Purdue University Graduate School
Browse

DEEP LEARNING BASED MODELS FOR NOVELTY ADAPTATION IN AUTONOMOUS MULTI-AGENT SYSTEMS

Download (10.39 MB)
thesis
posted on 2022-07-20, 15:46 authored by Marina Wagdy Wadea HaliemMarina Wagdy Wadea Haliem

Autonomous systems are often deployed in dynamic environments and are challenged with unexpected changes (novelties) in the environments where they receive novel data that was not seen during training. Given the uncertainty, they should be able to operate without (or with limited) human intervention and they are expected to (1) Adapt to such changes while still being effective and efficient in performing their multiple tasks. The system should be able to provide continuous availability of its critical functionalities. (2) Make informed decisions independently from any central authority. (3) Be Cognitive: learns the new context, its possible actions, and be rich in knowledge discovery through mining and pattern recognition. (4) Be Reflexive: reacts to novel unknown data as well as to security threats without terminating on-going critical missions. These characteristics combine to create the workflow of autonomous decision-making process in multi-agent environments (i.e.,) any action taken by the system must go through these characteristic models to autonomously make an ideal decision based on the situation. 


In this dissertation, we propose novel learning-based models to enhance the decision-making process in autonomous multi-agent systems where agents are able to detect novelties (i.e., unexpected changes in the environment), and adapt to it in a timely manner. For this purpose, we explore two complex and highly dynamic domains 

(1) Transportation Networks (e.g., Ridesharing application): where we develop AdaPool: a novel distributed diurnal-adaptive decision-making framework for multi-agent autonomous vehicles using model-free deep reinforcement learning and change point detection. (2) Multi-agent games (e.g., Monopoly): for which we propose a hybrid approach that combines deep reinforcement learning (for frequent but complex decisions) with a fixed-policy approach (for infrequent but straightforward decisions) to facilitate decision-making and it is also adaptive to novelties. (3) Further, we present a domain agnostic approach for decision making without prior knowledge in dynamic environments using Bootstrapped DQN. Finally, to enhance security of autonomous multi-agent systems, (4) we develop a machine learning based resilience testing of address randomization moving target defense. Additionally, to further  improve the decision-making process, we present (5) a novel framework for multi-agent deep covering option discovery that is designed to accelerate exploration (which is the first step of decision-making for autonomous agents), by identifying potential collaborative agents and encouraging visiting the under-represented states in their joint observation space. 

Funding

W911NF2020003

History

Degree Type

  • Doctor of Philosophy

Department

  • Consumer Science

Campus location

  • West Lafayette

Advisor/Supervisor/Committee Chair

BHARAT BHARGAVA

Additional Committee Member 2

Christopher W. Clifton

Additional Committee Member 3

Vaneet Aggarwal

Additional Committee Member 4

Ming Yin

Additional Committee Member 5

Buster Dunsmore