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ABSTRACT 

 
Corruption is a social evil that resonates far and deep in societies, eroding trust in governance, 

weakening the rule of law, impairing economic development, and exacerbating poverty, social 

tension, and inequality. It is a multidimensional and complex societal malady that occurs in various 

forms and contexts. As such, any effort to combat corruption must be accompanied by a thorough 

examination of the attributes that might play a key role in exacerbating or mitigating corrupt 

environments. This dissertation identifies a number of attributes that influence corruption, using 

machine learning techniques, neural network analysis, and time series causal relationship analysis 

and aggregated data from 113 countries from 2007 to 2017. The results suggest that improvements 

in technological readiness, human development index, and e-governance index have the most 

profound impacts on corruption reduction. This dissertation discusses corruption at each phase of 

infrastructure systems development and engineering ethics that serve as a foundation for 

corruption mitigation. The dissertation then applies novel analytical efficiency measurement 

methods to measure infrastructure inefficiencies, and to rank infrastructure administrative 

jurisdictions at the state level. An efficiency frontier is developed using optimization and the 

highest performing jurisdictions are identified. The dissertation’s framework could serve as a 

starting point for governmental and non-governmental oversight agencies to study forms and 

contexts of corruption and inefficiencies, and to propose influential methods for reducing the 

instances. Moreover, the framework can help oversight agencies to promote the overall 

accountability of infrastructure agencies by establishing a clearer connection between 

infrastructure investment and performance, and by carrying out comparative assessments of 

infrastructure performance across the jurisdictions under their oversight or supervision. 
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CHAPTER 1. INTRODUCTION 

 Background 

1.1.1 Corruption 

A review of literature published over the past fifty-five years shows the vast range of ways 

in which corruption has been defined. The etymology of the word is rooted in Latin: Com, means 

“with, together,” and rumpere means “to break.” Therefore, a corrupt act by an individual means 

a break with the trust that others place in that person. In the context of willful human behavior, 

corruption can be termed as any self-serving behavior at the expense of societal good. In the 

literature, researchers have offered several corruption definitions, but there exist common 

taxonomical threads across the definitions: willful, fraudulent, or illicit acts; selfish intent; personal 

gain; reduced public funds due to misdirection to inappropriate destinations; overlooking anti-

social behavior of others; and loss of public trust.    

More than 5% of the world GDP is lost due to corruption practices every year (Irisova, 

2014), and a vast majority of countries grapple regularly with corruption. Many of these countries 

are in due need of development loans, however, when they receive such funds, the money is not 

only deviated from development purposes in a few cases, but actually used in crimes related to 

drugs and human trafficking (Integrity Vice Presidency, 2016). This can be considered a serious 

issue realizing that 1.2 billion people live on $1.25 or less per day, and the extra money lost to 

corruption amounts to billions of dollars per year.  

On the other hand, ways to devise fraud, collusion, or corruption are found to be similar, 

no matter where in the world it happens. Therefore, formulating common ways of involvement in 

those malfeasances on a global basis to classify the allegations of such misconducts is significantly 

crucial in fighting against corruption (Integrity Vice Presidency, 2009), which is discussed and 

analyzed in this dissertation by performing an extensive machine learning, time series analysis, 

causal relationship analysis, and ethics and policy assessment at a global-level scale and at a 

project-level scale. 
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1.1.2 Inefficiency 

Inefficiency can be generally defined as a state where the maximum productivity is not 

achieved; for example, where goals are reached at unduly high cost. In the construction industry, 

where time and cost are two critical project outcomes, inefficiency can be interpreted in two ways 

(Paraskevopoulou & Boutsis, 2020) (Le-Hoai et al., 2008). First, inefficiency can result from 

several different issues that arise from the society (e.g. culture and tradition), or from the lack of 

an expert workforce (Al-Hazim et al., 2017; Barbosa et al., 2017). Inefficiency can also be a sign 

of lack of effective management of assets at any phases of project development. Projects are often 

not run in their most possible efficient way (Changali et al., 2015b). In some cases, inefficiencies 

may be traced back to corruption, lack of knowledge and technology, project complexity and 

uncertainty, lack of organizational team structure, weak strategic plan, etc. (Kenny, 2012). 

Figure 1.1. illustrates the scale of cost overruns (actual compared with estimated costs) for 

some major projects − an indication of immense inefficiencies in those projects. Given the fact 

that the infrastructure investment will be doubled in the next 15 years (Changali et al., 2015a), 

monetary consequences of inefficiencies are expected to increase, accordingly. For example, for 

every $1 billion spent on a capital project, $135 million is at risk (PMI, 2013). 65% of all projects 

over $1 billion and 35% of all projects under $500 million are significantly over budget or late 

(Klaver, 2012). Moreover, $122 million is wasted for every $1 billion invested due to poor project 

performance. 40% of projects in the oil and gas industry are subject to budget and schedule 

overruns (McKenna et al., 2006). For twenty-seven recent infrastructure projects in Italy, 179% 

overbudget on average was reported (Locatelli et al., 2017).  

The assessment of spending and outcomes for infrastructure projects can be performed in 

various ways, from a broad perspective of implementing network-level data assessment to a 

narrower perspective of implementing project-level data assessment, which is discussed and 

analyzed in the second part of this dissertation by performing data envelopment and frontier 

analysis at a state-level scale.  
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Figure 1.1. Topmost Inefficient International Infrastructure Projects (McCarthy, 2018)  

 Problem Statements and Research Objectives 

1.2.1 Corruption  

Corruption remains a global scourge that causes massive losses to governments that already 

struggle to deliver essential services to their citizens. The effects of corruption are certainly not 

felt equitably, as the low-income groups are most affected. Evidence from the literature suggest 

that in developing countries, such as Paraguay and Sierra Leona, higher income groups pay a lower 

proportion of their income to bribes compared to lower income groups (World Bank, 2018).  

The World Bank maintains that corruption mitigation is an urgent task if the organization 

is to achieve its goals of “ending extreme poverty by 2030” and “boosting shared prosperity for 

the poorest 40 percent of people in developing countries” (World Bank, 2018). For the United 
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Nations, lowering corruption is at the core of the organization’s Sustainable Development Goals, 

and is key to attaining the impressive objectives set for Financing for Development (UN, 2020; 

UNDP, 2017). In addition, corruption wears down faith in governments, weakens social 

agreements, and increases disparities and disgruntlement that leads to vulnerability of societies to 

strife (Menkhaus, 2010).  

Corruption is a convoluted topic, and it happens at both micro and macro scales. Hence, 

analyzing corruption requires a comprehensive consideration of the attributes that play key roles 

in either mitigating or exacerbating corruption. This dissertation investigates the following 

objectives as described below.  
    

   

Objective 1: Corruption is a multi-dimensional concept and it may not be feasible to 

eliminate all causes of corruption, and as noted above, several attributes can contribute to 

corruption levels in countries. Government officials, politicians, and NGOs, as well as oversight 

agencies, might be better equipped to curb corrupt activities if they possess knowledge of the main 

aggregate causes or inhibitors of corruption in a country. The first objective of the corruption part 

of this dissertation is to determine the attributes that have a significant influence on the corruption 

levels in countries. For this purpose, this dissertation investigates the aggregate causes using data 

from 113 countries based on thirteen aggregate attributes and four approaches: principal 

component analysis (PCA), hierarchical structure cluster analysis, regression tree analysis, and 

random forest (RF) machine learning (ML) technique.  

Objective 2: It is essential for policymakers to have knowledge of corruption trends, so that 

they can identify types and timings of corruption mitigation strategies. Therefore, the second 

objective of the corruption part of the dissertation is to implement an artificial neural network 

(ANN) to forecast corruption levels in countries. Specifically, the research seeks to apply nonlinear 

autoregressive recurrent neural network methods with exogenous inputs (NARX) technique to 

forecast corruption levels considering Corruption Perceptions Index (CPI) as a function of 

influential attributes in each cluster.  

Objective 3: The third objective of the corruption part of the dissertation is to identify the 

association between transparency and corruption levels in countries by investigating the causal 

relationship between e-governance index and corruption perceptions index using a panel vector 

autoregression (PVAR) time series analysis (including Orthogonalized Impulse-Response 

Functions (IRF), Granger-causal, and variance decomposition analysis).  
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Objective 4: The fourth objective of the first part of this dissertation is to use conceptual 

analysis to determine corruption propensity at each phase of infrastructure development. The goal 

is to discuss possible sources of corruption at each phase, and therefore, to identify opportunities 

for mitigations that are rooted in engineering ethics. 

Figure 1.2. shows the connection between the first three objectives of the treatment of 

corruption in this dissertation. 

   

 

Figure 1.2. Connection between three objectives of the corruption part of the dissertation 

1.2.2 Inefficiency 

In the U.S., transportation and infrastructure spending accounted for over $85 billion in 

mandatory and discretionary funds allocated to transportation and infrastructure in 2015 (GPO, 

2015). Of this amount, over $48 billion was allocated to the U.S. Department of Transportation 

(USDOT) and related agencies to invest in all aspects of the nation’s infrastructure, with the 

following breakdown: $27.5 billion for highway infrastructure investment, $8.4 billion for mass 

transit, $8 billion for high-speed intercity rail, $1.5 billion for surface transportation infrastructure, 

$1.3 billion for Amtrak, $1.3 billion for the Federal Aviation Administration, and $100 million for 

maritime administration. The sheer volume of taxpayer-funded expenditures on transportation 
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infrastructure makes it imperative to establish a reliable and continuous way of monitoring the 

outcomes of such expenditures, not only at the project or program level but also at the jurisdiction 

(agency) level.  

In any country, there exist oversight bodies responsible for monitoring the levels of these 

expenditures and their overall performance outcomes in terms of mobility, safety, infrastructure 

condition or longevity, or the specific purpose of the investment. This tracking has been performed 

not only on an individual project or program basis but also for all combined project expenditures 

in a jurisdiction. Depending on the oversight organization, the agency in question may be at the 

level of a city, state, province, region, or even the entire country: oversight organizations for city 

and county agencies include state and provincial governments; oversight organizations for state 

and provincial agencies include federal/national bodies such as the Federal Highway 

Administration (FHWA), the USDOT, and the Government Accountability Office (GAO); and 

oversight organizations for countries, at least for a limited time period, may include international 

bodies such as multilateral donor institutions including the World Bank, the International 

Monetary Fund (IMF), the African Development Bank, the Organization for Economic 

Cooperation and Development (OECD), the Inter-American Development Bank (IADB), and the 

Asian Development Bank.  

Objective 1: As evidenced by past practice in the area of performance management, there 

is a need for a general methodology that characterizes the relationship between infrastructure 

expenditures in a specific area of infrastructure management (for example, preservation, safety, or 

mobility) and the resulting performance in terms of enhanced infrastructure condition or longevity, 

crash reductions, reduced travel delay and improved travel time reliability, and so on.  

 Moreover, it is useful to ensure that such a methodology is robust in the sense that it duly 

accounts for both the relevant factors in the expenditure-performance relationship as well as 

extenuating conditions that could more completely explain the link between expenditure and 

performance at a given agency. Part 2 of this dissertation, presents and demonstrates a 

methodology to address part of this research need, namely, infrastructure condition impacts of 

preservation expenditures. Hence, the first objective of the second part of this dissertation is to 

characterize the expenditure-performance relationship, develop a methodology to account for this, 

and use data from highway interstate bridges in the USA to demonstrate the methodology.  



 
 

27 

A key benefit of such a methodology is the ability for individual agencies to assess their 

own performance in a way that is duly normalized by their inventory size and corresponding level 

of investment and other extenuating factors. With this knowledge, agencies can be better 

positioned to track their progress toward national goals and targeted outcomes in comparison to 

their peer agencies and thereby enhance the accountability of their spending. In addition, oversight 

organizations at any level of government can use such a methodology to compare the relative 

performance of agencies that fall under their administrative purview.  

Objective 2: The second objective of the second part of this dissertation is to compare the 

investment efficiency at agencies using a linear programming based nonparametric efficiency 

approach. The methodology involves the development of an efficiency frontier using optimization, 

identification of frontier-located jurisdictions (FLJs), removal of the FLJs and re-development of 

the next frontier, and continuation of this cycle until all jurisdictions have been removed. To 

demonstrate the methodology, this dissertation uses state highway agencies as the jurisdiction level 

and interstate highway bridges as the asset of interest. To mitigate bias, the dissertation adjusts 

duly to account for the different inventory sizes, levels of traffic loading, and climate severity 

across the states, and presents an overall ranking of the US states with regard to the efficiency of 

their bridge investments.  

Overall, the second objective of the inefficiency studies in this dissertation is to provide a 

method that oversight agencies can use to monitor the overall accountability of individual 

jurisdictions with respect to their expenditures and performance outcomes and to rank the 

jurisdictions based on efficiency. Moreover, the individual jurisdictions can apply the 

methodology to learn from each other and estimate the expected benefits they could earn if they 

move up to the efficiency frontier. 

 Organization of the Dissertation 

This dissertation follows the “multiple publications” format, and therefore, it is divided 

into two major parts and seven chapters (excluding the introduction and concluding remarks 

chapters). The first 4 chapters address corruption, the three remaining chapters address inefficiency, 

and the last chapter presents concluding remarks, study limitations, and suggestions for future 

work. Each chapter has its sections for introduction, review of literature, methodology, data 
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analysis and discussion, and conclusion. Considerable portions of the chapters have been published 

or submitted for review and publication in peer-reviewed journals and/or conferences.  

The dissertation proceeds as follows. Chapter 2, the first chapter of the research studies 

related to corruption, investigates thirteen attributes that influence corruption levels among 113 

countries. This chapter identifies the attributes that are most influential to corruption, using 

principal component analysis (PCA) as a dimension reduction technique, and K-means and 

hierarchical structure cluster analysis to identify groups of countries that share similar levels of 

development-related attributes. Also, using a machine learning technique (random forest 

algorithm), and decision tree analysis, this chapter estimates corruption perceptions index (CPI) 

for each cluster based on the development-related attributes.  

Chapter 3 forecasts corruption levels of countries using an artificial neural network time 

series analysis. The analysis includes data from 2007 to 2017 for 113 countries, at two different 

levels: the world level (where all countries are considered as one group), and cluster level (where 

countries are studied in four clusters based on their development-related similarities). Using an 

artificial neural network technique - the nonlinear autoregressive recurrent neural network with 

exogenous inputs (NARX) – this chapter forecasts corruption levels in each cluster based on the 

attributes that directly affect those levels.  

