot of the normalized dataset consisting of 368 individuals,
genotyped on 48,373 SNPs shows language groups are clearly significant
in the PCA plot and correlate well with the principal components; C.
Framework of our approach for Correlation Optimization of Genetics and
Geodemographics (COGG). . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.5 Population network analysis of all Indian populations reveals four isolated
clusters, representing language groups (40% of edges are shown). . . . . . 54

3.6 A. TreeMix plot with the number of migration edges set to five indicate
that the Siberians and Mongols show the most drift from DR SGA and
SGBs (residual plot in Figure A.25). Migration from Uygurs to the North-
western Frontier populations is also found, making these populations a
gateway to the Indian populations; B. Networks formed using the top
five PCs (see Methods for the network formation algorithm) and five NNs
showing three major paths leading to the two entry points of India; C.
Meta-analysis of the ADMIXTURE plot (Figure A.26) quantifies the AD-
MIXTURE results (darker colors indicate higher pairwise shared ances-
try). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61



xiv

Figure Page

3.7 Outgroup f3(Y RI;X, Y ) gradient map, showing pie charts of the shared
affinity between Indian populations (denoted by X) and Eurasian/East
Asian populations (denoted by Y ). The color coding scheme is represented
in the right hand side, signifying the colors attributed to perfect affinity
(purple for AA, red for DR, green for IE, and blue for TB). The colors are
distributed across gradients with respect to the maximum and minimum
significant f3 values. The population annotations and the detailed f3

statistics can be found in the supplement (Supplementary Table 7). This
gradient map shows the Europeans having more shared genetic drift from
the outgroup YRI with the IE speakers of India (specifically, IE SGA),
whereas the East Asians have the maximum shared genetic affinity with
TB SGC. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

4.1 Projection of the samples of the 1000 Genomes dataset on the top two left
singular vectors (PC1 and PC2), as computed by TeraPCA. . . . . . . . . 77

4.2 Entry-wise relative error of the top ten leading eigenvectors returned by
TeraPCA for the HGDP dataset, compared to the eigenvectors returned by
LAPACK. The y-axis shows the relative error; recall that each eigenvector
has 1,043 entries. We observe that the relative error is roughly the same
for each entry of a specific eigenvector. . . . . . . . . . . . . . . . . . . . . 79

4.3 Speedup of TeraPCA over single-threaded execution. . . . . . . . . . . . . 81

5.1 Outline of the main steps of the forward model. (a)Schematic diagram for
simulating the “book of populations” which closely resembles the biological
process of evolution. (b) Tracing the ARG from the book of populations
(example ARG outlined in red). . . . . . . . . . . . . . . . . . . . . . . . . 95

5.2 Comparing the height of the ARG (H) between the fwd-sSimRa and back-
sSimRA for selection at two-loci with and without epistasis, respectively.
We set g = 25K, r = 1.0×10−8, N = 100, s = {0.3, 0.3, 0.3}, es = {0, 0.1}
and m = {10, 20, 30, 40}. (i) The box-and-whisker plot summarizes the
result for each m. On each box, the central mark is the mean, the edges
of the box are the 25th and 75th percentiles, the whiskers extend to the
most extreme data points not considered outliers, and outliers are plotted
individually. (ii) Q-Q plots for each m showing that the distributions of H
from fwd-sSimRa and back-sSimRA agrees (iii) CDFs of fwd-sSimRa and
back-sSimRA also follow each other closely, reconfirming the agreement
between them. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100



xv

Figure Page

5.3 Comparison on the height of the ARG (H)for different s1 values in the case
of no recombination for g = 1000, N = 400 andm = {20, 50, 80, 120, 150, 200, 250}101

6.1 Projection of the samples from three populations simulated from BN model
on the top two axes of variation. . . . . . . . . . . . . . . . . . . . . . . . 115

6.2 Box plots for spurious and causal associations on the BN model shows
that Armitage trend χ2 has the maximum number of spurious associations
containing about 4-5 causal SNPs whereas EIGENSTRAT has minimum
number of spurious associations while detecting almost zero causal SNPs.
CluStrat has more spurious associations than EIGENSTRAT and consid-
erably less than Armitage trend χ2 recovering slightly more number of
causal SNPs than the latter. . . . . . . . . . . . . . . . . . . . . . . . . 116

6.3 Projection of the samples from PSD model with varying sets of values of
α. We observe that increasing α increases the density between individuals
leading to admixture and creates a uniform gradient as all values of αi are
equal. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

6.4 Box plots for spurious and causal associations on the PSD model (α =
{0.1, 0.1, 0.1}) shows Armitage trend χ2 has maximum number of spu-
rious associations containing less causal SNPs than the BN model (Fig-
ure 6.2) owing to the admixed nature of the individuals in PSD. EIGEN-
STRAT has minimum number of spurious associations while detecting
almost zero causal SNPs. CluStrat has more spurious associations than
EIGENSTRAT and less than Armitage trend χ2 recovering two to three
fold more causal SNPs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

6.5 Box plots for spurious and causal associations on the TGP model shows
Armitage trend χ2 has the maximum number of spurious associations con-
taining less causal SNPs than both the BN and PSD model (Figure 6.2 and
6.4) owing to the distributions of admixed samples across the world of the
individuals. CluStrat outperforms both the methods in this scenario as it
has the minimum number of spurious associations as well as the highest
number of causal SNPs. . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

6.6 Dendrograms obtained after running AHC with Ward’s linkage on PSD
model (α = {0.1, 0.1, 0.1}) shows Mahalanobis distance shows fine grained
interactions between the individuals inside a cluster recovering population
substructure and cryptic relatedness which Euclidean distance based GRM
fails to recover. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123



xvi

Figure Page

6.7 Box plots for spurious and causal associations obtained by running AHC
with Mahalanobis and Euclidean distances on the PSD model (α = {0.1, 0.1, 0.1}).
We observe similar performance on both the distance metrics in terms of
identifying true causal variants. Mahalanobis distance discovers less spu-
rious associations than Euclidean distance. . . . . . . . . . . . . . . . . . 124

A.1 Locations of the populations listed in Supplementary Table 1 . . . . . . . 152

A.2 Testing the hypothesis of Armenian ancestry of Peloponneseans. Fallmer-
ayer proposed that Armenians were among the medieval populations moved
to Peloponnese by the Byzantines. Comparison of Peloponneseans with
the Armenians by, (a) PCA analysis (b) ADMIXTURE analysis, makes
this hypothesis unlikely. . . . . . . . . . . . . . . . . . . . . . . . . . . . 153

A.3 Testing the hypothesis of Slavic origin of culturally distinct Peloponnesean
populations. PCA comparisons of (a) The Maniots of Deep Mani, Tayetos
and Tsakones, with populations of the Slavic homeland (Ukrainians, Pol-
ish, Russians and Belarusians). Notice the broad separation between the
Slavs and the Peloponnesean populations. (b) ADMIXTURE analysis
shows the complete separation of Maniots and Tsakones from the Slavs in
all K values. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154

A.4 Testing the hypothesis of Mardaitic origin of Maniots. The Mardaites
were a medieval Middle Eastern population considered by some historians
to be the ancestors of the Maronites of Lebanon. Comparison of Maniots
with Maronites and other Middle Eastern populations by (a) PCA and,
(b) ADMIXTURE analysis makes this hypothesis unlikely. . . . . . . . . 155

A.5 Unique genetic structure of the population of Tsakonia. PCA comparisons
of Tsakones with A. the Eastern Europeans. B. North Africans C. Near
Eastern populations D. Southern Europeans. . . . . . . . . . . . . . . . . 156

A.6 PCA plot of all Indian samples. We note that the formation of the clus-
ters is primarily dominated by language groups, with some populations
(Gond, Manipuri Brahmins, Dusadh) showing a certain amount of admix-
ture between the language groups. A few tribal populations across IE and
DR languages (Vedda, Madiga, Kol, Bhil, Chamar, Kuruchiyan) cluster
together. We also observe that the Irulas, Paniyas, Kurumba and Kadars
show divergence from other DR SGC populations. . . . . . . . . . . . . 157



xvii

Figure Page

A.7 ADMIXTURE plot of all Indian populations for values of K between two
and eights. Our findings are very similar to the observations in Supple-
mentary Figure 1. The main observation is (again) that the formation
of the clusters is primarily dominated by language groups, especially for
larger values of K. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158

A.8 An ADMIXTURE plot (for values of K between two and eight) of the
normalized data set (368 individuals 48,373 SNPs) clearly shows the four
main components related to language groups (Dravidian, Indo-European,
Tibeto-Burman, and Austro-Asiatic); see, for example, the plot for K
equal to five or six. The plot also shows the divergence of the DR SGC.
We perfomed a meta-analysis of the results of the ADMIXTURE plot
(see 3.1.2 for details) to visually and numerically quantify the amount
of shared ancestry (as revealed by ADMIXTURE) between any pair of
populations. Darker colors indicate larger amounts of shared ancestry;
we observe a higher amount of shared ancestry between the IE and DR
populations, across all social groups, indicating the existence of significant
admixture between the two linguistic groups. The isolation of the DR SGC
samples is primarily due to the isolation of hill SGCs (such as Irula, Kadar,
Paniyas, etc.) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159

A.9 Plotting the top two discriminants by (a) region and (b) language groups.
Clearly, this follows much what we saw in Figure A.6. However, looking
closely we see the following: (a) we see a geographical gradient, start-
ing from IE SGA and IE SGB in Northwestern India to the other Indo-
European and Dravidian SGA. We also see that the IE SGC sit closer
to the Austro-Asiatic speakers, justifying their geographical location in
Central India. This is followed by the Tibeto-Burman speakers forming
another cluster, concluding the other spectrum of the gradient. (b) Lay-
ers of stratification appears, from right to left. Although the LDA was
performed by language groups, we see a two-layer stratification, first by
castes and then by languages. The IE SGA form a separate cline, followed
by DR SGA; then, the IE and DR SGBs follow. Then some DR and AA
tribal populations cluster together, followed by a separate cluster of IE
tribal populations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160

A.10 Statistical significance of the COGG output (using random permutations
of the features) Clearly, COGG is statistically significant for both the first
and the second principal components . . . . . . . . . . . . . . . . . . . . 161



xviii

Figure Page

A.11 (a) COGG-CCA, when run with top 8 PCs, shows statistical significance
with r2 = 0.94 when compared against random permutations of the vari-
ables with average r2 = 0.75. (b) Varying number of PCs to perform
COGG-CCA results in the maximum r2 when top 6 to 8 PCs are used. 162

A.12 The pairwise shared ancestry matrix of relatedness within DR show high
relatedness among a large portion of DR speakers across caste affiliations.
The Tribes such as Irula, Kadar, Palliyar, Paniya and Malayan show sig-
nificant divergence from the others. Among them the Paniyas show abso-
lute divergence, with very less amount of ancestry with all DR speakers,
whereas the others tend to form a cluster and show that although they
share significant amount of ancestry with each other, than the DR SGA.
The SGB and SGAs tend to cluster together showing high relatedness with
some SGCs such as Adi-Dravider, Hakkipikki, Hallaki, Kuruchiyan, etc. 163

A.13 Most significant (Z-score higher than 85) outgroup f3 statistics of the form
f3(Y RI;A,B) where YRI is the outgroup, A are the groups from Table 3.4
and B are all the pan-Indian populations in our data spanning across social
groups and language families. . . . . . . . . . . . . . . . . . . . . . . . . 164

A.14 The top two principal components show a long cline of IE and DR speakers
with some divergence by few SGCs, such as Tharu, Irula, Palliyar, Paniyas,
etc. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164

A.15 The pairwise shared ancestry matrix of relatedness within IE show high
relatedness among most of the IE speakers across caste affiliations. The
Tharus show divergence from rest of the IE speakers except the Uttaran-
chal Brahmins, who share close relatedness with the East Asian component
in their gene pool. The Brahmin groups ( GJR – Gujarati; UP – Uttar
Pradesh; UTR – Uttaranchal; WB – West Bengal) show high values of
shared ancestry within each other and rest of the IE speakers. Only UTR
Brahmins show some divergence. The tribes such as Sahariya, Bhil and
Chamar are more closely related to the fellow SGCs than the SGA, but
still show around 70% of relatedness with them. . . . . . . . . . . . . . 165

A.16 The shared ancestry matrix of relatedness between IE and DR speakers
show that high relatedness with some divergent groups, following from
the PC plot in Figure A.15. The DR SGA share very high ancestry with
IE SGA and SGC, showing that there was high admixture and contact
between these groups prior to endogamy. . . . . . . . . . . . . . . . . . 166



xix

Figure Page

A.17 The pairwise shared ancestry matrix of relatedness within AA show very
high relatedness among almost all AA speakers. Birhors, who are nomadic
hunter-gatherer people dwelling in forests share less ancestry than others,
probably because of their subsistence nature, where they roam around
the forests of eastern and central India. The Khasis also show divergence
from the AA speakers because of their location in northeastern India near
TB SGC and presence of admixture from TB speakers. . . . . . . . . . 166

A.18 The top two PCs of AA speakers in India show most of the groups form a
cluster with Birhor and Korwa showing divergence from the main cluster. 167

A.19 PCA plot of the first two PCs reveals the Austronesians (Ami and Atayal)
and the IE and DR speakers to be distinct from the rest of the southeast
Asians along with the Indian AA speakers. . . . . . . . . . . . . . . . . . 167

A.20 (a) ADMIXTURE plot (for values of K between two and eight) of the
Indian dataset merged with Southeast Asian populations shows that the
AA and TB speakers do not share a lot of admixture with other Austric
speakers from Southeast Asia; (b) The pairwise shared ancestry matrix of
AA and TB speakers highlighting that the Khasis share very high amount
of ancestry with TB tribals, unlike other AA groups. . . . . . . . . . . . 168

A.21 (a) Network analysis for top 2 PCs and 5 nearest neighbors show that
the Khasis forming a bridge between Indian AA speakers and southeast
Asia; (b) TreeMix plot of Indian and Southeast Asian AA speakers with
8 migration edges reveal that there is a migration edge from Cambodian
to Bonda, who are Indian AA speakers attributed to southeastern Asian
admixture. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169

A.22 (a) Network analysis for top 2 PCs and 5 nearest neighbors show that
the Khasis forming a bridge between Indian AA speakers and southeast
Asia; (b) TreeMix plot of Indian and Southeast Asian AA speakers with
8 migration edges reveal that there is a migration edge from Cambodian
to Bonda, who are Indian AA speakers attributed to southeastern Asian
admixture. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170

A.23 (a) PCA plot of the top two principal components of Indian TB speakers
and mainland Chinese populations show that the TB SGC are closer to
the southern Chinese; (b) Network analysis show that TB SGC are closer
to Central and Southern China who are geographically closer to northeast
India. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171



xx

Figure Page

A.24 Plotting of Indian and Eurasian populations projected on the top two
PCs, mirror the geography of Eurasia uncovering a triangular structure
with Europeans residing in one corner, the Chinese on another corner and
the DR and AA speaking tribal populations of India occupying the third
corner. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172

A.25 Residual fit from the maximum likelihood tree in Fig 3. The residuals
are normalized over the residual covariance between each pair i and j.
Residuals above zero represent populations that are more closely related
to each other and are candidates for admixture events. . . . . . . . . . . 172

A.26 ADMIXTURE plot (for values of K between two and eight) of the In-
dian dataset merged with Eurasian populations (1,332 individuals, 42,973
SNPs). Meta-Analysis of this plot in Fig 4a, quantifies the relationship
between populations. The IE and DR Forward and Backward Castes
share significant amount of ancestry with the Northwestern Frontier pop-
ulations of Afghanistan and Pakistan, followed by ancestry from Central
Asia, Turkey and Caucasia. The TB tribals belong to the same cluster as
the Chinese populations along with, Mongolia and Uygurs. . . . . . . . . 173

A.27 Plots of the three leading eigenvectors returned by TeraPCA and Flash-
PCA2 for the simulated dataset S6. . . . . . . . . . . . . . . . . . . . . . 175

A.28 The projection of the HGDP dataset along the two leading eigenvectors
computed by TeraPCA. . . . . . . . . . . . . . . . . . . . . . . . . . . . 176

A.29 The wall-clock times achieved by TeraPCA and FlashPCA2 when the num-
ber of eigenvectors that we seek to extract (k) ranges from 10 to 500 for
the dataset S6. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177

A.30 The wall-clock times achieved TeraPCA and FlashPCA2 when the number
of SNPs ranges from 20K to 100K on for the dataset S6. . . . . . . . . . 178

A.31 Proportion of variance captured by the ten leading eigenvectors returned
by TeraPCA when applied on the 1000 Genomes dataset (FlashPCA2
returns essentially the same values for the proportion of variance captured
by the top ten eigenvectors). . . . . . . . . . . . . . . . . . . . . . . . . . 178

A.32 Amount of time required to multiply the (normalized) covariance matrix
by a set of s vectors using the DGEMM BLAS routine of MKL for different
values of s, β and threads, for the datasets S6 and HGDP. . . . . . . . . 179



xxi

Figure Page

A.33 Comparing the height of the ARG (H) between the fwd-sSimRa and back-
sSimRA for selection at two-loci with and without epistasis, respectively.
We set g = 25K, r = 1.0 × 10−8 N = 100, s = 0.3, es = {0, 0.1} and
m = {10, 20, 30, 40}. (i) The box-and-whisker plot summarizes the result
for each m. On each box, the central mark is the mean, the edges of
the box are the 25th and 75th percentiles, the whiskers extend to the
most extreme data points not considered outliers, and outliers are plotted
individually. (ii) Q-Q plots for each m showing that the distributions of
H from fwd-sSimRa and back-sSimRA agrees (iii) Plot showing the CDFs
of fwd-sSimRa and back-sSimRA reconfirming the agreement between them.181

A.34 Comparing the height of the ARG (H) between the fwd-sSimRa and back-
sSimRA for selection at two-loci with and without epistasis, respectively.
We set g = 25K, r = 1.0 × 10−8 N = 100, s = {0.3, 0.3}, es = {0, 0.1}
and m = {10, 20, 30, 40}. (i) The box-and-whisker plot summarizes the
result for each m. On each box, the central mark is the mean, the edges
of the box are the 25th and 75th percentiles, the whiskers extend to the
most extreme data points not considered outliers, and outliers are plotted
individually. (ii) Q-Q plots for each m showing that the distributions of
H from fwd-sSimRa and back-sSimRA agrees (iii) Plot showing the CDFs
of fwd-sSimRa and back-sSimRA reconfirming the agreement between them.182

A.35 P-P plots of distributions of the height of the ARG (H) between fwd-
sSimRa and back-sSimRA for the neutral model with epistasis and no
epistasis at two loci respectively, by setting g = 25K, r = 1.0 × 10−8

N = 100, s = 0.3, es = {0, 0.1} and m = {10, 20, 30, 40}. . . . . . . . . . 183



xxii

ABBREVIATIONS

AHC Agglomerative hierarchical clustering

ARG Ancestral recombination graph

back-sSimRA backward simulator of sSimRA

BN Balding-Nichols

CCA Canonical correlation analysis

COGG Correlation optimization for genetics and geodemographics

FLOP Floating point operations

fwd-sSimRA forward simulator of sSimRA

GRM Genetic relationship matrix

GWAS Genome-wide association study

IRA Implicitly restarted Arnoldi

kya thousand years ago

LMM Linear Mixed Model

LD Linkage disequilibrium

MAF Minor allele frequency

PCA Principal component analysis

PSD Pritchard-Stephens-Donelly

RandNLA Randomized Numerical Linear Algebra

RLS Ridge leverage scores

sSimRA Simulation based random graph algorithms with selection

SMA Single marker analysis

SNP Single nucleotide polymorphism

SVD Singular value decomposition

WF Wright-Fisher model



xxiii

ABSTRACT

Aritra Bose Ph.D., Purdue University, December 2019. Computational Methods in
Population Genetics. Major Professor: Dr. Petros Drineas.

The field of population genetics has seen an unprecedented growth driven by the ad-

vancement of sequencing technologies, resulting in volumes of massive datasets. As

a result, efficient computational methods backed by theoretical foundations are re-

quired to analyze and understand the intricate details of complex biological processes

captured in the genetic code. To this end, we developed novel computational tools

to address issues related to population structure, scalability of methods, models of

evolution and disease association.

History of a population, in light of genomics, is reconstructed through series of set-

tlements, migrations, adaptations, demographic expansions, mixture, etc. To better

understand such a theory of migration for the Peloponnesean Greeks, we analyzed

their sub-structure and disproved the theory of their replacement by the Slavs in

medieval age. Ecological and environmental factors such as society, language and

geographical barriers, among others can influence gene flow in populations result-

ing in complex structure. We developed a computational framework called COGG

(Correlation Optimization of Genetics and Geodemographics) which studies the con-

tribution of these demographic factors shaping the genetic sub-structure of the Indian

subcontinent.

Principal Component Analysis (PCA) has profound impact in the study of population

structure and a significant challenge is to build scalable software to implement PCA

on tera-scale data. To address this issue, we built TeraPCA, an out-of-core, multi-
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threaded C++ implementation of the Randomized Subspace Iteration method pro-

viding a faster and accurate alternative to the current state-of-the-art packages.

Stochastic models of evolution provides a better abstraction of complex evolutionary

processes by simulating generations of random populations and provide foundations to

analyze genetic variation among species. We developed the first algorithm that builds

multiple loci selection with interacting polymorphic sites in a package called sSimRA.

We also provide the first comparison between backward and forward simulators which

models the effect of natural selection at multiple loci.

To address the issue of correcting for population structure confounding in Genome

Wide Association Studies (GWAS) we developed CluStrat, a structure informed clus-

tering based tool which outperforms the standard PCA based stratification correction

approaches. GWAS is used ubiquitously to detect bio-markers predicting disorder

traits and estimating heritability underlying phenotypic variation. One of the main

challenges in GWAS is to correct for population structure in order to find the true

positives. We provide a stratification correction technique called CluStrat, which

corrects for complex population structure by performing agglomerative hierarchical

clustering on the linkage disequilibrium (LD) induced distances between individuals

captured in the Mahalanobis distance based Genetic Relationship Matrix (GRM). We

further use CluStrat to outline a comprehensive guide to stratification and subsequent

disorder trait prediction or estimation utilizing the underlying LD structure of the

genotypes.



1

1 INTRODUCTION

The field of genetics has seen an unprecedented growth of data in the past years

with the development of low-cost, high-throughput methodologies for studying hu-

man genome-scale variations. As a result, numerous studies, such as, HGDP [1, 2],

HapMap [3], the 1000 Genomes project [4] and most recently, the UK Biobank [5] have

made available comprehensive datasets with wide coverage of the human genomes

across the world. Availability of such datasets has resulted in better understanding

of the evolutionary history of different species by studying population structure [6–8]

with effects of migrations, adaptations, population expansions [9–11], etc. The ability

to sequence and study DNA by calibrating the rate of accumulation of changes with

evolutionary time has enabled robust inferences about how humans have evolved,

thus making population genetics an essential tool to reconstruct the human popula-

tion history. We developed new methods along with standard tools to reconstruct the

history of the Peloponnesean peninsula, which has been inhabited since the middle

Paleolithic era (100 kya). Ancestry of the present day Peloponnesean Greeks had

been a topic of hot debate for over a century when it was proposed that medieval

Peloponneseans were totally extinguished by Slavic and Avar invaders and replaced

by Slavic settlers during the 6th century CE. We gathered samples from present day

Peloponneseans and studied their relatedness with the Slavic populations examining

the theory of replacement in light of genomics.

In another problem related to population structure, we developed several methods

to study the genetics of the south Asian populations, specifically, the influence of

demographic factors on the genetic structure of the Indian subcontinent. Geogra-

phy has been shown to closely correlate with genetic structure in other parts of the

world [7]. However, the strict endogamy imposed by the Indian caste system, and
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the large number of spoken languages add further levels of complexity. We set out

to explore how these sociolinguistic (social caste and language) and ecological factors

have shaped the gene flow in the Indian subcontinent. To this end, we developed

COGG (Correlation Optimization of Genetics and Geodemographics), a model that

optimally explains the observed population genetic sub-structure and used as a de-

scriptive statistic to explain genetic variation of a population in presence of fixed

effects.

As highlighted above, technological and scientific advances have made large-scale,

genome-wide projects feasible and cost-effective, thus calling for more sophisticated

and efficient computational tools to analyze the data. Principal Component Analysis

(PCA) is used ubiquitously across the field of genetics and it’s impact is truly massive.

The seminal work of Luca Cavalli-Sforza and collaborators in the late 1970s [8, 12]

pioneered the application of PCA to the study of human genetic variation. Although

PCA is widely used across genetics, it does not scale to datasets with more than a

few thousand samples as it has quadratic space and cubic time complexity, respec-

tively. However, in practice, one does not need all the principal components (PCs).

We use this relaxation by applying recent advances in the Randomized Numerical

Linear Algebra (RandNLA) community to compute a low-dimensional embedding in

a package called TeraPCA, a C++ package to approximate the top PCs (and corre-

sponding eigenvalues) of tera-scale genotype datasets. TeraPCA is a multi-threaded,

out-of-core implementation of the Randomized Subspace Iteration method, first an-

alyzed in [13, 14]. We demonstrate the advantage of TeraPCA over other standard

software suites to compute PCA on genotype data on both simulated and real-world

datasets.

Genetic variation in populations arise from complex evolutionary processes such as

mutation, recombination, adaptation, natural selection, random genetic drift, etc.

The study of genetic variation underwent a paradigm shift with the development

of coalescent theory [15, 16] which provided a mathematical foundation of gene ge-
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nealogies. With the advent of this theory, a classical forward-time Wright-Fisher

model [17] of evolution approach saw a transition to the new, backward-time coa-

lescent approach [18]. Coalescent processes allow fast approximation of the neutral

Wright-Fisher model, in which natural selection plays a major role in shaping patterns

of variation with the Ancestral Recombination Graph (ARG), a variant of Kingman’s

coalescent. We provide the first algorithm that modulates the ARG to incorporate

multi-locus selection with multi-way interaction between them and give a comprehen-

sive comparison of forward and backward-time approaches. This allows a validation

framework for including selection and interacting loci into standard population genetic

models, armed with which, we can study the complex evolutionary scenarios.

The study of genetic variation not only helps demystify a population’s history and

peopling, it has been used extensively to find loci associated with diseases [19–21].

The sharing of genetic data and results from the association studies has been a key

factor in mapping genes to diseases. In the past decade, laboratory experiments along

with GWAS have led to the discovery of many target genes related to obesity [22],

type 2 diabetes [23], inflammatory bowel disease [24], a host of psychiatric disor-

ders [25, 26] among others. Despite the popularity of GWAS to find causal loci for

various diseases it has been under scrutiny for the amount of spurious associations or

false positives it detects due to a variety of factors such as, number of loci affecting

the trait, genetic architecture (distribution of effect size and allele frequency at those

loci), sample size, genotyping platforms, heterogeneity of the trait, etc. [21]. Recently,

two independent studies [27, 28] failed to replicate the strong evidence for selection

for height across Europe as found in previous association studies [29–31], implying

that standard population structure correction approaches may not be enough, and

that more rigorous, sophisticated methods are required. To address this problem we

propose a correction technique for complex population structure while leveraging the

linkage disequilibrium (LD) induced distances between individuals. We implemented

CluStrat, which performs agglomerative hierarchical clustering using the Mahalanobis

distance based Genetic Relationship Matrix (GRM) representing the population-level



4

covariance (LD) for the genetic markers. This framework harnesses the interaction

between the markers to produce structure informed clusters correcting for population

stratification. We show that this method produces least amount of spurious associa-

tion and detects two to three fold more causal loci than other standard Linear Mixed

Model (LMM) or PCA based approaches.

In summary, this dissertation extends our understanding of both empirical and the-

oretical population genetics. It proposes methods to deal with a variety of open

problems in genetics such as the reconstruction of genetic history of a population as

well as the influence of demographic factors on it’s genetic structure. It highlights

different computational bottlenecks in these methods and provides a robust, scalable

and efficient software package expediting analysis of genotype data. Furthermore, it

strengthens our knowledge of theoretical aspects of the field by designing the first

validation framework of coalescent models for simulating complex evolutionary sce-

narios. In what follows, we put together important concepts of population genetics

in the Background section and thereafter address each of these above questions in

sequential order in each chapter of this dissertation.
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2 BACKGROUND

Genetic diversity within and between populations is a result of various evolutionary

processes that act on populations. These processes include mutation, recombination,

admixture, selection, migration, adaptation, population expansions or contractions,

etc. The Main goal of this dissertation is to develop methods to better understand

these evolutionary forces from an empirical and theoretical perspective. This chapter

provides the required background on foundations of population genetics and methods

of capturing genetic variation on topics of interest of this dissertation.

2.1 Genetics Fundamentals

2.1.1 Ploidy

Cells are the foundation of life. Plants, bacteria, human beings and every other living

organisms are made up of small, microscopic cells. In biology, ploidy is used to denote

the number of sets of chromosomes contained within the nucleus of a cell. The nucleus

of a eukaryotic cell is haploid if it has a single set of chromosomes, diploid, if it has

two homologous copies of each chromosome, one from each parent and polyploid when

cells have multiple sets of chromosomes, usually three or more. Human beings are

diploid organisms, containing 46 chromosomes (23 pairs) out of which, 22 pairs are

called autosomes, which look the same in both males and females. The 23rd pair is

the sex chromosome, which differs between males and females. Females having two

copies of the X chromosome and males have one X and one Y chromosome.
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2.1.2 Single Nucleotide Polymorphisms

The genetic constitution of an organism is called a genotype. In case of diploid

organisms, each chromosomal copy is known as the haplotype, which are jointly called

the genotype. The biological processes which copy the genetic material from parents

to offspring is not perfect and are influenced by “errors”. This imperfect copying of

the genetic material is called mutation, which usually happens at a single nucleotide

(location) in the genome. If a parental chromosome had Thyamine or ‘T’ at a specific

location, due to imperfect copying, the child might contain a Cytosine or ‘C’ at that

position. The polymorphisms that arise from these single or point mutations are

called Single Nucleotide Polymorphisms or SNPs. Each variant at a SNP is called an

allele.

If both alleles at a diploid organism are same, the organism is homozygous and if

they are different, they are heterozygous at that locus.

2.1.3 Human Genetic Variation

The unit of genetic variation within individuals are SNPs or point mutations. One

of the most prominent sources influencing genetic variation apart from mutation is

recombination, or exchange of genes involving crossover during reproduction. The

genetic material from each parent mixes while getting copied to the child’s chromo-

some and “shuffles” maternal and paternal DNA elements creating new combinations

of variants. Natural selection confers an adaptive advantage (or disadvantage) to an

allele of an individual in a specific environment, making them more (or less) likely to

occur altering the population. Genetic drift, which is the effect of random changes

in gene pool of a population is another source which leads to an individual’s unique

genetic structure. This drift sometimes lead to bottlenecks in small populations, at

random. Genetic variation of a population undergoing a bottleneck is very low for a

few generations threatening it’s existence in some cases.
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Changes in genome can affect the phenotype (such as skin color, height, disease traits,

etc) of an individual. Phenotypic traits can be passed on to the next generation of a

population, if most of the alleles in the population affecting the phenotype are acted

by positive selection, increasing it’s chances of survival. Thus SNPs, and in turn,

traits become heritable.