Chapter 4 investigates the association between the efficiency of electronic governance and 

the level of corruption in countries. The chapter uses data from 133 countries from 2007 to 2017, 

and performs panel vector autoregression (PVAR) analysis to identify the causal relationship and 

shock effects between the relevant variables at the world level (where all countries are considered 

as one group), and income level (where the countries are clustered based on their gross national 

income per capita). 

Chapter 5 provides conceptual discussions of corruption and offers guidance to assist in 

mitigation efforts. The chapter discusses corruption at each phase of infrastructure development, 

and reviews engineering ethics that serve as a background to support efforts to fight corruption. 

By setting the discussion of corruption in this context, the chapter connects the propensity for 

corruption in each phase of infrastructure development to strategic, tactical, and operational 

mitigation actions supported by examples in practice. 

Chapter 6, the first chapter of the research studies related to inefficiency, discusses the 

analytical efficiency methods, including data envelopment analysis, that have been applied in 
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various fields, such as human resource management, transit, public administration, human resource 

management, management control system, and health care system. Also, this chapter identifies the 

limitations associated with the studied methods.  

Chapter 7 presents a methodology for examining the expenditure-performance nexus 

among infrastructure preservation spending and physical condition of the infrastructure in a bid to 

promote the overall accountability of infrastructure agencies in each of multiple jurisdictions. The 

chapter examines whether the integrity of the expenditure-performance relationship is jeopardized 

by situational and measurement biases associated performance-related attributes. The 

methodology is demonstrated using aggregate repair expenditures and performance data for 

interstate highway bridges in the USA. 

Chapter 8 presents a nonparametric efficiency for ranking infrastructure agencies using a 

linear programming-based approach. The chapter duly adjusts for inventory size and measurement 

bias, and the effect of different average age, climate severity, and traffic across the jurisdictions. 

The methodology develops an efficiency frontier using optimization, identifies frontier-located 

jurisdictions (FLJs), removing the FLJs and re-develops the next frontier, and so on until all 

jurisdictions have been removed. The chapter presents an overall efficiency ranking of the US 

states, with regard to the efficiency of their bridge investment.  

Chapter 9 presents the overview of the dissertation and a summary for each part. This 

section of the dissertation further proposes the overall strategic practical implications of the 

research presented in this dissertation. This followed by the contribution of the dissertation, the 

study limitations, and suggested future work. 
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CHAPTER 2. CORRUPTION - CLUSTER ANALYSIS OF GLOBAL 

TRENDS USING PRINCIPAL COMPONENT ANALYSIS AND 

MACHINE LEARNING METHODS  

 Introduction 

Over the decades, corruption has been defined in several ways: “… behavior that deviates 

from the formal duties of a public role (elective or appointive) because of private-regarding 

(personal, close family, private clique) wealth or status gains” (Nye, 1967),  “… behavior that 

deviates from the formal rules of conduct governing the actions of someone in a position of public 

authority because of private-regarding motives such as wealth, power, or status” (Khan, 1996), “... 

the misuse of public office for private gain” (Treisman, 2000), and “the abuse of public power for 

private benefit (or profit)” (Transparency International, 2017; WBG, 2020). Irrespective of the 

way it is defined, corruption continues to be a pervasive multidimensional and complex societal 

malady that occurs in various forms and contexts. For this reason, it is essential that efforts to 

combat corruption are preceded, or at least accompanied, by a thorough examination of the 

attributes that might play role in either exacerbating or inhibiting corrupt environments. It can be 

hypothesized that these attributes, and the magnitude and severity of their impacts on corruption, 

exhibit significant variation across countries and continents. Specifically, it can be hypothesized 

that if countries can be clustered into families each having similar development-related attributes, 

some insights may be acquired to help build the basic blocks not only for investigating the causes 

and forms of corruption within each cluster, but also to identify appropriate corruption mitigation 

methods based on lessons learned in specific countries. 

In order to address this research objective, there is a need to investigate country-specific 

development-related attributes that hypothetically influence corruption levels in various countries, 

and to identify the attributes that significantly influence the levels of corruption. Such analysis 

includes identification of the groups of countries based on the attribute levels and development of 

the clusters. Identifying clusters that require attention from a corruption control viewpoint and 

estimating the corruption perceptions index (CPI) within each cluster are also needed. Against this 

background, the objectives of this chapter of the dissertation are to identify groups of countries 

based on the levels of development attribute levels and estimate the CPI for countries in each 

cluster using different techniques and identify the most reliable technique. The first objective is 
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intended to help identify attributes that are most relevant to assessing corruption levels in each 

cluster, and to identify clusters that require attention from a corruption control viewpoint. In the 

clustering process, some attributes may be correlated with each other, and therefore, this chapter 

seeks to use an appropriate statistical technique reduce the dimensionality and thereby address 

such possible correlations.  

In the next section of the chapter, the literature related to corruption attributes and 

measurement are reviewed, and the analytical tools implemented in this assessment are discussed. 

The next section discusses data collection and the research methodology. Then the analysis results 

are discussed, suggestions are made for corruption mitigation based on the results. The chapter’s 

final section presents the study conclusions and recommended directions for future work in this 

research area. 

 Literature Review   

2.2.1 Development-Related Attributes and Corruption 

In recognition of the multi-dimensional nature of corruption, this chapter’s review of 

existing literature adopted a cross-disciplinary search approach to identify the relevant literature 

on the relationships between development-related attributes and corruption. The search was 

conducted through the Scopus, Science Direct, Web of Science, and Engineering Village databases, 

and was limited to the years 1970–2021. As a secondary process, the study scope is categorized 

into separate areas to refine the search. Literature on six corruption-related topical areas were 

investigated: (a) impact of corrupt behaviors on the governance of commons; (b) corruption at 

various hierarchies – individual, organizational, project, and society; (c) institutional elements – 

regulations, normative elements, and cognitive elements; (d) geographic location – East Asia and 

Pacific, Europe and Central Asia, Latin America and the Caribbean, Middle East and North Africa, 

North America, South Asia, and sub-Saharan Africa; (e) research methods; and (f) types of 

corruption – bid-rigging, bribery, collusion, embezzlement, facilitation of payments, fronting, 

gerrymandering, rent-seeking, and theft. The literature review helped identify the development-

related attributes that might be influencing (or at least, associated with) the level of corruption in 

countries. Appendix A presents a list of the research papers associated with each category. 
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Past research has shown that there exist several development-related attributes that 

influence the level of corruption in a country. Shleifer (1997) found that in post-communist 

countries, the emergence of open-market economies has been overshadowed by corruption. 

Treisman (2007) and Saha and Sen (Saha & Sen, 2021) also found that lower levels of corruption 

are found in developed nations that tend to trade openly with other nations, and have long-

established democracies, a free press, and high female participation rates in their development. 

Treisman (2000), Shabanova and Ismagilova (2014), and Stoliova and Patonov (2020) determined 

that the levels of social and economic development, and government investment are strongly 

correlated with the level of corruption in a country. Adomako et al. (2021) found that corruption 

is positively related to institutional networking and that this relationship is amplified when levels 

of financial slack are greater. Auti and Skitmore (2008), and Akbar and Vujić (2014) argued that 

the level of education and culture can influence the level of corruption in a country. This position 

is supported by Rose-Ackerman (1996b) who used this premise as a basis to suggest corruption 

mitigation through cultural transformation, rewarding honesty, and improving monitoring and 

detection of corruption. In addition, recent studies have investigated the labor market as a 

development related factor in corruption: Hao et al. (2020) found that labor market efficiency is 

strongly and inversely related to corruption. This motivated the selection of variables related to 

transport infrastructure quality, labor market efficiency, and security for investigation in the 

present study, regarding their possible impacts on corruption. 

The effectiveness of government function and political participation have been determined 

to profoundly influence corruption in a country. Rose-Ackerman (1996b) and Abreu and Gomes 

(2021) carried out quantitative regression on multivariate panel data and determined that the 

maturity of democratic institutions is strongly associated with corruption levels. This finding 

corroborated Johnston (1998)’s assertion that low engagement of the civil society in governance 

weakens the capacity for law enforcement, and suggests that indices related to human development, 

information that are currently available for all countries, could help throw light on current efforts 

to identify the potential factors of corruption in a country. Also, of relevance is the practice of 

electronic governance (e-governance), which is growing rapidly, catalyzed by advancements in 

information and computer technology, and more recently, the COVID-19 pandemic. Ghahari et al. 

(2021b) performed an artificial neural network analysis − a non-linear autoregressive network with 

exogenous inputs method − and carried out panel vector autoregression analysis using data 
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spanning the 2007–2017 period, from 113 countries, and determined that there is a strong 

association between this emerging practice and corruption. Other researchers that have studied the 

relationship between e-governance and corruption include Andersen (2009), Garcia-Murillo & 

Ortega  (2010), Mauro (1995), and Mistry (2012). Their findings suggest that the e-governance 

index and technological readiness, data items that are currently available in global datasets, could 

serve as potential explanatory variables in a corruption factor attribution model.  

The infrastructure construction industry has the dubious honor of being the most corrupt 

business sector (Kottasova, 2014; Mertzanis et al., 2020; Mokeresete & Esiefarienrhe, 2020; 

Taghizadeh-Hesary et al., 2021). Corruption in this sector causes not only significant reduction in 

quality but also reduced safety, and in many cases, the combined value of quality and safety 

reduction exceeds the infrastructure construction contract cost (Kenny, 2007a; Lyman et al., 1978; 

OECD, 2016). For these reasons, government’s regulatory and oversight roles in the infrastructure 

industry can be a significant contributor to corruption inhibition. Lee & Larnemark (2007) 

indicated South Korea’s road authorities instituted initiatives that explicitly sought to reduce 

corruption in the road construction sector. Unfortunately, it seems that not all countries possess 

the political will to establish these corruption mitigation policies and regulations. From a general 

perspective of all sectors, the Global Infrastructure Anti-Corruption Centre (GIACC) (2011) 

identified some general conditions and practices that foster or inhibit corruption, and offers 

insights into the choice of quantitative variables that could represent these factors. Government 

corruption could be represented by data on public sector performance, and corporate corruption 

could be measured using business sophistication. The level of corruption pressure could be 

measured using data on security/undue influence. The inadequacy of corporate controls could be 

measured through the e-governance index and technological readiness. Inadequacy of employee 

salaries could possibly (but not perfectly) be measured using the income per capita and the gross 

national income, goods market efficiency, market size, and the financial market development. The 

human development index could help assess the awareness of citizens regarding corruption 

(Ghahari et al., 2018c). 

2.2.2 Statistical and Machine Learning Methods 

As stated earlier in this document, corruption is a multi-faceted phenomenon, and many 

variables affect corruption, and more importantly, correlations exist between these variables. In 
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dealing with numerous variables such as those identified in this study, dimension reduction 

techniques are used to account for potential collinearity among the variables. Principal component 

analysis (PCA) is one such dimension reduction tool. In this study, clustering is used with PCA to 

group similar observations. This is particularly needed in problem contexts (such as this study) 

where there is merit not only in developing clusters based on some attribute such as continent 

location, for example, but more importantly, for identifying palliatives that are based partially on 

the nature of the developed clusters. 

In the agriculture sector, Safeer et al. (2020) recently used PCA to estimate diversity among 

fifty species of a crop. Based on the developed clusters, they detected significant variations for 

certain traits, characterized the diversity, and identified the most impactful variables that determine 

the crop characters. In the energy sector, Kantar & Keskin (2013) studied patterns of electricity 

consumption and GDP in Asian countries, identified clusters of countries according to their 

geographical location and economic growth, and developed a roadmap for policymakers for 

efficient energy and environmental strategies. In the tourism industry, Brida et al. (2020) 

investigated the interaction between tourism and economic growth using data from 80 countries 

over the period 1995–2016, and applied clustering techniques to identify appropriate tourism 

policies for governments of countries in each cluster.   

It is also vital for the analyst to identify the most influential characteristics of a given 

outcome variable. Where there exists a large sample size and complex relationships between the 

attributes under investigation, the application of a wide range of techniques, not only linear or non-

linear regression, could help throw more light on the issue. In this chapter of the dissertation, 

analyzing corruption in over one hundred countries over ten years using data on thirteen attributes 

or more, is performed by means of machine learning (ML) techniques. In a recent study, Hu et al. 

(2020) developed artificial intelligence methodologies for performance prediction of organic 

solvent nanofiltration membranes. They applied the random forest (RF) ML technique using 

38,430 data points with 18 dimensions. With a 98% model prediction accuracy, they also identified 

five of the most important explanatory variables (Hu et al., 2020). In another study, Yoon (2020) 

used RFA to forecast the real GDP growth of Japan using data spanning 2001 to 2018. They found 

that the forecasts produced by the RF machine learning technique were more reliable compared to 

those in the literature. In general, the reliability of predictions using the RF technique has been 

corroborated by several researchers (Boateng et al., 2020; Liang et al., 2020; Wang et al., 2020). 
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 Data 

 Data on the attributes that are pertinent to this dissertation’s chapter research objectives 

were obtained from five databases from the following organizations: the World Bank Group (WBG) 

(WBG, 2017), the United Nations Department of Economic and Social Affairs (UNDESA) 

(UNDESA, 2017), the United Nations Development Programme (UNDP) (UNDP, 2017), the 

World Economic Forum (WEF) (WEF, 2018), and Transparency International (TI) (Transparency 

International, 2017). Table 2.1. summarizes the data used in the preliminary analysis including the 

source, the name of the database and a code used to reference the data.  

Table 2.1. Corruption-related attributes from all databases considered, Year 2017 

Organization Database  Code 
    
TI Corruption Perceptions Index  C0 
    
WBG GNI per Capita  C1 
    
UNDESA E-Governance Index  C2 
    
UNDP Human Development Index  C3 
    
WEF Global Competitiveness Index Undue Influence C4 
  Public-Sector Performance C5 
  Security C6 
  Transport Infrastructure C7 
  Goods Market Efficiency C8 
  Labor Market Efficiency C9 
  Financial Market Development C10 
  Technological Readiness C11 
  Market Size C12 
  Business Sophistication C13 

 

Corruption Perceptions Index (CPI), developed by Transparency International (a pioneer 

in global corruption evaluation), measures the prevailing levels of public-sector corruption in each 

country as perceived by experts and businesspersons on a scale of 0–100, where 0 is highly corrupt 

and 100 is very “clean” (European Commission, 2019). It is based on thousands of surveys 

administered annually to gage the perceived degree of corruption in governments (GFI, 2020). In 

2017, two-thirds of the countries around the globe had a CPI rating below 50. It is noteworthy that 

CPI currently does not include “legalized” corruption, such as excessively high salaries and 
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benefits that lawmakers legislate for themselves, corporate lobbying of legislators, and so on. 

Although, the subjectivity of the survey responses has been brought into question, CPI is still 

considered a good approximation of the extent and severity of corruption that prevails in a country, 

and the CPI remains the favored metric of corruption (Lambsdorff, 1999). 

Data on the gross national income (GNI) per capita were obtained from the World Bank’s 

National Accounts Data (World Bank, 2017a). Data on e-governance index (on a 1 to 0 scale), 

which were obtained from the United Nations Department of Economic and Social Affairs 

(UNDESA, 2017), represent the degree of digital interaction between a governments and its 

citizens, and the consistency of governmental supervision at all scales and government levels 

(Nathan Associates, 2016). Data on the Human Development Index (HDI) were obtained from the 

United Nations Development Programme (UNDP). This index recognizes that not only economic 

growth should be used to assess a country’s development, and therefore measures the capabilities 

of people in a country (UNDP, 2017).  

The Global Competitiveness Index (GCI), published by the World Economic Forum 

(WEF), measures the competitiveness landscape of economies and provides unique insights into 

the drivers of the productivity and prosperity of people in a country. For each country, WEF splits 

the productivity characteristics into twelve pillars – “The Twelve Pillars of Competitiveness.” The 

computation of the GCI is based on the successive aggregation of indicators within each pillar and 

then scores from each pillar (WEF, 2018). In this chapter of the dissertation, the following indexes 

from specific pillars are selected: the 1st pillar (Institutions), the 2nd pillar (Infrastructure), the 6th 

pillar (Goods Market Efficiency), the 7th pillar (Labor Market Efficiency), the 8th pillar (Financial 

Market Development), the 9th pillar (Technological Readiness), the 10th pillar (Market Size), and 

the 11th pillar (Business Sophistication). Table 2.2. presents the detailed breakdown of the GCI 

data used in this chapter study by pillar and then subsection.  
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Table 2.2. Selected Global Competitiveness Indices from WEF (2018) 

Database Pillar Sub Sections 
Undue Influence 1st Pillar: 

Institutions 
� Judicial independence 
� Favoritism in decisions of government officials 

Public-Sector 
Performance 

1st Pillar: 
Institutions 

� Wastefulness of government spending 
� Burden if government regulation 
� Efficiency of legal framework in setting disputes 
� Efficiency of legal framework in challenging 

regulations 
� Transparency of government policymaking 

Security 1st Pillar: 
Institutions 

� Business costs of terrorism 
� Business costs of crime and violence 
� Organized crime 
� Reliability of police services 

Transport 
Infrastructure 

2nd Pillar: 
Infrastructure 

� Quality of overall infrastructure 
� Quality of roads 
� Quality of railroad infrastructure 
� Quality of port infrastructure  
� Quality of air transport infrastructure  
� Available airline seat kilometers 

Goods Market 
Efficiency (GME) 

6th Pillar: 
GME 

� Competition 
� Quality of demand conditions 

Labor Market 
Efficiency 
(LME) 

7th Pillar: 
LME 

� Flexibility 
� Efficient use of talent 

Financial Market 
Development 
(FMD) 

8th Pillar: 
FMD 

� Efficiency 
� Trustworthiness and confidence 

Technological 
Readiness (TI) 

9th Pillar: 
TI 

� Technological adoption 
� ICT use 

Market Size  
(MS) 

10th Pillar: 
MS 

� Domestic market size 
� Foreign market size 

Business Sophistication 
(BS) 

11th Pillar: 
BS 

� Local supplier quantity 
� Local supplier quality 
� State of cluster development 
� Nature of competitive advantage 
� Value chain breadth 
� Control of international distribution 
� Production process sophistication 
� Extent of marketing 
� Willingness to delegate authority 
� Reliance on professional management 
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 Methodology   

Several techniques were used to determine the attributes that have a significant influence 

on corruption in a country: principal component analysis (PCA), hierarchical structure cluster 

analysis, and regression tree analysis and random forest (RF) machine learning (ML) technique. 

The principal component analysis (PCA), a well-known dimension reduction technique, was 

carried out to address possible collinearity among the 13 corruption-related attributes (C1-C13). 

Accordingly, the countries that share similar development-related characteristics are clustered, so 

that within each cluster, the attributes that influence corruption can be identified. Finally, 

regression tree analysis are performed and random forest technique is implemented to pinpoint the 

most important and influential attributes for each cluster using Gini charts. 

 The overall methodology and approaches used in this chapter of the dissertation is 

summarized in Figure 2.1., which consists of data collection, correlation analysis, principal 

component analysis, cluster analysis, confirmation of the cluster analysis with cophenetic 

correlation coefficients and K-means cluster machine learning technique, regression tree analysis 

and the random forest (RF) machine learning, evaluation of the RF results, Gini charts, and 

marginal effects analysis. All these steps are discussed in the following subsections. 

 

Figure 2.1. The methodology and approaches used in the study of corruption 
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2.4.1 Machine Learning Techniques 

Machine learning (ML) is a technique for data analysis that automates systematic model 

development. ML is a division of artificial intelligence on the basis of the premise that systems are 

capable of learning from the available data, recognize patterns, and perform rapid decision making 

with negligible human interference. Machine learning methods can be divided into two main 

branches: supervised learning, in which both input and output are given to the model, and 

unsupervised learning, in which only input is given to the machine with no output variable.  

For example, supervised learning methods for continuous variables include: linear or 

polynomial regression, decision tree and random forest techniques, and for categorical variables 

include: logistic regression, K-nearest neighbor algorithms, and support vector machine. Examples 

for unsupervised learning methods for continuous variables are: principal component analysis, K-

means clustering algorithm, singular value decomposition, and for categorical variables include: 

association analysis and hidden Markov model. Below, I discuss the machine learning methods 

that are used in the data analysis of this chapter of the dissertation.    

2.4.2 Principal Component Analysis (PCA) 

 The correlation between variables in datasets containing a large number of variables can 

impede efforts to discern relationships in the data. PCA offers an opportunity to address this issue 

by condensing the original variables into their principal components (in other words, linear 

combinations of the variables) with a minimum potential loss of data information (Heckler, 2005; 

Joliffe & Morgan, 1992). In this chapter, principal components were developed, using the 

following steps. The principal component variable, Pi is given by: 

Pi = αi1V1+ αi2V2+ … + αimVm      Eq. 2.1. 

where, Vi (i = 1, 2, …, m) are m original variables, Pi (i = 1, 2, …, m) are the m principal component 

variables, each of which is a linear combination the initial variables, and αij (i, j = 1, 2, …, m) are 

the associated coefficients. The eigenvector of the correlation matrix in this equation is the vector 

(αi) from αi1 to αik, known as the normed solutions of the following system of equations: 
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�∑ −���� �	� = 0       Eq. 2.2. 

 

where, Σ
 is the covariance matrix of the initial variables, I is the unit matrix, and λi is obtained 

via the following equation: 

|Σ
 − ��| = 0        Eq. 2.3. 

Eq. 2.3. is the characteristic equation of the covariance matrix of the initial variables (Σ
), and its 

solutions are the eigenvalues.  

 P1 (the first principal component) explains the maximum variance of the initial values; P2 

accounts for the second-highest variance of the initial values, and so on, with P1 to Pm showing no 

correlations. In this chapter, the Kaiser-Guttman rule is used to determine the optimum number of 

principal components. The Kaiser-Guttman rule considers the eigenvalues higher than 1 to be in 

the acceptable threshold (Joliffe & Morgan, 1992).   

2.4.3 Cluster Analysis 

 In dealing with large sets of observations with a large number of attributes or characteristics, 

it is often useful to group (cluster) observation units that are homogenous (Everitt et al., 2011). 

This can be done using hierarchical or non-hierarchical methods, and the results illustrated using 

a dendrogram (Hartigan, 1975). In the hierarchical method, the most similar observation units form 

individual clusters. Similar clusters form individual groups. This is achieved via measuring the 

degrees of resemblance often referred to as “distance.” Gauging the “distance” between the 

observation units and clustering them into separate groups can be done using one of the following 

methods: median, Ward’s method, nearest neighbor, and average linkage. The present chapter of 

this dissertation selects the average linkage method of clustering, which calculates the Euclidean 

distance using Eq. 2.4.: 

��� = �∑ ���� − ���������      Eq. 2.4. 

where, γim and γjm are the coordinates of the mth variable for the ith and the jth observation units, 

respectively.  

 After developing the matrix for all the distances between each pair of observation units, 

the clustering process begins. The first clustering event identifies the two observations with 



 
 

41 

minimum distance (this leads to the formation of the first cluster). This process continues until all 

the observations are placed in one of the formed clusters. Cophenetic correlation coefficients 

(CCCs) are then calculated to verify the clustering results and choose the optimum clustering 

method based on the largest CCC. CCC, which measures the accuracy of a dendrogram based on 

the distances between the original data points and the modeled data points in the dendrogram, is 

calculated as follows (Eq. 2.5.): 

� = ∑ ���,��������,��������
 !∑ ���,��������

"!#∑ ���,��������
"$

     Eq. 2.5. 

where, di,j is the ordinary Euclidean distance between the ith and the jth data points in the original 

dataset (| di - dj |), and τij is the distance between the ith and the jth points in the dendrogram. This 

distance is the height of the node at which these two points are initially linked.  

2.4.4 K-means Clustering Algorithm 

 The accuracy of the number of clusters (obtained in the cluster analysis section) is verified 

using K-means clustering method - one of the well-known machine learning techniques for 

clustering (Ren et al., 2020; Žiberna, 2020). Any machine learning technique needs a starting set 

to approach a solid solution. In this algorithm, the main goal is to minimize intra-cluster variances 

while maximizing the distances between the clusters. K-means clustering process is initiated by 

capturing k points from the dataset as the “central cluster,” then, the other clusters are formed by 

calculating the Euclidean distances between other data points (objects) and the central cluster. The 

center of gravity for each cluster is chosen by calculating the average distance of the points in that 

cluster (Ren et al., 2020). 

2.4.5 Decision Tree Analysis 

 A comprehensive regression tree analysis was carried out using the study dataset in order 

to develop a nonlinear predictive model. Contrary to linear or polynomial regression, decision trees 

partition the data space into small parts. For this, one of the most comprehensible non-parametric 

methods is k-nearest-neighbor (Hnizdo et al., 2008). The drawbacks to this method, however, are: 

(a) defining “similar” is entirely in terms of the inputs and not the response; and, (b) k is constant 

everywhere, whereas, some points may likely have more “very-similar” neighbors than others 
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(Hnizdo et al., 2008). Decision/prediction trees – known as adaptive nearest-neighbor methods – 

solve both problems. This tool (a) leaves space (a neighborhood) corresponding to the regions of 

the input, and (b) has sizes which can vary arbitrarily (Hastie & Tibshirani, 1996). A benefit of 

a decision tree method is that it demonstrates all potential outcomes of a decision, and traces each 

course to a conclusion. It produces a thorough analysis of the consequences along each branch, 

and pinpoints the outcomes that require additional analysis (Grana et al., 2010). Hence, decision 

tree algorithms are beneficial not only for classification purposes but also for regression analysis 

and prediction.  

 Regression trees or decision trees can provide a vivid picture of the underlying structure in 

data and associations between attributes. They are an outstanding means for data inspection and 

for recognizing the connections between variables (R Statistics, 2017). In the case of having a 

single predictor, the range of the predictor is segregated into pieces, and within each segment, the 

projected regression fit is given by the mean of the response in the segment (Kutner et al., 2005). 

This method is very powerful, yet conceptually simple, for any nonparametric regression (Loh, 

2014). 

 In this analysis, the bootstrap technique is applied to achieve even more accurate data. 

Bootstrap aggregation (or, bagging) reduces the variance of the outcomes. As Figure 2.2. shows, 

the bootstrap technique re-samples the training dataset (often, 85% of the complete dataset) 

multiple times with replacement, and it re-estimates the models. This raises the likelihood of the 

individual trees to be independent models (Díaz-Uriarte & De Andres, 2006). Therefore, higher 

precision is gained by taking the average of the models (Rebai et al., 2020). Finally, it makes the 

final model prediction as the average of the predictions across the trees, and the model testing 

occurs with the test dataset (often, 15% of the complete dataset). 
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Figure 2.2. The schematic diagram for the bootstrapping technique  

2.4.6 Random Forest Algorithm (RFA) 

 The Random Forest technique provides an improvement over the decision tree algorithm 

by de-correlating the trees. The RFA aggregates the predictions made by multiple decision trees 

of varying depth. In this machine learning (ML) technique, every decision tree is trained on a 

subset of the dataset called the bootstrapped dataset. Although RFA is less likely to make overfit 

outputs, cross-validation helps ensure that all samples will appear in the training and test sets. In 

this chapter, the k-fold cross-validation technique (Figure 2.3.) is used to yield lower-variance 

estimates for the models. This cross-validation method works by breaking the entire data into k 

equal-sized “folds.” It repeats the process through each fold (shown in the schematic figure) treats 

that fold as a test dataset, trains a model on all the other k–1 folds, and evaluates the model’s 

performance on the test dataset fold. 

training 
validation 

Training Set          |                  size (n)                |                     85%Test Set       |       15%    
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Figure 2.3. The schematic diagram for the k-fold cross-validation technique  
   

 RFA generally offers higher precision compared with other machine learning prediction 

methods (Bosso et al., 2019) and is a robust technique that builds on decision trees to predict 

models and perform analysis on the behavior of objects. RFA considers each object independently 

and chooses that with the maximum number of returns as the designated prediction. In this chapter, 

RFA is used to identify attributes that contribute most to corruption. Also, RFA is applied with 

bootstrap sampling as one of the powerful machine learning techniques in predicting the outcomes 

of our large dataset that has multiple variables. The accuracy of the random forest prediction 

models is assessed by comparing their values of adjusted-R2, root mean square error (RMSE), and 

mean absolute error (MAE). Finally, the most influential attributes of corruption is identified using 

the observed mean decrease in Gini Index or Impurity, a measure of the likelihood of an incorrect 

classification. Gini Impurity refers to the total decrease in node impurities from splitting on the 

variable, averaged over all trees (Bosso et al., 2019). The impurities are measured by the residual 

sum of squares (Liaw, 2018). Furthermore, partial dependence plots (graphical visualizations of 

the marginal effect of a variable on the outcome (Colak et al., 2020) are used) to investigate the 

relationship between corruption-related attributes and the RF outcome. 
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 Results and Discussion 

2.5.1 Principal Component Analysis (PCA) 

 As discussed in the previous section, the first step in any principal component analysis is 

to establish a correlation matrix and determine which variables are strongly correlated, as this helps 

identify the need for normal regression analysis or principal component analysis. Table 2.3. 

presents the absolute value of the correlation coefficients for the variables considered in this 

chapter. This table illustrates the coefficient of correlation (r) as a key determinant of a relationship 

between any two variables. A 0.25 threshold is used in this table to determine the intensity of 

correlations: 0.75 ( |)| * 1  denotes strong correlations (the bold values), 0.50 ( |)| * 0.75 

moderate correlation,  0.25 ( |)| * 0.50 weak correlation, and |)| * 0.25 no correlations. 