Migration is another prominent force contributing to genetic variation. When geneti-

cally different populations interact with each other to produce offspring, the chromo-

somes in the resulting population contain genetic contributions from both ancestral

populations. This process is called admixture and the resultant population is referred

to as an admixed population.

2.1.4 Population Structure

Structure in a population broadly refers to any deviation from random mating, involv-

ing inbreeding and/or geographical subdivisions. Effects of natural selection, genetic

drift, geographical barriers and other factors which contribute to genetic variation

results in structure within a population. Even without barriers of gene flow, organ-

isms do not disperse randomly and tend to practice inbreeding. Genetic population

structure can shed light on evolutionary history and migrations of modern popula-

tions [6,32] due to the shared ancestry between related individuals leading to genetic

and phenotypic differences within a population. Understanding how and why these

partially isolated populations differ in their genetic make-up is one of the fundamental

aims of evolutionary biology.

Shared ancestry between populations correspond to relatedness, or kinship and thus

population structure can be defined in terms of patterns of kinship among groups

of individuals [33]. This relatedness among individuals has a significant impact in

case-control association studies which maybe subject to high rate of false positives if

there is unrecognized population structure.
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Population structure can be visualized by unsupervised clustering algorithms, however

they are heavily dependent on the distance metric used for the clusters. Hence,

model-based clustering approaches are widely used to detect structure. The earliest

method dates back to the Structure model [34] which modeled genomes as a mixture

of contributions from ancestral populations. This was further developed into a faster

algorithm called Admixture [35] which is widely used. Another way of detecting

population structure uses the eigen-analysis method [36] which computes a singular

value decomposition (SVD) on the genotype matrix and project the samples on the

top two to three significant PCs to visualize how the data is structured. The widely

used tool, EIGENSOFT encodes this algorithm and serves as a rough estimate for the

intra-population variation and finding outliers in the data. This method is extremely

useful when correcting for population stratification to find homogeneous populations

before case-control association studies [37]. We discuss these two popular approaches

to infer population structure below.

PCA based approaches

Let A ∈ Rm×n be the genotype matrix where m is the number of observations and n is

the number of biallelic markers such as SNPs (n >> m in most cases). For each SNP,

we choose a reference and alternate allele, then Ai,j is the number of alternate alleles

for individual i and marker j, usually coded as 0, 1 and 2 for homozygous dominant,

heterozygous, and homozygous recessive genotypes, respectively. If there are two

alleles B and b, we define homozygous major (dominant) and minor (recessive) to be,

BB and bb respectively. Similarly, heterozygous allele means a combination of both,

Bb or bB. We assume that there is no missing data. The genotype matrix is mean

centered, that is we calculate mean of each SNP,

µj =

∑m
i=1 Ai,j

m
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and subtract it from each entry to get Ai,j −µj. We furthermore normalize this with

respect to the estimate of the underlying allele frequency, pj = µj/2 to get,

Xi,j =
Ai,j − µj√
pj(1− pj)

This normalizing step lets us take into account the frequency change of a SNP due to

rate of genetic drift proportional to
√
pj(1− pj) per generation [36], improving the

performance of structure detection.

At the “heart” of PCA, we carry out a SVD on X. To improve performance of SVD

because of it’s cubic computational complexity, we compute a m×m GRM,

M =
1

n
XX>

which is a sample covariance matrix of X. We compute an eigenvector decomposition

of M to obtain the eigenvectors corresponding to the large, informative eigenvalues.

These top eigenvectors are interchangeably used as PCs in the rest of the text. We

note here that with this unsupervised method we can also reconstruct the population

labels if they are not available and alternatively, we can also verify the performance of

the method if the labels are available. This was first proposed by Cavalli-Sforza [38]

revealing population structure.

Model based approaches

The Structure model by Pritchard et al. [34] provides a way of stochastically cluster-

ing individuals into groups related to their ancestral populations. It uses an allele-

frequency profile which are fixed dimensional multinomial distributions from multiple

populations and makes up all the SNPs of an individual as independent and identi-

cally distributed instantiation of these profiles. These models of admixture identifies

each ancestral population by a specific allele frequency profile and displays the frac-
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tion of contributions from each profile in a present day individual’s genome. Thus,

these models generate a matrix K ∈ Rm×k from the original genotype matrix A where

k is the number of user defined ancestral populations. The rows of the matrix K adds

up to 1 as they denote the fractions or probabilities of the individual i belonging to

each ancestral population kj.

2.1.5 Tests for Admixture

A simple, intuitive and popular approach to detect signs of admixture and direction

of gene flow are the F-statistics, introduced in [39] and summarized in [40] and [41].

Shared genetic drift between sets of populations is measured to test the hypothesis

whether the involved populations share common evolutionary history. F-statistics,

namely, f2, f3, f4 and qpAdm, qpWave are widely used to analyze genetic history of

populations using modern as well as ancient DNA [39,42–44]. F-statistics is generally

used to answer the following questions among others, which we are interested to study

in this thesis.

� Treeness tests: Are populations related in a tree-like phylogeny [39]?

� Admixture tests: Is a particular population descended from multiple ancestral

populations [39]?

� Admixture proportions: How much does the ancestral populations contribute

into the genetic make-up of a modern population [43]?

� Complex demography: How many mixtures and splits of population explain it’s

demography [40]?

We use Figure 2.1 from [41] to explain the various statistics discussed above. Under

a population phylogeny, three F-statistics labeled as F2, F3, F4 (interchangeably used

throughout this thesis as f2, f3 and f4) between two, three and four taxa, respectively.

These populations are labeled as P1, P2, P3 and P4. f2(P1, P2) corresponds to the
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path on the tree from P1 to P2. The purpose is to measure how much genetic drift

occurred between P1 and P2, thus, we can define f2 as

f2(P1, P2) = f2(p1, p2) = E
[
(p1 − p2)2

]
(2.1)

pi is denoted as the allele frequency or the proportion of individuals in Pi that carry

a particular allele (minor allele, usually) at a bi-allelic locus as discussed above. The

above equation 2.1 assumes haploid individuals, but the deductions hold for diploid

organisms as well. The expected values of F-statistics relies on tracing the overlap

of genetic drift paths and f2 can be thought of as the branch length between two

populations in a phylogeny with overlaps, P1 −→ P2, P1 −→ P2.

The three population test which is widely used to detect admixture events and infer

direction of gene flow is defined as, f3(PX ;P1, P2) representing the length of the

external branch from PX to the internal vertex containing all three populations. The

two parameters P1 and P2 can be interchanged keeping the meaning same.

f3(PX ;P1, P2) = f3(pX ; p1, p2) = E [(pX − p1)(pX − p2)] (2.2)

We seek to test whether PX is admixed between P1 and P2. This can be interpreted

as the shared portion of the paths from PX to P1 with that of PX to P2, with overlaps

PX −→ P1, PX −→ P2. Note that if PX is admixed, there is a negative term in

Equation 2.2 because PX −→ P1 and PX −→ P2 take opposite directions through

the internal vertex connecting them. Thus, the observation of a negative f3 value

provides unambiguous evidence of a population mixture in the history of the target

population PX .

f3 can also be interpreted on presence of an “Outgroup” (a target population which

is very divergent to the populations P1 and P2 based on ancestral genetic data). Let’s

call this population PO and by calculating f3(PO;P1, P2), we measure the shared

genetic drift between P1 and P2. If the f3 values are high in this case, it means that



12

Figure 2.1.: A. A population phylogeny with branches corresponding to F2 (green),
F3 (yellow), and F4 (blue); B. An admixture graph extends a population phylogeny
by allowing gene flow (red, solid line) and admixture events (red, dotted line).

the populations are very closely related. We extensively use f3 statistics along with

it’s outgroup feature in this thesis.

The four population test is similar to it’s smaller counterparts but involving the

covariance of the allele frequency differences between populations P1, P2 and popu-

lations P3, P4 respectively. f4(P1, P2;P3, P4) represents the internal branch from the

internal vertex of P1 and P2 to the vertex connecting P3 and P4.

f4(P1, P2;P3, P4) = f4(p1, p2; p3, p4) = E [(p1− p2)(p3 − p4)] (2.3)

The expected value can be computed from the overlap of drifts P1 −→ P2 and P3

−→ P4. If these paths do not overlap, f4 = 0 and if they overlap, that is, P1 −→

P3 and P2 −→ P4, then f4 is equal to the length of the internal branch of the tree

and positive because the drift paths overlap in the same direction. Conversely, if it

is P1 −→ P4 and P2 −→ P3, then drift paths are opposite direction and results in

negative values. Thus, gene flow directions and admixture scenarios can be interpreted

efficiently by studying the allele frequency distributions of the populations under

study. The F-statistics derivations shown here are for one site of polymorphism.
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But, they hold rigorously after normalizing for all SNPs identifying genetic variation

between individuals belonging to arbitrarily structured populations.

qpWave or qpAdm schemes require us to choose m “right” populations (or outgroups)

and n “left” populations (or references). and taking the first population on each side

as the point of comparison it builds a (m − 1) × (n − 1) matrix of f4 statistics by

testing

fij = f4(Li, Lj;Ri, Rj)

We need to provide more distinct outgroups (“right”, represented as R) than ref-

erences (“left”, represented as L), m > n for accurate f4 values. The matrix thus

formed has maximum rank n− 1 and minimum zero nontrivial columns.

Assuming this matrix has rank r, therefore r independent columns and rest of them

being linear combinations of the r columns, the matrix F = {fij} can be modeled as

product of two matrices A and B

F = A.B

where A ∈ R(m−1)×r representing the r independent f4 columns and B ∈ Rr×(n−1)

representing the weights for combining columns of A to produce each column of F.

The observed f4 statistic is an estimate of the true parameter and thus contains an

error term making the above

F = A.B + E (2.4)

E is the error matrix, E = {εij} following a multivariate normal distribution with

mean zero. qpAdm assumes that the first left populations (“target”) is a mixture

of the remaining left populations (“references”) in presence of the right populations

(“outgroups”). It has maximum rank (n− 2) with an additional constraint for scal-

ing to make the sum of admixture coefficients (weights) to 1. This is very insightful

in representing a “target” population as simply a combination of “reference” ances-
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tral populations with weights adding up to 1. We use qpAdm to infer how modern

populations are a combination of ancient and other modern populations.

2.1.6 Linkage Disequilibrium

Linkage disequilibrium (LD) is a nonrandom association of alleles at two or more loci

in a genome. LD is of importance in human genetics because so many factors affect

it and are affected by it [45]. It is widely used to provide insight into evolutionary

history and is the basis for mapping genes in organisms. The main reason for LD is

recombination. These events ensure independent assortment of alleles when they are

transmitted across generations. As recombination is a rare event ( 1 recombination

per chromosome per generation) [33], the loci which are linked by LD are also highly

correlated. Thus, an extant population inherits a linked allele pair from a remote

common ancestor without any intervening recombination site. LD has far reaching

implications as stronger LD around a disease causing SNP is easier to detect due to

the probability that the causal SNP is in LD with at least one SNP in it’s nearby

regions is quite high [46]. On the other hand as the correlation is high, there are

many markers which is in high LD with the causal variants thus making it harder

to identify the causal variant as all of the correlated SNPs show similar strength of

association to the phenotype.

Disequilibrium is measured as the difference between the observed and the expected

(under independence) frequency of a particular combination of alleles at two loci.

This can be represented as

DAB = pAB − pApB

which is the difference between the frequency of gametes carrying the pair of alleles

A and B at two loci and the product of the frequencies of those individual alleles.

The quantity DAB is known as the quantity of linkage disequilibrium (D) defined for

a specific pair of alleles, A and B. If D = 0 there is linkage equilibrium. Due to



15

this definition, LD is primarily measured as the correlation between alleles [47] and

is defined as

ρAB =
DAB√

pA(1− pA)pB(1− pB)

and is often calculated with the Pearson correlation coefficient r2.

2.1.7 Ancestral Recombination Graph

DNA sequences drawn from one or more individuals are related by a branching struc-

ture known as geneaology [48]. Recombination events changes these genealogies,

resulting in a complex correlation structure collected together in co-linear ortholo-

gous sequences. This can be described by a network called ancestral recombination

graph (ARG) [49]. An ARG provides a record of all coalescence and recombination

events at all genomic positions for the extant populations under study. ARGs are

Figure 2.2.: ARG of four populations with three lineages (red, blue and green) showing
recombination (nodes splitting into two) and coalescence (nodes merging into one).

mostly simulated by extending the widely used coalescent framework which includes

recombination [48] as shown above. However, constructing ARGs from sequence data
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and modeling various effects of genetic variation in ARG reconstruction is a chal-

lenge.

2.1.8 Association Studies

Genetic association studies are designed to identify loci that contribute to the pheno-

typic outcome of interest. Traditional methods of association used single marker anal-

ysis (SMA) methods, mapping one SNP and one phenotype at a time. Recent methods

have shown how to analyze multiple markers simultaneously for association, extend-

ing it to eigen-analysis, regression and most recently to mixed models [33,37,50–53].

These association studies can involve a quantitative trait locus (QTL with a continu-

ous trait) or case-control binary status, depending on the the disease being studied as

well as the goal of the study, which generally involves a complex trait. Cases exhibit

this phenotype of interest, whereas controls show no such prevalence. The underlying

assumption in an association study is that genotypic differences between cases and

controls are likely to be at markers which are causally related to the phenotype. Thus,

in an association study the set of markers (LMM or logistic regression) or a single

marker (χ2 tests) is studied with respect to the trait.

Heritability

Phenotypic traits which are quantitative, show a continuous spectrum of variation

controlled by a collection of polygenic markers acting in concert. A wide variety of

important phenotypic traits are quantitative. Although, these quantitative traits can

be converted to binary traits using a liability measure [54]. Quantitative traits can be

studied in the terms of variation as well as environmental conditions owing to noise.

The variance of a phenotype, therefore, can be partitioned into variances attributable
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to the environment and to genetic factors. Heritability, is defined as the proportion

of variation in a trait explained by inherited genetic variants, represented as,

H2 =
σ2
G

σ2
P

As the phenotypic variance is partitioned, σ2
P = σ2

G + σ2
E, we can write the above

as

H2 =
σ2
G

σ2
G + σ2

E

This definition is known as the “Broad-sense” heritability. In practice, H2 is very

hard to estimate without strong assumptions. We are more interested in the amount

of heritability explained by the genotypes, which is also known as “SNP-heritability”.

Given m SNPs we seek to find how much of phenotypic variance it explains. Thus,

SNP-heritability is defined as,

h2
g =

σ2
SNP∈m
σ2
P

From the above, we can see that h2
g ≤ H2 as this is only limited to additive terms

of genotyped markers and not the theoretical “broad-sense” heritability due to the

entire genome. We usually define the trait, y, for each SNP xj with an additive effect

βj in a linear model as,

y =
m∑
j=1

xjβj + ε (2.5)

where ε is the residual or error term which is not explained by the genotypes. Each

xj is encoded as discussed above with 0/1/2 allele counts and also normalized. We

can now define h2
g more precisely as,

h2
g =

Var
[∑m

j=1 xjβj

]
Var [y]
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Challenges in GWAS

GWAS has long been plagued by confounding due to the presence of cryptic relat-

edness owing to the population structure. If the cases disproportionately represent a

population in comparison to controls then any SNP with differing allele frequencies

between cases and controls will be incorrectly found to be associated with the pheno-

type resulting in false positives or spurious associations. Another issue in GWAS is

the insufficient sample size. Statistical significance tests can fail to identify variants

of smaller or moderate effects as causal in studies with small sample sizes. Increasing

the sample size has been shown to discover more causal SNPs with respect to the

phenotype of interest [55].

As traditional approaches did SMA, multiple hypothesis testing were conducted si-

multaneously, requiring a correction factor to avoid false positives. A commonly used

technique is the Bonferroni correction, by which the test statistic is reduced by a

factor of the number of SNPs, assuming all tests performed are independent. How-

ever, as discussed above, due to LD this is not always true and hence this technique

can be deemed as very conservative and inaccurate. As the widely used genotyp-

ing arrays fail to tag rare variants and low frequency markers, we fail to analyze a

significant number of markers. Since many traits are complex and multi-factorial,

a relatively small number of rare variants with moderate effects could account for a

large percentage of variation in the trait.
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3 RECONSTRUCTING GENETIC POPULATION HISTORY

3.1 Genetics of the Peloponnesean Populations

This article has appeared in European Journal of Human Genetics Published by

Springer Nature with DOI: 10.1038/ejhg.2017.18.

3.1.1 Introduction

Peloponnese has been one of the cradles of the European civilization of the classical

era and has done distinct contributions to the ancient European history. It has also

been in the center of a controversy about the ancestry of its population [56]. This

controversy, lasting for about 170 years, has been fueled by historians who try to

reconstruct medieval history on the basis of scant written resources. Controversies

are not uncommon in historiography and are the source of endless debates among

scholars. Controversies concerning population ancestry, however, can potentially be

resolved by population genetic analysis. The study of the genetics of the Pelopon-

nesean population provides a test of this premise.

Peloponnese was peopled by a series of migrations that span at least nine millen-

nia. Early migrants arrived from Anatolia ca 9000 BCE [57] and established several

Neolithic sites across the peninsula [58]. The Myceneans [59], who established a

Bronze era civilization that lasted from the 17th to the 12th centuries BCE (1), were

10.1038/ejhg.2017.18
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Greek speaking Indo-Europeans who presumably migrated from the north around

2200 BCE [58–60] or were the descendants of the Anatolian Neolithic migrants [61].

The next known migration took place at the beginning of the first millennium BCE,

when the Dorian Greeks arrived in Peloponnese [62] from an area corresponding to

Epirus and western Macedonia. The subsequent eight centuries of the Archaic, Clas-

sical and Hellenistic periods of Greek history, the four centuries of Roman occupation

and the two initial centuries of Byzantine dominance, were marked by quantitative

changes of the Peloponnesean population due to wars and epidemics but no qualitative

effects from migrations of new population groups. Changes in population structure

started in the beginning of the medieval period with the migrations of the Slavs to the

Balkans [63, 64]. The effects of these migrations have dominated the historiography

of Peloponnese during the last 180 years.

In 1830 CE, the German historian Jacob Philipp Fallmerayer presented his theory

of disappearance of the Greek nation and its substitution by Hellenized Slavs [65].

Fallmerayer proposed that during the 6th century CE, large armies of Avars and

Slavs overran the Balkans and eliminated the populations of the Hellas, who up

to that period had successfully survived the attacks of barbarians and the religious

suppression by the Byzantines. The Peloponnesean Greeks, except for few remnants

enclosed in coastal castles, were slaughtered or forced to leave from their ancestral

lands and Peloponnese was inhabited by Slavic tribes. The Slavs kept their identity for

few centuries but eventually they were Hellenized under the influence of the Orthodox

Church and interactions with Hellenized Asia Minor populations who were settled in

Peloponnese by the Byzantines. Since the time Fallmerayer’s theory was published, a

debate on the question of the ancestry of Peloponneseans has raged among historians

(reviewed in [66]). Of note is that in spite of their diametrically different views, all

historians have been using the same medieval written sources.

In this paper we use genome wide data to study the genetic structure of the Pelo-

ponnesean populations and compare them with other populations of the world. We
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observe characteristic patterns of genetic differentiation within Peloponnese and ex-

amine their possible causes. We focus on the question of the impact of Slavic mi-

grations on the genetic structure of the Peloponnesean populations and we test the

theory of the extinction of the medieval Peloponnesean Greeks.

3.1.2 Materials and Methods

Study Design

The study has been reviewed by the Institutional Review Board of the University of

Washington and the ethical committees of several provisional hospitals. We focused

on the rural population. Subjects were included in the study if all four grandparents

originated from the same village or from villages that were less than 10 kilometers

apart. The ages of the participants ranged between 70 and 90 years (the oldest subject

was 107 years old) and hence their grandparents were born between 1860 and 1880.

The population of Peloponnese was 578,598 individuals in the 1861 census. At that

time the economy of Peloponnese was exclusively agricultural and over 85% of the

population was living in small villages and hamlets. We sampled all the districts of

Peloponnese (Figure 3.1 and Table A.1) and also focused on two culturally distinct

subpopulations, the Tsacones and the Maniots. To compare the Peloponneseans

with other European populations, we analyzed samples from published datasets and

datasets generated by our studies (Supplementary Table 1 and Figure A.1. Merging

genotypes from different sources and quality control were done as described in [67].

PCA

We used TeraPCA [68] as well as our own MATLAB implementation of PCA [67,

69].
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Figure 3.1.: Substructure of the Peloponnesean populations. (a) PCA analysis with-
out the Maniot and Tsakones populations showing a partial separation of the pop-
ulation of Laconia. (b) PCA illustrating the separation of Peloponneseans in three
groups. On the left is placed the population of Tsakones (north: open circles, south:
green dots). On the right are placed the populations of Maniots (Deep Mani, East
and West Tayetos.). All the remaining Peloponneseans are clustered in the center.
(c) Map of Peloponnese showing the populations studied. Each dot corresponds to
the origin of a participant. (d)ADMIXTURE analysis. Notice the distinct structure
of the Maniots and the Tsakones and their clear cut separation from all other Pelo-
ponneseans in all values of K.

Estimating Population Admixture

We used the ADMIXTURE v1.22 software for all our admixture analyses [35].
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Quantitative Analysis of ADMIXTURE Output

Given a target population X and reference populations Y, Z, etc., we were interested

in quantifying the amount of ancestry of population X that is captured by populations

Y, Z, etc. Towards that end we devised a new approach to quantitatively analyze

the output of ADMIXTURE. Recall that ADMIXTURE, for a particular value of

K, will represent each sample using K coordinates. Thus, for a particular value of

K and for a particular population Y with n samples, we can represent the output

of ADMIXTURE for this population as an n-by-K table. Then, for each reference

population Y, we summarize this n-by-K matrix using its top right singular vector

only; in all our analyses, the top singular value corresponding to the top right singular

vector captured at least 80% of the reference population variance as represented by

ADMIXTURE. Let vY be the top right singular vector (a K-dimensional vector) for

population Y; similarly, let vZ be the top right singular vector (a K-dimensional vec-

tor) for population Z, etc. Now that we have represented the ADMIXTURE output

for each population as a K-dimensional signature vector, we can apply standard vec-

tor space calculus in order to answer our original question: how much of the ancestry

of population X is captured by population Y, or population Z, etc. More specifically,

in order to compute the percentage of the ancestry of population X that is captured

by population Y, we compute the percentage of the norm of vX that is captured (in

projection sense) by vY . Formally, we compute∥∥VX − vY v+
Y Vx

∥∥
F

‖VX‖F

which returns a value between zero and one. In the above, vX denotes the m-by-K

matrix representing the m samples of population X with respect to the K coordinates

returned by ADMIXTURE. The notation v+
Y indicates the pseudoinverse of the vector

vY , which is equal to the transpose of the vector vY , suitably normalized. It is

also worth noting that the norm used in the above equation is the standard matrix

Frobenius norm. In order to quantify the amount of ancestry of population X that
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is captured by both populations Y and Z, we form the K-by-2 matrix v = [vY vZ ]

whose columns are the vectors vY and vZ and we compute

‖VX −VV+VX‖F
‖VX‖F

(3.1)

In the above equation, v+ denotes the pseudoinverse of the matrix V; the matrix vV +

is a projector on the subspace spanned by the column space of V. Thus, we basically

extract from the matrix vX the part that is captured by the (subspace spanned by

the) vectors vY and vZ .

Network Analysis

To better visualize and understand the connection between the populations included

in our study, we performed a network analysis on the results of ADMIXTURE, using

a method presented in [70].

3.1.3 Results

The Substructure of the Peloponnesean Populations

On PCA analysis the populations are arranged in the form of an inverted capital

letter V (Figure 3.1b). The left of this formation is occupied by the population of

Tsakones who inhabit the east slopes of Mount Parnon and the adjacent costal area

(Figure 3.1c). The right of the formation is occupied by the populations of Man-

iots who inhabit the east and west slopes of mount Tayetos and the southern area

of the promontory, the so called Deep Mani. All other Peloponneseans cluster in

the tip of the letter V ((Figure 3.1b). Partial separation of some subpopulations

of individual districts was also observed by PCA analysis (Figure 3.1a). The AD-

MIXTURE analysis of Figure 3.1e shows that the Maniots and Tsakones are clearly

separated from each other and from all other Peloponnesean populations.Gradients in
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gene frequencies from north to south across all Peloponnese, along the Ionian coast,

across Arcadia, as well as within Laconia and between the slopes of Tayetos and Deep

Mani are suggested by the correlations between geographic coordinates and the two

principal components (Table 1)

Table 3.1.: Correlations between geographic coordinates and principal components
(respective PC is indicated in parenthesis).

Populations Latitude
Correlation

Longitude
Correlation

All Peloponnese 0.50 (PC1) 0.41 (PC2)

Peloponnese minus
Tsakonia and Mani

0.49 (PC1) 0.09 (PC2)

Arcadia 0.60 (PC1) 0.12 (PC2)
Laconia 0.45 (PC1) 0.07 (PC2)
Ionian Coast 0.31 (PC2) 0.06 (PC1)
Elis 0.17 (PC1) 0.10 (PC2)
Arcadia and Messenia 0.34 (PC2) 0.16 (PC1)
Arcadia and Laconia 0.36 (PC2) 0.20 (PC1)
Deep Mani 0.15 (PC2) 0.21 (PC1)
East Tayetos and Deep Mani 0.67 (PC1) 0.10 (PC2)
West Tayetos and Deep Mani 0.73 (PC1) 0.42 (PC2)

Comparison with other European Populations

As anticipated from the results of previous studies [38, 71, 72], by PCA analysis the

Peloponneseans were placed very close to the Sicilians and Italians (Figure 3.2b)

and remotely from all other European populations we compared them with. Network

analysis (Figure 3.2a), highlighted the inter connections of Peloponnesean populations

as well as the connections between Peloponneseans, Italians and Sicilians; the latter,

serve as a bridge between Peloponnese and other Southern European populations

(Basque, Andalusians, French). Slavic populations were placed far away from the

Peloponneseans as were the Near Eastern populations. The latter were connected to

the Peloponnesos via the islands of Crete and the Dodecanese.
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Figure 3.2.: Genetic similarity of Peloponneseans and Europeans showing differenti-
ation from Slavs. (a) Network analysis illustrating the high connectivity between the
Peloponnesean populations as well as between the Peloponneseans, the Sicilians and
the Italians. Notice the distance between Peloponneseans and the Slavic, and Near
Eastern populations. Peloponneseans are connected with the Near Eastern popula-
tions through Crete and Dodecanese. (b) Notice the north to south distribution of
the populations and that the Peloponneseans are placed to the far left of the graph,
overlapping with the Sicilians and distinct from the Slavs (on the right side).
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The Question of Extinction of the Medieval Peloponnesean Greeks

Figure 3.3.: Testing the theory of replacement of medieval Peloponesians by Slavs and
Asia Minor settlers. (a) PCA analysis shows the broad separation of Peloponneseans
from four populations of the Slavic homeland (Ukrainians, Polish, Russians and Be-
larusians). (b) PCA comparisons of the Peloponneseans with three Greek-speaking
Asia Minor populations shows only partial overlap with the population of the Asia
Minor Aegean coast. (c) ADMIXTURE analysis illustrates the wide separation of
Peloponneseans from the Slavs in all values of K.

The theory of extinction of the medieval Peloponnesean Greeks allows for specific

predictions about the genetic ancestry of the Peloponneseans. The great majority,

if not all, Peloponnesean ancestry should be Slavic. We compared, the Pelopon-

neseans (except for Maniots and Tsakones) with populations of the Slavic homeland

from which the sixth century Slavs should have originated. The exact location of the
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Slavic homeland is debated [63,64] but it is placed north of Danube [63], between the

Oder and Dnieper rivers and includes areas inhabited by Polish, Ukrainian, Russian

and Belarusian populations. PCA analysis showed a clear separation of Pelopon-

neseans from the Slavs (Figure 3.3a). By ADMIXTURE analysis (Figure 3.3c) the

Peloponneseans and the Slavs form separate clusters with a small degree of gene flow

from the Slavic to the Peloponnesean cluster.

Fallmerayer hypothesized that the Hellenization of the Peloponnesean Slavs was ac-

celerated by the transfer to the Peloponnese of Hellenized populations from Asia

Minor [65]. We tested this hypothesis by comparing the Peloponneseans with three

Greek speaking populations of Asia Minor: a western /coastal population sample

extending from the Propontis in the north to Alikarnassos (Bodrum) in the south; a

northern population from Pontus ie the coast of Black Sea and the Asia Minor interior

corresponding to the current northern Turkey; and a central Anatolian population

from Cappadocia. All these populations are separated from the Peloponneseans by

PCA (Figure 3.3b). The small degree of overlap between Peloponnese and the popu-

lation of the Asia Minor coast (Figure 3.3b) is expected for Greek populations. The

Byzantines frequently moved Armenians to achieve political objectives [73]. Pelopon-

neseans differ from the Armenians by PCA and ADMIXTURE analysis (Figure A.2).

Collectively, these results are incompatible with the theory of extinction of the me-

dieval Peloponneseans and their replacement by Slavic and Asia Minor settlers.

The Medieval Ancestry of the Populations of Mani

The Maniots differ from all other Peloponneseans by PCA (Figure 3.1b) and AD-

MIXTURE (Figure 3.1c) analysis. They also differ from mainland, island and Asia

Minor Greek populations (data not shown) and from all the other populations we have

compared them. By PCA analysis they overlap partially with Sicilians and Italians

(Figure 3.2b).
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In his treatise on the administration of the Byzantine Empire [74], the Emperor Con-

stantin Porphyrogenitus describes how two Slavic tribes, the Mellingi and the Ezeri-

tae, were forced by the Byzantines to withdraw to the slopes of Tayetos. Because of

the writings of Porphyrogenitus we sampled separately the populations inhabiting the

East and the West slopes of the Tayetos and the Deep Mani. By PCA (Figure A.3a)

and ADMIXTURE (Figure A.3b) the populations of Tayetos are distinct from the

populations of the Slavic motherland. Fallmerayer argued that the inhabitants of

Deep Mani are of Slavic origin (9). PCA and ADMIXTURE analysis makes this

hypothesis unlikely.

As an alternative origin of the Maniots Fallmerayer proposed that they are descen-

dants of Mardaites [65]. This medieval warrior tribe used to inhabit the mountainous

regions between Asia Minor and Syria but in late seventh century CE was resettled

by the Byzantines in Asia Minor and other areas of the Empire [73]. The Mardaites

have disappeared from the history but oral tradition claims that they are the ances-

tors of the Maronites of Lebanon, although this claim has been disputed [75]. PCA

or ADMIXTURE analyses failed to show any close relationship between Maniots and

the Maronites (Figure A.4).

The Question of Slavic Ancestry of Tsakones

The Tsakones of the eastern slopes of Mount Parnon differ from all other Pelopon-

neseans (Figures 3.1b and 3.1d) and from all other populations we have compared

them (Figure A.5). They used to speak a dialect of Doric origin (28) which was

not comprehended by the other Peloponneseans. Their name was considered by me-

dieval authors to represent a corruption of the word Lacones (Tsakones = Lacones).