Table 2.3. Absolute value of the correlation coefficients 

Attributes C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 
C1 1 0.92 0.97 0.53 0.37 0.52 0.72 0.69 0.37 0.54 0.91 0.46 0.72 
C2  1 0.95 0.58 0.42 0.54 0.76 0.73 0.45 0.58 0.94 0.51 0.76 

C3   1 0.53 0.35 0.54 0.71 0.68 0.37 0.54 0.92 0.45 0.72 
C4    1 0.88 0.67 0.71 0.80 0.71 0.66 0.67 0.31 0.80 

C5     1 0.63 0.66 0.78 0.76 0.67 0.50 0.22 0.70 
C6      1 0.53 0.64 0.54 0.40 0.62 0.06 0.52 
C7       1 0.81 0.55 0.66 0.78 0.62 0.87 

C8        1 0.75 0.78 0.81 0.36 0.90 

C9         1 0.65 0.57 0.12 0.67 
C10          1 0.65 0.34 0.76 

C11           1 0.39 0.83 

C12            1 0.51 
C13             1 

Note: The bold values show strong correlations. C1-GNI, C2-E-governance index (EGI), C3-human development index (HDI), C4-

undue influence, C5-public-sector performance, C6-security, C7-transport infrastructure, C8-goods market efficiency, C9-labor 

market efficiency, C10-financial market development, C11-technological readiness, C12-market size, C13-business sophistication. 

  

 As the correlation matrix shows, GNI (C1) is highly correlated with the EGI (C2), HDI 

(C3), and technological readiness (C11) (|r| > 0.90). EGI (C2) is highly correlated with HDI (C3) 

and technological readiness (C11) (|r| > 0.90), and correlated with transport infrastructure (C7) 

and business sophistication (C13) (|r| > 0.75). HDI (C3) is highly correlated with technological 

readiness (C11) (|r| > 0.90), and moderately correlated with undue influence (C4). Undue influence 

(C4) is correlated with public-sector performance (C5), goods market efficiency (C8), and business 

sophistication (C13) (|r| > 0.80). Public-sector performance (C5) is correlated with goods market 

efficiency (C8) and labor market efficiency (C9) (|r| > 0.75). Transport infrastructure (C7) is 
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correlated with goods market efficiency (C8), technological readiness (C11), and business 

sophistication (C1) (|r| > 0.75). Goods market efficiency (C8) is correlated with labor market 

efficiency (C9), financial market development (C10), technological readiness (C11), and business 

sophistication (C13) (|r| > 0.75). Financial market development (C10) is correlated with business 

sophistication (C13) (|r| > 0.75), and finally, technological readiness (C11) is correlated with 

business sophistication (C13) (r > 0.8). These results suggest that a large number of attributes 

(almost 40%) exhibit significant correlation with other attributes, and this justifies the need to carry 

out PCA. PCA reduces dimensionality by forming new independent variables from the original 

variables, and this addresses the correlation problem. 

 Eigenvalues associated with each principal component (PC) are shown in the scree plot 

(Figure 2.4.). The thick horizontal blue line represents the optimum number of PCs by setting the 

limit of eigenvalues to 1, according to the Kaiser-Guttman rule. Table 2.4. presents the eigenvalue 

variances and cumulative variances (%). The eigenvalues are 8.7, 1.7, and 1.0 for the first PC to 

the third PC, respectively, meaning that the first three principal component describes 87.1% of the 

cumulative variance of the original data; the other principal components describe 12.9% of the 

cumulative variance. Consistent with the Kaiser-Guttman rule, the first three principal components 

were identified as the optimal number of PCs.  

  

 

Figure 2.4. The scree plot for the principal component analysis 
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Table 2.4. Eigenvalues’ variances and cumulative variances (%) associated with each principal 
component       

Component  1 2 3 4 5 6 7 8 9 10 11 12 13 
Eigenvalue  8.7 1.7 1.0 0.5 0.3 0.2 0.2 0.1 0.1 0.1 0.1 0.0 0.0 
Variance (%) 66.6 13.0 7.5 4.2 2.2 1.8 1.5 1.0 0.8 0.6 0.4 0.3 0.1 
Cumulative 
Variance (%) 

66.6 79.6 87.1 91.3 93.5 95.3 96.8 97.8 98.6 99.2 99.6 99.9 100 

 

 Table 2.5. presents the principal component eigenvector coefficients and (contributions 

(%)) associated with each attribute. It can be observed that C1 to C4, C7, C8, C11, and C13 are 

the dominant attributes (contribution percentage >7.5%) for the first principal component (PC1). 

It is also seen that C1 to C5, C9, and C12 have a major influence (contribution percentage >7.5%) 

on the second principal component (PC2), and C6 and C12 have the most influence on the third 

principal component (PC3), with a contribution percentage > 7.5%.  

 To acquire a better understanding of where our original data stands vis-à-vis the 

transformed coordinate system of the principal components, the first principal component (PC1) 

against the second principal component (PC2) are plotted (Figure 2.5.). The figure illustrates the 

original data points (color coded by continent) in the coordinate system of the first two principal 

components: PC1 with a 66.6% cumulative variance of the data on the x-axis and PC2 with a 13.0% 

cumulative variance of the data on the y axis. Hence, in total, 79.6% of the total variance among 

all attributes (C1 to C13) are explained in this plot. The plot reveals that certain countries fall into 

outlier categories: Rwanda and Gambia on one hand, and Switzerland and Singapore on the other 

hand. Also, Italy, Argentina, Libya, and Mauritania exhibit evident disparities compared with other 

countries. Figure 5a. also illustrates the vectors associated with all the corruption-related attributes 

(C1 to C13). This loading plot shows how strongly each attribute influences a principal component. 

Also, this plot provides a basis to discern the core attributes (characteristics) possessed by countries 

in each cluster. It may be noted that in the figure, the vectors are scaled to facilitate visualization. 

The vectors’ direction and position are important in this graph, and can be interpreted as follows:  

(a) Vector length. Longer vectors denote a higher contribution to PC1 and PC2. For example, GNI 

(C1), EGI (C2), human development index (C3), public-sector performance (C5), and labor market 

efficiency (C9) are identified in this plot as the most influential attributes.  
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(b) Axis proximity of vectors. Closer vectors to the x-axis are more influential to PC1, and those 

closer to the y-axis are more influential to PC2. For example, Business sophistication (C13) and 

Transport infrastructure (C7) Influence PC1, and Public-sector performance (C5), Labor market 

efficiency (C9), and Market size (C12) Influence PC2. 

(c) Vector angles. The angles between the vectors indicate the degree of correlation between them: 

closer vectors (smaller angles) denote positive correlation, and when the angles get closer to 180º, 

it shows a negative correlation. For example, GNI (C1) and HDI (C3) are highly correlated as well 

as Undue influence (C4) and Security (C6). Public-sector performance (C5) and Labor market 

efficiency (C9), and Goods market efficiency (C8) and Financial market development (C10) are 

highly correlated. Also, note that C13, C10, C8, C6, C4, C9, and C5 are negatively correlated with 

PC2 (all attributes are positively correlated with PC1); in other words, the countries with higher 

PC2 values have lower values for C13, C10, C8, C6, C4, C9, and C5.   

(d) Positions of countries relative to a vector. Countries on the same side of a given vector have a 

high value for that vector and those on opposite sides have a low value for that vector. For example, 

Germany has a considerably high value for Business sophistication (C13) and Transport 

infrastructure (C7), and Mauritania has a position opposite to Germany. Market size (C12) for Italy 

is considerably high versus Rwanda that is placed on the other side of the plot. Similarly, Rwanda’s 

Public-sector performance (C5) and Labor market efficiency (C9) is opposite to Italy.  

   

Table 2.5. Selected principal component eigenvector coefficients and attribute contributions (%) 

PCs 
Attributes 

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 
PC1 
(%) 

0.28 0.30 0.29 0.29 0.26 0.23 0.30 0.32 0.24 0.27 0.31 0.17 0.32 
(8.10) (8.85) (8.14) (8.20) (6.54) (5.46) (9.17) (9.96) (5.89) (7.07) (9.79) (2.78) (10.04) 

PC2 
(%) 

0.35 0.30 0.36 -0.28 -0.44 -0.19 0.07 -0.14 -0.40 -0.15 0.19 0.33 -0.02 
(12.29) (9.24) (12.71) (8.02) (19.11) (3.54) (0.44) (2.06) (15.68) (2.25) (3.47) (11.12) (0.06) 

PC3 
(%) 

-0.21 -0.14 -0.23 0.04 0.11 -0.48 0.25 0.02 -0.02 0.22 -0.21 0.68 0.18 
(4.21) (2.02) (5.31) (0.20) (1.20) (22.84) (6.04) (0.05) (0.02) (4.64) (4.60) (45.64) (3.21) 
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Figure 2.5. The original data in the principal components’ coordinate system of the (color-coded 
by continent) where PC1and PC2 are the 1st and 2nd principal components, respectively 

 

 A PCA plot converts the correlations (or lack thereof) across all the countries into a  

2-dimensional graph, and it is indicative of the clustering potential of the data. Also, a biplot with 

vectors helps to identify the common characteristics not only in each country but also in each 

cluster. As this study focus is related to identifying the corruption levels in countries, the countries 

are grouped by their CPI values with respect to PC1 and PC2. Figure 2.6. shows the same data as 

Figure 2.5. color coded by the level of corruption as follows: Very High Corruption (CPI ≤ 25); 

High Corruption (25 < CPI ≤ 50); Medium Corruption (50 < CPI ≤ 75); and Low Corruption  

(75 < CPI ≤ 100). As observed from the graph, countries with perceived low corruption levels are 

grouped on the right side of the plot, while those perceived to be highly corrupt are grouped on the 

left side. Most of the countries with medium corruption levels are located between the origin, and 

the countries with perceived low corruption levels, and most countries with perceived high 

corruption levels are positioned between the origin and the countries with perceived very high 

corruption levels. These observations seem to provide validation for the need to cluster the 

countries. This is because it provides policymakers with both opportunity and basis to develop 

unique sets of palliatives for countries within each cluster, as a one-size-fits-all policy for all 

countries may not be practical. 
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Figure 2.6. Clustering of countries based on perceived corruption using PCA dimensions 

2.5.2 Cluster Analysis 

 The results of the cluster analysis helped address two questions: (1) What is the optimum 

number of clusters? (2) Which countries fall into each cluster? The hierarchical method was used 

for clustering the countries based on their development-related attributes represented by the three 

principal components (PC1, PC2, and PC3) selected in the previous section, and the measured 

Euclidean distance between these components. Four different distance measures were used: 

median clustering method, Ward’s method, the nearest neighbor algorithm, and the average 

linkage clustering technique. The results are compared using the cophenetic correlation 

coefficients (CCCs) for verification and comparison purposes, and for purposes of identifying the 

best clustering method. CCC helped gage the extent to which the dendrogram upholds the pairwise 

distances between the original unmodeled data points (Shoba et al., 2019). The maximum value of 

the CCC helped identify the best method for the hierarchical agglomerative clustering. Table 2.6., 

which presents the cophenetic correlation coefficients, suggests that the average linkage method 

is the best clustering for clustering the data in this study. Further, the optimal number of clusters 

using the K-means clustering method – a machine-learning based clustering technique, was 

identified as four clusters (Table 2.7.). 

CPI 

Low Corruption 

Medium Corruption 

High Corruption 

Very High Corruption 
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Table 2.6. The cophenetic correlation coefficient values 

Methods Median method Ward’s method Nearest neighbor 
algorithm 

Average linkage 

technique 

Values 0.872 0.889 0.907 0.928 

 

Table 2.7. K-means clustering method results 

Machine learning trials Optimum number of clusters 
4 2 
3 3 
8 4 

3 7 
2 10 
1 12 
1 15 

 

 Figure 2.7. and Table 2.8. present the cluster analysis results, including the number of 

countries on each continent in each cluster, and the dendrogram representation, respectively, using 

the average linkage technique. Figure 2.8. illustrates the position of each country in each cluster 

considering the corruption levels (CPI values). Table 2.8. indicates that there are 41 countries in 

Cluster 1, 28 countries in Cluster 2, 20 countries in Cluster 3, and 24 countries in Cluster 4.  

 Assuming that high CPI values are associated with higher levels of corruption control, it is 

observed that Estonia, France, Uruguay, Chile, and Barbados are located at the top corruption 

control level (higher CPI values ~70) in the first cluster. Azerbaijan, Kazakhstan, Russia, and 

Mexico on the other hand are positioned at the bottom of this cluster with considerably low CPI 

values (~30). Croatia and Greece are grouped into Cluster 2 with CPI values around 50. Nigeria, 

Nicaragua, and Bangladesh fall into the same cluster with significantly lower CPI values around 

25. It is also observed that New Zealand, Denmark, Finland, and Norway are at the top of Cluster 

3 with CPI values near 88. In the same cluster, Israel with CPI near 62 and Malaysia with CPI 

close to 45 are at the bottom of Cluster 3. Rwanda (CPI close to 60) and Namibia (CPI near 50) 

are positioned at the top of Cluster 4, and Cameroon, Mozambique, Burundi, and Libya are located 

at the bottom of Cluster 4 with CPI values lower than 25. All in all, these results suggest that 

countries in the Clusters 2 and 4 are in significant need of corruption control measures.  
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Figure 2.7. Cluster dendrogram – Cluster 1: Red, Cluster 2: Blue, Cluster 3: Grey, and Cluster 4: 
Yellow 
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Table 2.8. The cluster analysis results      

Clusters Cluster 1 Cluster 2 Cluster 3 Cluster 4 
Countries Albania, Armenia, 

Azerbaijan, Bahrain, 
Barbados, Chile, 
China, Costa Rica, 
Cyprus, Czech, 
Estonia, France, 
Georgia, Hungary, 
Iceland, India, 
Indonesia, Italy, 
Jordan, Kazakhstan, 
Korea (Rep.), Latvia, 
Lithuania, Mauritius, 
Mexico, Montenegro, 
Morocco, Oman, 
Panama, Poland, 
Portugal, Russia, 
KSA, Slovakia, 
Slovenia, South 
Africa, Spain, 
Thailand, Turkey, 
Uruguay, Viet Nam 

Algeria, Argentina, 
Bangladesh, 
Bolivia, Bosnia-
Herzegovina, 
Brazil, Bulgaria, 
Croatia, 
Dominican, Egypt, 
El Salvador, 
Greece, Guatemala, 
Honduras, Iran, 
Lebanon, Moldova, 
Nicaragua, Nigeria, 
Pakistan, Paraguay, 
Peru, Philippines, 
Romania, Serbia, 
Trinidad Tobago, 
Tunisia, Ukraine
  

Australia, Austria, 
Belgium, Canada, 
Denmark, Finland, 
Germany, Ireland, 
Israel, Japan, 
Luxembourg, 
Malaysia, 
Netherlands, New 
Zealand , Norway, 
Singapore, Sweden, 
Switzerland, UK, 
USA  

Benin, Burkina Faso, 
Burundi, Cameroon, 
Côte d'Ivoire, 
Ethiopia, Gabon, 
Gambia, Ghana, 
Guyana, Jamaica, 
Kenya, Lesotho, 
Libya, Madagascar, 
Malawi, Mauritania, 
Mozambique, 
Namibia, Nepal, 
Rwanda, Senegal, 
Uganda, Zambia 

No. of 
Countries 
in Each 
Continent 

Africa 
Asia & Oceania 
Europe 
North America 
South America 

3 
13 
19 
4 
2 

Africa 
Asia & Oceania 
Europe 
North America 
South America 

4 
5 
8 
6 
5 

Africa 
Asia & Oceania 
Europe 
North America 
South America 

0 
6 
1
1 
3 

Africa 
Asia & Oceania 
Europe 
North America 
South America 

21 
1 
0 
1 
1 

 

 

Figure 2.8. Country positions within each cluster based on perceived corruption level 
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2.5.3 Regression Tree Analysis & Random Forest Machine Learning Technique 

 The results of the regression tree (or, decision tree) analysis can provide a clear picture of 

the underlying structure in data and relationships between the corruption-related variables and for 

understanding the interactions between these variables. Figure 2.9. presents the regression tree 

analysis on the dataset for all countries. As discussed in the methodology section, 85% of the data 

were allocated to the “training” dataset and 15% of the data to the “test” dataset. Therefore, the 

decision tree analysis started by predicting the CPI value for 96 countries. As seen from the figure, 

the attribute C11 (Technological readiness) is highly influential in estimating the level of 

corruption in a country. The regression tree analysis begins with 96 countries and an average CPI 

value of 46.8 (root node #1). The root node (the topmost node in a decision tree) breaks into 

decision nodes. It may be recalled that in the PCA section of this dissertation, the CPI values were 

categorized as follows: Very High Corruption (CPI ≤ 25); High Corruption (25 < CPI ≤ 50); 

Medium Corruption (50 < CPI ≤75); Low Corruption (75 < CPI ≤ 100). The CPI value for root 

node #1 indicates that if all countries considered altogether, the CPI value for the entire world 

would be below 50 (“High Corruption Level”).  

 Root node #1 is split into decision nodes #2 and #3 based on the value of C11 with the 5.17 

cutoff. Decision node #2 (C11<5.17) contains 71.9% of the data (69 countries) with an average 

CPI value of 37.2, and decision node #3 (C11>5.17) includes the remaining countries with a mean 

CPI value of 71.5. Following C11, C3 (Human development index) becomes more influential for 

the countries with higher corruption levels (higher CPI values); decision node #3 splits into leaf 

node #6 (C3<0.9) and leaf node #7 (C3>0.9) for the countries with predicted CPI values of 60.2 

(12 Mid Corruption countries) and 80.6 (15 Low Corruption countries), respectively. This 

indicates that C3 (Human development index) directly affects the corruption level performance in 

those certain countries where C11 is over 5.17. 

 On the other side of the spectrum, C11 is still the most influential attribute for decision 

node #2. Decision node #2 splits into decision node #4 and leaf node #5 based on the new C11 

threshold of 4.7. Decision node #4 (C11<4.7) and leaf node #5 (C11>4.7) include 58 countries and 

11 countries. The average CPI value for decision node #4 and the predicted CPI value for leaf node 

#5 are 34.8 and 49.5 (Mid-High Corruption), respectively. This indicates that C11 (Technological 

readiness) directly affects the corruption level where C11 is between 4.7 and 5.17. 
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 Finally, for decision node #4, the most influential attribute is C5 (Public-sector 

performance) with a threshold value of 3.74. Decision node #4 breaks into two subtrees: leaf node 

#8 (C5<3.74) with 41 countries or 42.7% of the data and leaf node #9 (C5>3.74) with 17 countries 

or 17.7% of the observations. Leaf node #8 contains the countries with the highest corruption 

values and the predicted CPI value of 32 (High Corruption), and the predicted CPI value for leaf 

node #9 is 41.8 (High Corruption). This indicates that C5 (Public-sector performance) directly 

affects the corruption level in those certain countries where C11 is below 4.7. 

 

Figure 2.9. Regression tree analysis for all countries (with 85% “training” dataset) 
    

 To confirm and compare the results obtained from the decision tree analysis, a random 

forest analysis is performed. This technique improves predictive precision by producing a large 

number of bootstrapped trees (based on random samples of variables), categorizing a case using 

each tree in this new “forest”, and determining a final projected outcome by joining the results 

across all of the trees (Munasinghe, 2019). The results of the random forest technique (which was 

applied to all countries and to each of the four clusters established in the previous section of this 

dissertation) helped identify the attributes that are most influential to the corruption levels within 
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each cluster. Similar to the decision tree analysis, the Corruption Perceptions Index (CPI) was used 

as the dependent variable, and the predictive accuracy of the random forest prediction models were 

compared using the following metrics of model performance: the adjusted-R2, root mean square 

error (RMSE), and mean absolute error (MAE).  

 Table 2.9. presents the errors for the decision tree analysis, the random forest technique 

errors, and the CPI mean values for the training dataset, the decision tree prediction, and the 

random forest prediction for all countries and each cluster. The first row indicates the statistics 

related to all countries. The errors for the random forest technique are observed to be slightly lower 

than those of the decision tree analysis, meaning that the random forest technique outcome is 

relatively more accurate and provides a superior fit compared with the decision tree output. The 

average CPI value for the test dataset for all countries is 53.62. The RF prediction for CPI values 

for all countries is 52.85 versus 52.19 from the decision tree analysis. For Cluster 1 through Cluster 

4, the errors are slightly higher than that of all countries. The errors from the decision tree analysis 

are slightly higher those from the RF analysis for all clusters, similar to what observed from the 

first-row analysis. The average CPI value for the test dataset for Cluster 1 to Cluster 4 is 39.14, 

83.67, 56.41, and 33.74, respectively. The RF prediction is closer to this value compared with that 

of the decision tree output. The RF prediction for Cluster 1 to Cluster 4 is 37.24, 82.31, 55.03, and 

32.23, respectively, and this value from the decision tree prediction is 35.46, 78.94, 53.21, and 

30.23, respectively.  

Table 2.9. The decision tree and random forest prediction statistics for CPI for each cluster 

 Regression Tree Errors Random Forest Errors CPI Values 
RMSE R2 MAE RMSE R2 MAE Test Set 

Mean 
Reg. Tree 
Prediction 

RF 
Prediction 

All 
Countries 

8.6000 0.8010 6.9759 8.2640 0.8005 6.3772 53.6250 52.1944 52.8550 

Cluster 1 9.7969 0.6721 8.0865 9.1410 0.6664 7.7917 39.1429 35.4626 37.2426 
Cluster 2 9.6365 0.5279 7.7912 9.6106 0.5336 7.3628 83.6667 78.9412 82.3108 
Cluster 3 10.4577 0.4803 9.5438 9.6794 0.5137 8.5018 56.4109 53.2105 55.0265 
Cluster 4 9.4280 0.5211 7.8629 9.0186 0.5366 7.7529 33.7398 30.2353 32.2296 

 

 Partial dependence plots (graphical visualizations of the marginal effect of given variables 

on the outcome (Milborrow, 2020)) are used to further investigate the relationship between the 

predictors and the outcome in random forests. The plots are useful for acquiring deeper 

understanding of the trends in large datasets, and provide useful information where the random 
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forest is governed by lower-order interactions and main effects (Martin, 2014). Since human 

perception is limited, the attributes are kept to three including the outcome variable (CPI) and the 

first two attributes that have the most impact on the RFA. For this purpose, the impact from each 

variable is shown in Figure 2.10.(a) through Figure 2.14.(a) as the Importance Level – also known 

as “the Mean Decrease in Gini charts.” In other words, each variable in the matrix is an indication 

of the importance of that variable in classifying the data. Figure 2.10.(b) through Figure 2.14.(b) 

show the partial dependence plot between the predicted variable (CPI) and the first two important 

predictors in each cluster – resulting in the three-dimensional partial dependence plots.  

 Figure 2.10.(a) and Figure 2.10.(b) illustrate the RFA results for all countries. Figure 

2.10.(a) suggests that of all the attributes C1 to C13 that predict the outcome (CPI), the attributes 

C11, C3, and C2 have the highest influence. This indicates that overall, Technological readiness 

(C11), Human development index (C3), and e-governance index (C2) are most important in 

predicting a country’s level of corruption (CPI). In other words, these three attributes are the key 

elements that deserve a particular attention from oversight agencies and policymakers that seek to 

mitigate corruption. Clearly, improvements in technological readiness, human development index, 

and e-governance index would have the most profound impacts on corruption reduction. Figure 

2.10.(b) presents the relationship between CPI and the contribution of C11 and C3 (the topmost 

influential attributes of CPI identified using the random forest technique). The plot indicates a 

positive relationship between CPI, and C11 or C3: an increase in the value of each of these two 

attributes is strongly associated with an increase in the CPI, suggesting that an improvement in 

C11 and C3 may lead to a significant increase in CPI (reduction in corruption). With technological 

readiness above 5 and human development index above 0.8, countries can expect a significant 

reduction in their corruption levels. 

 Figure 2.11.(a) and Figure 2.11.(b) present the results of the random forest analysis on 

Cluster 1. It shows that of all the attributes, C11, C1, and C6 have the highest impact on CPI. It 

indicates that for the countries in Cluster 1, technological readiness (C11), GNI (C1), and security 

(C6) have highest importance for predicting their corruption level (CPI). This result suggests that 

in their efforts to combat corruption, countries in the first cluster could pay more attention to these 

three characteristics). Figure 2.11.(b) presents the relationship between CPI and the contribution 

of C11 and C1 (the two most crucial attributes in predicting CPI, identified using the random forest 

algorithm). It is noticed from the contour plot that by moving GNI to exceed 10 and technological 
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readiness to exceed 4.5, a considerable reduction in corruption level can be experienced in the 

Cluster 1 countries.  

 Figure 2.12.(a) and Figure 2.12.(b) present the results for the random forest analysis on 

Cluster 2. It is observed that, the human development index (C3), undue influence (C4), and e-

governance index (C2) are among the most influential attributes in predicting the CPI values for 

Cluster 2, and therefore could be among focal points in efforts to address corruption in those 

countries. Figure 2.12.(b) presents CPI versus the contribution of C3 and C4 (the two highly critical 

attributes in the prediction of CPI with RFA). This contour plot suggests that increasing C3 to 

exceed 0.92 and a 0.5 unit increase in C4 in Cluster 2 would lead to a significant reduction in 

corruption (that is, increase in the CPI value). 

 Figure 2.13.(a) and Figure 2.13.(b) present the results for the random forest analysis on 

Cluster 3, and indicate that C5, C9, and C2 are the top three attributes that influence the CPI values 

in that cluster. It shows that for the countries in the third cluster, public-sector performance (C5), 

labor market efficiency (C9), and e-governance index (C2) are of highest importance in predicting 

their corruption level (CPI), and could serve as the points of attention in efforts towards corruption 

mitigation in those countries. Figure 2.13.(b) presents the CPI versus the contribution of C5 and 

C9 (the two most crucial attributes in predicting CPI with the random forest algorithm). From this 

contour plot, it is recognized that there is an optimum level in the public-sector performance value 

(between 3.5 – 4.0) and labor market efficiency (around 4.5).  

 Figure 2.14.(a) and Figure 2.14.(b) illustrate the results for the random forest analysis on 

Cluster 4. As can be seen from the figures, C4, C5, and C6 in Cluster 4 have the most significant 

effect on the outcome of the predicted CPI values. This shows that among the countries in Cluster 

4, undue influence (C4), public-sector performance (C5), and security (C6) are of the highest 

importance in predicting the level of corruption (CPI) for Cluster 4. These three attributes are the 

key elements that could be given a significant attention from the policymakers of the countries in 

this cluster to reduce corruption. Figure 2.14.(b) demonstrates CPI versus the contribution of C4 

and C5 (the topmost important attributes in predicting CPI with the random forest technique). The 

plot shows that improving both variables can lead to a significant increase in CPI values. With 

undue influence and public-sector performance above 3, the countries in this cluster can expect a 

significant decrease in their corruption levels.  
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(a) Importance level  
(mean decrease in Gini) 

(b) Partial dependence plot  
(CPI versus C11, and C3) 

 

Figure 2.10. ML Results for All Countries 

 

 

 

  

 
(a) Importance level  

(mean decrease in Gini) 
(b) Partial dependence plot  
(CPI versus C11, and C1) 

 

Figure 2.11. ML Results for Cluster 1 Countries 
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(a) Importance level  

(mean decrease in Gini) 
(b) Partial dependence plot  

(CPI versus C3, and C4) 
 

Figure 2.12. ML Results for Cluster 2 Countries 

 

 

 

 

  

 
(a) Importance level  

(mean decrease in Gini) 
(b) Partial dependence plot  

(CPI versus C5, and C9) 
 

Figure 2.13. ML Results for Cluster 3 Countries 
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(a) Importance level  

(mean decrease in Gini) 
(b) Partial dependence plot  

(CPI versus C4, and C5) 
 

Figure 2.14. ML Results for Cluster 4 Countries 

  

 Concluding Remarks 

Corruption is a multidimensional and complex societal malady that occurs in various forms 

and contexts. Corruption has been found to be related to inefficiency and instability, and therefore 

degrades the political economy of countries. As an antithesis of the values of honesty, equity, and 

transparency, corruption weakens the integrity and stability of governmental institutions and 

degrades trust and confidence in governments. Annually, more than 5% of the world GDP is lost 

due to collusion, corruption, and fraud (Irisova, 2014) and therefore, the need to address the 

problem cannot be overemphasized. It is important that any effort to fight corruption must be 

preceded by a forensic analysis not only of the high-level factors that promote (or are associated 

with) high levels of corruption but also those that inhibit the practice or are associated with 

relatively low levels.  