Fallmerayer argued against a Doric origin of the Tsakones and, instead, proposed that

they were the descendants of a Slavic tribe that had migrated to Peloponnese before

the flood of the Slavic settlers reached the peninsula. PCA (Figure 3.2b) and AD-

MIXTURE (Figure 3.3c) analyses argue against Slavic origin of the Tsakones.
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Quantitative Assessment of the Ancestry of Peloponneseans

Table 3.2.: Shared ancestry between Peloponnesean populations and Slavic, Italian
and other European populations.
(The first number for each pair of populations indicates the average shared ancestry for values of K
between 4 and 8, while the number in parenthesis indicates the standard deviation)

Populations Belarusians Russians Polish Ukrainians French Italians Basque Andalusians
Argolis 5.4 (1.5) 12.2 (1.2) 5.8 (0.8) 6.8 (1.1) 39.1 (19.2) 94.7 (4.8) 2.8 (1.4) 60.5 (5.9)
Corinthia 5.9 (1.7) 13.0 (1.3) 6.3 (1) 7.5 (1.3) 41.2 (18.5) 94.9 (4.0) 3.1 (1.7) 62.0 (5.9)
Achaea 6.5 (1.7) 13.8 (1.1) 7.0 (0.8) 8.1 (1.1) 41.4 (18.4) 94.8 (4.0) 2.7 (1.4) 61.3 (5.8)
Arcadia 5.3 (1.8) 10.9 (2.4) 5.2 (1.2) 6.2 (1.5) 39.1 (18.2) 85.4 (14.6) 2.4 (1.4) 53.8 (9.1)
Elis 6.1 (1.3) 13.1 (1.2) 6.5 (0.8) 7.6 (1.1) 41.4 (18.3) 95.0 (3.3) 3.3 (1.7) 61.6 (5.6)
Messenia 6.7 (1.7) 14.4 (1.2) 7.3 (0.9) 8.5 (1.2) 42.6 (18.4) 95.2 (4.0) 2.7 (1.3) 61.8 (5.7)
Laconia 4.8 (1.2) 11.4 (1.5) 5.2 (0.9) 6.4 (1.1) 41.1 (14.6) 96.1 (2.3) 2.3 (1.4) 59.8 (5.6)

To quantify the findings of the ADMIXTURE analyses, we employed a method for the

meta-analysis of the ADMIXTURE output that treats the output as a set of vectors

in a K-dimensional space (for a particular value of K between four and eight). Each

population is then summarized by a single vector (using PCA) and vector space calcu-

lus is used in order to identify the percentage of ancestry of a target population that

is captured by one or more reference populations. It is worth noting that our choice

to summarize each population by a single vector is akin to computing the mean AD-

MIXTURE output for a particular population. In most cases, ADMIXTURE returns

a homogenous structure for a particular population and thus the top principal com-

ponent is a good summary of the sample vectors returned by ADMIXTURE. First we

focused on the ADMIXTURE analysis of Figure 3.3c which includes seven Pelopon-

nesean populations (Argolis, Corinthia, Achaea, Elis, Arcadia, Messenia, Laconia),

four Slavic populations (Belarusians, Russians, Polish, and Ukrainians), three South-

ern European populations (Italians, Basque, and Andalusians), and the French.

The results of Table 3.2 show that there is considerably more shared ancestry between

the Peloponneseans and the French, Andalusians, and Italians compared to the shared

ancestry between the Peloponneseans and the Slavic populations. The average shared

ancestry with French ranges from 39 to 42%; with Andalusians 53 to 62%; with the

Italians from 85 to 96%. In contrast, the average shared ancestry with the Slavic
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populations is always less than 15%. Therefore, the Peloponneseans are genetically

much more distinct from the Slavic populations and are much more similar to South-

ern European populations. We also observe that the Basques, (a population that is

well-known to be isolated and genetically different from even its neighboring popula-

tions, like the Spaniards and the Andalusians) are very distinct from all populations

in our analysis, which is precisely why we included them in these ADMIXTURE meta-

analyses: on the average Basques share less than 4% of common ancestry with any

Peloponnesean population. Notice that this number is relatively close to the average

ancestry shared between the Peloponnesean populations and the Belarusians, Pol-

ish, and Ukrainians; all these populations share between 5.2% and 8.5% of common

ancestry with the Peloponnesean populations. These Slavic populations are, from a

genetic perspective, approximately as far apart from the Peloponneseans as are the

Basques.

Table 3.3.: Shared ancestry between the populations of Mani and Tsakonia and Slavic,
Italian and other European populations.
(The first number for each pair of populations indicates the average shared ancestry for values of K
between 4 and 8, while the number in parenthesis indicates the standard deviation)

Belarusians Russians Polish Ukrainians French Italians Basque Andalusians
Deep Mani 0.7 (0.1) 1.6 (0.7) 0.9 (0.4) 1.0 (0.3) 6.4 (3.5) 25.3 (21.7) 0.3 (0.2) 7.6 (5.1)
West Tayetos 4.9 (5.1) 8.6 (6.9) 6.8 (5.4) 6.5 (5.7) 16.4 (12.7) 41.5 (32.5) 0.6 (0.5) 15.2 (11.1)
East Tayetos 5.7 (3.4) 10.9 (4.0) 7.9 (3.7) 8.0 (3.7) 27.7 (4.8) 58.0 (20.7) 2.0 (1.4) 27.0 (4.3)
North Tsakonia 3.9 (1.7) 8.2 (2.1) 5.0 (2.2) 6.0 (2.2) 26.7 (3.5) 51.2 (4.6) 1.5 (1.1) 26.9 (3.5)
South Tsakonia 0.2 (0.0) 0.9 (0.4) 0.4 (0.1) 0.6 (0.2) 4.1 (2.9) 14.2 (11.0) 0.2 (0.1) 5.3 (3.8)

We next determined the shared ancestry between the five distinct Peloponnesean pop-

ulations (Deep Mani, West and East Tayetos, North and South Tsakonia), and the

Slavs, the southern European populations, the French and the Basque. The ADMIX-

TURE plot of Figure A.3b and the data of Table 3.3 show that the amount of shared

ancestry between these five Peloponnesian populations and the Slavic populations is

very low. The ancestry Deep Mani shares with Belarusians, Polish and Ukrainians

ranges from 0.7 to 1.0%. East and West Tayetos share from 4.9 to 8.6 % ancestry

with these three Slavic populations which is five to eight times higher than that of
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Deep Mani but slightly lower to the ancestry the other Peloponnesans share with the

Slavs. Slightly lower, compared to the other Peloponneseans, is the ancestry shared

between West/East Tayetos and the Russians (8.6 to 10.9%). The ancestry North

and South Tsakonia share with the Slavs ranges from 4 to 8% and 0.2 to 0.9% respec-

tively. Compared to the very low ancestry shared with the Slavs, South Tsakonia and

Deep Mani share 14% and 25% ancestry with the Italians. North Tsakonia, East and

West Tayetos share from 41 to 57% ancestry with the Italians. Again, the Basques

are isolated from the five Peloponnesean populations.

3.1.4 Discussion

Our analysis of the genetic ancestry of the Peloponnesean populations and their re-

lationships with the Slavs and other Europeans settles a historical controversy that

has persisted for over 170 years. This controversy is typical of the problems histo-

rians face in their efforts to reconstruct history on the basis of inadequate written

sources. Fallmerayer based his theory of extinction of the medieval Peloponnesean

Greeks on the writings of early and two middle-medieval Byzantine authors. The

early sources were very short comments in texts of sixth and seventh century histori-

ans and ecclesiastic authors [65]. The middle medieval documents were a letter by an

eleventh century Patriarch of Constantinople and the writings of tenth century Em-

peror Constantine Porphyrogenitus. Fallmerayer’s theory created sensation among

historians. An early rebuttal was published by the Greek historian Paparigopoulos

who examined the same sources Fallmerayer have used to construct his theory and

reached the opposite conclusions i.e. that there was no evidence that the Slavs had

reached the Greek proper during the sixth century and, when they arrived, they did

not slaughter the local population. The many historians who have contributed to

the very extensive literature on this topic during the last century (partially sum-

marized in Curta [63, 66]) usually accept or reject the theory of extinction of the

Peloponnesean Greeks. It seems that personal philosophies influence the historians’
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judgment. Fallmerayer was an educator and journalist turned historian, a liberal in-

tellectual for his time and a slavophobe who feared the increasing influence of Russia

in the Balkans at the expense of the Ottoman Empire. Paparigopoulos was a Greek

historian who was promoting the idea of the continuity of the Greek ethnicity during

the medieval period. The findings of our study settle these issues and provide a direct

test of the theory of the extinction of the medieval Peloponnesean Greeks. It is clear

that the Slavs settled in Peloponnese, as the quantitative measurements of Slavic an-

cestry indicate (Tables 3.2 and 3.3). It also seems that their numbers were relatively

small compared to size of the local population as the levels of Slavic ancestry the

Peloponneseans indicate.

In his book on the Administration of the Empire [74] Constantin Porphyrogenitua

describes the wars between the Byzantines and two Slavic tribes, who initially had

settled the lowland Laconia but were forced to withdraw to the security of the slopes

of the mount Tayetos, in order to avoid subjugation to Byzantine rule. The writings

of Porphyrogenitus leave the impression that the slopes of Tayetos were Slavic lands.

However, our analyses show that the levels of Slavic ancestry in the population of

Tayetos are very low (Table 3.3). The most reasonable interpretation for the discrep-

ancy between the medieval text and the genetic data is that the size of the Slavic

settlements were small and the initial Slavic population was diluted by migration from

the Deep Mani during the four centuries of Frankish and the almost three centuries of

Ottoman occupation of the Peloponnese. In spite its inhospitable environment, Deep

Mani was densely populated as Ottoman and Venetian censuses document. Historical

evidence for high mobility and migrations of Maniots is available [76] and a gene flow

path from Deep Mani to the slopes of Tayetos is suggested by our PCA analysis and

the correlations between geographic coordinates and principal components.

The striking difference between the Tsakones and the remaining Peloponneseans on

PCA and ADMIXTURE analysis can be best explained by isolation by distance.

Geographic isolation explains the retention of their dialect. It should be mentioned



34

that in ancient times the area of Tsakonia, then called Cynouria, was inhabited by

Doric speaking Ionians [62]. Isolation by distance is also the likely explanation of the

findings in the populations of Mani. Porphyrogenetus in his writing about the Slavs of

Tayetos also asks what happened to the ancient inhabitants of Laconia, the Hellenes

who continued to adhere to the ancient Greek religion [74]. He finds them withdrawn

in the inhospitable, agriculturally poor and rocky area of southern Tayetos, the area

which we refer to here as the Deep Mani. Ancient DNA studies could perhaps test

whether there is any relationship between the Maniots and the ancient Lacons or

Tsakones and ancient Ionians.

To precisely determine the shared ancestry between groups of populations we devised

a new approach that quantifies the output of methods such as ADMIXTURE. Our

approach is linear algebraic in nature and has not appeared in prior work; as a matter

of fact, to the best of our knowledge, such meta-analyses of the output of methods

such as ADMIXTURE are missing from current literature. Indeed, our method is

broadly applicable in determining shared ancestry between populations.
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3.2 Integrating Linguistics, Social Structure and Geography to Model Gene Flow in

India

3.2.1 Introduction

The genetic structure of human populations reflects gene flow around and through

geographic, linguistic, cultural, and social barriers. The intricate tapestry of pop-

ulation substructure and complexity in India undoubtedly showcases the interplay

among these evolutionary forces; 3,200 km from North to South, complex topography

with elements ranging from the Himalayas to the Thar desert, plateaus and rain-

forests, almost 800 spoken languages and a strict system of endogamy together with

a long history of migrations and invasions are factors that have shaped extant human

genetic diversity within India. Numerous studies have attempted to dissect the ge-

netic components and origins of the Indian populations [39, 77–86], including recent

thrusts using genome-wide data from ancient individuals from Central and South

Asia [87] and present day individuals from Northwest India [88]. However, to date,

no study has attempted to model how the evolutionary forces acted in concert and

to evaluate the relative contribution of each one towards establishing Indian genomic

substructure.

Analysis of genetic structure has shown that Indian ethnic populations when grouped

as tribal versus non-tribal, or by geographical region, or by linguistic affiliation, have

resulted from admixture of four or five ancestral populations [79, 83, 89]. They rep-

resent Indo-European (IE) speakers in Northern India, Dravidian (DR) speakers in

Southern India, Austroasiatic (AA) speakers in Central and Eastern India and Tibeto-

Burman (TB) speakers in Northeast and the Andaman islanders. These ancestral

components are attributed to the four distinct language families prevalent in India,

spread over 22 official languages following a distinctive demographic spread.

In addition to the original African source population, West Asia (by demic diffusion

of agriculture) and Central Asia have been shown as the major contributors to the
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Indian gene pool [87,90]. At the same time, within India, a rigorous system of social

stratification has been in place, governing mate-exchange between social strata [91].

The caste system has been documented since 1500-1000 BC and imposes strict rules of

endogamy over the past several thousands of years. Social stratification within India

may be summarized into the so-called Forward Castes and the Backward Castes (as

connoted in the Indian constitution), while 8.2% of the total population belongs to

Scheduled Tribes and represents minorities that lie outside the caste system, still

largely based on hunting, gathering and subsistence agriculture, with no written form

of language. It has been shown that prior to the establishment of this strict endogamy

within social groups, there was wide admixture among them, which came to an abrupt

end 1,900 to 4,200 years before present [81]. In this text, we refrain from using broad-

brush terms such as forward and backward, and instead define Social Group A (SGA)

and Social Group B (SGB) for the so-called Forward Castes and Backward Castes,

respectively. For the semi-nomadic tribes in India who are hunter gatherers or depend

on subsistence farming for livelihood, we use Social Group C (SGC).

We set out to explore how the complex interplay of geography, spoken language and

social structure have shaped the patterns of genetic variation in India. In doing so,

we designed a quantitative framework for the evaluation of the relative contribution

of different geodemographic, linguistic and social factors to the architecture of the

genetic pool of human populations. Earlier attempts to investigate the covariance of

allele frequencies and non-genetic factors on genetic structure, either depended heav-

ily on assumptions and a computationally expensive Bayesian framework [92] or did

not provide any statistical significance or feature selection to identify the most rele-

vant structure-related factors [93]. Our findings lead to a model that explains human

genetic substructure and quantifies the contribution of languages and social factors

towards genetic diversity. Our work provides the first model to study the significance

of each underlying factor on the genetic substructure of a population. We show that

spoken language along with social stratification, rather than geography, appear to be

the most significant influences on Indian genetics. We developed COGG (Correla-
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tion Optimization of Genetics and Geodemographics), which models the population

structure as a function of environmental and ecological factors along with geography.

On top of COGG, we used a greedy feature selection technique to identify the most

significant factors influencing genetic variation in India.

To further study the interplay between these factors, we propose a simple analytic

procedure using the so-called Ridge Leverage Score (RLS) statistic that highlights

the most significant population groups in India. This statistic helps us to better

understand the intricate details of admixture, sub-structure, and genetic variation

across social and language groups in the Indian subcontinent. The ability to correlate

genomic background with sociolinguistic and cultural differences opens new avenues

to study genomic structure of extant human populations.

Testing an old hypothesis regarding the northward migration of the DR speakers, we

ran qpAdm [40] tests to find that southern DR speakers with an ancient basal group

associated with fellow DR dry-land farmers in the south and admixed with IE around

the Gujarat region in the north. This confirms that the Gujarati populations have

gene flow from southern Indian dry-land farmers with an overlying admixture of IE

speakers and a basal group in South Asia which existed prior to the IE arrival. In

summary, the relationship between different social groups of India is studied in detail

highlighting the autochthonous origin of the caste system in India. Furthermore, we

recover ancient routes of migrations into India, for the IE, TB, and AA speakers and

a northward movement from the southern DR speakers.

3.2.2 Materials and Methods

Study design and datasets

We used PLINK [94] to assemble genome-wide data for 835 samples from 84 well-

defined sociolinguistic groups (see Supplementary Table 2a) genotyped on a 48,225

SNPs. These samples were collected from various sources [39, 80, 81, 84, 95] with the



38

consent of the corresponding authors. We did not use the Indian samples for the

1000 Genomes [4] project because of unavailability of their geographical coordinates

as well as caste and language information. Additionally, three (GIH, STU, ITU) out

of the five Indian population groups in the 1000 Genomes project were collected from

Indian diaspora living in the USA (Houston) and the UK and might be biased and/or

lead to gross underestimation of genetic diversity.

As the consolidated data set was put together from so many varied sources, there

was an imbalance of social group and language family representation in the samples.

For example, the TB language family has 93 members in the data set, which is

considerably smaller than other language families (AA, IE, and DR have 131, 282, 333

members, respectively). To create the normalized data set, we removed the population

group Garo from the TB dataset as the social group they belong to were unknown.

Thus, the resulting dataset had 89 individuals from TB and we sub-sampled a similar

number of individuals from the other three language families. The sub-sampling was

done with respect to the social group affiliation and geographical locations. As AA

and TB speakers are more homogeneously located in the forests and hills of Central,

East, and Northeast India, and, on the other hand, IE and DR speakers are more

spread across the northern and southern India, we sampled individuals in order to

guarantee a balanced representation of geographical variance. We also made sure that

all social groups are equally represented in the normalized data set. This resulted

in having 368 individuals sampled across 33 population groups from all over India

(Supplementary Table 2b). We created multiple normalized subsets of the original

consolidated data set using the same technique to check for the robustness of our

results. Indeed, all our analyses returned similar results with very minor changes in

the squared correlation values. The normalized subset for which we have reported

results for the Indian populations contains 368 samples from 33 populations genotyped

for 48,326 SNPs. We converted all data to the same build (hg19) using LiftOver

from the UCSC Genome Browser [96] and we merged the data sets and conducted

further downstream analyses using PLINK [94,97]. We created the subset of the data



39

after checking for missing genotypes and filtering out variants with missing call rates

exceeding 5%.

We merged reference populations from Eurasia and Southeast Asia, collected from

various publicly available sources such as HGDP [1], the Estonian Biocenter [98–104]

and the Allele Frequency Database (ALFRED) [105] with our normalized Indian

dataset to create a merged data set of 1,516 samples from 73 population groups

genotyped on 42,975 SNPs (Supplementary Table 2c).

To test ancient admixture scenarios, we used ancient samples from Near East, geno-

typed on Illumina Human Origins array [42] and merged them with the Indian samples

to form a merged data set of 1,597 individuals across 31,130 markers.

PCA

We used TeraPCA [68] as well as our own MatLab implementation of PCA [67,69], af-

ter pruning for LD structure by setting --indep-pairwise 50 10 0.4 in PLINK [94,

97]. We processed the data as discussed above in 2.1.4. We checked for outliers (using

EIGENSTRAT’s [37] outlier detection method) in the PCA plot and removed them

keeping only autosomal biallelic SNPs with 95% genotyping rate and a minor allele

frequency (MAF) of at least 5%.

Linear Discriminant Analysis

We implemented Rao’s Discriminant Analysis which is directly based on Fisher’s

Linear Discriminant Analysis.
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Correlation Optimization using Genetics and Geodemographics

Correlation Optimization of Genetics and Geodemographics (COGG) and maximizes

the correlation between one of the top two principal components and the Geode-

mographic matrix, containing geographical coordinates, social groups and language

information encoded as indicator variables. We restrict our encoding into three so-

cial groups (A,B and C) as described before, instead of the conventional derogatory

terms that are widely used. We noticed that the Middle castes are very similar to

the Forward castes, such as Kshatriya or Brahmins, hence, we labelled both Forward

and Middle castes as SGA. Although the term Backward Class (as well as Scheduled

castes and Scheduled Tribes) is used by the Government of India to classify social

groups which are socially and educationally disadvantaged, we chose to call them

SGB.

Let u is the m-dimensional vector containing either one of the top two principal

components, computed by TeraPCA [68]; the Geodemographic matrix is denoted by

G.

G =



G1 G2 G3 G4 G5 G6 G7 G8 G9

...
...

...
...

...
...

...
...

...

...
...

...
...

...
...

...
...

...

Latitude Longitude SGA SGB SGC AA DR IE TB
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
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The social groups (SGA, SGB and SGC) and Language (AA, DR, IE, TB) encoding was

done as follows:

Castes (or Languages)=


1, if sample belongs to social group (or Language)

0, otherwise

Let a be the k-dimensional vector whose elements are a1 . . . ak (in our case, k = 9). COGG

solves the following optimization problem:

max
a

Corr

(
u,

k∑
i=1

aiGi

)
. (3.2)

Recall that Gi denotes the i-th column of G as a column vector. Let

di =
u>Gi√
Var [u]

for i = 1 . . . k and let d be the vector of the di’s. Also, let Mij = G>i Gj for all i, j = 1 . . . k

and let M be the matrix of the Mij ’s. Then the optimizer for COGG is given by

amax = M−1d. (3.3)

We obtain the above solution for COGG’s optimization problem as discussed in Equa-

tion (3.2) by recalling the definition of the Pearson correlation coefficient. We can rewrite

Equation (3.2) as

max
a

Corr

(
u,

k∑
i=1

aiGi

)
= max

a

uT (
∑k

i=1 aiGi)√
Var [u] Var

[∑k
i=1 aiGi

]
= max

a

∑k
i=1 ai(u

TGi)√
Var [u]

∑k
i,j=1 ai(G

T
i Gj)aj

.
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By definition, M is a square, symmetric positive definite matrix and hence its square root

M1/2 is well-defined. We can now rewrite the above equation as

max
a

(
u,

k∑
i=1

aiGi

)
= max

a

dTa√
aTMa

= max
a

dTa

‖M1/2a‖2
.

To understand the last equality let ‖x‖2 denote the Euclidean norm of the vector x and

recall that: (i) since M is symmetric positive definite matrix, M = (M1/2)TM1/2 and (ii)
√

xTx = ‖x‖2 for any vector x, including x = M1/2a. Now assume that M is invertible and

make the change of variable p = M1/2a/‖M1/2a‖2. Notice that p is a unit norm vector (its

Euclidean norm is equal to one) and that

a = ‖M1/2a‖2M−1/2p. (3.4)

Thus, we get:

max
p,‖p‖2=1

(
u,

k∑
i=1

aiGi

)
= max

p,‖p‖2=1
dTM−1/2p. (3.5)

Using submultiplicativity and the fact that p is a unit norm vector,

dTM−1/2p ≤ ‖dTM−1/2‖2‖p‖2 = ‖dTM−1/2‖2 =
√

dTM−1d. (3.6)

The last equality follows from the fact that ‖x‖2 =
√

xTx for any vector x. The above

upper bound is true for any unit norm vector p and can actually be achieved by the vector

pmax:

pmax =
M−1/2d

‖M−1/2d‖2
.

Indeed, it is easy to verify that pmax is a unit norm vector that satisfies

dTM−1/2pmax = dTM− 1
2

M−1/2d

‖M−1/2d‖2
=

dTM−1d√
dTM−1d

=
√

dTM−1d.

Thus, from Equation (3.6), it follows that pmax is a maximizer for the optimization problem

of Equation (3.5). If we let

amax = M−1d,
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it is easy to see that the above values for amax and pmax satisfy

amax = ‖M1/2amax‖2M−1/2pmax,

as stipulated by the change of variables from Equation (3.4), and thus amax is a maximizer

for COGG. Hence, we obtain the solution of the optimizer as defined in Equation (3.3).

We also remove the sparsity induced by the zero-one indicator variables by assigning 1, 2,

and 3 for SGA, SGB and SGC groups, respectively, in the social category and similarly 1,

2, 3, and 4 for AA, IE, DR, TB affiliations in the language variable and got similar results

by fitting the solution of COGG.

We checked for statistical significance of the results obtained by COGG by performing

1,000 iterations with randomly permuted values of the columns related to caste and lan-

guage encodings in G. We do not permute the columns corresponding to the geographical

coordinates in order to maintain a baseline for the comparison. We randomly permuted

the rows (individuals) corresponding to the seven columns (variables related to castes and

language affiliations) in G and in each iteration we run COGG to find the optimal amax and

the respective r2 value.We find that random permutations return a maximal value which is

significantly less than r2 obtained by COGG (detailed discussion in Results). This clearly

indicates the importance of the social group and language encodings in G.

Prior work attempted to disentangle the effects of non-genetic variables such as geography,

linguistics, subsistence, social or ecological factors from the genetic variables captured by the

top principal components. One such study [93] regressed the top 20 PCs computed from the

genotypes of the Khoe-San populations with various combinations of geographic, linguistic

and subsistence covariates, and used cross-validation scores to understand which non-genetic

variable can predict the observed genetic patterns. They observed that languages improve

the predictive capacity of a model that includes only geography in the sub-Saharan and

the Southern African dataset. This is similar to the intuition that COGG uses, but COGG

provides a conceptually straightforward model to do an in-depth study to account for the

factors within the broad generic non-genetic factors, such as which language and social group

explain most of the genetic variation captured by the top principal components. Also, in
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addition, we do a feature selection procedure to obtain the most significant variables in the

geodemographic matrix, unlike previous studies. Another study [92] employed a Bayesian

framework to isolate ecological factors from geographic distances. Broadly, COGG tries

to achieve the same goal, but it provides the ease of use in this setting, where one can

just encode the environmental and ecological factors as covariates and solve the underlying

optimization problem to obtain the maximum correlation. Along with this, it is easier to

comprehend, as it is closer to a linear regression setting.

Canonical Correlation Analysis

There is no mathematical reason to restrict COGG to the top two principal components

and corresponding singular vectors (PC1 and PC2) of the genetic similarity covariance ma-

trix. Prior work has exclusively focused on studying the correlation between longitude and

latitude and the top two principal components; COGG goes beyond this by adding geode-

mographic features to study more general correlations. Our next method applies Canonical

Correlation Analysis (CCA, introduced in [106]) to simultaneously study the correlation

between the top q Principal Components (where q is a user-defined parameter) and the

geodemographic matrix G. CCA extracts linear components that capture correlations be-

tween two input datasets, in a manner analogous to PCA. From a statistical point of view,

CCA extracts directions of maximal “correlation” between a pair of datasets represented

by matrices. From a linear algebraic point of view, CCA measures the similarities between

the subspaces spanned by the columns of each of the two datasets, represented by matri-

ces [107]. In our case, we extend the optimization problem of equation 1 to identify the

maximal correlation between U, which is now an n× q matrix containing the top q left sin-

gular vectors of the genetic covariance matrix and G, which is the geodemographic matrix

described earlier. Formally, we define the following optimization problem, which we call

COGG-CCA:

max
a,b

Corr

 q∑
j=1

bjUj ,

k∑
i=1

aiGi

 , (3.7)

where b is a p-dimensional vector whose entries are the bj ’s and a is a k-dimensional vector

whose entries are the ai; Uj and Gi represent the j-th and i-th column of U and G as
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column vectors. Solving COGG-CCA analytically dates back to the work of [106] and

allows us to obtain the following closed form solution for the vectors a and b, the unknown

coefficient vectors associated with the matrices G and U, respectively.

Let ΣUU = Cov [U,U ], ΣGU = Cov [G,U ], and ΣGG = Cov [G,G] denote three covariance

matrices and construct

Σ = Σ
−1/2
GG ΣGUΣ

−1/2
UU .

Then, a is the top right singular vector of the matrix Σ and b is the top left singular vector

of Σ; it is well-known that the maximum correlation coefficient is equal to the largest

singular value of the matrix Σ. Applying COGG-CCA on our data we obtain very high,

statistically significant r2 for q = 8 showing the prowess of including sociolinguistic factors

to construct the population genetic structure of historically diverse populations.

Algorithm 1 OMP Algorithm for Feature Selection
1:

Input: matrix G ∈ Rn×k, column vector U ∈ Rn, ε > 0
2:

Output: matrix C ∈ Rn×p which has columns of G with indices in τ , |τ | = p, p < k
3: τ ← φ; r ← 0; U(0) ← U; G(0)←G;C← φ
4: while ‖U(r)‖2 > ε do
5: for i ∈ {1, 2, · · · , k} − τ do

6: choose i corresponding to maximum corr
(
U(r),G

(r)
i

)
7: end for
8: τ ← τ ∪ {i}; V← G

(r)
i

9: remove column i from G(r) to form G′(r)

10: project G′(r) onto the subspace orthogonal to V, i.e., G(r+1) ← G′(r) −(
VV†

)
G′(r)

11: project U(r) onto the subspace orthogonal to V, i.e., U(r+1) ← U(r) −(
VV†

)
U(r)

12: r ← r + 1
13: end while
14: C← Gτ
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Feature selection using Orthogonal Matching Pursuit (OMP)

We used a greedy feature selection algorithm described in [108] to select features in the

Geodemographic matrix G. It selects the column which results in the maximum r2 value

from G and then projects G (and u) on the subspace perpendicular to the selected column

in order to form G′ (and u′). We iterate the process until we remove the required number

of features from G. The precise algorithm is described in Algorithm (1) We obtain two

sets of the three most significant features from the nine features in G, one for PC1 and

the other for PC2. All the values returned by this method are statistically significant, as

random permutations of the elements of the features in S1 and S2 recover almost nothing.

We also checked all
(

9
3

)
possible sets of three features exhaustively and concluded that (for

both PC1 and PC2) S1 and S2 return the maximum correlation.

Ridge Leverage Scores

We devised a simple method based on the Ridge Leverage Score (RLS) statistic in order

to identify Indian populations that maximally contribute to the genetic diversity within

the Indian sub-continent. We considered the genotype data, denoted by mean-centered

(by SNPs) matrix M ∈ Rm×n where m is the number of individuals and n is the number

of markers in the normalized subset of 33 Indian populations (approx 48K markers). We

also considered the mean-centered Geodemographic matrix G ∈ Rm×k, which includes k

features across m individuals in 33 Indian populations.

The ridge leverage score of the i-th row of the matrix A ∈ Rm×n is defined as

τi
λ(A) =

(
AA>

(
AA> + λIn

)−1
)
ii

(3.8)

where λ > 0 is the regularization parameter.

Our analysis procedure based on the RLS statistic has four steps:
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� We apply the RLS algorithm (see Supplementary Note for details) separately to

the matrices M and G to find their corresponding row ridge leverage scores, denoted

by τλi (M) and τλi (G), respectively, for i = 1 . . .m.

� We grouped the RLSs by population groups to obtain a single score per group, defined

as the median of the respective RLSs. If there are T = {t1, t2, . . . , tT } populations in

the normalized set of the Indian populations (|T | = 33 in our case), then we obtain

|T | RLSs in this manner, one per population ti, defined as the |T | × 1 vectors τ̄λ(M)

and τ̄λ(G).

� Next, we compute an additive ridge leverage score for each population after normaliz-

ing the vectors obtained in the last step. This additive RLS highlights the significant

rows (in our case, Indian populations), across both the genotype and the Geodemo-

graphic matrices. We define this consolidated additive RLS as,

τ̃ = τ̄λ(M) + τ̄λ(G).

� Finally, we sort the entries of τ̃ in descending order to obtain a set of representative

populations.

Estimating population admixture

We used the ADMIXTURE v1.22 software [35] for all admixture analyses and used our in

house script to plot the admixture estimates. Before running ADMIXTURE, we pruned for

LD using PLINK [94] by setting --indep-pairwise 50 10 0.8. To determine the opti-

mal number of ancestral populations (K), we varied K between two and eight performing

iterations until convergence for each value of K. We also performed a quantitative analy-

sis (Section 3.1.2) of ADMIXTURE’s output using a method described and implemented

in [56]. To visualize the results of this quantitative analysis, we designed a color-coding

scheme, where the highest shared ancestry between two populations is black and the lowest

shared ancestry is white. All intermediate values of shared ancestry follow a gradient from

white to black.
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Three population statistics, qpAdm, network analysis, and TreeMix

We used ADMIXTOOLS [40] to compute f3 statistics and qpAdm for our data sets to find

signs of admixture using the qp3Pop and qpAdm programs respectively. To better visualize

and understand the connection between the populations included in our study, we performed

a network analysis on the results of ADMIXTURE, using a method presented by a previous

study [70]. The parameters to generate the networks are the number of nearest neighbors

(NN) and the number of Principal components (PC) to use. We varied NN from four to

eight and PC from two to five. We report the network (Figure 3.7) for NN=5 and PC=5.