As such, corruption analysis studies must be accompanied by a thorough examination of 

the attributes that might play role in promoting or exacerbating corrupt environments. These 

attributes, and the magnitude and severity of their impacts on corruption, are generally believed to 

exhibit significant variation across the countries and continents. In this chapter, thirteen (13) 

country-specific development-related attributes that hypothetically influence corruption levels 

were investigated at one hundred and thirteen (113) countries. The attributes that significantly 

influence corruption were identified. First, principal component analysis (PCA) is conducted, and 
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K-means and hierarchical structure cluster analysis to identify groups of countries based on the 

attribute levels. The results helped identify clusters that require attention from a corruption control 

viewpoint. Then, Corruption Perceptions Index (CPI) was estimated for each cluster using decision 

tree analysis and random forest algorithm (a machine learning technique), separately. The results 

suggest that the random forest algorithm yields relatively reliable predictions compared with 

decision tree analysis. The results also indicate that improvements in technological readiness, 

human development index, and e-governance index would have the most profound impacts on 

corruption reduction. The clusters identified in this chapter could serve as a starting point for 

governmental and non-governmental oversight agencies to study corruption forms and contexts 

that are common to the countries in each cluster, and to identify which mitigation techniques have 

worked in these countries. 

In this chapter of the dissertation, the attributes that have a significant influence on the 

corruption levels in countries were identified. For 113 countries, 13 attributes including the GNI, 

e-governance index (EGI), human development index (HDI), transport infrastructure, and 

technological readiness were investigated. Principal component analysis (PCA) was carried out to 

remove any collinearity among the attributes. Also, K-means and hierarchical structure cluster 

analyses were conducted to establish groups of countries that share similar development-related 

attributes. Finally, a regression tree analysis and random forest technique were implemented to 

predict corruption levels for and within each cluster. Using this machine learning technique, the 

most important attributes for each cluster, were determined. The bootstrap technique was used to 

ensure the reliability of the decision tree analysis, and a k-fold cross-validation technique was 

applied to ascertain the accuracy of the random forest analysis. 

The PCA biplot showed that the most influential attributes of corruption were a country’s 

development-related attributes GNI (C1), EGI (C2), human development index (C3), public-sector 

performance (C5), and labor market efficiency (C9). From the PCA plots and country clusters 

based on their CPI values, the highest development-related attribute variability was observed in 

the countries that fall into medium and high corruption levels. This corroborated the notion that 

clustering the countries is an important prelude to identifying corruption mitigation measures, and 

that a one-size-fits all policy for all countries, may not be efficacious. The results of the K-means 

clustering and the cophenetic correlation coefficient for hierarchical clustering indicated that the 

countries can be placed into four groups (clusters) based on their development-related attributes.  
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The regression tree analysis for predicting and classifying CPI values based on the 13 

attributes suggest that public-sector performance value (C5) directly affects the level of corruption 

in countries where the technological readiness value (C11) is below 4.7. On the other hand, in the 

countries with technological readiness (C11) exceeding 5.17, the human development index (C3) 

directly affects the corruption levels.  

The partial dependence plots from the random forest analysis suggest that for all countries, 

there is a positive relationship between technological readiness (C11) and human development 

index (C3), and corruption levels. The Gini charts obtained from the random forest machine 

learning technique showed that of all the attributes investigated, technological readiness (C11), 

human development index (C3), and e-governance index (C2) are the most influential of 

corruption levels in a country. It indicated that improvements in technological readiness, human 

development index, and e-governance index would have the most profound impacts on corruption 

reduction. Furthermore, the results identified, for each cluster, the attributes that could serve as a 

focal point for efforts geared toward corruption mitigation, as follows: Cluster 1: technological 

readiness, GNI, and security; Cluster 2: human development index, undue influence, and e-

governance index; Cluster 3: public-sector performance, labor market efficiency, and e-

governance index; and Cluster 4: undue influence, public-sector performance, and security. 

Overall, the result of this study provides valuable guidance to governments, non-governmental 

agencies, and other stakeholders that are involved in corruption identification and measurement, 

and more importantly, corruption control or mitigation efforts.   

The results of this study are based on the data that are available at the time of writing. With 

time, more data will be available as they are reported annually. With updated information from the 

various sources (and consequently, an expanded study dataset), it will be possible, in future 

research, to replicate the analysis, to draw conclusions with greater confidence. Another avenue of 

prospective future work is to finetune the hyperparameters of the machine learning model in order 

to enhance the reliability of that part of the analysis. Further, the conclusions and recommendations 

in this study are made for each cluster of countries and not each country. These results could serve 

as platform upon which further analysis could be carried out for each country, account for the 

relevant attributes of each country that are occluded when the analysis is carried out at a high level. 

Finally, while this study focused on corruption estimation and prediction, the results lay the 

groundwork for advancing other research s that addresses corruption mitigation and control.
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CHAPTER 3. CORRUPTION - CLUSTER FORECASTING USING 

NONLINEAR AUTOREGRESSIVE MODEL WITH EXOGENOUS 

VARIABLES (NARX) – AN ARTIFICIAL NEURAL NETWORK TIME 

SERIES ANALYSIS 

 Introduction 

Transparency International (2017) defines corruption as “the abuse of public power for 

private benefit (or profit).” Fraudulent practice, according to the World Bank (2009) guidelines, is 

“any act or omission, including a misrepresentation, that knowingly or recklessly misleads, or 

attempts to mislead, a party to obtain a financial or other benefit or to avoid an obligation”; a 

collusive practice is “an arrangement between two or more parties designed to achieve an improper 

purpose, including influencing improperly the actions of another party.”; and a corrupt practice is 

defined as “the offering, giving, receiving or soliciting, directly or indirectly, of anything of value 

to influence improperly the actions of another party” (Integrity Vice Presidency, 2009).  

Corruption is a multifaceted phenomenon that ranges from a minor infraction or small act 

of a forbidden compensation to a pervasive mass looting by public officials. Hence, it has 

considerable detrimental effects on sustainable development (Loosemore & Lim, 2015; Tabish & 

Jha, 2012a). Sustainable development is defined as “Development that meets the needs of the 

present without compromising the ability of future generations to meet their own needs” (ASCE, 

2010). In other words, sustainable development is conservation of resources and the minimization 

of waste and pollution (Brundtland, 1987).  

Ten thousand years ago, during the Neolithic Revolution, human beings started changing 

the environment in a way that they could pursue their needs. Small villages and societies were 

formed quickly, and that led to unsustainable practices due to the immediate change in the 

environment. As a result of the Industrial Revolution, humans overcame the limitations associated 

with agrarian societies (Ghahari et al., 2019b; Labi, 2014).  

The principles of sustainability include enhancing or maximizing the quality and quantity 

of natural resources through reduction of use, reuse, and recycling, which minimizes the damage 

to the physical environment (Brundtland, 1987). A corrupt society, however, fails to take the 

constructive steps toward a sustainable development, such as (a) avoiding adverse institutional 

effects; (b) maintaining or enhancing the current and future quality of life; (c) providing flexibility 

for changes in stakeholder requirements; (d) basing policy and business on values such as fairness, 
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duty, knowledge-based solutions, and efficient production; and sharing responsibility for decision 

making, planning, and results. Corruption causes short-term economic inefficiency (specifically in 

the private market), and in the long-term, dynamic inefficiency and instability in economic growth 

and sustainability.  

An accurate picture of how global corruption is evolving is need to develop effective 

policies and corruption-control measures, not only from a monitoring standpoint, but also from the 

perspective of being able to assess the long-term effectiveness of programs, policies, and initiatives 

targeted towards corruption mitigation. The main objective of this study is to forecast corruption 

levels globally and also in clusters of like countries using artificial neural network (ANN) 

techniques. The data are from 113 countries, and span the time period 2007 to 2017. The study 

considers two levels of analysis. The first is the global level (all countries considered together as 

a single group). Then to ensure model flexibility by avoiding making the same predictions for 

countries that are very dissimilar in terms of development-related attributes, cluster-level analysis 

was carried out using techniques established in the literature.  

In the previous chapter (chapter 2 of this dissertation) that addresses cluster analysis of 

corruption in all countries using machine learning methods, the four most influential factors of 

corruption (measured in terms of Corruption Perceptions Index (CPI)) were identified for each 

cluster, and those factors are used as independent variables in the model in the current chapter of 

this dissertation. The model type used in this chapter is the nonlinear autoregressive recurrent 

neural network with exogenous inputs (NARX) technique. In the next section of this chapter, the 

literature on related studies in the area of corruption is reviewed. This is followed by data collection 

and the methodology used for the research, discussion of the results, and conclusions and 

recommendations for future work.  

 Literature Review   

Many factors affect the levels of corruption in countries, some exacerbate corruption, and 

some inhibit corruption. Corruption is a complex phenomenon, and multiple linear regression and 

other similar methods inadequately model corruption. Hence, a method that can handle time series 

in complex systems is needed to reveal the patterns and trends in the corruption data analysis. In 

this chapter, the focus is made on artificial neural network (ANN) techniques due to their potential 

for solving problems of this nature (Khalil et al., 2019; López-Iturriaga & Sanz, 2018; 
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Woldemariam et al., 2016). ANNs also possess superior predictive accuracy compared to multi-

linear regression, support vector machine (SVM), and multivariate adaptive regression splines 

(Ekonomou, 2010; Yin et al., 2018). Of the various well-known ANN approaches and reliable 

training algorithms, the nonlinear autoregressive recurrent neural network with exogenous inputs 

(NARX) forecasting method (a feed backward approach) with the Bayesian regularization training 

algorithm has been proven to be efficacious in various applications and disciplines (Al-Sbou & 

Alawasa, 2017; Cicceri et al., 2020; Kayri, 2016; Khan et al., 2014; Yu et al., 2019).  

In addition, NARX has been found to be a particularly effective tool for time series analysis 

(Chen et al., 1990) and in non-linear time series projection, because NARX can utilize its “memory” 

capability to recollect the preceding values of the predicted time series. It has also been claimed 

that NARX provides more accurate results compared with other neural network techniques and 

time series models, such as Autoregressive Integrated Moving Average (ARIMA) and Seasonal 

ARIMA (SARIMA) (Yu et al., 2019). 

The NARX neural network method has been used in various research studies, for example, 

forecasting heating and cooling electrical loads (Buitrago & Asfour, 2017; Powell et al., 2014), 

network traffic flows (Alfred, 2015), rainfall (Benevides et al., 2019; Peña et al., 2020), and crop 

yield and price (Khamis & Abdullah, 2014; Paul & Sinha, 2016). Peña et al. (2020) found that 

NARX provides significantly more accurate results for rainfall predictions compared with 

nonlinear regression models and the SVM techniques, and Paul and Sinha (2016) determined that 

NARX outperforms ARIMA time series models in forecasting crop yield.  

NARX has also been applied in macroeconomic modeling. For example, recognizing the 

episodic and non-linear nature of the gross domestic product (GDP) of a country, researchers have 

espoused the use of machine learning (ML) techniques such as NARX to improve forecast 

accuracy of that variable. An example is Cicceri et al. (2020) who showed that the great recession 

in Italy in 2008-2009 could have been forecasted by NARX neural network methods (Cicceri et 

al., 2020). Tang (2020) assessed the feasibility of applying NARX for macroeconomic forecasting, 

national goal setting, and global competitiveness assessment, and carried out case studies using 

data from countries including China, U.S., and Russia and demonstrated the capability of NARX 

in forecasting macroeconomic indicators. Khan et al. (2014) performed a performance evaluation 

of NARX in the foreign exchange market (Khan et al., 2014).  
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With regard to corruption forecasting, which is considered a complex phenomenon that 

occurs at different scales and is influenced by numerous factors that change over time, the NARX 

technique seems to be a promising tool for such predictions. To the best of our knowledge, no 

study has implemented artificial neural networks, particularly a nonlinear autoregressive recurrent 

neural network with exogenous inputs (NARX), in predicting CPI in countries. 

In this chapter of the dissertation, insights to this critical need in forecasting corruption is 

provided. For this purpose, data from 113 countries, from 2007 to 2017 is used. The main goal of 

this chapter is to forecast the Corruption Perceptions Index (CPI) values of countries at the world 

level and at the cluster level. Building upon the previous chapter, the forecast within the clusters 

is performed to analyze the countries that have similar development-related levels with each other. 

The objective function in our NARX models is CPI, and the exogenous variables are chosen based 

on the previous research outcomes − the top four influential variables on the level of corruption 

within each cluster as the corresponding exogenous variables for the models. Finally, to fine-tune 

the neural network hyperparameters, NARX models are generated with different numbers of 

hidden layers, lags, and neurons to obtain the optimum NARX neural network model as the final 

model. 

 Data 

 There is rather limited data that can be used in studies of this nature. The data were from 

the following databases: the World Bank Group (WBG) (WBG, 2017), the United Nations 

Department of Economic and Social Affairs (UNDESA) (UNDESA, 2017), the United Nations 

Development Program (UNDP) (UNDP, 2017), the World Economic Forum (WEF) (WEF, 2017), 

and Transparency International (TI) (TI, 2017) (see Table 3.1.).  

 The Gross National Income (GNI) is the dollar value of a country’s annual income and data 

on GNI are from the World Bank national accounts database (World Bank, 2017a). UNDESA 

publishes the E-Governance Index (EGI) data, which indicates the consistency of being able to 

supervise all scales and levels of government authority, and digital interaction of governments and 

citizens  (UNDESA, 2017). According to UNDP, people and their capabilities is the fundamental 

benchmark to evaluate the development of a country (HDI), and not its economic growth alone 

(UNDP, 2017).” In this study, the Human Development Index (HDI) is taken from the UNDP 

database (UNDP, 2017). The Global Competitiveness Index (GCI) shows the competitiveness 
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landscape of economies, offering exceptional vision into the contributors to the productivity and 

prosperity of countries (WEF, 2018). In this study, the following attributes from GCI are used: 

undue influence, public sector performance, security, transport infrastructure, goods market 

efficiency, labor market efficiency, financial market development, technological readiness, market 

size, and business sophistication. Finally, Corruption Perceptions Index (CPI) from TI is a ranking 

indicator that indicates the perceived levels of public sector corruption (TI, 2017); the CPI is the 

dependent variable in this study.  