Finally, TreeMix [109] was used to analyze the population divergence, mainly for the IE

language dispersal into the Indian subcontinent. We used migration values from zero to

eight and the -k flag to allow LD and set it to 1,000 SNPs to infer language dispersal

routes.

Figure 3.4.: A. Map of India showing the locations of the 835 Indian samples, from 84
well-defined population groups, that were used as the starting point of this study; B.
PCA plot of the normalized dataset consisting of 368 individuals, genotyped on 48,373
SNPs shows language groups are clearly significant in the PCA plot and correlate
well with the principal components; C. Framework of our approach for Correlation
Optimization of Genetics and Geodemographics (COGG).
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3.2.3 Implementation

COGG was implemented in MATLAB and is available to download with a GNU GPL 3.0

license at https://github.com/aritra90/COGG.

3.2.4 Results

Geography versus population structure within India

Starting from all publicly available autosomes from the Indian subcontinent (835 individuals,

see Figure 3.4 and Supplementary Table 2) and unlike prior studies [80], we created a

normalized data set (see Section 3.2.2 for details) over social groups, geographical locations,

and language families that guarantees an approximately equal representation of each group

(a total of 368 individuals from 33 populations genotyped across 48, 373 SNPs).

In other regions of the world, it has often been observed that individuals from the same

geographical region cluster together with the top two principal components (PCs) being

well-correlated with geography, namely longitude and latitude [7]. For instance, within

Europe, the squared Pearson-correlation coefficient r2 between the top singular vector of

the genetic covariance matrix vs. latitude (north-south) was equal to 0.77 and 0.78 for the

second singular vector of the same matrix vs. longitude (east-west). In order to explore

whether Indian genetic information mirrors geography, we computed the top two PCs using

smartpca [37] and plotted the top two left singular vectors of the resulting genetic covariance

matrix (Figure 3.4 and Figure A.6 for the entire dataset), with the first and second PC

explaining 32% and 15% of the total variance, respectively. It is straight-forward to observe

that the IE and DR speaking populations form a long cline, while the AA and TB speakers

form separate clusters. We computed the Pearson correlation coefficient (r2) between the

top two left singular vectors (we will denote them by PC1 and PC2) of the covariance

matrix and the geographic coordinates (longitude and latitude) of the samples under study

and we observed r2 = 0.604 for PC1 vs. longitude and r2 = 0.065 for PC2 vs. latitude.

Thus, PC1 correlates well with longitude, but PC2 essentially entirely fails to correlate with

latitude.These findings are in sharp contrast with findings within the European continent [7,

https://github.com/aritra90/COGG
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110] and highlight the need for social and linguistic factors to be accounted for, as noted in

prior work [77,80,83,86,89], which argued that genetic stratification in India is particularly

influenced by endogamy as well as language groups. ADMIXTURE analysis is consistent

with previous studies (Figure A.7), showing high degrees of shared ancestry across all the

social groups (Figure A.8), thus supporting the notion that a demographic shift from wide

admixture to endogamy occurred recently in Indian history; indicating the autochthonous

origin of the caste system in India. f3 statistics show further evidence that most of the

social groups in India are admixed across languages affiliations (Supplementary Table 3).

The geographically isolated Tibeto-Burman SGC (TB SGC) and the Dravidian speaking

SGC (DR SGC) appear to be the most isolated in India. Linear Discriminant Analysis

(LDA) on the normalized data set clearly supports genetic stratification by social structure

and languages in the Indian sub-continent (Figure A.9). Separate clines resembling IE, DR

and TB SGA, respectively appear in order, followed by SGB and SGC. Thus, we see a two

layer stratification, when LDA was run with language-caste groups.

Correlation Optimization of Genetics and Geodemographics

In order to understand the genetic substructure of India, considering the strongly endog-

amous social structure as well as the presence of multiple language families, we developed

COGG (Correlation Optimization of Genetics and Geodemographics). COGG is the first

deterministic method that correlates genomewide genotypes, as represented by the top two

principal components, with geography (longitude and latitude) and sociolinguistic factors

(caste and language information in this case). The need for such methods has been pointed

out by many studies [77, 79, 80, 86, 89]. Given information on m samples, the objective of

COGG is to maximize the correlation between the genetic component as represented by the

top singular vectors of the genetic covariance matrix formed by the genotypic data and a

matrix containing information on geography, castes, tribes, and languages for each sample

(Figure 3.4).

Solving the optimization problem underlying COGG (see 3.2.2) and plugging in the solution,

we obtain a Pearson correlation coefficient r2 = 0.93 for PC1 vs. G and r2 = 0.85 for PC2
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vs. G. Thus, we observe almost perfect correlation with PC1 and PC2 representing the

genetic structure of the Indian subcontinent using the Geodemographic matrix G instead of

just longitude and latitude: the values of r2 increase from 0.6 to 0.93 for PC1 and from 0.06

to 0.85 for PC2. This massive improvement came from considering endogamy and language

families, two attributes that are pivotal in studying the genetic stratification of Indian

populations. The results are statistically significant (Figure A.10) over 1,000 iterations

with permutation of the variables related to social factors and languages (see 3.2.2 for

details). We randomly permuted the rows (individuals) corresponding to the seven columns

(variables related to castes and language affiliations) in G and in each iteration we run

COGG to find the optimal amax and the respective r2 value. We find that the random

permutations return a maximal value of r2 equal to 0.6422 for PC1 and 0.1679 for PC2

(Supplementary Figure 5). This is a minor increase from 0.6 and 0.06 respectively for PC1

and PC2, clearly indicating the importance of the caste and language encodings in G.

We further explored an extension of COGG in order to jointly analyze multiple PCs simul-

taneously and not just each component individually. To do this we employed Canonical

Correlation Analysis (CCA), a well-studied statistical technique, which maximizes the cor-

relation between the genetic and the Geodemographic matrices by jointly finding linear

combinations of the variables in each matrix. We used the top eight PCs of the genetic

matrix as the results did not improve significantly, beyond that (Figure A.11). We note

that these eight PCs capture, collectively, 88.9% of the variance of the genetic matrix. Let

U denote the matrix containing the top eight principal components and let G be the same

Geodemographic matrix as before. Running COGG-CCA on these inputs returns a statis-

tically significant (Figure A.11) r2 equal to 0.94 (which is well above the r2 = 0.6 obtained

when COGG-CCA was ran without including the sociolinguistic factors.

Identifying the features that drive population structure within India

In order to formally investigate which of the nine features (columns) in the Geodemographic

matrix G contribute more in the optimization problem posed by COGG, we used the sparse

approximation framework and the Orthogonal Matching Pursuit (OMP) algorithm from
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applied mathematics [108] (Algorithm 1). Running OMP on our dataset we obtain two sets

of three features each, S1 and S2, for PC1 and PC2 respectively:

S1 = AA, TB, SGA, and

S2 = AA, Latitude, SGA.

Plugging in S1 as the reduced feature space in COGG resulted in r2 = 0.92 for PC1 with

S1 and r2 = 0.85 for PC2 with S2, respectively; these values are capturing approximately

over 99% of the values returned by COGG when all the features in G are included.

The feature selection algorithm identifies the AA and TB language groups to be the sig-

nificant features. These language groups (AA and TB) consist of mostly tribal nomadic

hunter gatherers who dwell in the hills and forests of Central-eastern and North-eastern

India, respectively. Thus, the AA and TB language groups automatically capture SGC.

Another significant feature was SGA; SGA spans across most of the IE and DR speakers

found across northern and southern India. Thus, these three features encompass most of the

geographical, social and linguistic diversity found in the Indian subcontinent and highlight

the demographic interplay.

Significant ethnic groups capturing genetic diversity in India

We developed a simple approach to identify influential (from a genetic perspective) Indian

populations, based on the Ridge Leverage Score (RLS) statistic of [111] (see 3.2.2). We

applied our approach to the genotype matrix of the normalized dataset, as well as on the

corresponding Geodemographic matrix, to identify population groups capturing the genetic

variation of the Indian subcontinent. Pan-Indian nomadic hunter gatherers, represented

as SGC and SGB, across language families, are found to encapsulate much of the genetic

structure of the subcontinent.

The following ethnic groups are all found to be significant in the light of our analysis:

TB speaking Changpas, who are semi-nomadic pastoralits dwelling in the high altitudes
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of Tibet and Ladakh in India; AA speaking Mundas spanning the forests of Central and

Eastern India; IE speaking Meghawals situated in the northwestern states of India as well

as in Pakistan and continue to live in mud-brick huts; DR speaking Madigas in the southern

states of India, who are also listed as Dalits (belonging to SGB). Table 3.4 shows the most

significant populations returned by the RLS statistic when applied on the normalized set

of the Indian populations. These populations spread across the entire subcontinent and

Table 3.4.: Top ten significant ethnic groups in India capturing the genetic structure
of the subcontinent as reflected by the RLS statistic (∗ Vysyas are classified as in
between SGA and SGB [81]).

Population group State/Territory Language family Social group
Changpas Jammu and Kashmir TB SGC

Vysya Andhra Pradesh DR SGA ∗

Munda Jharkhand and Odisha AA SGB
Mawasi Madhya Pradesh AA SGB

Meghawal Rajasthan IE SGB
Sahariya Uttar Pradesh IE SGB
Sakilli Tamil Nadu DR SGB
Korku Madhya Pradesh AA SGB
Madiga Andhra Pradesh DR SGB
Sherpa Nepal TB SGC

consist of mostly SGC and SGB, who are semi-nomadic groups dwelling in forests and

remote areas in India. Some AA SGC listed here (such as the Mawasi and the Korku)

are northern Mundari speakers and have an Ancestral North Indian (ANI) component, an

Ancestral South Indian (ASI) component, and an ancestral South-East Asian component

(SEA) [112]. Vysyas have been shown to have a founder event going back 100 generations,

due to the strong imposition of endogamy [39]. They are almost equally admixed between

DR SGC and IE SGA (Supplementary Table 3 and Figure A.7), indicating that they were

mixing across social groups prior to becoming endogamous. The RLS statistic highlights

these populations and indicates that these groups have significant contributions in shaping

the genetic diversity of India and are thus important candidates to be studied further in

more detail.
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Figure 3.5.: Population network analysis of all Indian populations reveals four isolated
clusters, representing language groups (40% of edges are shown).

Running COGG with the significant ethnic groups as shown in Table 3.4 further confirmed

the importance of of these populations in shaping Indian genetics. The r2 value between

geographical coordinates and the PCs came out to be 0.21 for PC1 and 0.08 for PC2, when

ran with populations from Table 3.4. When the same populations were ran with COGG, the

values returned were r2 = 0.853 for PC1 and the geodemographic matrix G and r2 = 0.794

for PC2 and G. Thus, COGG returns very high correlations using only the populations

selected using the RLS statistics, capturing most of the variance reflected by the top PCs

of the genetic matrix.

Relationship between social groups

Our analyses using COGG clearly support the fact that language families and endogamy

within social groups have played a significant role in shaping the genetic structure of the

Indian subcontinent. We further explored the relationship between SGC with the endog-

amous SGA and SGB in order to reconstruct the population history of these populations.
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The SGA populations across languages share approximately 85% average ancestry with SGC

belonging to the same language. The IE and DR language groups show more homogeneity

in shared ancestry than the TB and AA groups. This supports the notion that there was

mixture between IE and DR speakers across SGA and SGB (Figure A.8) around 1,900 to

4,200 years ago [81] and that the caste system originated from a “classless” society which

became hierarchical with the knowledge of agriculture [78,113]. Some DR SGC populations

such as Irula, Kadar and Paniyas show divergence from the rest of the Indian population

(Supplementary Figure 8b, Supplementary Table 3). Irula and Kadar, who are nomadic

people residing in forests in southern India share 90% ancestry between themselves, form-

ing an isolated cluster among the DR speaking groups. Paniyas show isolation from other

DR SGC groups with considerably smaller amounts of shared ancestry with all IE and DR

speakers. To better illustrate the intricacies in the relationships between the social groups

in India, we constructed a network of all the population groups under study (Figure 3.5),

with their weights resembling the shared ancestry between them.

The shared ancestry network (Figure 3.5), revealed four clusters: (i) A cluster of IE and DR

groups across social groups resembling a nearly complete graph with over 60% of all possible

edges present. (ii) Few DR SGC populations such as Kadar, Irula, Malayan, Palliyar,

etc. formed a connected component, isolated from the main IE-DR cluster. (iii) All AA

populations formed an almost complete graph where few groups such as Mawasi, Korku,

and Korwa were connected to the Gonds and Sahariya (who contain ∼71% of AA ancestry).

The Gonds are a candidate mosaic Indian population, containing ∼51% AA, ∼36% DR,

and ∼13% IE ancestry (Supplementary Table 4), which can be attributed to their central

location in India [114]. They act as the bridge between the AA clique merging into the

IE-DR cluster when we allow 60% edges in the network. (iv) A cluster formed by all TB

speakers, with Naga, Garo, and Tripuri being connected to the Khasis, who are an AA

speaking group residing in northeastern India. It is connected to the Manipuri Brahmins,

who are known to have significant admixture from IE SGA (Supplementary Table 3). The

clusters confirm that languages play a very significant role in shaping the Indian gene

pool.
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We try to dissect each cluster to further analyze the divergent populations as well as the

cohesive forces acting towards making the Indian subcontinent a melting pot of different

demographics.

Homogeneity of IE and DR speakers

Network analysis within India (Figure 3.5) revealed that the IE and DR cluster resembles

an almost complete graph, indicating the significant amount of shared ancestry between all

involved populations. This is further corroborated by running outgroup f3 statistics [40,41]

(with Yorubans in Nigeria (YRI) from the 1000 Genomes phase3 dataset as the outgroup [4])

to find the shared genetic drift between all Indian populations (Figure A.13). In this

analysis, we focused on all of 84 ethnic groups from India consisting of 835 individuals.

We observe that IE and DR populations across social group affiliations share substantial

ancestry. Focusing on just the IE and DR speakers across social groups, we created a

subset of our data encompassing 510 individuals across 22K markers. They form a long

cline when plotting the first two PCs (Figure A.14), with only few populations showing

divergence. This follows from the network analysis (Figure 3.5) as well as the f3 tests

(Supplementary Table 6) described above, which also showed a separate cluster formed

by DR SGC populations( also shown in Figure A.12). A visibly divergent groups in DR

speakers are Paniyas, owing to their remote location in Wayanad, Kerala, a southern Indian

state. Another divergent group in all statistics were Tharus, who are admixed between

TB SGC and IE speakers Figure A.15) and has dual ancestry with with one-half of their

gene pool being East Asian, whereas the other half is South Asian [115]. The homogeneity

between the IE and DR speakers across social groups is best reflected in the quantitative

assessment of the ADMIXTURE analysis (Figure A.16).

Archaeologically, India has been influenced by a period of population movements with a

number of demic characteristics such as agriculture, husbandry, ashmounds, etc. The in-

teraction between groups prior to the imposition of endogamy is layered [116]. We sought

to identify evidence of genetic immigration which is archaeologically associated with the

expansion of dry-land farming in Gujarat (nortwestern India) during the post-last Glacial
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Period aridification. This would be far earlier than IE dispersal. Given the tendency of

subsistence-associated endogamy, we sought to test whether northern Gujarati (Meghawal)

and southern dry-land farmer groups (such as Piramalai Kallar) showed differential ad-

mixture by IE lineages via qpAdm. In the south, a model of admixture for Meghawal,

Gujarati Brahmins (GB) and Paniyas accounted for Piramalai Kallar (PK) genetics to

within sampling variation. However, GB appeared with a negative coefficient, subtract-

ing IE contributions to produce the fit. This suggests that a basal population (possibly a

sub-population among DR, termed as Ancient Ancestral South Indian in [87]) mixed with

Paniyas (southern DR hill dwellers) prior to absorption of IE lineages by GB. West Euro-

pean Hunter Gatherers (WHG) showed no significant admixture coefficients when added

to these regression analyses (Supplementary Table 4). Thus, we observe a relatively recent

IE admixture into a Gujarati pool of lineages, with more IE admixture towards the north,

supporting a chronology of relatively recent genetic arrival of IE lineages. The direction of

the gene flow was confirmed by the f3 tests as shown in Table 3.5 where we see significant

negative f3 values when Meghawals are target and are admixed between European ancient

DNA samples and PK (DR SGC).

Table 3.5.: f3(C;A,B) tests highlighting the Steppe and Dravidian mixture in
Meghawal and the negative f3 values and reasonably significant z-scores. This con-
firms the South India to Gujarat direction of gene flow.
Steppe MLBA: Middle to Late Bronze Age samples from the Steppes [42]

A B C F3 Err Z
PK GB Meghawal 0.002634 0.000631 4.18
Paniyas Meghawal PK 0.004474 0.000809 5.53
Paniyas GB PK 0.003062 0.000678 4.517
Steppe MLBA GB PK 0.020187 0.00074 27.27
WHG Meghawal PK 0.015089 0.001208 12.48
PK Paniyas GB 0.00188 0.00086 4.789
Steppe MLBA PK Meghawal -0.002393 0.000815 -3.935
WHG PK Meghawal -0.002016 0.00114 -2.895
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AA speakers of India and Southeast Asia

All AA speakers in India form a dense graph in Figure 3.5. The AA SGCs share high

ancestry values among the northern and southern Munda speakers, but not as much among

them (Figure A.17). Southern Munda speakers such as Juang, Bonda, Savara, etc share

high ancestry between themselves, whereas the Northern Munda speakers, such as Santhal,

Mawasi, Ho, etc. are more homogenous than others. This is owing to separate admixture

events for these two Munda speaking groups and the northern Munda speakers receiving

longer admixture pulses from IE, DR and southeast Asian groups [112]. Khasis, Birhors, and

Korwa are the divergent groups in PCA (Figure A.18) and f3 (Figure A.13) analyses, mainly

due to their geographical location and admixture from other TB, DR, and IE speakers,

respectively (see Supplementary Table 3 for details).

There are two rival hypotheses of dispersal of AA languages across Asia. The former being

that AA languages originated in Southeast Asia and later migrated to India, whereas the

latter postulates that AA originated in South Asia and dispersed to the southeast [95].

As described below, our analysis supports the first hypothesis (southeastern origin of AA

languages) and is concordant with the findings of [95,112]. We merged the samples collected

from southeast Asian countries such as Myanmar, Laos, Vietnam and Cambodia with the

normalized Indian data set to investigate the origin of the AA languages, forming a new

data set of 624 samples spanning across 48,252 markers and 38 populations. The first two

PCs (Figure A.19) showed the southeast Asian speakers such as Cambodians, Vietnamese

and Laotians are closer to the Indian TB speakers followed by the AA speakers.

A closer look on the population genetic network, showed that the Khasis (Figure A.21a)

indeed form a bridge between the Southeast Asian populations and the Indian AA speakers.

The TB speakers share a large amount of ancestry with the Southeast Asian AA speakers,

whereas the Indian AA speakers share less amount of ancestry with them (Figure A.20a).

This is indicative of the fact that the genetic history of the Indian AA speakers and their

southeast Asian counterparts are not homogeneous and probably they split very long ago.

TreeMix analysis (Figure A.21b) and a recent study [112] revealed that AA speakers in India

contain a significant ancestral component from southeast Asian populations. Although

caution should be taken in interpreting TreeMix plots with weak migration edges, we also
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found signs of admixture when we ran f3 tests with Indian AA speakers as target and

Southeast Asian speakers as the source along with DR speakers (Supplementary Table

6).

Relationship between Indian TB speakers and East Asia

The Indian TB speakers form a cluster in Figure 3.5 with Khasis, who are highly admixed

among IE, AA and TB speakers(Supplementary Table 3 and Table A.2.1), becoming a link

between the group of TB speakers and Manipuri Brahmins, who belong to the TB SGA

(Figure A.22). The TB speakers do not show a lot of homogeneity with each other (Fig-

ure A.23b) most likely due to their wide geographical dispersal across the Himalayan moun-

tain ranges, ranging from east to west and acting as a barrier of gene flow.

To study the origin of the TB language family as well as the relationship between the

Indian TB speakers and their East Asian counterparts we focused on samples from publicly

curated data sets such as HGDP and other sources [117] to form a data set comprising

of 347 individuals, sampled from 27 population groups, spanning across 38,667 SNPs. The

first two PCs (Figure A.22a) show that the Indian TB speakers lie in close proximity with

the Chinese mainland speakers. ADMIXTURE plots (Figure A.23a) and meta-analysis for

shared ancestry (Figure A.23b), show that TB SGC share significant ancestry with the

mainland Chinese people.

Network analysis (Figure A.22b) reveals that the TB SGC are close to central and southern

Chinese, whereas, the SGAs are closer to Uygurs and the Burmese. This shows that,

Himalayas although acted as a major barrier for gene flow from the north to south of Asia,

had some level of permeability across the Himalayas in northeast India. TB speakers in

India show signs of admixture from East Asia (Figure 3.6) confirming the gene flow from

China to northeastern India as also shown in a recent study [118] and in previous studies

using Y chromosomal markers [79,119]. The inferences drawn from demographically smaller

groups, especially for the AA and TB language groups should be interpreted with caution,

as random genetic drift might contribute to the variation of allele frequencies for these
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groups. We do note that, in order to mitigate this bias as much as possible, we used SGCs

that have maximum number of individuals in our study.

Routes of migrations into India

We proceeded to explore how migrations might have influenced the genomic structure of

the Indian sub-continent in relation to the rest of Eurasia and Southeast Asia. Towards

that end, we analyzed a dataset of 1,516 individuals over 42,975 SNPs (Supplementary

Table 2c), sampled from 79 populations. PCA plots uncover a structure that resembles

a triangle, with Europeans residing in one corner, the Chinese on another corner, and

the DR and AA SGCs of India occupying the third corner (Figure A.24). IE, TB, and

AA SGCs are major nodes connecting to multiple populations. TB SGC stand at the

Northeastern gateway from China to India, while IE SGA are at the entry-point from the

Northwestern frontier (Figure 3.6). TreeMix [109] and f3 statistics (Supplementary Table

5) show signs of admixture, with significant allele sharing between populations in Eurasia,

revealing directions of gene flow. Meta-analysis of the ADMIXTURE output reveals that,

overall, Indian populations share a great proportion of ancestry with the so-called Indian

Northwestern Frontier populations, namely the SGC populations spanning Afghanistan

and Pakistan (Figure 3.6). In concordance with previous studies we find higher degrees

of shared ancestry in Central Asian populations with IE and DR SGA [82, 87–89]. In

particular, IE SGA share large amounts of ancestry with other IE speaking populations

(i.e., Europeans). However, IE, TB, and DR speakers also share considerable amounts of

ancestry with the Uygurs. On the other hand, AA speakers, who have been suggested as

the earliest settlers of India [89], appear more isolated.

The time of admixture between Indian agriculturalist-related ancestry and the ASI com-

ponent in the Indus Periphery samples in [87] is shown to be around 4700 - 3000 BCE.

Subsequently, the timing of admixture between the ANI and ASI is known to be around

1900-4200 YBP. To test the hypothesis of whether modern IE and DR speakers show signs

of admixture prior to the arrival of the Steppe ancestral component in the Indian subconti-

nent, we merged the ancient and modern humans from Near East [42,120] to form a merged
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Figure 3.6.: A. TreeMix plot with the number of migration edges set to five indicate
that the Siberians and Mongols show the most drift from DR SGA and SGBs (residual
plot in Figure A.25). Migration from Uygurs to the Northwestern Frontier populations
is also found, making these populations a gateway to the Indian populations; B.
Networks formed using the top five PCs (see Methods for the network formation
algorithm) and five NNs showing three major paths leading to the two entry points
of India; C. Meta-analysis of the ADMIXTURE plot (Figure A.26) quantifies the
ADMIXTURE results (darker colors indicate higher pairwise shared ancestry).
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dataset of 1,597 individuals across ∼31K markers. We tested for signs of mixture in the

DR SGB and SGC (denoting ASI) with IE SGA and SGB (denoting ANI) in the presence

of WHG or (equivalently) Scandinavian Hunter Gatherers (SHG) by running qpAdm [40].

The DR SGB showed signs of admixture from both IE SGA and WHG with very low stan-

dard errors and reasonably high p-values (Supplementary Table 4). Given the suggested

timings of arrival of IE in the Indian subcontinent [39, 42, 43, 88], we note that the qpAdm

tests indicate that IE speakers in north India brought WHG ancestry with them when

they mixed with DR SGB relatively recently after the ancient basal group contributed to

both the modern Gujarati populations (IE speakers) as well as to PK and other DR SGCs

dwelling in the hills of southern India.

PCA and subsequent network analysis show that the genetic structure of Indian AA speakers

and southeast Asian Austric speakers mimics geography. TreeMix analysis (Figure A.21b) of

AA speakers and their southeast Asian counterparts (with six migration edges) shows that

there is a migration edge from Cambodian to Bonda, who are northern Munda speakers.

qpAdm tests find Mundas and Birhors to be admixed between DR SGC and the Vietnamese

(with ∼17% ancestry), as also observed in [112] (Supplementary Table 6). This was further

validated by outgroup f3 statistics (Figure 3.7). In order to interpret the allele sharing

between Indian populations with that of their Eurasian counterparts, we analyzed the out-

group f3 statistics, using YRI as the outgroup. We test our hypothesis of shared genetic

affinity of the refined social groups of AA, DR, IE and TB speakers in India with Eurasian

populations by running f3 tests such as f3(Y RI;X,Y ), where X is an Indian group and

Y being an Eurasian group. Outgroup f3 statistic reveals European populations showing

greater affinity, i.e., shared genetic drift with the IE social groups along with DR SGA,

whereas, the East Asian populations have larger shared affinity with the TB speakers along

with some affinity with AA speakers as well. This clearly shows a gradient of gene flow

from Siberia, then Mongolia, splitting towards China and Northeast India on one hand and

the Uygurs, Central Asia mixing with the Europeans and Middle Easterners towards India,

on the other. This also corroborates our findings from the network analysis and the entry

points towards the Indian subcontinent (Figure 3.6). Previous studies have also supported

a north-western and north-eastern corridor of migration towards India [39, 43, 81, 87, 88].
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Figure 3.7.: Outgroup f3(Y RI;X, Y ) gradient map, showing pie charts of the shared
affinity between Indian populations (denoted by X) and Eurasian/East Asian popu-
lations (denoted by Y ). The color coding scheme is represented in the right hand side,
signifying the colors attributed to perfect affinity (purple for AA, red for DR, green
for IE, and blue for TB). The colors are distributed across gradients with respect to
the maximum and minimum significant f3 values. The population annotations and
the detailed f3 statistics can be found in the supplement (Supplementary Table 7).
This gradient map shows the Europeans having more shared genetic drift from the
outgroup YRI with the IE speakers of India (specifically, IE SGA), whereas the East
Asians have the maximum shared genetic affinity with TB SGC.

However, this is the first study connecting both paths through the populations of Siberia

and Mongolia.

3.2.5 Discussion

India represents a country of great social and linguistic complexity. We attempted to dis-

sect this complex structure and reveal how these forces have shaped the Indian gene pool.

Furthermore, putting India in a worldwide context, we integrated multiple representative

populations from Eurasia, drawing paths of human migrations and gene flow throughout

Eurasia. To do this, we investigated a comprehensive dataset that brought together all pub-
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licly available data on the Indian sub-continent. Importantly, we established a quantitative

deterministic and non-parametric framework aiming to evaluate the relative contribution of

language, social structure and geography and identify the degree of impact of each factor.

Earlier attempts to investigate geography and non-genetic factors in relation to population

genetic structure did not provide statistical significance measures or feature selection or

were based on multiple assumptions under a complex Bayesian framework [92,93].

In concordance with previous studies, we find evidence for wide mixture across all the social

groups. As shown previously, this wide admixture came to an abrupt end around 1,900 to

4,200 years ago [81] and the caste system originated from a semi-nomadic society which

became hierarchical with the knowledge of agriculture [78, 113]. We time this event with

the arrival of the steppe ancestral component in the Indian subcontinent around 3000 BC,

and show that IE speakers mixing with southern Indian DR already contained a steppe-like

western hunter gatherer ancestral component. Linguistic analyses also support a history

of contacts between divergent populations in India. Indo-European languages (primarily

spoken in northern India) are part of a larger language family that includes the great

majority of European languages. In contrast, Dravidian languages (primarily spoken in

southern India) are not closely related to languages outside of South Asia. Nevertheless, the

earliest Hindu text (the Rig Veda, written in archaic Sanskrit) contains Dravidian loanwords

that are not found in Indo-European languages outside the Indian subcontinent [81,121,122].

Further supporting the long contact between IE and DR speakers in India, our network

analysis and f3 tests identifies a large cluster consisting of IE and DR populations which

resembles an almost complete graph with almost all pairs of populations connected to each

other. Our findings indicate that the DR SGC are indigenous to the Indian subcontinent

with the knowledge of domesticated crops, conducting dry-land farming in the shades of

Western Ghats in the southern peninsular India. qpAdm tests support the hypothesis of

an outward migration from the south showing a south-to-north gradient of mixture with

Gujaratis, which has similar archaeobotanical, as well as agricultural, footprints as southern

India. This seems to indicate that the basal group admixed with the DR hill SGC lineages

to produce dry-land farmers (PK), while that group admixed with IE speakers in Gujarat

to produce Meghawals.
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India has served as a major corridor for both Paleolithic and Neolithic migrations of anatom-

ically modern humans [80, 87, 123]. An early dispersal of modern humans from Africa into

India through the southern coastal route [124–126] and migration from West and Central

Asia through the northwest corridor [77, 79, 127, 128] have been supported both by archae-

ological findings and genetic studies [129]. The proportions of ancestry derived from the

western Eurasian gene pool has been found to be greater in populations inhabiting northern

India than those inhabiting southern India. On the other hand, TB speakers in India seem

to have arrived through the northeast corridor [79].

Language, social structure and geography create channels of gene flow across populations.

However, to date, no study had attempted to establish a quantitative framework in order to

dissect the relative contribution of each factor and translate it into a model that correlates

with observed population genetic structure. Here, we establish such an analytic frame-

work allowing the quantitative assessment of different evolutionary factors as well as the

interplay among them. Applying this novel method on a comprehensive dataset from the

Indian subcontinent, we are able to uncover the major forces that have shaped population

genetic structure within India. In other parts of the world, geography has been found as

the major contributor to shaping population genetic structure [1, 4]. Our results within

India are in sharp contrast to what has been seen, e.g., in Europe [7], highlighting the

importance of population specific studies around the world. Intriguingly, our study shows

that spoken language seems to have been the major force bringing people together in India,

across geographical and social barriers. The possibility to correlate genomic background

to geographic, social and cultural differences opens new avenues for understanding how

human history and mating patterns translate into the genomic structure of extant human

populations.
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4 TERAPCA: A FAST AND SCALABLE SOFTWARE PACKAGE TO STUDY

GENETIC VARIATION IN TERA-SCALE GENOTYPES

This article has been accepted for publication in Bioinformatics Published by Oxford Uni-

versity Press with DOI: 10.1093/bioinformatics/btz157.