Table 3.1. Data used for the study and sources 

 Database 
WBG UNDESA UNDP WEF TI 

Variables Gross 
National 
Income 
per 
Capita 
(GNI) 

E-
Governance 
Index 
(EGI) 

Human 
Development 
Index (HDI) 

Global Competitiveness 
Index (GCI): undue 
influence; public-sector 
performance; security; 
transport infrastructure; 
goods market efficiency; 
labor market efficiency; 
financial market 
development; 
technological readiness; 
market size; business 
sophistication 

Corruption 
Perceptions 
Index 
(CPI) 

Code C1 C2 C3 C4-C13 C0 
 

 More discussion on the reasoning behind choosing these attributes can be found in the 

second chapter of this dissertation on the cluster analysis of corruption level in continents using 

principal component analysis and machine learning techniques. In the second chapter of this 

dissertation, a principal component analysis (PCA), cluster analysis, and a random forest technique 

to determining CPI values for countries were performed. By performing PCA, the potential 

correlations between the thirteen attributes (C1 to C13 shown in Table 3.1.) were dealt with, and 

the original potentially correlated attributes were condensed into principal components – with a 

minimum potential loss of data information. Then, the top three selected principal components 

(PC1, PC2, and PC3) were used to measure the Euclidean distance between the components for 

each of the 113 countries to form the clusters. The optimum number of clusters was verified using 
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the K-means machine learning technique, and categorized the countries into four clusters. Table 

3.2. shows the list of the countries within their corresponding clusters. 

Further, using a random forest algorithm, the marginal effects of the given variables on the 

outcome were analyzed, and the most important attributes in determining the CPI values using 

Gini charts were identified and ranked. In the time series analysis that is presented in this 

dissertation, the top four important attributes corresponding to each cluster were used to predict 

the CPI values. These attributes are shown in Table 3.3. in descending order of 

importance/influence. 

Table 3.2. The cluster analysis results      

Clusters Countries 
No. of Countries in 
Each Continent 

1 

Albania, Armenia, Azerbaijan, Bahrain, Barbados, Chile, 
China, Costa Rica, Cyprus, Czech, Estonia, France, 
Georgia, Hungary, Iceland, India, Indonesia, Italy, Jordan, 
Kazakhstan, Korea (Rep.), Latvia, Lithuania, Mauritius, 
Mexico, Montenegro, Morocco, Oman, Panama, Poland, 
Portugal, Russia, KSA, Slovakia, Slovenia, South Africa, 
Spain, Thailand, Turkey, Uruguay, Viet Nam 

Africa 
Asia & Oceania 
Europe 
North America 
South America 

3 
13 
19 
4 
2 

2 

Algeria, Argentina, Bangladesh, Bolivia, Bosnia-
Herzegovina, Brazil, Bulgaria, Croatia, Dominican, Egypt, 
El Salvador, Greece, Guatemala, Honduras, Iran, Lebanon, 
Moldova, Nicaragua, Nigeria, Pakistan, Paraguay, Peru, 
Philippines, Romania, Serbia, Trinidad Tobago, Tunisia, 
Ukraine  

Africa 
Asia & Oceania 
Europe 
North America 
South America 

4 
5 
8 
6 
5 

3 

Australia, Austria, Belgium, Canada, Denmark, Finland, 
Germany, Ireland, Israel, Japan, Luxembourg, Malaysia, 
Netherlands, New Zealand , Norway, Singapore, 
Sweden, Switzerland, UK, USA 

Africa 
Asia & Oceania 
Europe 
North America 
South America 

0 
6 
11 
3 
0 

4 

Benin, Burkina Faso, Burundi, Cameroon, Côte d'Ivoire, 
Ethiopia, Gabon, Gambia, Ghana, Guyana, Jamaica, Kenya, 
Lesotho, Libya, Madagascar, Malawi, Mauritania, 
Mozambique, Namibia, Nepal, Rwanda, Senegal, Uganda, 
Zambia 

Africa 
Asia & Oceania 
Europe 
North America 
South America 

21 
1 
0 
1 
1 

 
 

  



 
 

70 

Table 3.3. Attributes corresponding to the world level and cluster level, 2007 to 2017 
 

Level Top four influential attributes 
World C11 - technological readiness, C3 - Human Development Index,  

C2 - E-Governance Index, C4 - undue influence 
Cluster1 C11 - technological readiness, C1 - Gross National Income,  

C6 - security, and C4 - undue influence 
Cluster 2 C3 - Human Development Iindex, C4 - undue influence,  

C2 - E-Governance Index, C5 - public sector performance 
Cluster 3 C5 - public sector performance, C9,  

C2 - E-Governance Index, C11- technological readiness 
Cluster 4 C4 - undue influence, C5 - public sector performance,  

C6 - security, C1 - Gross National Income 

 Methodology    

3.4.1 Artificial Neural Network Techniques 

Artificial neural network (ANN) are biologically inspired computational networks which 

simulate the way the human brain investigates and processes information (Park & Lek, 2016). 

Modeling of complex phenomena requires a comprehensive knowledge of the available data, 

different modeling approaches, and the outcome of each approach. The approaches for modeling 

complex systems can be categorized as: Bottom-up (BU) and Top-Down (TD). Each approach 

requires different levels of details of the data required, and tend to yield different outputs (Swan 

& Ugursal, 2009). The BU approach follows a hierarchical structure where higher level results are 

calculated using the accumulation of the lower-level results. However, this approach requires 

detailed data from the lower levels. Moreover, BU models simply become black boxes when the 

connection between higher-level data and lower-level (detailed) data is inseparable.  

In this chapter, the available data does not meet the criteria required of data for BU. In 

other words, the attributes for forecasting CPI are not fully separated, and the interconnections 

between the attributes make the BU approach unfeasible (Brandt et al., 2013). Therefore, the BU 

approach was eschewed in this study. The TD approach, in the literature, has been considered 

applicable where economic analysis is being carried out at a national or regional level. This 

approach avoids outliers and does not need up-to-the-minute data to forecast results (Ozturk et al., 

2004). Hence, TD approaches have been implemented in analyzing macro-economic indicators 



 
 

71 

including population (Bianco et al., 2009), environmental factors (Shabani & Shahnazi, 2019), 

GDP (Ozturk et al., 2004), etc. Due to the nature of the available data in the present chapter, the 

TD approach is used.  

Artificial neural networks (ANNs) with TD approach are significantly beneficial for 

modeling complex nonlinear functions (Murat & Ceylan, 2006). An ANN model has an input layer, 

hidden layers, and an output layer, uses neurons to find a pattern within a dataset and expands the 

pattern to the other or future events. The model is established on a nonlinear relationship between 

the input layers and the output layers (Muyeen et al., 2014). The ANN accuracy varies with the 

network structure. Therefore, different training/learning algorithms, and changes in the number of 

hidden layers, neurons, lags, hyperparameters, etc. can change the output (Beyca et al., 2019).  

ANN techniques can be categorized as follows: feed-forward and feed-backward. As 

shown in Figure 3.1., each category consists of different training algorithms (Poznyak et al., 2018). 

Feed-forward NN training algorithms include: single-layer perceptron, multi-layer perceptron, and 

radial-based function network. On the other hand, recurrent or feed-backward NN algorithms 

include: Bayesian regularization NNs, Hopfield networks, competitive networks, art models, and 

Kohonen’s self-organizing map. One well-known ANN approach and reliable training algorithm 

for nonlinear complex time series analysis is the nonlinear autoregressive with exogenous 

variables (NARX). This is an NN time series forecasting method (a feed-backward approach) with 

the Bayesian regularization training algorithm (highlighted in Figure 3.1.) (Al-Sbou & Alawasa, 

2017; Cicceri et al., 2020; Kayri, 2016; Khan et al., 2014; Murat & Ceylan, 2006; Yu et al., 2019). 

This topic is further discussed in the next section. 
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Figure 3.1. Training algorithm classification for artificial neural networks  

3.4.2 Nonlinear Autoregressive Recurrent Neural Network with Exogenous Inputs 

(NARX) Models 

The nonlinear autoregressive recurrent neural network with exogenous inputs (NARX) 

technique is a time series modeling technique that relates the current value of a time series to both 

past values of the time series and the current and past values of the exogenous inputs time series 

(Taqvi et al., 2020). In fact, this characteristic of NARX, which accepts dynamic variables from 

different time series sets, makes it superior over other feed-forward backpropagation through-time 

algorithm (BPTT) neural networks (Diaconescu, 2008; Jaeger, 2002).  

The recurrent NNs, including NARX, are cyclic in nature. Time lag connections, which 

transfer values between successive activations, form the cycles that include exogenous inputs and 

endogenous inputs (Paul & Sinha, 2016). NARX NN performs this procedure via autonomous 

learning (Yu et al., 2019). The NARX technique builds complex interconnections amongst the 

exogenous variables and ultimately creates a function, and this renders NARX as a reliable 

approach for time series forecast analysis (Boussaada et al., 2018; Ruiz et al., 2016). Figure 3.2. 

presents the architecture of the NARX neural network methodology which was applied to the 

world-level corruption data. In this architecture, the output is forecasted from the past values of 
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CPI as well as the past and present values of the exogenous variables. The NARX technique is 

defined according to Eq. 3.1.: 

-�. + 0� = 12-�. + 1�, … , -�. + 0 − 1�, 4�. − 5 + 1�, … , 4�. − 5 + 0 − 1�6 + 7          Eq. 3.1. 

where, 0  is the discrete time step, -�. + 0�  is the predicted value of CPI, 1�. � is the neural 

network mapping function, -�. + 1�, … , -�. + 0 − 1� are the past predicted values for CPI, 0 is 

the number of lags, 4�. − 5 + 1�, … , 4�. − 5 + 0 − 1�  are the past values for the exogenous 

variables (including 5 number of lags), and 7 is the error term. The variable -�.� (Figure 2) is 

defined as follows: 

-�.� = 	∑ 	�∅� 2∑ 2:��4;�� + ���-;��6<��� 6              Eq. 3.2. 

where, ∅ is the hidden layer activation function, :�� and ��� are the hidden layer input weights at 

the neuron j, 	� is the hidden layer output weights, and = is the number of input nodes.  

In the NARX technique, a recurrent multi-layer perceptron (RMLP) is utilized to estimate 

the mapping function of 1�. �, which consists of input layers, hidden layers, and output layers. 

RMLP also includes neurons, activation functions, and weights. Within the hidden layer, neural 

network functions are operated through the interior neurons (Tang, 2020; Yu et al., 2019). The 

neurons multiply the previous layers’ input vectors by the weight vectors, and they provide the 

scalar output. The connection weights are tuned using the Bayesian regularization algorithm. 

Afterward, the activation function maps each output layer to generate the neuron output to be 

forwarded to the next layer. In other words, to compute the output, the weighted sum of the inputs 

is being applied to the activation function (Diaconescu, 2008). When the generalization 

improvement (in the training period) ends, and the changes in the mean square error values (MSE) 

become stable, the training process automatically stops. MSE is a crucial performance evaluation 

criterion that assists with determining the optimum initial hyperparameters for the neural network. 

MSE can be obtained according to Eq. 3.3.: 

>?@ = 	??@/�1      Eq. 3.3. 

where, ??@ is the sum of square errors, and �1 is the degree of freedom. Consequently, the lowest 

MSE value for the neural network models lead to the optimum model (Hagan et al., 1997). After 

the first model is fitted through the series-parallel architecture, more time steps ahead can be 
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forecast in a closed-loop parallel architecture, where each predicted output (in the previous step) 

is fed into the model to predict a future output. 

In NARX, the number of hidden layers, lags, and neurons, as the main hyperparameters, 

influence the accuracy of the results. Hence, several different numbers of hidden layers, lags, and 

neurons is investigated to identify the optimum model. The variation of the number of hidden 

layers, lags, and the number of neurons selected in this study were 1 to 7 for the number of hidden 

layers, 1 to 3 for the number of lags, and 1 to 20 for the number of neurons, respectively. The 

precision of the models is investigated by comparing the mean square error values (MSE).  

Our exogenous variables (inputs), as shown in Table 3.3., include GNI, E-governance 

index (EGI), human development index (HDI), undue influence, public-sector performance, 

security, labor market efficiency, and technological readiness. CPI is used as the dependent 

variable (output). Data from 2007 to 2017 for 113 countries are assembled for all variables with 

70% of the data used for training the model, 15% for validation, and 15% of the data to test the 

model. In the next section, the results of the NARX neural network analysis outcome are presented. 

 
 

 

Figure 3.2. The architecture of NARX neural network applied to the world-level data 
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 Results and Discussion 

Hyperparameters play a critical role in the accuracy of the NARX analysis or any neural 

network analysis. (Al-Sbou & Alawasa, 2017). The hyperparameters, which need to be tuned to 

give models with higher accuracies, in the NARX analysis are the number of hidden layers, lags, 

neurons, and epochs and the learning rate. In many cases, a higher number of hidden layers causes 

overfitting in the model, and lower prediction accuracy (Kim et al., 2019; Liu & Kim, 2018). In 

the analysis, different numbers of hidden layers and lags are investigated to initiate the neural 

network analysis, and the least error associated with a hidden layer and a lag are chosen. Table 

3.4. presents the errors associated with the number of lags and the number of hidden layers for the 

world-level data.  

The data shows that 4 hidden layers with 1 lag gives the least possible error among the 

other number of hidden layers and lags. The training MSE is calculated 0.261, the error for the 

validation phase is 0.180, and the testing error is 0.243. The 4 hidden layer training MSE for lag 2 

and lag 3 are 26.82% and 15.71% higher than that of the 4 hidden layer MSE for lag 1, respectively. 

When it comes to the testing MSE, lag 2 and lag 3 show 93.49% and 181.61% higher MSE 

compared to lag 1, respectively. Similarly, 4 hidden layer NN with lag 1 is 29.08% lower than that 

of the MSE values for the 7 hidden layer NN with lag 1. Likewise, 4 hidden layer NN with lag 1 

illustrates a 50.01% lower testing MSE compared to that of 7 hidden layer NN with lag 1. This 

also shows that when the number of hidden layers increases, lower prediction accuracy is obtained. 