4.1 Introduction

Principal Component Analysis (PCA) is perhaps the most fundamental unsupervised linear

dimensionality reduction technique. It was invented by Pearson in the early 1900s [130];

and later reinvented and named by Hotelling in the 1930s [106,131]. In statistical parlance,

PCA converts a set of observations of possibly correlated variables into a set of linearly

uncorrelated (orthogonal) variables called principal components (PCs). The seminal work

of Luca Cavalli-Sforza and collaborators in the late 1970s [8, 12] pioneered the application

of PCA for the study of human genetic variation.

PCA analyses and plots appear in virtually every single paper that analyzes human genetic

variation in order to make inferences about population structures. Given m samples geno-

typed on n genetic loci, it is well-known that applying PCA on the m×m covariance matrix

that emerges by computing any reasonable notion of genotypic distance between every pair

of samples using the n genotyped loci results in the observation that the leading PCs mir-

ror geography, e.g. see [7, 70, 132] for detailed discussions and examples. This observation

was leveraged by [36, 37, 133] to derive one of the most established methods to account

(and correct) for the confounding effects of population stratification in genome-wide associ-

ation studies (GWAS). The method in [36,37,133] is essentially equivalent to using a small

number of leading PCs as covariates in order to check for associations between genetic loci

and affection status in statistical tests, and is implemented in the EIGENSTRAT software

10.1093/bioinformatics/btz157
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package which is routinely used in GWAS analyses to correct for population stratification.

Other applications of PCA include the identification of sets of genetic loci that are ancestry-

informative or are under selective pressure [37,67,134]; and, when combined with other lines

of evidence such as social structure and linguistics, the extraction of complex population

histories and demographic structures [135]. We also note that PCA extracts the funda-

mental features of a dataset without complex computational modeling. Interestingly, even

the output of model-based, more complex, methods to detect population structure (such as

ADMIXTURE [35]) typically exhibits high correlation with the output of PCA, rendering

further support to the significance of PCA in the analysis of human genetics data.

From a computational viewpoint, PCA essentially amounts to computing eigenvectors of

the m ×m (normalized) covariance matrix associated with the dataset at hand. When m

does not exceed a few thousands, all eigenvectors can be computed by appropriate dense

linear algebra routines in LAPACK, a Fortran 90 matrix factorization-based library which

is widely used for solving systems of linear equations, least-squares problems, eigenvalue

problems, and singular value problems [136]. Matrix factorization-based dense eigenvalue

solvers return all m eigenvectors with a time complexity in the order of O(m3), which be-

comes impractical as m, the number of samples, increases. Practical applications of PCA

in population genetics only require the computation of those principal components (PCs)

determined by the eigenvectors associated with only a few (say 10-20) of the largest eigen-

values. Computing a few of the leading eigenvalues and associated eigenvectors of large

(sparse or dense) matrices is typically achieved by first projecting the original eigenvalue

problem onto a low-dimensional subspace which includes an invariant subspace associated

with the relevant eigenvectors. This low-dimensional subspace can be formed in many dif-

ferent ways, e.g., by means of subspace iteration or Krylov projection schemes and much

work in the Numerical Analysis community has been devoted in understanding the theo-

retical properties of such approaches [137, 138]. In particular, a variant of the family of

Krylov projection schemes, the so-called Implicitly Restarted Arnoldi method (IRA), is the

projection scheme of choice in FlashPCA2 [139], a software package which has been shown

to outperform other PCA software packages, both in terms of memory usage and wall-clock

time. On the other hand, recent advances in the design and analysis of Randomized Nu-

merical Linear Algebra (RandNLA) [140] algorithms have yielded novel insights as well as
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fast and efficient alternatives to approximate the leading principal components of large ma-

trices [14,141–143]. Indeed, FastPCA [144] applied such randomized algorithms to perform

PCA analyses in population genetics data.

This paper presents TeraPCA, a C++ software package to perform PCA of tera-scale geno-

typic datasets that can not fully reside in the system memory. TeraPCA is essentially an

out-of-core implementation of the Randomized Subspace Iteration method [13,14] and fea-

tures minimal dependencies to external1 libraries. As the amount of time spent on I/O

typically dominates the wall-clock time in out-of-core scenarios, TeraPCA builds a high-

dimensional initial approximation subspace by loading the dataset from secondary storage

exactly once. The dimension of this initial approximation subspace can be controlled di-

rectly by the user. Each subsequent iteration of Randomized Subspace Iteration “corrects”

the initial subspace so that an invariant subspace associated with the leading target eigenvec-

tors is computed. The dataset needs to be accessed twice in each iteration, but, fortunately,

a few steps of Randomized Subspace Iteration are typically sufficient in practice in order to

get highly accurate approximations to the leading eigenvectors. Note here that the above

idea is somewhat orthogonal to the ideas underlying IRA, which builds the approximation

subspace in a vector-by-vector manner, thus necessitating a large number of dataset fetches

from secondary storage to even form an approximation subspace whose dimension is equal

to or slightly larger than the number of PCs that we seek to approximate.

TeraPCA was tested extensively on both real (Human Genome Diversity Panel, 1000

Genomes, etc.) and synthetic datasets. Our synthetic datasets were generated via the

Pritchard-Stephens-Donelly (PSD) model [34, 145]. Our results suggest that TeraPCA is

both fast and accurate and in most cases outperforms other out-of-core PCA libraries such

as FlashPCA2. Specific highlights include the computation of the ten leading principal

components of a dataset of one million samples genotyped on one million genetic markers

(this dataset exceeds 3.5 TBs in uncompressed format) in about 13 hours (using a single

thread) and in less than 4.5 hours (using 12 threads).

1In contrast to FlashPCA2 which relies on the IRA implementation on the Spectra C++ library,
TeraPCA comes with an in-house implementation of the Randomized Subspace Iteration algorithm.
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4.2 Materials and Methods

4.2.1 Simulated Datasets

The first group of the datasets used for our experiments was generated using the Pritchard-

Stephens-Donelly’s (PSD) model of simulating genotypes. In particular, a recent study [145]

simulated genotypic data by obtaining individual ancestry proportions from the PSD model

to fit the 1000 Genomes dataset and then modelling the per-population allele frequencies us-

ing Wright’s FST and the Weir & Cockerham estimate [146]. We developed a multi-threaded

C++ package which is essentially an efficient implementation of the R code developed in

Tera-Structure [145]. We generated various datasets in order to evaluate TeraPCA’s per-

formance, with the number of markers ranging from 100,000 to 1,000,000 and the number

of samples ranging from 5,000 to 1,000,000.

Table 4.1.: Data sets on which TeraPCA was evaluated (simulated and real)

Dataset Size (.PED file) Size (.BED file) # Samples # SNPs
S1 (simulated) 19 GB 120 MB 5,000 1,000,000
S2 (simulated) 38 GB 239 MB 10,000 1,000,000
S3 (simulated) 373 GB 24 GB 100,000 1,000,000
S4 (simulated) 1.9 TB 117 GB 500,000 1,000,000
S5 (simulated) 3.7 TB 233 GB 1,000,000 1,000,000
S6 (simulated) 38 GB 2.4 GB 100,000 100,000
S7 (simulated) 150 GB 9.4 GB 2,000 20,000,000
HGDP 615 MB 39 MB 1,043 154,417
1000 Genomes 8.4 GB 483 MB 2,504 808,704
PRK 2 GB 126 MB 4,706 111,831
T2D 1.8 GB 111 MB 6,370 72,457

4.2.2 Real Datasets

The Human Genome Diversity Panel (HGDP) dataset consists of 1,043 individuals geno-

typed at 660,734 SNPs, across 51 populations across Africa, Europe, Middle East, South and

Central Asia, East Asia, Oceania, and the Americas [1]. We ran Quality Control (QC) on
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the data by filtering SNPs with minor allele frequency below 0.01 and subsequently pruning

for LD using a window size of 1000 kb. Moreover, we set the variance inflation factor to 50

and set r2 > 0.2, thus retaining 154,471 variants. We applied the same parameters for LD

pruning on the 1000 Genomes dataset which has 2,504 individuals sampled from 26 differ-

ent populations across all continents genotyped at 39 million SNPs. After QC, we retained

approximately 808,704 SNPs and ran our experiments on the pruned dataset.

We also tested the performance of TeraPCA on case-control data, which are ubiquitous in

population genetics. We used the Wellcome Trust Case Control Consortium’s (WTCCC)

Type 2 Diabetes (T2D) and Parkinson’s (PRK) datasets. The T2D dataset had 6,371

individuals (1,816 cases and 4,555 controls) genotyped on 313,654 SNPs and the PRK

dataset had 5,000 individuals (2,000 cases and 3,000 controls) genotyped on 500,000 SNPs.

We removed related samples from these datasets and pruned them using the aforementioned

QC parameters resulting in datasets with 6,370 individuals genotyped on 72,457 SNPs for

T2D and 4,706 individuals genotyped on 111,831 SNPs for Parkinson’s.

4.2.3 TeraPCA

TeraPCA first normalizes the genotypes using the same procedure that was used by both

FlashPCA [147] and FastPCA [144] (also discussed in Section 2.1.4) and then applies Ran-

domized Subspace Iteration in an out-of-core fashion.

Randomized Subspace Iteration

This section describes Randomized Subspace Iteration (or Randomized Simultaneous Iter-

ation), a commonly used technique for the computation of invariant subspaces associated

with the largest (in magnitude) eigenvalues of matrices. More specifically, given a square

m ×m matrix B (in our case, B = AA>), a positive integer ρ, and an m × s matrix X0

representing a basis of the initial approximation subspace, Subspace Iteration extracts an

approximation of the invariant subspace associated with the k ≤ s largest eigenvalues of B

by projecting the problem onto a subspace formed by the range space of the matrix BρX0.
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Here we have assumed that the rank of the matrix XT
0 U is at least k, where U is the m× k

matrix whose columns are formed by the eigenvectors2 associated with the k largest eigen-

values of B. In the absence of any initial approximation of the target invariant subspace,

a reasonable choice is to draw the entries of X0 from the (standard) normal distribution

N (0, 1). A practical implementation of Subspace Iteration applied to the computation of

Algorithm 2 Randomized Subspace Iteration

Input: n×m matrix A>, ρ > 0, m× s guess matrix X0 ∈ N (0, 1), k ≥ 1, and s ≥ k
Output: The k leading approximate eigenvectors of matrix A

1: C = A(A>X0)
2: Repeat
3: for i = 2 : ρ
4: Q = orth(C)
5: C = AA>Q
6: end for
7: Q = orth(C)
8: C = AA>Q
9: M = Q>C

10: Compute the eigenvalue decomposition M = XDX>.
11: Set C := QX
12: Until Convergence

an invariant subspace associated with the k largest eigenvalues of the matrix AA> is listed

in Algorithm 2. In practice, the least sufficient number of iterations ρ required to compute

the target invariant subspace can not be determined a priori (at least in the absence of an

estimate of the distribution of the k + 1 largest eigenvalues of the matrix AA>) and we

perform ρ steps at a time instead. The procedure is then repeated with the most recent

approximation of the target invariant subspace as the new approximation (see Line 11). By

default we set ρ = 1.

Each iteration of Algorithm 2 requires ρ + 1 Matrix-MultiVector (MMV) multiplications

with matrix AA> (the second MMV product is needed for the Rayleigh-Ritz projection),

and thus the dataset must be loaded ρ + 1 times from the secondary storage. The matrix

X multiplying the matrix Q is formed by the eigenvectors of the Rayleigh-Ritz eigenvalue

problem shown in Line 10. This s × s eigenvalue problem is dense and symmetric, and

2Without loss of generality we assume that the eigenvectors are normalized to have unit length
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is solved by calling the DSYEV routine in LAPACK [136]. After each MMV multiplication

of the form C = A(A>Q), the resulting product C is orthonormalized (calling the routine

orth(.)) to avoid a loss in the numerical accuracy due to overflowing. The TeraPCA library

performs this orthonormalization by calling the DGEQRF and DORGQR routines in LAPACK.

As a final remark, we note that the Rayleigh-Ritz matrixM in Line 9 could be also computed

as M = C>C where C = A>Q. However, this approach requires storing the n × s matrix

C = A>Q which is not be feasible when the number of SNPs is very large. Instead, we chose

to use a slightly more expensive approach in terms of Floating-Point Operations (FLOPs)

to form M = Q>C, where C = AA>Q is of size m× s.

The convergence rate of Algorithm 2 depends on the value of s as well as the distribution

of the eigenvalues of AA>. In particular, let us order the eigenvalues of AA> as λ1 ≥ λ2 ≥

. . . ≥ λm. Since AA> is positive-semidefinite, its eigenvalues are non-negative. The rate of

convergence of Algorithm 2 towards an invariant subspace associated with the ith dominant

direction, i.e., the direction associated with the eigenvector corresponding to eigenvalue λi,

is then governed by the ratio λs+1/λi. As a result, fast convergence should be expected

when either a sufficiently large value of s is used or the k leading eigenvalues λ1, . . . , λk are

much larger than the trailing eigenvalues λk+1, . . . , λm.

An Out-of-Core Implementation of Randomized Subspace Iteration

Typically, the number of individuals and SNPs will be such so that only a certain block

of rows of matrix A> will fit in the system memory. It is thus necessary to develop an

out-of-core implementation of the MMV product with matrix AA> where only a few lines

of the binary PLINK file, i.e., rows of the matrix A>, reside the system memory at any

given time. An algorithm for such an implementation is provided in Algorithm 3.
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Algorithm 3 Out-of-core MMV C = A(A>X)

Input: ζ > 0, m× s matrix X
Output: m× s matrix C

1: C = 0
2: for i = 1 : ζ
3: Fetch the i-th row-block of A>

4: C = C + Ai(A
>
i X)

5: end for

Let β ∈ Z∗ be the integer denoting the maximum number of rows of matrix A> that can

reside in the system memory. Matrix A> can be then written in a block row form as

A> =



A>1

A>2
...

A>ζ


,

where ζ =
⌈
n
β

⌉
. Note that when β = n, i.e., ζ = 1, TeraPCA executes in-core and the

entire dataset resides in the system memory.

Following the block partition of A>, the MMV product between AA> and a MultiVector

X can be written as

A(A>X) =

ζ∑
i=1

Ai(A
>
i X). (4.1)

Each row block A>i , i = 1, . . . , ζ, needs to be loaded from the secondary storage exactly

once. As soon as A>i becomes available, we compute the product Ai(A
>
i X) and update

C = C +Ai(A
>
i X). This computation can be achieved by a single call to the DGEMM BLAS

routine [148].

By accounting for all ζ different row blocks of A> in (4.1), we can easily determine that

the computational cost to compute the MMV product A(A>X) is equal to sn(2m − 1)

floating-point operations, and this cost is independent of the value of ζ (and thus β as

well). Moreover, the value of ζ (as long as ζ > 1) does not greatly affect the amount of

time spent on loading each independent row block A>i from the secondary storage. On the
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other hand, the value of β affects the performance of DGEMM applied to C = C +Ai(A
>
i X).

In particular, low values of β can lead to cache conflicts and thus lower performance of

DGEMM.

Figure 6 plots the amount of time spent on a single call to Algorithm 3 for different values

of s, β and threads used in DGEMM, for the datasets S6 and HGDP. The speedups obtained

over single-thread executions are also shown. A few remarks are in order. First, while

the computational complexity of Algorithm 3 is linear with respect to s, in practice the

time complexity is sublinear, i.e., the amount of time required to multiply AA> with a

m × s matrix X is less than the amount of time required to multiply AA> with a single

vector s different times, especially for larger values of s, since the memory bandwidth cost

of accessing each row block of A> is amortized over s vectors. For the same reason the

speedups obtained by using more threads in DGEMM are higher for larger values of s. Finally,

increasing the value of β until it becomes greater than a certain threshold had a positive

effect in the performance of DGEMM as it led to better cache utilization.

Convergence Criteria of Randomized Subspace Iteration

Different convergence criteria are possible to monitor the convergence of Randomized Sub-

space Iteration. TeraPCA considers two different criteria. The first criterion monitors the

relative change of the sum of the (target) leading approximate eigenvalues between two

consecutive iterations. When this difference becomes smaller than a user-given threshold,

Randomized Subspace Iteration terminates. An alternative criterion is based on monitoring

the relative error between successive approximations of each target approximate eigenvalue

independently, and terminate the algorithm as soon as all relative errors associated with

the k largest eigenvalues of AA> drop below a user-specified threshold.

The main parameters influencing performance of TeraPCA are as follows:

1. Number of PCs to be computed (denoted by k). Default value is set to k := 10.
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2. Number of contiguous rows of the SNP-major input matrix fetched from the secondary

storage at each time unit (denoted by β). This can be user-defined or automatically

determined based on the available system memory.

3. Dimension of the initial approximation subspace (denoted by s). Default value is set

to s := 2k.

4. Convergence tolerance (denoted by tol). Default value is set to tol := 1e− 3.

The wall-clock time of TeraPCA is affected by all of the above parameters. Clearly, reducing

tol or increasing k results in an increase of the wall-clock time. Using a higher-dimensional

approximation subspace, i.e., increasing s, might reduce the corresponding wall-clock time

as it typically enhances convergence towards the k-leading eigenvectors. On the other hand,

increasing the value of s also increases the amount of floating-point operations performed.

Finally, since only a part of the dataset can fit in the system memory at any time unit,

the choice of β is typically determined automatically by TeraPCA based on the size of the

system memory. The total amount of time spent on I/O is largely independent of the value

of β but we have observed that the value of β has an effect on the wall-clock time of the

LAPACK routines.

Setting the Value of β

TeraPCA allows the users to choose their own value of β. Error checking is included to

determine the user-given value of β is inbounds (i.e., whether it satisfies 1 ≤ β ≤ n). If β is

out of bounds, TeraPCA determines an alternative value based on the amount of available

system memory. Similarly, if no value of β is provided, TeraPCA will determine one on its

own. In both cases, this value of β is set as

β =
(available amount of RAM)− (memory buffer)

8× (# samples)
.

Herein, the term ”memory buffer” denotes the precomputed size of memory that TeraPCA

needs for the rest of its variables except A>i . By default, we fix the amount of available

system memory to only 2 GiBs in order to make TeraPCA as flexible as possible. We
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observed that increasing the amount of the available system memory did not lead to signif-

icant changes in the wall-clock time achieved by TeraPCA, unless the size of the available

system memory became large enough to load the entire dataset in RAM (in-core). We also

observed that very small values of β are likely to penalize the performance of DGEMM due

to non-optimal cache utilization.

Sketching Dimension of X0

TeraPCA employs the Randomized Subspace Iteration method to approximate the top k

PCs of the normalized genotype matrix A. As discussed in detail in the next section, the

Randomized Subspace Iteration method requires an initial “guess” matrix X0, of dimensions

m×s (see Algorithm 2). The choice of s is important for the performance of TeraPCA.

We chose to set s to 2k. This conservative choice of s is rooted on the fact that the magnitude

of all eigenvalues (except for the leading three-four ones) of the normalized covariance matrix

in our datasets are typically clustered. From a geometrical viewpoint, the latter means that

the variance of the dataset along the trailing PCs is roughly the same. Choosing a large

value for s directly increases the matrix-matrix multiplication overhead but could improve

the convergence rate. An exhaustive analysis of this complicated trade-off is beyond the

scope of this paper.

4.2.4 Implementation

TeraPCA, implemented in C++ using standard Linear Algebra libraries such as BLAS and

LAPACKE is available to download with a GNU GPL v3.0 license at https://github.com/

aritra90/TeraPCA.

4.3 Results

The performance of TeraPCA was tested on both simulated and real-world genotypic

datasets. All our experiments were performed at Purdue’s Brown cluster on a dedicated

https://github.com/aritra90/TeraPCA
https://github.com/aritra90/TeraPCA
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Figure 4.1.: Projection of the samples of the 1000 Genomes dataset on the top two
left singular vectors (PC1 and PC2), as computed by TeraPCA.

node which features an Intel Xeon Gold 6126 processor running at 2.6 GHz with 96 GB of

RAM and a 64-bit CentOS Linux 7 operating system. Table 4.1 lists the number of samples,

number of SNPs, and size of each dataset. Datasets S1 through S7 are synthetic datasets

and the remaining ones are real-world datasets. This section provides comparisons between

TeraPCA and FlashPCA2. The latter has already been shown to be faster than previous

methods such as FlashPCA [147], FastPCA [144], etc. The results reported throughout

the remainder of this section were obtained by setting the amount of system memory made

available to TeraPCA (as well as FlashPCA2) to 2 GBs. This is precisely the amount of

memory allowed to FlashPCA2 in prior work.

4.3.1 Synthetic Datasets

Datasets S1 through S5 in Table 4.1 have a fixed number of SNPs (equal to one million) and

a varying number of samples (from 5,000 to one million). On the other hand, dataset S6 was

used to fine-tune prior state-of-the-art methods and contains 100,000 samples genotyped on
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100,000 SNPs. S7 was used to test the performance of TeraPCA on extremely rectangular

matrices, where the number of SNPs heavily outnumbers the number of individuals.

We first consider the plots of the three leading principal components returned by both

TeraPCA and FlashPCA2 for dataset S6 (see Figure 1 in supplementary material). Ter-

aPCA and FlashPCA2 show a complete visual agreement with each other and both libraries

agree with the expected outcome of the PSD model. For this particular example, TeraPCA

terminated in just under 40 minutes, while FlashPCA2 required 141 minutes3.

Table 4.2 lists the wall-clock times achieved by TeraPCA when applied on datasets S1

through S7. For datasets S4 and S5, which were the largest ones in our collection, TeraPCA

terminated after 7.3 and 13.2 hours respectively. On the other hand, FlashPCA2 did not

terminate within the 50 hours limit that we imposed. TeraPCA outperformed FlashPCA2

on all synthetic datasets, with a speedup that ranged between 1.3 and 4.5, at least for

those datasets where FlashPCA2 terminated within our 50 hour limit. We note that for all

synthetic datasets the leading PCs returned by TeraPCA and FlashPCA2 showed perfect

correlation as measured by the Pearson correlation coefficient (equal to one in all cases).

To further test TeraPCA’s performance on datasets where the number of SNPs heavily

outnumbers the number of individuals, we applied it to S7 and observed that even in a

heavily under-determined system, TeraPCA outperformed FlashPCA2 by a factor of 2.9,

with similar accuracy guarantees.

4.3.2 Real Datasets

We first considered the Human Genome Diversity Panel (HGDP) dataset [1]. TeraPCA was

marginally faster than FlashPCA2 and both libraries required about seven seconds. A plot

of the projection of the HGDP dataset along the two leading PCs computed by TeraPCA

3To be fair in our comparisons between TeraPCA and FlashPCA2, we performed multiple runs of
FlashPCA2 on dataset S6 in order to explore and understand its properties. In particular, we varied
the convergence criterion in FlashPCA2 and recorded the resulting trade-off between wall-clock time
and digits of accuracy for the top ten computed eigenvalues. Fixing the convergence tolerance in
FlashPCA2 to three digits of accuracy and the maximum number of iterations of FlashPCA2 to 100
was the best choice in terms of the tradeoff between running time and accuracy
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is shown in Figure A.28. Given the relatively small size of this dataset, we were able to

compute the exact ten leading eigenvectors using LAPACK.

Figure 4.2.: Entry-wise relative error of the top ten leading eigenvectors returned by
TeraPCA for the HGDP dataset, compared to the eigenvectors returned by LAPACK.
The y-axis shows the relative error; recall that each eigenvector has 1,043 entries.
We observe that the relative error is roughly the same for each entry of a specific
eigenvector.

Figure 4.2 reports the entry-wise error of the ten leading eigenvectors returned by TeraPCA.

As expected, eigenvectors associated with the largest eigenvalues are captured more accu-

rately since they converge faster. In addition, Table A.3 reports the relative and absolute

errors of the ten leading eigenvalues returned by TeraPCA and FlashPCA2. For TeraPCA,

the (much) higher accuracy in the approximation of the three-four leading eigenvalues is

due to the fact that these approximate eigenvalues kept improving as Randomized Subspace

Iteration kept iterating to approximate the trailing eigenvalues and eigenvectors. On the

other hand, the accuracy in the approximation of the eigenvalues returned by FlashPCA2

was somewhat uniform for all eigenvalues.



80

TeraPCA and FlashPCA2 showed similar qualitative and computational performance on

the pruned 1000 Genomes dataset (see Figure 4.1), with FlashPCA2 terminating slightly

faster than TeraPCA. Notice that this dataset is also the one in which the number of SNPs

outnumbered the number of individuals by the largest factor. PCA is an essential tool

to detect population stratication in GWAS. In order to evaluate TeraPCA’s performance

on real-world case-control studies, we applied it on WTCCC’s T2D and PRK datasets.

Like other real-world datasets, both FlashPCA2 and TeraPCA performed similarly, need-

ing roughly the same wall-clock time. Execution of TeraPCA on these datasets can also be

done in-core, as they fit in the system memory, leading to comparatively faster computa-

tion.

Table 4.2.: Wall-clock running times comparisons for the datasets of Table 4.1 using
a single thread and 2 GBs of system memory
∗ indicates no convergence after 50 hrs.

Dataset TeraPCA FlashPCA2 Speed-up
S1 26.2 mins 33.3 mins 1.27
S2 39.3 mins 87.5 mins 2.22
S3 7.9 hrs 35.6 hrs 4.50
S4 7.3 hrs n/a∗ ∞
S5 13.2 hrs n/a∗ ∞
S6 39.5 mins 141.1 mins 3.57
S7 37.3 mins 106.5 mins 2.86
HGDP 6.5 secs 7.7 secs 1.22
1000 Genomes 4.3 mins 3.5 mins 0.81
T2D 96 secs 119 secs 1.24
PRK 76 secs 73 secs 0.96

4.3.3 Multithreading

The wall-clock times of TeraPCA and FlashPCA2 can significantly improve by executing

the associated linear algebra computations using more than one threads. This is indeed the

most obvious way to speed up software such as ours. To test the performance of TeraPCA as

a function of the number of threads, we focused on datasets S1, S2, S4, S6, S7, and the 1000

Genomes dataset. The number of threads was set to 4, 8, and 12 and the speedups reported

in Figure 4.3 are against the single-thread execution of TeraPCA. Generally speaking, we
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observed a 1.6x-2.8x speedup, which is somewhat sub-optimal. The reason underlying

this non-optimality is that we used multithreading only for the linear algebraic operations.

However, much of the wall-clock time is spent on I/O operations in order to load the

dataset from secondary memory, a procedure that cannot be multithreaded. We emphasize

that FlashPCA2 did not demonstrate comparable improvements when multi-threading was

enabled. In particular, when applied to the dataset S6, the wall-clock time of FlashPCA2

reduced only by two minutes, i.e., from 141 minutes to 139 minutes.

Figure 4.3.: Speedup of TeraPCA over single-threaded execution.

In all of the above experiments we set s := 2k and k := 10. Finally, Figure A.3 reports the

amount of time required to multiply the (normalized) covariance matrix by a set of s vectors

using the DGEMM BLAS routine of MKL and a varying number of threads for different

values of s and β for datasets S6 and HGDP. It is worth noting that while an exhaustive

analysis lies outside the goals of this paper, it is easy to verify that doubling the value of

s does not double the amount of time required to perform the multiplication, while larger

values of s also lead to higher speedups when multiple threads are used. Similarly, very
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small values of β are likely to penalize the performance of DGEMM due to non-optimal

cache utilization.

4.4 Discussion

In this paper we presented TeraPCA, a C++ library to perform out-of-core PCA analysis

of massive genomic datasets. It is based on Randomized Subspace Iteration, building upon

principled and theoretically sound methods to approximate the top principal components

of massive covariance matrices. TeraPCA returns highly accurate approximations to the

top principal components, while taking advantage of modern computer architectures that

support multi-threading and it has minimal dependencies to external libraries. TeraPCA

can be applied both in-core and out-of-core and is able to successfully operate even on

personal workstations with a system memory of just a few gigabytes. Numerical experiments

performed on synthetic and real datasets demonstrate that TeraPCA performs similarly or

better when compared to state-of-the-art software packages such as FlashPCA2, on a single

thread and significantly better with multi-threading.

Similar to FlashPCA2, the main goal of TeraPCA is to make the application of PCA feasi-

ble for genotype datasets whose size is (much) larger than the available amount of system

memory, and to do so, both techniques apply a projection-based eigenvalue solver to com-

pute the leading eigenvectors of the normalized covariance matrix. FlashPCA2 is based on

Implicitly Restarted Arnoldi (IRA), a widely-used Krylov subspace eigenvalue solver. IRA

builds a subspace whose dimension is increased by one at each iteration until the algorithm

restarts while retaining an approximate invariant subspace of the target eigendirections (i.e.,

the PCs of interest). IRA essentially creates a “gap” between eigenvalues associated with

target/unwanted PCs which allows the eigenpairs of interest to converge faster altogether.

We used dataset S6 of Table 4.1 to evaluate the performance of FlasPCA2 on a single thread

by varying the convergence criteria. We varied the number of iterations from 20 to 100 and

the digits of accuracy from two to six. The best performance was noted (with a trade-off

between accuracy and running time) when the convergence criteria was set to three digits

of accuracy and 100 iterations. On the other hand, Randomized Subspace Iteration keeps
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the dimension of the approximation subspace fixed, and the convergence rate of the invari-

ant subspace associated with the k leading eigenvectors is practically determined by the

distance of the kth largest eigenvalue from the next largest eigenvalue.

The main rationale for exploiting Randomized Subspace Iteration in TeraPCA is based on

the fact that the latter allows for the construction of an high-dimensional approximation

subspace by loading the genotype dataset from the secondary storage exactly once. Indeed,

one iteration of Randomized Subspace Iteration will generate an approximation subspace

whose dimension is equal to s. Each subsequent iteration will then try to correct the

approximation subspace so as the target eigenvectors are approximated more accurately.

On the other hand, IRA builds the approximation subspace vector by vector, thus requiring

the dataset to be loaded multiple times to just form an approximation subspace whose

dimension is equal to the number of target eigenvectors. While IRA is typically more

efficient that Randomized Subspace Iteration in terms of computational cost per target

eigenvector, in the vast majority of experiments we tested the latter was not sufficient

to offset the fact that Randomized Subspace Iteration required fewer iterations and thus

fetched the dataset from the secondary storage fewer times.

The amount of time spent on I/O typically dominates the overall wall-clock times for both

TeraPCA and FlashPCA2, due to loading the data set multiple times per iteration. Thus,

loading the data set as few times as possible is the main priority. TeraPCA has an advantage

over FlashPCA2 as the former multiplies the covariance matrix by more than one vectors at

each iteration. In terms of complexity, each iteration of FlashPCA2 requiresO(nm) floating-

point operations, where m and n denote the number of individuals and SNPs, respectively.

On the other hand, each iteration of TeraPCA requires O(nms) FLOPs where the variable

s denotes the dimension of the initial approximation subspace (shown as X0 above). For

practical purposes, we have s << min(m,n), and s is set to 2k as discussed above. Since

the number of sought PCs is usually a small constant, e.g., k << min(m,n), the asymptotic

complexities of TeraPCA and FlashPCA2 with respect to the input dataset are practically

the same. Recall also that the time required to multiply the coefficient matrix by s vectors

simultaneously is typically much less than the time needed to multiply the same matrix

with one vector s separate times due to better bandwith and cache utilizations.
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In summary, if there is enough system memory to fully load the genotype dataset, then

the amount of time spent on FLOPs is typically the dominant part of the wall-clock times

achieved by TeraPCA and FlashPCA2, and one should probably use a Krylov projection

scheme (such as IRA in FlashPCA2) to compute the sought PCs. On the other hand,

when the dataset can not fully reside in the system memory, fetching the dataset from the

secondary storage is typically the main bottleneck, and one should opt for block methods

(e.g. Randomized Subspace Iteration). We also note that Randomized Subspace Iteration is

based on BLAS3 routines, thus allowing better cache utilization and reduced intra-processor

communication when performing the MMV products. The latter also becomes advantageous

when multiple computational threads are used during execution. Figure A.29 plots the wall-

clock times (in hours) required by TeraPCA and FlashPCA2 to compute a varying number of

leading PCs of the dataset S6. Similarly, Figure A.30 plots the wall-clock times (in minutes)

required by TeraPCA and FlashPCA2 to compute the ten leading PCs of a dataset with

m = 105 individuals and a varying number of SNPs. The top 10 PCs returned by both the

software suites captured similar proportions of variance (see Figure A.31), as a testament

to their nearly identical qualitative performance discussed in the main text.

Future work will focus on implementing a distributed memory version of TeraPCA using the

Message Passing Interface (MPI) standard. Another interesting research direction would

be to combine TeraPCA with block Krylov subspace techniques.
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5 SSIMRA: MULTIPLE LOCI SELECTION WITH MULTIWAY EPISTASIS IN

COALESCENCE WITH RECOMBINATIONS

5.1 Introduction

Nothing in Biology Makes Sense Except in the Light of Evolution1 and simulating the evolu-

tion process of, whether multi-cellular humans, unicellular micro-organisms or even cancer-

tumor continues to be an important device in understanding the observed molecular profiles

of populations. Molecular profiles are captured by the genetic variability generated by mu-

tations and the change in frequency of alleles within populations over time. The selectively

neutral infinite-sites model [149] is often the basis for the analysis of this variation [150].

Many systems [151–154] simulate the generation of realistic random populations and the

reader is directed to [155] for an efficient algorithm and a comprehensive survey of litera-

ture.

The Ancestral Recombination Graph (ARG) [156] is a variant of [157]’s coalescent, which is

used to reconstruct the grand most recent common ancestor (GMRCA), backwards starting

from the leaves, using recombination and coalescent operations (described in 2.1.7). Here

we provide the first coalescent simulation framework called back-sSimRA, which allows for

multilocus selection with multiway epistasis. To validate the findings of back-sSimRA,

we built a forward-time simulator, fwd-sSimRA which has similar setup as it’s backward

counterpart.

Coalescent processes allow fast approximation of the neutral Wright-Fisher (WF) model

which accounts for the effects of various evolutionary forces such as random genetic drift,

mutation, selection on allele frequencies. Efficient simulation algorithms such as ms [49],

fastsimcoal [158], msprime [159], MaCS [160], SMC [161] exist and are fast as they track

ancestral lineages to extant populations going backward in time. As natural selection influ-

1This quote is attributed to evolutionary biologist Theodosius Dobzhansky.
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ences the evolutionary process design of coalescent simulators with selection on a haploid

or diploid locus is of more general use and has piqued interest in development of a host

of software suites such as, msms [162], discoal [163], cosi2 [164], mbs [165] etc. Most of

these takes into account the demographic histories and population structure information

to study selective sweeps and footprints of local adaptation. These methods approximates

the Markovian coalescence by tracking the number of coalesceable pairs and none of them

allows interaction between alleles in multiple loci under selection. Epistasis has long been

recognized as a significant component in understanding genealogies and evolution of com-

plex genetic systems [166]. Only a few forward simulators exist which provides a framework

to model epistasis, such as SELAM [167] allowing for pairwise epistatic selection to model

the process and consequences of admixture or SLiM [168], which constructs ecologically

realistic scenarios while accounting for a host of complex biological processes and SLiM

3 [169] provides scenarios beyond the WF framework. It also efficiently simulates epistatic

scenarios similar to fwdSimRA whose main purpose is to provide a validation framework

to the coalescent simulator. Apart from SLiM, forward-time simulations are captured in

other packages such as msms [162] and ForwSim [170], all of which takes into account

geographical population structure and demographic information along with selection at a

single locus. Some account for selection on polygenic quantitative traits along with recom-

bination in a small number of generations [171, 172]. SelSim [173] differs from the other

packages by following a Moran model based approach, while the others [162, 168, 170, 171]

including our algorithm follows WF model for forward simulations of complex evolutionary

processes. simuPOP [171] is an individual based genetics simulation program and has a

lot of parallels to fwd-sSimRA in an individual level, but our model focuses on the holistic

view of the populations as well as the individual statistics in a WF framework. ForwSim

also draw parallels with the forward simulator proposed here, but it accounts for the “book

of populations” differently such as removing the SNPs and lineages that die out, whereas

fwd-sSimRA keeps them for tracing the ARG and comparing hallmarks with back-sSimRA.

Although, time complexity is a trade-off by accounting for all those lineages, but, we get

all the benefits of recording every mutation and recombination event while simulating evo-

lutionary history of each individual across generations along with the selected alleles at a

mutated site.
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Our goal was to design separate models for backward (coalescent) and forward simulation

and compare their results in studying complex evolutionary scenarios. This is the first algo-

rithm that modulates the ARG to incorporate multilocus selection with multiway epistasis

in a coalescent as well as in a forward setting. back-sSimRA determines whether the next

event in time is a recombination or coalescent by taking the event which takes minimum

time to occur, unlike all available coalescent simulators, most of which approximates the

Markovian coalescence by tracking the number of coalesceble pairs. Another significant

advantage of back-sSimRA is that allows for interaction between loci providing an efficient

framework to model realistic ecological scenarios which accounts for linkage disequilibrium

(LD). fwd-sSimRA on the other hand validates the results obtained from the coalescent

simulator and is capable of handling multilocus selection with multiway epistasis in a sim-

ple and efficient model which approximates the evolution process closely. The comparison

between the two models is done systematically by using the hallmarks of an ARG [155]. We

make available to the user both the forward and backward simulators.

5.2 Materials and Methods

5.2.1 Modeling Multiple Loci Selection with Multiway Epistasis

Overview of the Forward and Backward schemes. A forward simulator repre-

sents the basic biological processes, such as diploid inheritance from two parents, recombi-

nation that occurs in that context, where children pick their parents according to WF with

probabilities modified by selection. Such a model would not explicitly include a coalescent,

but the impact of the WF model spontaneously produces a Kingman coalescent among

ARGs for subsets selected from among the a current population [48,49].

Fitting selection and epistasis into the “backward” scheme is complex [174,175]. The back-

ward simulator is very targeted and constructs only the ARG. On the other hand, a forward

model is a generation-by-generation simulation of the population of diploids. To compare

this with the backward simulator, the subgraph (ARG) of interest that is embedded in

the complete “book of populations”, is traced. The accuracy of the backward simulator is
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demonstrated by the concordance of the distributions of the hallmarks between the forward

and the backward models.

Our aim is to overcome the challenges of modeling and designing the algorithms for a back-

ward simulator that incorporates all the features of a flexible forward simulator. But how

“accurate” is the ARG? To answer this rather difficult question, we adopt the mechanism

that used by [155] to compare different algorithms. These provide a means for a comparison

of different algorithms even under different regiments forward, or, backward.

5.2.2 Backward Simulator Model

The algorithm works back-in-time starting from the present (time 0), moving back into

the past. See [155] for a detailed exposition on neutral scenario. Let the number of loci

under selection be l, possibly with multiway epistasis. As an illustration let l be 3 with

selection values s1, s2 and s3. The algorithm will assign three random locations on the

genetic segment for the three, unless the locations are explicitly specified. It is assumed

that the minor allele is under selection while the major is neutral. The possible multiway

epistasis are e12, e13, e23 and e123. If no value is specified then the epistasis is assumed to be

neutral. Given this, we get 2l possible types of lineages as shown in Table 5.1, denoted as

lz.Let l0 be the lineage type with no selection. For the running example, the other lineage

types are l1, l2, l3, l12, l13, l23, l123. For two lineage types za and zb, let

lza ≺ lzb when za ⊃ zb.

For example, l12 ≺ l1 and l12 ≺ l2. Also, l123 ≺ l12. For the lineage type z, let Nz be the

effective population size.

Isolated (single) locus selection. The fitness 1 + s is the ratio of the probabilities

that the selected allele produces an offspring to the unselected allele, which relates to the

proportions in generation t + 1 given proportion in generation t. See Supplement for a

detailed exposition. Let Ns be the effective population size with the allele under selection
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and Ns̃ (= N − Ns) is the effective population size with the reference or ancestral allele

which is not under selection, giving:

Ns

Ns +Ns̃
:

Ns̃

Ns +Ns̃
= 1 + s : 1 =⇒ Ns =

1 + s

2 + s
N = fsN. (5.1)

Thus −1 < s. This is extensible to multiple loci with or without epistasis. Continuing the

running example of three loci under selection with possible epistasis is shown in Table 5.1.

TABLE IN

back-sSimRA: Algorithm to Generate the Topology with Multiple Locus Selection & Mul-

tiway Epistasis

If si and sj are two locations with the minimum (or derived) allele under selection at locus

i and j respectively, then eij denotes the epistasis between the two. If it is not explicitly

specified then a neutral epistasis is assumed. The algorithm randomly chooses the location

of the SNPs on the genetic segment being simulated. INPUT:

Parameters
example

values

user-specified

units

units in bp

for the algorithm

scaling

factor

g seqment length 25; 75 Kb ×103 bp ×103

m extant units 10; 20; 30; 40 − − ×1

N population size 100; 200 − − ×1

rates/generation

r recombination rate 1 bp/gen× 10−7
bp/gen ×10−7

µ SNP mutation rate 1.5 mut/bp/gen× 10−8 ×1 mut/bp/gen ×10−8

selection, epistasis parameters

si fitness 0.3 − ×1

eij epistasis 0.1 − − ×1

ASSUMPTION: Not more than one event, coalescent or recombination, occurs at a generation.

Also, no back mutations, i.e., a position (base) undergoes no more than one mutation in

the entire ARG. The mutation rate and recombination rate are uniform over the segment

being simulated.

ALGORITHM:

I. Initialization:
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3 SNPs Tableau
epistasis effective pop size 2Nf ′

lineage (3 SNPs under user defined no epistasis or for lz-coalescence
types lz selection) es(explicit) neutral (implicit) in backward algo

s1 s2 s3

[
fs = 1+s

2+s

]
f ′

No alleles under selection lineage (immortal)
fs̄

l0 × × × − fs̄
fs̄ = 1−

∑
i fsi

+
∑

i,j fsij − fs123

Main effect lineages
l1 s1 × × fs1 − fs1 −

∑
i fs1i +

∑
i,j fs1ij

l2 × s2 × fs2 − fs2 −
∑

i fs2i +
∑

i,j fs2ij
l3 × × s3 fs3 − fs3 −

∑
i fs3i +

∑
i,j fs3ij

2-way epistasis lineages
fs12

l12 s1 s2 × −
f(es12 )

fs∗ = fs1fs2
− fs12 −

∑
i fs12i

fs13

l13 s1 × s3
−

f(es13 )

fs∗ = fs1fs3
− fs13 −

∑
i fs13i

fs23

l23 × s2 s3
−

f(es23 )

fs∗ = fs2fs3
− fs23 −

∑
i fs23i

3-way epistasis lineage
fs123

l123 s1 s2 s3
−

f(es123 )

fs∗ = fs1fs2fs3
− fs123

[Ex-/In-clusion principle]

Table 5.1.: Example with three loci under selection and all the possible different
epistasis, whether explicitly specified or simply neutral. All the user-specified values
are shown in red. The back-sSimRA algorithm uses the effective population size as
shown here.
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1. The genetic material, Iv, of each of the m leaf nodes, v, is set to Iv = {[0, 1]}. For

r > 0, randomly assign the lineage types to the lineages.

For r = 0, the lineage-types are so assigned that no pair of types of lineages straddle

(either they are disjoint or one is contained in the other). Note that lineage l0 corre-

sponds to lineage with no alleles under selection.

For each lineage type lz:

(a) Count the number of lineages Lz. If lz > 0, then the lineage is ACTIVE.

(b) Set time Tz to 0.

(c) Set a list Cz to empty. This is list of nodes, each with a time t > Tz.

Append Cz: This occurs only when a lineage type changes during the iterative

process (at a recombination event or node). At iteration i with lineage lz, if

tx > Tz then a new node, with time tx, is appended to list Cz.

2. For each lineage l of type lz, incident on leaf node v, the recombination rate

r′l = Nzgrlen(Iv). (5.2)

For each lineage type lz, r
′
l = αz

αz = Nzgr. (5.3)

II. Loop: The stochasticity of the method allows for two possible regimens: Pooled and

Round Robin .

Pooled Loop. In this regimen, all the lineages are pooled together. At each iteration, i,

the minimum of tzi , over all the lineages lz, is computed using Eqn 5.4. In the pseudocode

below, the ”FOR” loop is not required in pooled regimen.

Round Robin Loop. In this regimen, the lineage types are processed separately and in any

order (the ”FOR” loop in the pseudocode below).
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In both the regimens, the lineages intermingle at recombination events and when the label

of lineage type is changed. The latter occurs when all the lineages of a singleton type

coalesce into one lineage.

REPEAT

Round Robin Loop. FOR each lineage type lz with Lz > 0, do the following:

1. Let l = lz.

2. Compute the recombination rate r′l of each lineage l using Eqn 5.3 as:

r′l = α∗ × len(Iv),

using the effective population size Nz as described in Table 5.1. Then compute the

time tzi = Nz × t to the next event using

t = min

︷ ︸︸ ︷
min

1≤a<b≤Lz
(tcoal
ab ), min

1≤i≤Lz
(trcmb
i )︸ ︷︷ ︸


= Exp

(︷ ︸︸ ︷
1 + 1 + ...+ 1 + r′1 + r′2 + ..+ r′Lz︸ ︷︷ ︸

)
= Exp

(︷︸︸︷
Lz + r′1 + r′2 + ..+ r′Lz︸ ︷︷ ︸

)
(5.4)

For Lz > 1, this gives either coalescence or recombination for the next step when

Lz > 1. For Lz = 1, this gives only recombination for the next step.

3. Tz is updated as Tz + tzi .

4. Coalescence event: If the operation is coalescence then Lz is decremented by 1;

two random lineages of type lz are coalesced into one at time Tz and the outgoing

edge of the coalesced node is labeled by lineage lz.

If Lz = 1, z is a singleton label (such as s1 but not s1s2 or s1s2s3), and, there exist

no ACTIVE lineage l′z such that z′ ≺ z, THEN the mutation(s) corresponding to

lineage lz is assigned to this edge and the label of the outgoing edge of the new node
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is changed to l0 and L0 is incremented by 1. Next, Lz is set to 0 and thus the lineage

lz is made INACTIVE.

Recombination event: If the operation is recombination then, randomly pick a

lineage of type lz and create node v at Tz Then label of z is randomly split into two

lineage labels that is compatible with the location of the SNPs on the segment carried

by the node v.

Lz is decremented by 1 and the recombination split is best explained by an example.

Illustrative Example: If a lineage lz = s1s2s3 is split up due to recombination to

produce two lineages lz′ = s1 and lz′′ = s2s3 at time tzi , then Lz is decremented by 1

and:

If Tz′ < Tz, THEN append a new node, with time Tz, to list Cz′ , ELSE increment Lz′

by 1.

If Tz′′ < Tz, THEN append a new node, with time Tz, to list Cz′′ , ELSE increment

Lz′′ by 1.

Let there be kz nodes in list Cz, such that each has a time < Tz. Then each of the

kz nodes are removed from the list Cz, Lz is incremented by kz and these kz nodes

will participate in the next iteration with lineage lz.

UNTIL l0 is the only ACTIVE lineage and L0 = 1 (or, maxz(Tz) > a predefined thresh-

old).

5.2.3 Forward Simulator Model

The model simulates evolution for a full population, forward in time with each generation

containing N equal number of males and females, each carrying two chromosomes (see

Supplement I for a detailed discussion and extension to selection on multiple loci). The
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complex evolutionary relationships between generations yields a number of mutations, re-

combinations, selected allele inheritance, LD, etc. along the length of chromosome for each

individual. This data is recorded in a data structure, which we call the “book of popula-

tions”. We trace the lineage of each site along the chromosome while tracing the ‘book’ and

constructing the ARG. Inheritance follows the convention of a standard WF model applied

to diploid organisms [49], with children randomly picking their parents corresponding to

the fitness coefficients when selection is in effect. The stages of the model is described as

follows:

fwd-sSimRA: Simulating the “book of populations”

Each chromosome is represented by the alleles at each locus l ∈ [1, g], which is randomly

assigned initially. We use same notations as defined in section 5.2.2 to describe fwd-sSimRA.

The model assumes that each locus l has a fitness function sl(a) ∈ R, where a is an allele

comprising the genotype. An individual i with allele ail at locus l is assigned a selection

coefficient sil = s(ail) which is user-defined, similar to back-sSimRA.

The function s(.) denotes the selective pressure and can be varied by intentional specification

of recessive, dominant, additive, and other configurations, including homozygous advantage.

This function encompasses selection at both single and multiple loci allowing flexible user-

defined variations. When selection is not present, we set sil = 0.

For an individual i, the probability that it has children is given by

pi =

∏
l (1 + sil)∑

i

∏
l (1 + sil)

(5.5)

In each new generation, as in the WF model, the N children pick their parents with replace-

ment according to the parent probabilities pi. The simulation is run for t = {0, 1, . . . , G} dis-

crete generations with the t = 0 being the base generation, outlined in Figure 5.1(a).
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(a) Simulating the “book of populations”

(b) Outline of the building blocks of the forward model.

Figure 5.1.: Outline of the main steps of the forward model. (a)Schematic diagram for
simulating the “book of populations” which closely resembles the biological process
of evolution. (b) Tracing the ARG from the book of populations (example ARG
outlined in red).

Modeling Multiway Epistasis

Multiway epistasis requires multiple interacting loci with similar selection effects. We assign

selection coefficients to interacting sites for k-way epistasis, where k is the maximum number
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of interacting sites. Let there be q groups of loci, each containing at most k elements and

we re-compute equation 5.5 accounting for fitness related to interacting sites as,

pi =

∏
q (1 + Siq)∑

i

∏
q (1 + Siq)

(5.6)

If a group only has one element, that is if the selected locus is non-interacting, then we

allow S = s, the user defined selection input. For all other cases, we select S from a matrix

or tensor of all possible allele combinations with respect to the number of interacting sites.

S is calculated by taking the fitness product of each interacting site as,

S =
∏
j

(
1 +

∑
i

s
(j)
i

)
+ eq (5.7)

eq is the epistatic interaction coefficient for each combination of interacting sites as men-

tioned Table 5.1 and s
(j)
i is the selection coefficient at allele j in individual i’s chromo-

some.

ALGORITHM:

1. Initialization:

(a) N individuals (N2 males and N
2 females) in the base generation, which remains

constant throughout the simulation.

(b) Number of Generations, G = c ∗N , where c is a constant.

(c) Randomly allocate genetic material along the length of chromosome, g.

(d) Assign selection coefficients for interacting sites for two-way epistasis (0 for

neutral).

(e) Set flag, f , for allele(s) under selection on a mutated site (0 for neutral).

2. If f is set, randomly select an individual among N and a site, gs along g which

underwent mutation. Select an allele randomly in gs and set f to 1.

3. Loop For each generation, t ∈ {1, · · · , G}

4. Loop For each individual i in {1, · · · , N}, in (t− 1)th generation.
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5. Compute pi =
∏
k(1+Sik)∑

i

∏
k(1+Sik) , where any group k of loci could contain a single

locus under selection, for which S = s is defined as the user input. It can also

contain a locus interacting with another locus, in a two-way epistasis. In this case s

is populated from a matrix formed by the all possible alleles at each loci, from the

following form, S =
∏
j

(
1 +

∑
i s

(j)
i

)
. s

(j)
i is the selection cofficient at allele j in

individual i’s chromosome.

6. Select parents for each child in tth generation based on pi from (t−1)th generation.

7. End

8. For each child i in tth generation, compute scaled recombination rate r′ = r ∗ g and

select a value, rval ∈ [0, 1].

9. If rval =


[0, (1-r’)), No recombination event

[(1-r’), 1], recombination event

10. If No recombination event: Randomly pick a chromosome from the parent and

assign it’s genetic material to the child.

11. Else Randomly pick a crossover index z ∈ [1, g]. Get the genetic material from

[1, z] in the first chromosome of the parent and [(z + 1), g] in the second, combine

them and assign it to the child.

12. In the child’s genetic material, randomly select locations along the chromosome

length, g for mutation according to the Poisson distribution and the scaled mutation

rate µ′ = µ∗ g. Change the alleles randomly to other bases. For example, if the allele

was A, change it randomly to one of the other bases {G,T,C}.

13. Update the Chromosomes of the current generation with the new genetic informa-

tion obtained from the previous generation and continue until the last generation,

G.

14. End
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fwd-sSimRA: Tracing the ARG

Detecting the past recombination events from extant sequences and specifying the place of

each recombination is well studied [176–178]. The ARGs define a genealogical graph for all

of the chromosomes in a population. Recent advances in population genetics simulators have

resulted in tree-sequence recordings which obtains the geneaological history of all genomes

in a simulated population [179]. However, no natural ARG is recorded for the interacting

loci resulting in LD in forward simulators, in contrast to the backward simulator. Hence,

it has to be traced from the “book of populations” from a number of extant haplotypes,

outlined in Figure 5.1(b).

We start from m randomly selected extant populations and trace the recombination and

coalescent events back each generation. We keep a track of each lineage corresponding to

every site along the chromosome and stop when we have found a convergence for all lineages.

This final coalescent event along the entire ‘book’ is known as GMRCA and we output the

corresponding ARG.

ALGORITHM:

1. Initialization:

(a) Randomly select m number of extant individuals from N in the last generation.

(b) Select one chromosome out of the two in these m extant samples, randomly.

Compute the active lineages, j by comparing the genetic material g in each of

the m chromosomes selected.

2. Loop for each generation, t going backwards from {G, · · · , 1}

3. Identify each chromosome from the previous generation (t − 1) which contributed

to each chromosome in the current generation, following the book of populations.

4. Check to see if multiple children in the gth generation share the same parent in the

previous generation.

5. Iterate and Count the number of active samples, m′ in each generation.

6. Until m′ = 1
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7. Compute the Height of the GMRCA from the height of convergence.

5.3 Results

5.3.1 Implementation

Both back-sSimRA (implemented in JAVA and fwd-sSimRA (implemented in C++) with

OpenMP for multithreading are available with an Apache License v2.0 at https://github.

com/ComputationalGenomics/SimRA.

Selection in a diploid heterozygous sample can boost, for one generation, the non-selected

chromosome. This can entangle the impact of selection on lineages in the diploid forward

model, but not the haploid. We expected the impact of boosted preference to be minimal

along any given lineage, since such a boost only occurs for dominant or additive alleles, and

then for only one generation. In combinations in a population over time, this effect could

be more significant and thus, we sought to test this.

5.3.2 Comparison Study

Comparing the two models under selection calls for an assessment of the values. In both

the models, common phenomena such as faster coalescence, decreasing diversity, decreas-

ing number of recombination events occur when we study the individuals under selection.

Hence, we compare the height of the ARG or the time to GMRCA, as it is the most sig-

nificant hallmark of the common history of a sample. We run simulations for different

parameter set-ups for the forward and backward model. Each experiment was run 100

times. We demonstrate the accuracy of the two algorithms by comparing the depth of the

GMRCA (also known as time to GMRCA, TGMRCA) under different simulation scenarios

allowing at most three interacting loci. The simplest scenario in this case is when there

is no selection in effect i,e. the neutral coalescent model and when there is selection at a

single locus. We show that the two proposed models back-sSimRA and fwd-sSimRA show

agreement in this basic case (Figure A.33). The results for the complex scenario in this

setting, accounting for epistasis with three loci are shown in Fig. 5.2, where we show the

https://github.com/ComputationalGenomics/SimRA
https://github.com/ComputationalGenomics/SimRA
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(a) Without epistasis

(b) With epistasis

Figure 5.2.: Comparing the height of the ARG (H) between the fwd-sSimRa and
back-sSimRA for selection at two-loci with and without epistasis, respectively. We
set g = 25K, r = 1.0 × 10−8, N = 100, s = {0.3, 0.3, 0.3}, es = {0, 0.1} and
m = {10, 20, 30, 40}. (i) The box-and-whisker plot summarizes the result for each m.
On each box, the central mark is the mean, the edges of the box are the 25th and
75th percentiles, the whiskers extend to the most extreme data points not considered
outliers, and outliers are plotted individually. (ii) Q-Q plots for each m showing that
the distributions of H from fwd-sSimRa and back-sSimRA agrees (iii) CDFs of fwd-
sSimRa and back-sSimRA also follow each other closely, reconfirming the agreement
between them.
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Figure 5.3.: Comparison on the height of the ARG (H)for different s1 values in the case
of no recombination for g = 1000, N = 400 and m = {20, 50, 80, 120, 150, 200, 250}

concordance for the forward and backward simulation in the case of with/without epistasis

(see Figures A.34 and A.35 for detailed comparisons).

To obtain further validation we observed similar agreement in the P-P plots (Figure A.35)

between the two simulators in all scenarios. We ran Kolmogorov-Smirnov test on the

distributions of H as returned by fwd-sSimRA and back-sSimRA for all scenarios. We

found that for each, the null hypothesis that the two samples are drawn from the same

distribution is never rejected and the test statistic is very small (Table A.4).

Furthermore, we compare the height of the lineages under selection in back-sSimRA and

show how different scenarios impact the height of the ARG (see Fig. 5.3)

Time and Space Comparisons

The coalescent simulator is extremely fast in finding approximations to TGMRCA, in com-

parison to the forward simulator, as the latter has to build the entire “book of populations”

and trace it, as discussed above. That requires it to store every coalescent or recombination

event for each site along the chromosome, for each individual in each generation. That in-

creases both the computational and storage overhead of the algorithm. fwd-sSimRA makes

use of this information and accurately finds the TGMRCA of each complex evolutionary
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scenario and provides an exact framework to validate the TGMRCA returned by the coa-

lescent simulator is indeed accurate when complex evolutionary scenarios such as epistasis

is in effect.

On the other hand back-sSimRA is extremely efficient as it does not require a detailed book-

keeping approach as the forward simulator. It starts from the extant populations and builds

the ARG by taking into effect the event (coalescent or recombination) taking minimum time

to occure and approximates the TGMRCA of the extant populations.

5.4 Discussion

We present the first algorithm that builds multilocus selection and multiway epistasis into

the backward coalescent model with recombinations, as well as, in a forward scheme. More-

over, to the best of our knowledge, this is the first model which took a backward simulator

and compared it nose-to-nose with its forward counterpart. Through extensive comparison

studies, we show that for complex scenarios with selection and epistasis (or even under neu-

tral scenarios) the hallmark values by the backward and the forward schemes approximately

abstract each other. This allows a validation framework for including selection and epista-

sis into standard population genetic models where we can now study the different scenarios

when all the diploids associated with mutated sites along the chromosome with differing

fitness values corresponding to the alleles. As the distributions of both the schemes are

concordant, we conclude that any one of the simulators (back-sSimRA or fwd-sSimRA) can

be used to understand the effects of negative and positive selection, with multiway epistasis,

along with selective sweeps across generations.
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6 STRUCTURE INFORMED CLUSTERING FOR POPULATION STRATIFICATION

AND GENETIC RISK PREDICTION

6.1 Introduction

The basic principle underlying GWAS is testing for association between genotyped variants

for each individual and the trait of interest. GWAS have been extensively used to estimate

the signed effects of trait-associated alleles, mapping genes to disorders. GWAS uses LD

between genotyped and potentially not typed causal markers, to identify loci implicated in

traits and diseases. LD between genetic variants (calculated as squared correlation r2) can

be large only if the allele frequencies at the two loci match [180]. GWASs from common

SNP arrays are not as powerful due to this phenomenon as causal variants are usually

rare, leading to large number of spurious associations. The power to detect a variant-trait

association from LD between an unobserved causal variant and an observed genotype is

also largely dependent on the number of observations in the cohort under study. GWAS

results have been reported for hundreds of complex traits including both common and rare

diseases across various domains such as quantitative traits (as well as binary), brain imaging

phenotypes, gene expression, and social and behavioral traits, etc. Over the past decade

about 10,000 strong associations between genetic variants and one or more complex traits

have been reported [55,181]. One unambiguous conclusion from GWASs is that for almost

any complex trait that has been studied so far, genetic variation is linked with many loci

contributing to the polygenic nature of the traits. Hence, on average, the proportion of

variance explained at the single marker is very small [21]. The polygenic nature of traits

is best explained by heritable height in humans, which is estimated to be modulated by as

much as 4% of human allelic variation [182,183].

Polygenicity of complex traits is known to be one of the potential sources for “missing

heritability” [184]. Heritability is defined as the fraction of phenotypic variance explained

by additive genetic effects and is related to the coefficient of determination (R2) of linear
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models. Heritability was traditionally estimated by regressing the parental trait against

the trait in offspring [185]. The phenomenon of “missing heritability” refers to the positive

difference between these heritability estimates and the proportion of phenotypic variance

explained by the additive effects of GWAS loci. So far, GWAS on large cohorts has made

progress in recovering some missing heritability in height [91] and Schizophrenia [25]. Jointly

modeling the effects from multiple genetic variants and fixed effects has shown to recover

large proportions of missing heritability for many complex traits [55,186,187]. Linear Mixed

Models (LMMs) are used widely to aggregate genetic effects across multiple variants as

random effects which work in concert with fixed effects such as environmental and ecological

factors. This approach was proposed by Fisher to model inheritance of complex traits [188]

and applied heavily on plant and animal breeding [189,190] before humans.

Another challenge in GWAS is confounding factors such as population structure, which can

lead to spurious genotype-trait associations [19, 34, 36]. If a dataset consists of individuals

from different ethnic groups then the genotype data will be characterized by genome-wide

LD between variants as alleles at different loci tend occur together in individuals from the

same ethnic group (as discussed in Section 2.1.6). Population structure cause genuine

genetic signals in causal variants to be mirrored in numerous non-causal loci in LD [191],

resulting in spurious associations. These are caused by two types of relatedness in popula-

tion structure: ancestry differences and cryptic relatedness. Ancestry differences is observed

when individuals with different ancestral and ethnic background are studied together. Cryp-

tic relatedness is caused by individuals who are closely related and often grouped together

by population structure correction strategies posing a more serious confounding problem

than ancestry differences [192]. Two popular approaches for population stratification cor-

rection involves including the PCs of genotypes as adjustment variables [36, 37] and fitting

a LMM with an estimated kinship or GRM from the individual’s genotypes [55]. These two

widely used approaches are shown to be related to a common model with differing argu-

ments and approaches of building the GRM [33,52]. The LMM approach requires normally

distributed additive small effects of the genetic markers and thus is an approximation. In

most cases, the PCs are also used as covariates in LMM based approaches and considered

as fixed effects (environmental factors).
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A series of recent studies have reported evidence of polygenic adaptation at alleles associated

with height in Europeans from the GIANT consortium (253,288 individuals [193]). They

observed that alleles related to increasing height are systematically more in frequency in

northern compared to southern European populations [28, 29, 31, 194, 195]. More recently,

three independent studies [27,28,196] tried to replicate the results found by all of the studies

in the more recent and comprehensive UK Biobank cohort (500,000 individuals [197]) which

has become a key resource for GWAS with relatively unstructured populations. They

found that the previously reported signals of directional selection on height in European

populations do not replicate using GWAS effect estimates from the UK Biobank [28]. They

further show that the GIANT GWAS is confounded due to stratification along north to

south where signals of selection were previously reported. These recent studies highlight

the need for more sophisticated tools for population structure confounding correction. Here,

we propose an algorithm which corrects for complex arbitrarily structured populations while

leveraging the LD induced distances between individuals. We implement CluStrat, which

performs agglomerative hierarchical clustering (AHC) using Mahalanobis distance based

Genetic Relationship Matrix (GRM), which represents the population-level covariance (LD)

matrix for the SNPs.

With growing size of data, computing and storing the genome wide covariance matrix is

non-trivial and we get around this overhead by computing the GRM directly using a con-

nection between statistical leverage scores and the Mahalanobis distance. For biobank-scale

datasets, we also implement a fast algorithm to approximate all leverage scores, therefore

approximating the GRM. We test CluStrat on a large simulation study of discrete and ad-

mixed, arbitrarily-structured subpopulations with allele frequencies simulated from widely

used Balding-Nichols (BN) and PSD models and to replicate real-world scenarios we simu-

lated genotypes with allele frequencies from HGDP and 1000 Genomes datasets respectively

for 500,000 SNPs and 1,000 individuals across 9 different scenarios. We simulated a quan-

titative (and its binary equivalent) trait with genetic effects at causal loci drawn from the

normal distribution and varied the genetic, environmental and noise variances. CluStrat

not only observed the lowest number of spurious associations for all the scenarios, but also

identified two to three-fold more rare variants at causal loci as obtained by the ubiquitously

used Principal Component (PC) based stratification method. CluStrat returned similar
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results when applied on the Parkinson’s Disease data set from WTCCC cohort, identify-

ing less spurious associations than PCA-based approaches. Harnessing the LD structure

by fast approximation of the Mahalanobis distance is also useful in calculating the kinship

matrix in LMM for heritability estimation in tera-scale datasets as well as large GWAS

summary statistics. Here, we provide a comprehensive guide to stratification and subse-

quent disorder trait prediction and estimation leveraging the underlying LD structure of

the genotypes.

6.2 Materials and Methods

6.2.1 Simulated Datasets

We generated an extensive set of simulations to demonstrate the robustness to different

real-world scenarios and power to detect less spurious associations when compared to the

standard population stratification correction approaches. We included two widely used

methods in the study: (i) without adjusting for population structure in Armitage trend χ2

association statistic serving as the control; (ii) method of adjusting the trait and genotypes

by PCs computed from full set of genotypes.

For each of the 9 simulation configurations, we simulated and analyzed 100 GWAS datasets

from a quantitative trait model

yj = α+

m∑
i=1

βixij + λj + εj (6.1)

where βi is the genetic effect of SNP i on the trait, λj is the random non-genetic effect and εj

is the random noise variation for individual j. Let Z be a latent variable which captures envi-

ronmental factors contributed by population structure. Equation 6.1 allows interdependence

of structure, lifestyle and environment. We assume E [εj |zj ] ∼ N (0, σ2(zj)) allowing for het-

eroskedasticity of the random noise variation [52]. Therefore, xj = (x1j , x2j , · · · , xmj)>, λj

and σ2 can be thought of as functions of zj where Z = (z1, z2, · · · , zm). λj is unspecified but

along with zj , they are assumed to be dependent, random variables. Thus, the population
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genetic model is dependent on the structure variable zj for each individual. Similar to the

continuous trait model described in Equation 6.1, we define the binary trait model as

log

(
Pr (yj = 1)

Pr (yj = 0)

)
= α+

m∑
i=1

βixij + λj (6.2)

using the Odds Ratio (OR) as the classifier for disease status from the continuous variable

y.

The complete simulation study on quantitative traits with population structure latent

variable is constructed in 3 different ways for 3 different proportions of variance among

genetic effects, non-genetic effects and random noise, all of which contributing to the

trait. Therefore Var [
∑n

i=1 βixij ], Var
[∑n

j=1 λj

]
and Var [εj ] are assigned in proportions

of (5%,5%,90%), (10%,0%,90%) and (10%,20%,70%), respectively. Thus, we varied the

amount of genetic contribution to the trait for each simulation scenarios and capture vari-

able amount of population structure confounding. We simulated ten truly associated SNPs

whose effect sizes were distributed according to a Normal distribution and we set βi = 0

for all other non-causal SNPs. We simulated data for m = 5, 000 and n = 1, 000 for 100

iterations, spanning 500, 000 SNPs.

The genotype matrix X ∈ Rm×n consisting of the simulated allele frequencies was simulated

using the algorithm from a previous study [52, 198]. Specifically, we set F = TS where

T ∈ Rm×d and S ∈ Rd×n where d ≤ n is the number of population groups. S is the matrix

containing the population groups encompassing the structure for the individuals shared

across all SNPs. On the other hand, T maps how the structure is manifested in the allele

frequencies of each SNP [198]. Finally, projecting S onto the column space of T we obtain

the allele frequency matrix F. We sample X as a special case of F for BN, PSD and TGP

(1000 Genomes Project), respectively. We formed T and S for the above 3 simulations with

3 scenarios each and continuous traits, resulting in, 9 different evaluation scenarios. The

algorithm for constructing T and S is detailed in reference [52,198].

For BN, the allele frequency matrix is simulated from the HapMap phase 3 dataset [199]

using three unrelated populations. The final genotype matrix X is drawn independently at

random from the Binomial distribution with parameters n set to 2, denoting the allele status
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(0,1 or 2) corresponding to homozygous major/minor or heterozygous with probability p

set to the simulated allele frequency for each individual-SNP pair. For PSD, the allele

frequency matrix was drawn from the BN frequency distribution. However, it differs from

BN in simulating S by i.i.d draws from Dirichlet distribution with varying α which denotes

the parameter influencing the relatedness between the individuals. We show results for

α = 0.1 here and conducted simulations on a wide range of α values from 0.01 to 1.

6.2.2 Cochran-Armitage trend χ2

The Armitage trend χ2 statistic [200] is shown to be more appropriate than a simple χ2 test

for association [192]. We compute the Armitage trend χ2 in a similar way as done in [37].

The Armitage trend χ2 is equal to m times the squared Pearson correlation coefficient r2

between genotype (0,1, or 2) and phenotype (binary or continuous traits), where m is the

number of samples.

6.2.3 EIGENSTRAT

EIGENSTRAT [36, 37] involves adjusting the genotypes and phenotypes by the ancestry

captured by each axes of variation as described below:

Algorithm 4 Eigen analysis for population stratification correction

Input: X ∈ Rm×n, y ∈ Rm, k number of significant PCs, p-value threshold p
Output: Set of significantly associated SNPs M

1: Compute reduced SVD for as X = UkΣkV
>
k

2: Xadj = X−UkU
>
k X

3: yadj = y −UkU
>
k y

4: Compute Armitage trend χ2 for association between yadj and Xadj and obtain
p-values P = {p1, p2, · · · , pm}

5: Obtain significant set of SNPs M = {mi| pi < p}

After adjusting the genotype and phenotype for population structure, we compute the

χ2 statistic which is equal to (m − k − 1) times r2 between the adjusted genotype and

phenotype, where m is the number of samples, n is the number of SNPs and k is the
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number of the axes of variation used to adjust for ancestry. This is a generalization of

Armitage trend χ2 statistic as described above. Correlation between two vectors projected

into a lower dimensional embedded subspace, namely the space orthogonal to the k << n

axes of variation is tested.

6.2.4 CluStrat

CluStrat provides a LD based clustering framework to capture the population structure and

tests for association within each cluster, as described in Algorithm 5:

Algorithm 5 Structure informed clustering to correct for population stratification

1: Input: Genotype matrix X ∈ Rm×n, trait vector y ∈ Rm, p-value threshold p,
number of clusters k

2: Output: Set of significantly associated SNPs M
3: D = MahDist(X)
4: C : Cluster membership vector (output of agglomerative hierarchical clustering

on D, k clusters)
5: for i = 1 . . . k
6: Yi = yCi and X(Ci) = XCi∗

7: Find β̂ridgei =
(
X(Ci)

>
X(Ci) + λI

)−1

X(Ci)
>
Yi.

8: Obtain set of significant p-value indices Pi from β̂ridgei .
9: end for

10: P =
⋃
i∈C
Pi and get X(P1) = X∗P

11: Find β̂ridge =
(
X(P1)>X(P1) + λI

)−1

X(P1)>y.

12: Obtain set of p-values P2 for β̂ridge.
13: Return M , set of markers corresponding to significant p-values from P2.

CluStrat computes the distance matrix D from the normalized genotype matrix X and

performs AHC for a number of clusters k, selected by a cross validation. For each cluster,

it runs an association test using ridge regression and obtains p-values for each marker.

Thereafter, it computes P1 the union of intersections of significant associations across all

clusters and select the corresponding markers from X to form X(P1). We can interpret this

step as a scheme for variable selection. We run another association test with ridge regression
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on X(P1) to obtain M , the final set of significant associations for all meta-analysis p-values

below p.

We now briefly discuss the use of the Mahalanobis distance at the first step of the proposed

algorithm. In an arbitrarily structured breeding population, correlation between loci due to

LD often results in block-diagonal structures in the genetic relationship matrix. Thus, it is

important to account for this LD structure in the computation of the distance matrix [201].

One way to account for the LD structure is to use the squared Mahalanobis distance [202,

203] (denoted as D in eqn. 6.3). Given a matrix G ∈ Rn×n which contains the covariance

structure of LD (covariance due to LD between genetic markers), the LD-corrected GRM

implementing the Mahalanobis distance is defined as

D = XG−1X> (6.3)

We perform the association test in CluStrat by running ridge regression on each cluster.

The regularizer, λ, is chosen by 5-fold cross validation. It is worth noting that we use ridge

regression for each cluster as the number of samples is significantly smaller than the number

of SNPs, thus making the overall system under-determined. We find the ridge-estimates as

follows:

β̂ridge = (X>X + λIn)−1X>y = X>(XX> + λIm)−1y (6.4)

We emphasize that the above operation is run for each cluster. We simply dropped the

superscripts from X in the above equation for simplicity. Then, we find the standard error

of the estimates in order to calculate the p-values associated with each marker to compute

the significance of its association with the trait. The standard error for each marker i in

ridge regression is given by

SE(β̂ridgei ) =
σ

ν

∥∥(XX> + λIm)−1X∗i
∥∥

2
. (6.5)
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Recall that X∗i is the i-th column of X and ν is known as the residual degrees of freedom.

We set ν as shown in previous work [204] to the following,

ν = m− cX(X>X + λI)−1X> (6.6)

for a small scalar constant c > 0.

For biobank-scale datasets requiring terabytes of memory, computing the standard error can

be a challenge. However, we can use random projection based approaches to sketch the input

matrix X in order to approximate the standard error for each marker. This is indeed a novel

contribution of our approach. We delegate details to S1 Appendix. We do note that our work

is heavily based on previous work on Randomized Linear Algebra (RLA) [205–208]). To

the best of our knowledge, this is the first approximation of the standard error in penalized

regression using a sketching based framework and is of independent interest; see also [209]

for related work.

Mahalanobis Distance and Leverage Scores

Mahalanobis distance is known to be connected to statistical leverage [210], which is ex-

tended in the RandNLA framework as leverage scores. We show this relationship by first

noting that Mahalanobis distance is invariant to linear transforbIons, which means the

Mahalanobis distance between two vectors,

D(Xi∗,Xj∗) = (Xi∗ −Xj∗)G
−1(Xi∗ −Xj∗)

> (6.7)

can have zero means for each vector. The genotype matrix X ∈ Rm×n, (n markers; m

observations) with which we intend to fit the model, must contain an intercept and thus

we refer to X here as the design matrix containing the intercept column followed by one

column for each SNP for all the individuals in rows. Furthermore, as we compute the

Mahalanobis distance with respect to the low-rank genotype matrix Xk, we only consider

the low-rank leverage scores (rather than the leverage scores of the original matrix X) which

are essentially the diagonal elements of the following projection-matrix:
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H = Xk

(
X>k Xk

)−1
X>k (6.8)

and similarly, the off-diagonal elements of H are called cross-leverage scores of Xk.

Now, we will give a clean connection between Mahalanobis distance and these leverage and

cross-leverage scores. First, consider the diagonal elements of H i.e. when i = j, we have

Hii = (1; Xki∗)
(
X>k Xk

)−1
(1; Xki∗)

> . (6.9)

Exploiting the structure of
(
X>k Xk

)−1
, we can reformulate it in terms of a block matrix as

follows

X>k Xk = m

1 0>

0 C


where Cij = 1

m

∑m
`=1 Xk`iXk`j = m−1

m Cov(Xk∗i ,Xk∗j ) = m−1
m Σij . Σ here is the corre-

sponding sample covariance matrix. Thus,

(
X>k Xk

)−1
=

1

m

 1 0>

0 C−1

 =

 1
m 0>

0 1
m−1Σ−1


From Equation 6.9 we obtain

Hi = (1; Xki∗)

 1
m 0>

0 1
m−1Σ−1

 (1; Xki∗)
> (6.10)

=
1

m
+

1

m− 1
Xki∗Σ

−1X>ki∗ (6.11)

=
1

m
+

1

m− 1
D (Xki∗ , 0) (6.12)

Solving for

Di = D(Xki∗ , 0)

yields,

Di = (m− 1)

(
Hi −

1

m

)
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Similarly, we can prove the cross-leverage scores

Hij =
1

m
+

1

m− 1
Xki∗Σ

−1Xkj∗ (6.13)

To prove the relationship of Hij with Dij we see,

D(Xki∗ ,Xkj∗) = (Xki∗ −X>kj∗)Σ
−1(Xki∗ −Xkj∗)

= D(Xki∗ , 0) + D(Xkj∗ , 0)− 2Xki∗Σ
−1Xkj∗

= (m− 1)(Hi −
1

m
) + (m− 1)(Hj −

1

m
)− 2(m− 1)(Hij −

1

m
)

= (m− 1)(Hi + Hj − 2Hij)

If we take Xki∗ = Xkj∗ then we find D(Xki∗ ,Xkj∗) = 0. Thus, we show that Maha-

lanobis distance between two vectors can be computed by the corresponding vector’s lever-

age scores.

Now, recall that the rank-k leverage scores of the genotype matrix (n � m) are defined

by the row norms of the matrix of its top k left singular vectors Uk ∈ Rm×k. Let (Uk)i∗

denote the i-th row of the matrix Uk. Then the rank-k statistical leverage scores of the

rows of X, for i ∈ 1, · · · , n are given by

Hi = ‖(Uk)i∗‖22.

Similarly, the rank-k (i, j)-th cross-leverage score, Hij , is equal to the dot product of the

i-th and j-th rows of Uk, namely

Hij = 〈(Uk)i∗, (Uk)j∗〉. (6.14)

Here, H ∈ Rm×m is the matrix of all leverage and cross-leverage scores. We note that

Hi = Hii = ‖(Uk)i∗‖22 =
(
UkU

>
k

)
ii

is a special case of the dot product in eqn. 6.14 for the

diagonal leverage scores.
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Algorithm 6 MahDist : Compute Mahalanobis distance based GRM

1: Input: X ∈ Rm×n where n > m, k number of PCs to retain
2: Output: Mahalanobis GRM D
3: Compute Uk, the matrix of the top k left singular vectors of the genotype matrix

X
4: H = UkU

>
k

5: D(Xi∗,Xj∗) = (m− 1) (Hii + Hjj + 2Hij)
6: Return D

One of the key computational bottlenecks of Mahalanobis distance is computing the inverse

of the SNP covariance matrix G as required in Equation 6.3. In real datasets, with the

improvements in genotyping and sequencing technologies, the number of SNPs can be in

the millions, thereby making G in the order of million times million and infeasible to store

in secondary memory. Here, we propose the first approxibIon of Mahalanobis distance by

computing leverage and cross-leverage scores in a faster and efficient way. As we have shown

in Equation 6.13 and 6.10 following up from previous work [210], Mahalanobis distance can

be written in terms of leverage scores. Advances in RandNLA community have brought

about faster computations for leverage scores as well as cross-leverage scores; hence, we can

compute approximations to these scores using random sampling algorithms with theoretical

guarantees [205]. For our purposes of demonstrating the proof-of-concept, we work with

simulated data as described above for 1,000 individuals and 500,000 SNPs which could be

feasibly processed in a personal workstation to compute the deterministic leverage and cross-

leverage scores. We note that running SVD on XX> can be computationally infeasible as the

matrix X in Algorithm 6 will be in the order of m3 where m is in millions. However, methods

such as TeraPCA [68] as detailed in Chapter 4 and other randomized SVD methods [14] can

find the approximate invariant low-rank subspace of the higher dimensional space accurately

and efficiently.

Agglomerative Hierarchical Clustering

We perform AHC using the LD induced Mahalanobis distance with varying number of clus-

ters. We set the expected number of clusters as d+ k where d is the number of populations
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Figure 6.1.: Projection of the samples from three populations simulated from BN
model on the top two axes of variation.

in the data and k ranges from 0 to 5. Therefore, we run the clustering with five different

number of clusters and retain the cluster which has the maximum intersection of spurious

associations across all the clusters. The observed number of clusters is obtained by the

inconsistency method of pruning according to the depth of the dendrogram.

6.3 Results

We tested CluStrat on three simulation scenarios spanning from isolated unrelated pop-

ulation structure, arbitrarily structured populations and admixed populations emulating

structure of worldwide populations. The genotype data was simulated following the same

procedure as described in a prior work [52, 198] with three variance settings regulating the

contribution of genetics, environmental variables and noise to the target trait resulting in

9 simulation scenarios.
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6.3.1 BN model

The BN model simulates scenarios with unrelated isolated populations (Figure 6.1) and

serves as the basic case for arbitrarily structured population with no admixture.

(a) Spurious associations

(b) Causal associations

Figure 6.2.: Box plots for spurious and causal associations on the BN model shows
that Armitage trend χ2 has the maximum number of spurious associations contain-
ing about 4-5 causal SNPs whereas EIGENSTRAT has minimum number of spurious
associations while detecting almost zero causal SNPs. CluStrat has more spurious
associations than EIGENSTRAT and considerably less than Armitage trend χ2 re-
covering slightly more number of causal SNPs than the latter.

The samples when projected on the top two PCs clearly resembles three isolated clusters

with no connections between them. This is an ideal case when the populations are not

mixing due to environmental factors acting as barriers of gene flow between populations.
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GWAS has shown to be robust in these settings [21], however, the cryptic relatedness for

each cluster remains a plaguing issue [28]. We ran CluStrat on this scenario with p-value

threshold set to p = 25
mi

= 0.005 (mi is the number of SNPs in each iteration, set to 5,000

for 100 iterations). The expected number of spurious association as mentioned in [52] is

m0×p where m0 = m− number of causal SNPs. In our case, as we set the number of causal

SNPs to 10 as per [52], m0 = 4990 and therefore, the number of spurious associations to be

approximately 25 with degree of freedom set to 1 for genotypes.

Armitage trend χ2 with no population structure correction renders almost half of the SNPs

in the simulation study as true associations resulting in considerable amount of spurious

associations highlighting the need for population structure correction. EIGENSTRAT on

the other hand results in the expected number of spurious associations as also shown in

previous work [37]. But, it behaves stringently and detects zero causal SNPs almost all of

the time (Figure 6.2). CluStrat, however, strikes a balance between the two and generates

far more spurious associations than the expected value but about 5 folds less than Armitage

trend χ2 recovering slightly higher number of causal SNPs. This shows that in the ideal

case of population structure correction, CluStrat can identify more causal SNPs due to

the structure informed clustering setup which widely used stratification correction methods

lack.

6.3.2 PSD model

The PSD model emulates real world datasets more closely than BN model. It allows for

admixing individuals and gradients across the populations. It is sampled from the Dirichlet

distribution parameterized by a concentration parameter α ∈ Rd where d = 3 (the number of

populations for all simulations conducted). Higher value of αi corresponds to greater weight

of ith population. We ran CluStrat on the PSD model with varying number of α from 0.01

to 1, keeping equal αi for a symmetric distribution. We report the boxplots of spurious and

causal associations (Figure 6.4) for α = {0.1, 0.1, 0.1} and observe that for the first case of

variance (5%, 5%, 90%) Armitage trend χ2 and CluStrat performs almost similarly in terms

of spurious associations. This is due to the fact that only 5% of the trait is explained by
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(a) α = {0.1, 0.1, 0.1}

(b) α = {0.5, 0.5, 0.5}

Figure 6.3.: Projection of the samples from PSD model with varying sets of values of
α. We observe that increasing α increases the density between individuals leading to
admixture and creates a uniform gradient as all values of αi are equal.

true genetic associations in presence of LD and the rest is noise and environmental factors.

However, CluStrat outnumbers EIGENSTRAT in terms of causal associations and detects

four to six fold more true causal SNPs. For the other two variance proportions CluStrat

performed better than the other methods in detecting the causal associations and strikes a

balance in terms of spurious associations.
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(a) Spurious associations

(b) Causal associations

Figure 6.4.: Box plots for spurious and causal associations on the PSD model
(α = {0.1, 0.1, 0.1}) shows Armitage trend χ2 has maximum number of spurious
associations containing less causal SNPs than the BN model (Figure 6.2) owing to
the admixed nature of the individuals in PSD. EIGENSTRAT has minimum number
of spurious associations while detecting almost zero causal SNPs. CluStrat has more
spurious associations than EIGENSTRAT and less than Armitage trend χ2 recover-
ing two to three fold more causal SNPs.

6.3.3 TGP model

The TGP model is more realistic, drawing from allele frequency distributions from the 1000

Genomes Phase 3 dataset [4]. Projection of individuals from the 1000 Genomes (TGP)

dataset on the top two axes of variations shows the distribution of samples across the world

(Figure 4.1).
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(a) Spurious associations

(b) Causal associations

Figure 6.5.: Box plots for spurious and causal associations on the TGP model shows
Armitage trend χ2 has the maximum number of spurious associations containing
less causal SNPs than both the BN and PSD model (Figure 6.2 and 6.4) owing to
the distributions of admixed samples across the world of the individuals. CluStrat
outperforms both the methods in this scenario as it has the minimum number of
spurious associations as well as the highest number of causal SNPs.

CluStrat performs better than EIGENSTRAT (Figure 6.5) in correcting for population

structure in real world scenarios such as the TGP data. It captures the minimum number

of spurious associations while observing the highest number of true causal SNPs. This

shows that structure informed clustering of the genotype data and subsequently performing

association tests with regularization outperforms adjusting the genotype and phenotype

with the top k PCs explaining the variance of the genetic data.
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6.4 Discussion

CluStrat provides a structure informed clustering approach to correct for population struc-

ture in a wide variety of simulation scenarios as shown above. We observed that CluStrat

outperforms the widely used EIGENSTRAT approach in all of the above scenarios by de-

tecting five to six folds more causal SNPs. Although, it detects more spurious associations

than EIGENSTRAT, it is considerably less than the uncorrected Armitage trend χ2 tests.

EIGENSTRAT has been under scrutiny recently as independent studies [27, 28] on UK

Biobank [197] failed to replicate the genetic associations of heritable height in Europeans

where a positive selection signal was observed in a north to south gradient [10, 29, 195] in

the GIANT [193] cohort. These studies attributed the failure to replicate the results in

UK Biobank to cryptic relatedness among individuals which the PCA based approaches

for population structure correction does not always capture, among other reasons. CluS-

trat provides a fine structure based clustering approach to tackle cryptic relatedness and

ancestral differences among the individuals between and within populations.

As discussed above we chose the Mahalanobis distance metric for CluStrat because it cap-

tures the LD induced structure information in the GRM. Thereafter, we established a link

between leverage and cross-leverage scores and the Mahalanobis distance. We get around the

computational and storage bottlenecks of Mahalanobis distance by computing the leverage

and cross-leverage scores. However, we do note that CluStrat do not scale well for realistic

datasets of terabyte scale. In our prior work we developed TeraPCA [68] to address this

issue of computing the top k left singular vectors of the genotype matrix with number of

individuals and markers in the order of millions. We can use TeraPCA to find approx-

imation of the top PCs by performing an out-of-core PCA analysis of massive genomic

datasets. Advances in RandNLA community has resulted in faster calculations of leverage

scores using random projection methods [205] which can be used to approximate the scores

and therefore approximate the Mahalanobis distance. These promising avenues of further

work on making CluStrat scalable can be very useful in detecting rare causal variants in

various traits as well as common and rare diseases and disorders using GWAS summary

statistics or in biobank-scale datasets.
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CluStrat with Euclidean distance metric based GRM (sample covariance matrix) also con-

tains structure information as part of the relationships between the individuals within and

between population groups. The GRM with Euclidean distance is straightforward to com-

pute as shown below

D = XX>

where X ∈ Rm×n (n >> m), but it fails to distinguish fine-grained distances between indi-

viduals in the same cluster owing to cryptic relatedness. This is highlighted after performing

AHC using Ward’s linkage method which minimizes the increase in sum of squares between

two cluster centroids in order to decide when to merge them (Figure 6.6).

The Mahalanobis distance in contrast is useful in high-dimensions where Euclidean distance

falls short. The Cholesky factorization of the covariance matrix G = LL> where L is

the lower diagonal matrix known as the Cholesky factor of G [201]. We can represent

equation 6.3 as

XG−1X> = X
(
LL>

)−1
X> (6.15)

= X(L>)−1(L)−1X> (6.16)

=
(
X(L−1)>

) (
L−1X

)>
(6.17)

=
(
L−1X>

)> (
L−1X>

)
(6.18)

= Q>Q (6.19)

Q = L−1X> represents the transformed variables and Q>Q is the squared Euclidean dis-

tance between the transformed variables. Thus Mahalanobis distance accounts for covari-

ance between variables by transforming the data into an uncorrelated form and computing

the euclidean distances between them.

When Mahalanobis distance based GRM is used instead of Euclidean distance in AHC on

PSD model with 1,000 individuals and 10,000 SNPs across 3 admixed arbitrarily structured

ethnic groups, it reveals four broad clusters with various fine-grained sub-clusters revealing

how Mahalanobis distance help recover cryptic relatedness and substructure within a pop-

ulation. Due to admixture in the PSD model (α = {0.1, 0.1, 0.1}) as shown in Figure 6.3
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(a) Mahalanobis distance

(b) Euclidean distance

Figure 6.6.: Dendrograms obtained after running AHC with Ward’s linkage on PSD
model (α = {0.1, 0.1, 0.1}) shows Mahalanobis distance shows fine grained interac-
tions between the individuals inside a cluster recovering population substructure and
cryptic relatedness which Euclidean distance based GRM fails to recover.

the dendrogram finds three broad clusters owing to the three populations in the simulation.

It subsequently finds different sub-clusters at different depth on the horizontal axis. Thus,

identifying interaction between individuals inside a cluster. This is a significant advantage

of using Mahalanobis distance over it’s Euclidean counterpart as the latter only reveals

three broad clusters with indistinguishable interactions in each cluster (Figure 6.6).

When we ran AHC with both the distances, we observe similar performance on the PSD

model with Mahalanobis distance based GRM performing slightly better with respect to
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(a) Spurious associations

(b) Causal associations

Figure 6.7.: Box plots for spurious and causal associations obtained by running AHC
with Mahalanobis and Euclidean distances on the PSD model (α = {0.1, 0.1, 0.1}).
We observe similar performance on both the distance metrics in terms of identifying
true causal variants. Mahalanobis distance discovers less spurious associations than
Euclidean distance.

it’s Euclidean counterpart (Figure 6.7). We note that, as we increase the scale of admixed

genotype data with more complex structure, Mahalanobis distance is better suited as it is

known to project correlated high dimensional data to an uncorrelated lower dimensional

space where it recovers the hidden Euclidean distances [202].

In this thesis we provide a proof-of-concept of CluStrat and argue that structure informed

clustering methods are better suited to capture the cryptic relatedness among individuals

within ethnic groups. Availability of higher dimensional datasets such as UK Biobank will
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lead to a better evaluation of CluStrat, scrutinizing whether it fails to replicate the north

to south gradient of positive selection of height in Europeans as found in prior work [27,28].

Another future direction of CluStrat is to extend it to compute Polygenic Risk Scores (PRS)

on a discovery or validation data which is held out and compare with widely used pack-

ages such as PRSice2 [211] and LDPred [212] which computes PRS from GWAS summary

statistics as well as raw genotypes. LMM methods such as EMMAX [53], GEMMA [213],

etc. are ubiquitously used to correct for population structure as well performing almost

similar to PCA based methods. Another method, GCAT [52], also performs similar to or

better than PCA and LMM approaches however it is not as popular as the former. We have

not evaluated performance of CluStrat with respect to these methods in this thesis and in

future, we plan to conduct a comprehensive comparison with these methods for population

structure correction.

In summary, here, we have highlighted the advantages of biologically inspired distance met-

rics such as Mahalanobis distance based GRM which captures the cryptic interactions within

populations induced by the presence of LD. We evaluated CluStrat on three distinct simu-

lated scenarios of structured populations. We outline how CluStrat outperforms the current

widely used PCA based population stratification correction technique in all the scenarios by

detecting more true positives. CluStrat detects more false positives than EIGENSTRAT,

which can be due to the latter being more stringent in finding genotype-phenotype associ-

ations. We also propose various computational challenges in scaling CluStrat and methods

to overcome those in order to efficiently compute the GRM deterministically. We highlight

the advantages of randomized algorithms to approximate the GRM for tera-scale geno-

type dataset. Therefore, a comprehensive study on CluStrat and it’s performance on other

complex simulation scenarios as well as scalable real world datasets would be of particular

interest.
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7 CONCLUSION AND FUTURE WORK

In this dissertation, we presented various computational methods catering different facets

of population genetics. In Chapter 3.1 we analyse the genetic ancestry of the Pelopon-

nesean populations and their relationships with the Slavs and other Europeans, settles a

historical controversy that has persisted for over 170 years. Language, social structure and

geography create channels of gene flow across populations. However, to date, no study had

attempted to establish a quantitative framework in order to dissect the relative contribu-

tion of each factor and translate it into a model that correlates with observed population

genetic structure. In Chapter 3.2, we establish such an analytic framework called COGG

allowing the quantitative assessment of different evolutionary factors as well as the inter-

play among them. Applying this novel method on a comprehensive dataset from the Indian

subcontinent, we are able to uncover major forces that have shaped population genetic

structure within India. We seek to extend our computational armamentaria to analyse

factors contributing to genetic stratification of a population and reconstruct it’s history.

As technological advances are allowing us to sequence ancient DNA from thousands of

years ago and even from sediments of bones and fossils, we want to develop efficient sta-

tistical frameworks to infer patterns of migrations before the last glacial maximum. The

software is available to use by GNU GPL-3.0 license with open-source collaborations at

https://github.com/aritra90/COGG.

PCA is a statistical workhorse in population genetics, but it does not scale well to modern,

massive datasets that are emerging and the ones expected to be generated by large-scale

projects in the next few years. In Chapter 4, we present TeraPCA, a multi-threaded, out-

of-core implementation of the Randomized Subspace Iteration method compares favourably

to current state-of-the-art software tools. TeraPCA builds upon principled and theoret-

ically sound methods to approximate the top principal components of massive covari-

ance matrices, returning highly accurate approximations to the top principal components,

https://github.com/aritra90/COGG
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while taking advantage of modern computer architectures that support multi-threading.

The software is available to use by GNU GPL license with open-source collaborations at

https://github.com/aritra90/TeraPCA and we seek to extend it’s usage to cater to gene

expression data as well as non-genetic datasets.

We address the task of modeling and simulating complex scenarios of related multiple pop-

ulations under the effect of natural selection at multiple loci with interacting alleles by

building a coalescent simulator, sSimRA and it’s forward counterpart, fwdSimRA in Chap-

ter 5. This allows a validation framework for including selection and epistasis into standard

population genetic models where we can now study the divergent scenarios when all the

diploids associated with mutated sites along the chromosome with diverging fitness values

corresponding to the alleles. As the distributions of both the schemes are concordant, we

conclude that any one of the simulators (sSimRA or fwdSimRA) can be used to under-

stand the effects of negative and positive selection, with multi-way epistasis, along with

selective sweeps across generations. We have successfully built and tested the selection for

both models at multiple loci with and without interactions between them. This is the first

model to account for epistatic interactions between forward and coalescent simulators and

conduct a comprehensive comparison between the two. The code for both the forward and

backward simulators is available to use by Apache license with open-source collaborations

at https://github.com/ComputationalGenomics/SimRA.

We address the issue of cryptic relatedness in arbitrarily structured isolated and admixed

populations respectively in Chapter 6. We implemented CluStrat which uses structure

information captured by LD induced GRM computed using Mahalanobis distances be-

tween individuals as the distance metric for AHC. Thereafter, it runs ridge regression by

cross validation to find association between genotype and phenotype. We compute the

Mahalanobis distance by showing a connection of statistical leverage and cross-leverage

scores with them, accounting for the computational and storage bottlenecks. We show

that CluStrat outperformed the widely used, PCA based, population stratification cor-

rection technique in all the three simulation scenarios spanning from isolated, admixed

and real world population structure. We also propose various future directions of scaling

CluStrat to process on GWAS summary statistics and biobank-scale datasets. Code for

https://github.com/aritra90/TeraPCA
https://github.com/ComputationalGenomics/SimRA
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CluStrat is available to use by GNU GPL-3.0 license with open-source collaborations at

https://github.com/aritra90/CluStrat.

https://github.com/aritra90/CluStrat
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Shane McCarthy, Gil A. McVean, and Gonçalo R. Abecasis. A global reference for
human genetic variation. Nature, 526(7571):68–74, 2015.

[5] Cathie Sudlow, John Gallacher, Naomi Allen, Valerie Beral, Paul Burton, John
Danesh, Paul Downey, Paul Elliott, Jane Green, Martin Landray, Bette Liu, Paul
Matthews, Giok Ong, Jill Pell, Alan Silman, Alan Young, Tim Sprosen, Tim Peak-
man, and Rory Collins. Uk biobank: An open access resource for identifying the
causes of a wide range of complex diseases of middle and old age. PLOS Medicine,
12(3):1–10, 03 2015.

[6] Noah A. Rosenberg, Jonathan K. Pritchard, James L. Weber, Howard M. Cann,
Kenneth K. Kidd, Lev A. Zhivotovsky, and Marcus W. Feldman. Genetic structure
of human populations. Science, 298(5602):2381–2385, 2002.

[7] John Novembre and Matthew Stephens. Interpreting principal component analyses
of spatial population genetic variation. Nature Genetics, 40(5):646–649, 2008.

[8] Brian Chisholm, L Luca Cavalli-Sforza, Paolo Menozzi, and Alberto Piazza. The
History and Geography of Human Genes. The Journal of Asian Studies, 54(2):490,
1995.

[9] Felicia Gomez, Jibril Hirbo, and Sarah A. Tishkoff. Genetic variation and adapta-
tion in africa: implications for human evolution and disease. Cold Spring Harbor
perspectives in biology, 6(7):a008524–a008524, 2014. 24984772[pmid].

[10] Graham Coop, Joseph K. Pickrell, John Novembre, Sridhar Kudaravalli, Jun Li,
Devin Absher, Richard M. Myers, Luigi Luca Cavalli-Sforza, Marcus W. Feldman,
and Jonathan K. Pritchard. The role of geography in human adaptation. PLOS
Genetics, 5(6):1–16, 06 2009.

[11] L. Luca Cavalli-Sforza. Genes, peoples, and languages. Proceedings of the National
Academy of Sciences, 94(15):7719–7724, 1997.



134

[12] P Menozzi, A Piazza, and L Cavalli-Sforza. Synthetic maps of human gene frequencies
in europeans. Science, 201(4358):786–792, 1978.

[13] Vladimir Rokhlin, Arthur Szlam, and Mark Tygert. A randomized algorithm for
principal component analysis. SIAM Journal on Matrix Analysis and Applications,
31(3):1100–1124, 2010.

[14] N. Halko, P. G. Martinsson, and J. A. Tropp. Finding structure with randomness:
Probabilistic algorithms for constructing approximate matrix decompositions. SIAM
Review, 53(2):217–288, 2011.

[15] John Frank Charles Kingman. The coalescent. Stochastic processes and their appli-
cations, 13(3):235–248, 1982.

[16] John FC Kingman. Origins of the coalescent: 1974-1982. Genetics, 156(4):1461–1463,
2000.

[17] Sewall Wright. Evolution in mendelian populations. Genetics, 16(2):97, 1931.

[18] John Wakeley. The limits of theoretical population genetics. Genetics, 169(1):1–7,
2005.

[19] Jonathan Marchini, Lon R. Cardon, Michael S. Phillips, and Peter Donnelly. The
effects of human population structure on large genetic association studies. Nature
Genetics, 36(5):512–517, 2004.

[20] Hua Tang, Tom Quertermous, Beatriz Rodriguez, Sharon L. R. Kardia, Xiaofeng
Zhu, Andrew Brown, James S. Pankow, Michael A. Province, Steven C. Hunt, Eric
Boerwinkle, Nicholas J. Schork, and Neil J. Risch. Genetic structure, self-identified
race/ethnicity, and confounding in case-control association studies. American journal
of human genetics, 76(2):268–275, Feb 2005. 15625622[pmid].

[21] Peter M. Visscher, Naomi R. Wray, Qian Zhang, Pamela Sklar, Mark I. McCarthy,
Matthew A. Brown, and Jian Yang. 10 years of gwas discovery: Biology, function,
and translation. The American Journal of Human Genetics, 101(1):5 – 22, 2017.

[22] Melina Claussnitzer, Simon N Dankel, Kyoung-Han Kim, Gerald Quon, Wouter
Meuleman, Christine Haugen, Viktoria Glunk, Isabel S Sousa, Jacqueline L Beaudry,
Vijitha Puviindran, et al. Fto obesity variant circuitry and adipocyte browning in
humans. New England Journal of Medicine, 373(10):895–907, 2015.

[23] Christian Fuchsberger, Jason Flannick, Tanya M Teslovich, Anubha Mahajan, Vi-
neeta Agarwala, Kyle J Gaulton, Clement Ma, Pierre Fontanillas, Loukas Mout-
sianas, Davis J McCarthy, et al. The genetic architecture of type 2 diabetes. Nature,
536(7614):41, 2016.

[24] Katrina M. de Lange, Loukas Moutsianas, James C. Lee, Christopher A. Lamb, Yang
Luo, Nicholas A. Kennedy, Luke Jostins, Daniel L. Rice, Javier Gutierrez-Achury,
Sun-Gou Ji, Graham Heap, Elaine R. Nimmo, Cathryn Edwards, Paul Henderson,
Craig Mowat, Jeremy Sanderson, Jack Satsangi, Alison Simmons, David C. Wilson,
Mark Tremelling, Ailsa Hart, Christopher G. Mathew, William G. Newman, Miles
Parkes, Charlie W. Lees, Holm Uhlig, Chris Hawkey, Natalie J. Prescott, Tariq Ah-
mad, John C. Mansfield, Carl A. Anderson, and Jeffrey C. Barrett. Genome-wide
association study implicates immune activation of multiple integrin genes in inflam-
matory bowel disease. Nature genetics, 49(2):256–261, Feb 2017. 28067908[pmid].



135

[25] Stephan Ripke, Benjamin M Neale, Aiden Corvin, James TR Walters, Kai-How Farh,
Peter A Holmans, Phil Lee, Brendan Bulik-Sullivan, David A Collier, Hailiang Huang,
et al. Biological insights from 108 schizophrenia-associated genetic loci. Nature,
511(7510):421, 2014.

[26] Patrick F Sullivan. The psychiatric gwas consortium: big science comes to psychiatry.
Neuron, 68(2):182–186, 2010.

[27] Mashaal Sohail, Robert M Maier, Andrea Ganna, Alex Bloemendal, Alicia R Martin,
Michael C Turchin, Charleston WK Chiang, Joel Hirschhorn, Mark J Daly, Nick
Patterson, et al. Polygenic adaptation on height is overestimated due to uncorrected
stratification in genome-wide association studies. eLife, 8:e39702, 2019.

[28] Jeremy J Berg, Arbel Harpak, Nasa Sinnott-Armstrong, Anja Moltke Joergensen,
Hakhamanesh Mostafavi, Yair Field, Evan August Boyle, Xinjun Zhang, Fernando
Racimo, Jonathan K Pritchard, et al. Reduced signal for polygenic adaptation of
height in uk biobank. eLife, 8:e39725, 2019.

[29] Michael C Turchin, Charleston WK Chiang, Cameron D Palmer, Sriram Sankarara-
man, David Reich, Joel N Hirschhorn, Genetic Investigation of ANthropometric Traits
(GIANT) Consortium, et al. Evidence of widespread selection on standing variation
in europe at height-associated snps. Nature genetics, 44(9):1015, 2012.

[30] Jeremy J Berg and Graham Coop. A population genetic signal of polygenic adapta-
tion. PLoS genetics, 10(8):e1004412, 2014.

[31] Matthew R Robinson, Gibran Hemani, Carolina Medina-Gomez, Massimo Mezzavilla,
Tonu Esko, Konstantin Shakhbazov, Joseph E Powell, Anna Vinkhuyzen, Sonja I
Berndt, Stefan Gustafsson, et al. Population genetic differentiation of height and
body mass index across europe. Nature genetics, 47(11):1357, 2015.

[32] Anne M Bowcock, Andres Ruiz-Linares, James Tomfohrde, Eric Minch, Judith R
Kidd, and L Luca Cavalli-Sforza. High resolution of human evolutionary trees with
polymorphic microsatellites. Nature, 368(6470):455, 1994.

[33] William Astle, David J Balding, et al. Population structure and cryptic relatedness
in genetic association studies. Statistical Science, 24(4):451–471, 2009.

[34] J. K. Pritchard, M. Stephens, and P. Donnelly. Inference of population structure using
multilocus genotype data. Genetics, 155(2):945–959, Jun 2000. 10835412[pmid].

[35] David H Alexander, John Novembre, and Kenneth Lange. Fast model-based estima-
tion of ancestry in unrelated individuals. Genome research, 19(9):1655–1664, 2009.

[36] Nick Patterson, Alkes L Price, and David Reich. Population structure and eigenanal-
ysis. PLoS genetics, 2(12):e190, 2006.

[37] Alkes L Price, Nick J Patterson, Robert M Plenge, Michael E Weinblatt, Nancy A
Shadick, and David Reich. Principal components analysis corrects for stratification
in genome-wide association studies. Nature genetics, 38(8):904, 2006.

[38] Luigi Luca Cavalli-Sforza, Luca Cavalli-Sforza, Paolo Menozzi, and Alberto Piazza.
The history and geography of human genes. Princeton university press, 1994.

[39] David Reich, Kumarasamy Thangaraj, Nick Patterson, Alkes L. Price, and Lalji
Singh. Reconstructing Indian population history. Nature, 461(7263):489–494, 2009.



136

[40] Nick Patterson, Priya Moorjani, Yontao Luo, Swapan Mallick, Nadin Rohland, Yiping
Zhan, Teri Genschoreck, Teresa Webster, and David Reich. Ancient admixture in
human history. Genetics, 192(3):1065–1093, 2012.

[41] Benjamin M. Peter. Admixture, population structure, and f-statistics. Genetics,
202(4):1485–1501, 2016.

[42] Iosif Lazaridis, Dani Nadel, Gary Rollefson, Deborah C. Merrett, Nadin Rohland,
Swapan Mallick, Daniel Fernandes, Mario Novak, Beatriz Gamarra, Kendra Sirak,
Sarah Connell, Kristin Stewardson, Eadaoin Harney, Qiaomei Fu, Gloria Gonzalez-
Fortes, Eppie R. Jones, Songül Alpaslan Roodenberg, György Lengyel, Fanny Boc-
quentin, Boris Gasparian, Janet M. Monge, Michael Gregg, Vered Eshed, Ahuva-Sivan
Mizrahi, Christopher Meiklejohn, Fokke Gerritsen, Luminita Bejenaru, Matthias
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Reconstructing Genetic Population History

A.1 Genetics of the Peloponnesean Populations

A.1.1 Supplementary Information

Table A.1.: Districts of origin of the subjects

Districts Subjects Used in analysis
Achaea 25 25
Argolis 16 16
Arcadia 15 13

Elis 24 24
Corinthia 16 16
Laconia 26 25
Messenia 26 26

East Tayetos 23 23
West Tayateos 23 24

Deep Mani 22 22
Tsakonia 24 24
TOTAL 241 238
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Figure A.1.: Locations of the populations listed in Supplementary Table 1
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(a) Peloponnesean samples with Armenians projected on the top two PCs

(b) ADMIXTURE plot (K = 2:8) for Peloponnesean and Armenian populations.

Figure A.2.: Testing the hypothesis of Armenian ancestry of Peloponneseans.
Fallmerayer proposed that Armenians were among the medieval populations moved to
Peloponnese by the Byzantines. Comparison of Peloponneseans with the Armenians
by, (a) PCA analysis (b) ADMIXTURE analysis, makes this hypothesis unlikely.
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(a) Maniots and Slavic populations projected on the top two PCs.

(b) ADMIXTURE plot (K = 2:8) for Maniots and Slavic populations.

Figure A.3.: Testing the hypothesis of Slavic origin of culturally distinct Pelopon-
nesean populations. PCA comparisons of (a) The Maniots of Deep Mani, Tayetos
and Tsakones, with populations of the Slavic homeland (Ukrainians, Polish, Russians
and Belarusians). Notice the broad separation between the Slavs and the Pelopon-
nesean populations. (b) ADMIXTURE analysis shows the complete separation of
Maniots and Tsakones from the Slavs in all K values.
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(a) Maniots and populations from Middle East projected on the top two PCs.

(b) ADMIXTURE plot (K = 2:8) for Maniots and Middle Eastern populations.

Figure A.4.: Testing the hypothesis of Mardaitic origin of Maniots. The Mardaites
were a medieval Middle Eastern population considered by some historians to be the
ancestors of the Maronites of Lebanon. Comparison of Maniots with Maronites and
other Middle Eastern populations by (a) PCA and, (b) ADMIXTURE analysis makes
this hypothesis unlikely.
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Figure A.5.: Unique genetic structure of the population of Tsakonia. PCA compar-
isons of Tsakones with A. the Eastern Europeans. B. North Africans C. Near Eastern
populations D. Southern Europeans.
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A.2 Integrating linguistics, social structure and geography to model gene flow in In-

dia

A.2.1 Supplementary Information

Figure A.6.: PCA plot of all Indian samples. We note that the formation of the
clusters is primarily dominated by language groups, with some populations (Gond,
Manipuri Brahmins, Dusadh) showing a certain amount of admixture between the
language groups. A few tribal populations across IE and DR languages (Vedda,
Madiga, Kol, Bhil, Chamar, Kuruchiyan) cluster together. We also observe that the
Irulas, Paniyas, Kurumba and Kadars show divergence from other DR SGC popula-
tions.
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Figure A.7.: ADMIXTURE plot of all Indian populations for values of K between two
and eights. Our findings are very similar to the observations in Supplementary Figure
1. The main observation is (again) that the formation of the clusters is primarily
dominated by language groups, especially for larger values of K.
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(a) ADMIXTURE plot of normalized Indian populations

(b) Shared ancestry of ADMIXTURE plot (a) for K between 4 and 8

Figure A.8.: An ADMIXTURE plot (for values of K between two and eight) of
the normalized data set (368 individuals 48,373 SNPs) clearly shows the four main
components related to language groups (Dravidian, Indo-European, Tibeto-Burman,
and Austro-Asiatic); see, for example, the plot for K equal to five or six. The plot
also shows the divergence of the DR SGC. We perfomed a meta-analysis of the results
of the ADMIXTURE plot (see 3.1.2 for details) to visually and numerically quantify
the amount of shared ancestry (as revealed by ADMIXTURE) between any pair of
populations. Darker colors indicate larger amounts of shared ancestry; we observe a
higher amount of shared ancestry between the IE and DR populations, across all social
groups, indicating the existence of significant admixture between the two linguistic
groups. The isolation of the DR SGC samples is primarily due to the isolation of hill
SGCs (such as Irula, Kadar, Paniyas, etc.)
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(a) Discriminated by regions

(b)Discriminated by language groups

Figure A.9.: Plotting the top two discriminants by (a) region and (b) language groups.
Clearly, this follows much what we saw in Figure A.6. However, looking closely we see
the following: (a) we see a geographical gradient, starting from IE SGA and IE SGB
in Northwestern India to the other Indo-European and Dravidian SGA. We also see
that the IE SGC sit closer to the Austro-Asiatic speakers, justifying their geographi-
cal location in Central India. This is followed by the Tibeto-Burman speakers forming
another cluster, concluding the other spectrum of the gradient. (b) Layers of strat-
ification appears, from right to left. Although the LDA was performed by language
groups, we see a two-layer stratification, first by castes and then by languages. The
IE SGA form a separate cline, followed by DR SGA; then, the IE and DR SGBs
follow. Then some DR and AA tribal populations cluster together, followed by a
separate cluster of IE tribal populations.
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(a) histogram of permutations with first PC

(b) histogram of permutations with second PC

Figure A.10.: Statistical significance of the COGG output (using random permuta-
tions of the features) Clearly, COGG is statistically significant for both the first and
the second principal components
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(a) histogram of permutations running COGG-CCA

(b) r2 obtained from COGG-CCA varying with number of PCs

Figure A.11.: (a) COGG-CCA, when run with top 8 PCs, shows statistical significance
with r2 = 0.94 when compared against random permutations of the variables with
average r2 = 0.75. (b) Varying number of PCs to perform COGG-CCA results in the
maximum r2 when top 6 to 8 PCs are used.
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Figure A.12.: The pairwise shared ancestry matrix of relatedness within DR show high
relatedness among a large portion of DR speakers across caste affiliations. The Tribes
such as Irula, Kadar, Palliyar, Paniya and Malayan show significant divergence from
the others. Among them the Paniyas show absolute divergence, with very less amount
of ancestry with all DR speakers, whereas the others tend to form a cluster and show
that although they share significant amount of ancestry with each other, than the
DR SGA. The SGB and SGAs tend to cluster together showing high relatedness with
some SGCs such as Adi-Dravider, Hakkipikki, Hallaki, Kuruchiyan, etc.
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Figure A.13.: Most significant (Z-score higher than 85) outgroup f3 statistics of the
form f3(Y RI;A,B) where YRI is the outgroup, A are the groups from Table 3.4 and
B are all the pan-Indian populations in our data spanning across social groups and
language families.

Figure A.14.: The top two principal components show a long cline of IE and DR
speakers with some divergence by few SGCs, such as Tharu, Irula, Palliyar, Paniyas,
etc.
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Figure A.15.: The pairwise shared ancestry matrix of relatedness within IE show high
relatedness among most of the IE speakers across caste affiliations. The Tharus show
divergence from rest of the IE speakers except the Uttaranchal Brahmins, who share
close relatedness with the East Asian component in their gene pool. The Brahmin
groups ( GJR – Gujarati; UP – Uttar Pradesh; UTR – Uttaranchal; WB – West
Bengal) show high values of shared ancestry within each other and rest of the IE
speakers. Only UTR Brahmins show some divergence. The tribes such as Sahariya,
Bhil and Chamar are more closely related to the fellow SGCs than the SGA, but still
show around 70% of relatedness with them.
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Figure A.16.: The shared ancestry matrix of relatedness between IE and DR speakers
show that high relatedness with some divergent groups, following from the PC plot in
Figure A.15. The DR SGA share very high ancestry with IE SGA and SGC, showing
that there was high admixture and contact between these groups prior to endogamy.

Figure A.17.: The pairwise shared ancestry matrix of relatedness within AA show
very high relatedness among almost all AA speakers. Birhors, who are nomadic
hunter-gatherer people dwelling in forests share less ancestry than others, probably
because of their subsistence nature, where they roam around the forests of eastern
and central India. The Khasis also show divergence from the AA speakers because
of their location in northeastern India near TB SGC and presence of admixture from
TB speakers.
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Figure A.18.: The top two PCs of AA speakers in India show most of the groups form
a cluster with Birhor and Korwa showing divergence from the main cluster.

Figure A.19.: PCA plot of the first two PCs reveals the Austronesians (Ami and
Atayal) and the IE and DR speakers to be distinct from the rest of the southeast
Asians along with the Indian AA speakers.
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(a) ADMIXTURE plot for K (two to eight)

(b) Shared ancestry matrix for ADMIXTURE (K between four to eight)

Figure A.20.: (a) ADMIXTURE plot (for values of K between two and eight) of the
Indian dataset merged with Southeast Asian populations shows that the AA and TB
speakers do not share a lot of admixture with other Austric speakers from Southeast
Asia; (b) The pairwise shared ancestry matrix of AA and TB speakers highlighting
that the Khasis share very high amount of ancestry with TB tribals, unlike other AA
groups.
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(a) Network analysis based on shared ancestry

(b) Treemix plot with six migration edges

Figure A.21.: (a) Network analysis for top 2 PCs and 5 nearest neighbors show that
the Khasis forming a bridge between Indian AA speakers and southeast Asia; (b)
TreeMix plot of Indian and Southeast Asian AA speakers with 8 migration edges
reveal that there is a migration edge from Cambodian to Bonda, who are Indian AA
speakers attributed to southeastern Asian admixture.



170

(a) Plotting top two PCs

(b) Network analysis based on shared ancestry

Figure A.22.: (a) Network analysis for top 2 PCs and 5 nearest neighbors show that
the Khasis forming a bridge between Indian AA speakers and southeast Asia; (b)
TreeMix plot of Indian and Southeast Asian AA speakers with 8 migration edges
reveal that there is a migration edge from Cambodian to Bonda, who are Indian AA
speakers attributed to southeastern Asian admixture.
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(a) ADMIXTURE plot for K (two to eight)

(b) Shared ancestry matrix for ADMIXTURE (K between four to eight)

Figure A.23.: (a) PCA plot of the top two principal components of Indian TB speakers
and mainland Chinese populations show that the TB SGC are closer to the southern
Chinese; (b) Network analysis show that TB SGC are closer to Central and Southern
China who are geographically closer to northeast India.
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Figure A.24.: Plotting of Indian and Eurasian populations projected on the top two
PCs, mirror the geography of Eurasia uncovering a triangular structure with Euro-
peans residing in one corner, the Chinese on another corner and the DR and AA
speaking tribal populations of India occupying the third corner.

Figure A.25.: Residual fit from the maximum likelihood tree in Fig 3. The residuals
are normalized over the residual covariance between each pair i and j. Residuals
above zero represent populations that are more closely related to each other and are
candidates for admixture events.
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Figure A.26.: ADMIXTURE plot (for values of K between two and eight) of the
Indian dataset merged with Eurasian populations (1,332 individuals, 42,973 SNPs).
Meta-Analysis of this plot in Fig 4a, quantifies the relationship between populations.
The IE and DR Forward and Backward Castes share significant amount of ancestry
with the Northwestern Frontier populations of Afghanistan and Pakistan, followed
by ancestry from Central Asia, Turkey and Caucasia. The TB tribals belong to the
same cluster as the Chinese populations along with, Mongolia and Uygurs.
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Table A.2.: Top 10% of the significant f3 statistics (f3(C;A,B)) highlighting the most
admixed populations in India. Gounders, Manipuri Brahmins, Tharus and Gonds are
the most admixed among all tribes in India.

A B C F3 Err Z
DR SGB IE SGA Gounder -0.02328 0.000644 -36.114
IE SGA TB SGC Manipuri Brahmin -0.01583 0.000452 -35.019
DR SGB IE SGC Gounder -0.02188 0.000657 -33.315
IE SGA TB SGC Tharu -0.01364 0.000447 -30.518
DR SGA TB SGC Tharu -0.01292 0.000429 -30.084
IE SGC TB SGC Tharu -0.00843 0.000389 -21.647
DR SGC TB SGC Tharu -0.00913 0.000436 -20.922
DR SGC TB SGC Manipuri Brahmin -0.0094 0.000484 -19.415
IE SGA AA SGC Iyer -0.00343 0.000241 -14.211
IE SGA AA SGC Gond -0.00449 0.000321 -13.989
DR SGC AA SGC Gond -0.00419 0.000305 -13.722
IE SGC AA SGC Gond -0.00226 0.000171 -13.245
IE SGA AA SGC Kol -0.00347 0.000266 -13.002
IE SGA AA SGC Pallan -0.00411 0.000325 -12.638
IE SGA AA SGC Bhil -0.00326 0.000277 -11.758
IE SGA DR SGC Bhil -0.0036 0.000343 -10.489
IE SGC TB SGC Khasi -0.01008 0.001166 -8.648
IE SGB TB SGC Khasi -0.00981 0.001155 -8.49
IE SGA AA SGC Chamar -0.00292 0.000358 -8.152
IE SGA AA SGC Satnami -0.00503 0.000853 -5.898
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Appendix B. TeraPCA: a fast and scalable software package

to study genetic variation in tera-scale genotypes

A.3 Supplementary Information

Figure A.27.: Plots of the three leading eigenvectors returned by TeraPCA and Flash-
PCA2 for the simulated dataset S6.
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Figure A.28.: The projection of the HGDP dataset along the two leading eigenvectors
computed by TeraPCA.
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Figure A.29.: The wall-clock times achieved by TeraPCA and FlashPCA2 when the
number of eigenvectors that we seek to extract (k) ranges from 10 to 500 for the
dataset S6.

Table A.3.: Accuracy of the ten leading eigenvalues computed by TeraPCA and
FlashPCA2.

eigenvalue # correct digits relative error
index TeraPCA FlashPCA2 TeraPCA FlashPCA2

1 15 3 9.91E-15 0.00174228
2 14 4 1.02E-13 0.00129037
3 11 4 5.65E-11 0.00148699
4 9 4 2.18E-08 0.00130829
5 6 3 2.65E-06 0.00110305
6 6 4 3.01E-06 0.00076299
7 6 4 3.36E-06 0.00146959
8 6 4 1.04E-05 0.00068089
9 5 4 7.11E-05 0.00127518
10 4 4 1.74E-04 0.00074424



178

Figure A.30.: The wall-clock times achieved TeraPCA and FlashPCA2 when the
number of SNPs ranges from 20K to 100K on for the dataset S6.

Figure A.31.: Proportion of variance captured by the ten leading eigenvectors re-
turned by TeraPCA when applied on the 1000 Genomes dataset (FlashPCA2 returns
essentially the same values for the proportion of variance captured by the top ten
eigenvectors).
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Figure A.32.: Amount of time required to multiply the (normalized) covariance matrix
by a set of s vectors using the DGEMM BLAS routine of MKL for different values of
s, β and threads, for the datasets S6 and HGDP.
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Appendix C. sSimRA: Multiple Loci Selection with

Multiway Epistasis in Coalescence with Recombinations

A.4 Supplementary Information

3 interacting loci es m p-value Test statistic
s1 s2 s3

10 0.1400 0.16
20 0.4431 0.12

× × × × 30 0.3439 0.13
40 0.9995 0.05
10 0.6766 0.08
20 0.7942 0.08

s1 × × × 30 0.6766 0.10
40 0.5750 0.11
10 0.9921 0.06
20 0.5560 0.11

s1 s2 × × 30 0.7942 0.09
40 0.8938 0.08
10 0.8938 0.08
20 0.9995 0.05

s1 s2 × 0.1 30 0.9710 0.06
40 0.7942 0.09
10 0.3439 0.13
20 0.7942 0.08

s1 s2 s3 × 30 0.6766 0.10
40 0.5576 0.11
10 0.9610 0.07
20 0.9610 0.07

s1 s2 s3 0.1 30 0.3556 0.13
40 0.6766 0.10

Table A.4.: K-S test statistics with corresponding p-values showing that the proba-
bility distributions of H as returned by fwd-sSimRA and back-sSimRA abstracts each
other very closely.
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(a) Neutral model

(b) Selection at single locus

Figure A.33.: Comparing the height of the ARG (H) between the fwd-sSimRa and
back-sSimRA for selection at two-loci with and without epistasis, respectively. We
set g = 25K, r = 1.0× 10−8 N = 100, s = 0.3, es = {0, 0.1} and m = {10, 20, 30, 40}.
(i) The box-and-whisker plot summarizes the result for each m. On each box, the
central mark is the mean, the edges of the box are the 25th and 75th percentiles, the
whiskers extend to the most extreme data points not considered outliers, and outliers
are plotted individually. (ii) Q-Q plots for each m showing that the distributions of H
from fwd-sSimRa and back-sSimRA agrees (iii) Plot showing the CDFs of fwd-sSimRa
and back-sSimRA reconfirming the agreement between them.
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(a) Without epistasis

(b) With epistasis

Figure A.34.: Comparing the height of the ARG (H) between the fwd-sSimRa and
back-sSimRA for selection at two-loci with and without epistasis, respectively. We
set g = 25K, r = 1.0 × 10−8 N = 100, s = {0.3, 0.3}, es = {0, 0.1} and m =
{10, 20, 30, 40}. (i) The box-and-whisker plot summarizes the result for each m. On
each box, the central mark is the mean, the edges of the box are the 25th and
75th percentiles, the whiskers extend to the most extreme data points not considered
outliers, and outliers are plotted individually. (ii) Q-Q plots for each m showing that
the distributions of H from fwd-sSimRa and back-sSimRA agrees (iii) Plot showing
the CDFs of fwd-sSimRa and back-sSimRA reconfirming the agreement between them.
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(a) Neutral model (no selection)

(b) Selection at a single locus

(c) Selection at two loci (no epistasis)

(d) Selection at two loci (with epistasis)

(e) Selection at three loci (no epistasis)

(f) Selection at three loci (with epistasis)

Figure A.35.: P-P plots of distributions of the height of the ARG (H) between fwd-
sSimRa and back-sSimRA for the neutral model with epistasis and no epistasis at two
loci respectively, by setting g = 25K, r = 1.0× 10−8 N = 100, s = 0.3, es = {0, 0.1}
and m = {10, 20, 30, 40}.
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