To fine-tune another crucial NARX NN hyperparameter, the focus is made on the number 

of neurons at each hidden layer. Table 3.5. presents the errors associated with the number of hidden 

layers (H) and the number of neurons (N) for the world-level data. The data indicates that 4 hidden 

layers with 5 neurons give the least possible error among the other number of hidden layers and 

neurons. The training MSE for H4|N5 is calculated 0.236 and the testing error is 0.209. H3, H5, 

and H6 with 5 neurons show 2.48%, 4.45%, and 0.84% higher training MSE compared with H4|N5, 

respectively. Likewise, testing MSE for H4|N5 is 15.72%, 36.08%, and 53.76% lower than that of 

the H3, H5, and H6 testing MSE with 5 neurons. When the number of neurons exceeds 10 neurons, 

the errors significantly increase. The H4|N5 training and testing MSE values are 43.13% and 49.64% 

lower than that of the training and testing MSE for H4 with 10 neurons. This also confirms the 

importance of fine-tuning hyperparameters for the NARX NN. 

 



 
 

76 

Table 3.4. NARX errors associated with the number of hidden layers and the number of lags 
(world-level category) (neuron = 1, epochs = 100, and learning rate = 0.1) 

Lag No. of Hidden 
Layers 

Training MSE Validation MSE Testing MSE 

1 
1 

0.278 0.175 1.073 
2 0.494 0.385 0.253 
3 0.315 1.484 0.715 
1 

2 
0.351 0.228 0.561 

2 0.375 0.669 0.309 
3 0.619 1.164 0.675 
1 

3 
0.267 0.188 0.280 

2 0.341 0.485 0.540 
3 0.527 0.793 0.466 
1 

4 

0.261 0.180 0.243 

2 0.331 0.505 0.553 
3 0.302 0.735 0.487 
1 

5 
0.379 0.287 0.413 

2 0.271 0.374 0.499 
3 1.128 0.652 0.425 
1 

6 
0.256 0.189 0.688 

2 1.388 0.372 0.375 
3 0.488 0.502 0.814 
1 

7 
0.368 0.360 1.507 

2 0.327 0.851 0.966 
3 0.278 0.175 1.073 

 

Table 3.5. Hyperparameter fine tuning for the world-level data – NARX errors associated with 
the number of hidden layers (H3-H6) and number of neurons (N1-N10, N15, and N 20) (lag =1, 

epochs = 100, and learning rate = 0.1) 

 Training MSE Testing MSE 
H3 H4 H5 H6 H3 H4 H5 H6 

N1 0.267 0.261 0.279 0.256 0.280 0.243 0.413 0.688 
N2 0.257 0.253 0.271 0.251 0.265 0.235 0.399 0.612 
N3 0.250 0.244 0.265 0.246 0.264 0.228 0.379 0.545 
N4 0.242 0.239 0.251 0.238 0.254 0.224 0.352 0.462 
N5 0.242 0.236 0.247 0.238 0.248 0.209 0.327 0.452 
N6 0.252 0.249 0.254 0.240 0.264 0.233 0.340 0.480 
N7 0.271 0.267 0.286 0.278 0.297 0.249 0.371 0.509 
N8 0.295 0.282 0.304 0.315 0.329 0.259 0.400 0.691 
N9 0.349 0.334 0.361 0.403 0.374 0.347 0.478 0.922 
N10 0.431 0.415 0.435 0.615 0.460 0.401 0.563 1.085 
N15 1.034 1.008 1.175 1.456 1.199 0.972 1.140 2.266 
N20 1.471 1.456 1.640 2.649 1.656 1.370 1.578 3.646 
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The final hyperparameter tuning is related to epochs and learning rates. The epochs range 

from 100 to 1000 and learning rates (LRs) from 0.0001 to 0.1 are investigated to determine the 

optimum MSE. Table 3.6. presents the results for the training and testing MSE values associated 

with different ranges of epochs and LRs for the NARX NN with 4 hidden layers, 5 neurons, and 

lag 1. According to the results, the differences between the epochs and LRs are insignificant, 

demonstrating that the number of hidden layers, neurons, and lags have been selected properly. 

The epochs and the learning rates are kept at 100 epochs and 0.1 learning rate, as a starting point, 

to keep the computational expensiveness as low as possible. 

Table 3.6. Hyperparameter fine tuning for the world-level data – NARX errors associated with 
the epochs and learning rates (LR) (lag =1, hidden layers = 4, and neurons =5) 

Epoch 
Learning Rate 

Training MSE Testing MSE 
0.0001 0.001 0.01 0.1 0.0001 0.001 0.01 0.1 

100 0.240 0.235 0.238 0.236 0.213 0.206 0.211 0.209 
200 0.241 0.239 0.240 0.237 0.215 0.207 0.215 0.211 
400 0.240 0.234 0.237 0.236 0.213 0.205 0.210 0.209 
600 0.250 0.235 0.236 0.236 0.213 0.207 0.211 0.209 
800 0.241 0.238 0.238 0.238 0.214 0.209 0.215 0.212 
1000 0.241 0.239 0.240 0.240 0.215 0.210 0.216 0.215 
 

The data at each level (world-level data and cluster level data) is distinct, therefore, 

different errors are likely for each cluster. This means that the number of lags, hidden layers, and 

neurons can vary for the NARX analysis for each cluster. The analysis of training, validation and 

testing MSE for ranges of the various hyperparameters for each cluster was conducted following 

the process described for the world-level data. The hyperparameter values resulting in optimal 

performance and MSEs for each the world-level and each cluster are presented in Table 3.7. 

According to the results, Cluster 2 and Cluster 3 have a lower MSE value compared with the MSE 

values for Cluster 1 and Cluster 4, which could be due to fact that the CPI variance among the 

countries in Cluster 2 and Cluster3 is significantly less (as shown in Figure 3.3.). Likewise, Cluster 

1 and Cluster 4 exhibits higher errors of 0.254 and 0.259 at the testing phase. Considering the error 

values, four hidden layers are selected for Cluster 1 and Cluster 4, whereas three hidden layers is 

found to be optimum for Cluster 2 and Cluster 3. (Ghahari et al., 2021a) 
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Table 3.7. NARX model hyperparameters and performance values for the world-level and the 
cluster-level analysis  

Category Lag No. 
Hidden 
Layer 

No. 
Neurons 

Training MSE Validation 
MSE 

Testing MSE 

World level 

1 

4 5 0.236 0.161 0.209 
Cluster 1 4 6 0.324 0.267 0.254 
Cluster 2 3 6 0.280 0.189 0.210 
Cluster 3 3 5 0.208 0.140 0.150 
Cluster 4 4 6 0.350 0.294 0.259 
 
 

 

Figure 3.3. Position of countries in each cluster considering CPI values 
 

 

Finally, the results of the NARX analysis using the world-level data and the clusters are 

discussed in this section of this chapter. The NARX ANN time series response for the world-level 

data is presented in Figure 3.4. Figure 3.4.a. indicates the training, target, and predicted outputs 

and the corresponding errors (target output – training output) with a 97.5% confidence band. This 

figure also presents the predicted values for the 2017–2020 period. Figure 3.4.b. presents the 

optimum ultimate epoch that is selected for obtaining the optimum results regarding the world-

level data. The best training performance is identified as occurring at 0.10020 MSE and at the 
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epoch 298 with no observable overfitting. This means that after the initial training of the first 

neural network model, it retrained the network for 298 epochs to reach a near-zero MSE change.  

According to the results, the highest difference between the training target and training 

outputs is calculated for 2012 with a value of –0.999, and the second-highest error is achieved for 

2011 with a value of –0.619 due to the significant change in the average CPI values from 2011 to 

2013. The results show that the predicted CPI values for 2018, 2019, and 2020 (shown in black 

triangles connected with a dashed line) are comparatively close to the real values reported by 

Transparency International for those specific years (TI, 2020). Table 3.8. presents the actual and 

forecast values of CPI, and shows generally insignificant error between the two; the differences 

between the CPI forecasts and actual values in 2017, 2018, 2019, and 2020 are calculated at 0.25, 

0.04, –0.07, and –0.08, respectively. Figure 3.4.a. also indicates that the overall CPI value of the 

world is increasing. Although a 0.18% decrease in CPI value is seen from 2007 to 2010, the general 

trend is positive with a 6.71% increase in the CPI value from 2010 to 2020.  

Figure 3.5. presents the NARX ANN time series response for the first cluster. Figure 3.5.a. 

illustrates training, target, and predicted outputs and the corresponding errors (target output – 

training output) with a 97.5% confidence band. Also, this figure presents the predicted values for 

the 2017–2020 period. Figure 3.5.b. illustrates the optimum epoch chosen for calculating the 

optimum results for Cluster 1; the best training performance is set at 0.2135 MSE and epoch 151 

with no observable overfitting. This denotes the fact that after the initial training of the first neural 

network model, it retrained the network for 151 epochs until it reached a near-zero change in MSE. 

Based on the results, the maximum difference between the training target and training 

outputs is in 2013 with a value of 0.835, and the second-highest error is in 2011 with a value of -

0.690. This could be due to the considerable change in the average CPI values from 2011 to 2013 

for this cluster. The predicted CPI value results for 2017, 2018, 2019, and 2020 are close to the 

real values reported by Transparency International for those specific years (TI, 2020). Table 3.8. 

presents the actual and forecast CPI values. The results show 0.01, 0.26, 0.21, and 0.39 differences 

between the forecast and actual CPI values in 2017, 2018, 2019, and 2020, respectively. 

Furthermore, Figure 3.5.a. shows that the overall CPI value for Cluster 1 is increasing. Despite a 

1.67% decrease in CPI value from 2008 to 2010, the general trend is positive with a 7.41% increase 

in the CPI value from 2010 to 2020. 



 
 

80 

 
(a) Training, target, and predicted output results and errors 

 

 
(b) Epoch and learning rate 

 

Figure 3.4. NARX ANN time series response for the world level data 
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(a) Training, target, and predicted output results and errors 

 

 
(b) Epoch and learning rate 

 

Figure 3.5. NARX ANN time series response for Cluster 1 
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The NARX ANN time series analysis results for Cluster 2 are presented in Figure 3.6. 

Figure 3.6.a. shows training, target, and predicted outputs and the corresponding errors (target 

output – training output) with a 97.5% confidence band. Furthermore, this figure shows the 

predicted values for the 2017–2020 period. Figure 3.6.b. denotes the optimum ultimate epoch 

selected in this analysis in order to obtain the optimum results. The best training performance is 

caught at epoch 248 and 0.20484 MSE with no observable overfitting. This shows that after the 

initial training of the first neural network model, it retrained the network for 248 epochs until it 

reached a near-zero change in MSE.  

The results show that the highest training target and training outputs difference is in 2012 

and 2011 with values of –0.833 and –0.714, respectively, which could be due to the significant 

change in the average CPI values from 2011 to 2013. The results indicate that the predicted CPI 

values for 2017 to 2020 are relatively close to the real values reported by Transparency 

International (TI, 2020). The values presented in Table 3.8. indicate a minor error between the real 

CPI values and the predicted CPI values. Differences between the predicted and real CPI values 

for 2017 to 2020 are calculated as 0.23, –0.01, –0.35, and –0.21, respectively. Moreover, Figure 

3.6.a. shows an overall increase in the CPI values in this cluster. Although a 3.64% decrease in the 

CPI value is seen from 2008 to 2010, the general trend is upward with a 13.37% increase in the 

CPI value from 2010 to 2020.  
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(a) Training, target, and predicted output results and errors 

 

 
(b) Epoch and learning rate 

 

Figure 3.6. NARX ANN time series response for Cluster 2 
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Figure 3.7. presents the NARX ANN time series response for the third cluster. Figure 3.7.a. 

shows training, target, and predicted outputs and the corresponding errors (target output – training 

output) with a 97.5% confidence band. This figure also illustrates the predicted values for 2017, 

2018, 2019, and 2020. Figure 3.7.b. shows the optimum epoch chosen for calculating the optimum 

results for Cluster 3; the best training performance is obtained at 0.11938 MSE and epoch 66 with 

no observable overfitting. This indicates that after the initial training of the first neural network 

model, it retrained the network for 66 epochs until it reached a near zero change in MSE.  

Based on the results, the difference between the training target and training outputs is at its 

maximum value of 0.696 in 2012, and the second-highest error at 0.436 in 2013, which could be 

due to the significant change in the average CPI values in 2012 and 2013 for this cluster. The 

predicted CPI value results for 2017 to 2020 are relatively close to the real values reported by 

Transparency International for those specific years (TI, 2020). Table 3.8. presents the actual and 

forecast CPI values. The results show differences of –0.63, –0.32, –0.35, and –0.16 between the 

forecast and actual CPI values in 2017 to 2020, respectively.  

Figure 3.7.a. also illustrates that the overall CPI value for Cluster 3 is decreasing. The 

general CPI trend in this cluster is negative, with a 5.35% decrease in the CPI value from 2007 to 

2020. Considering the fact that Cluster 3 mainly includes developed countries, reduction in CPI 

can be extremely alarming, and the underlying causes of the down trend need to be deeply studied. 

Taking another look at Figure 3.3. suggests that Israel and Malaysia might also belong to other 

clusters as they look like outliers for Cluster 3. Hence, the clustering of countries might need a 

revisit by changing the NARX hyperparameters for determining lags, number of hidden layers, 

number of neurons, etc. or the Random Forest hyperparameters for determining the top four 

influential attributes.  
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(a) Training, target, and predicted output results and errors 

 

 
(b) Epoch and learning rate 

 

Figure 3.7. NARX ANN time series response for Cluster 3 
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Figure 3.8. presents the NARX ANN time series analysis results for Cluster 4. Figure 3.8.a. 

shows training, target, and predicted outputs and the corresponding errors (target output – training 

output) with a 97.5% confidence band. This figure also illustrates the predicted values for 2017 – 

2020. Figure 3.8.b. shows the optimum ultimate epoch selected in this analysis to obtain the 

optimum results; the best training performance is caught at epoch 143 and 0.25328 MSE with no 

observable overfitting. This means that after the initial training of the first neural network model, 

it retrained the network for 143 epochs until it reached a near-zero change in MSE.  

The results indicate that the highest training target and training outputs difference are in 

2011 and 2012 with values of –0.733 and 0.696, respectively, which could be due to the significant 

change in the average CPI values from 2010 to 2012 in this cluster. The results denote that the 

predicted CPI values for 2017 - 2020 are relatively close to the real values reported by 

Transparency International (TI, 2020). The values are presented in Table 3.8. indicating a minor 

difference between the real CPI values and the predicted CPI values. The differences between the 

predicted and real CPI values for 2017 - 2020 are calculated at 0.18, 0.17, –0.17, and 0.08, 

respectively. Furthermore, Figure 3.8.a. indicates an overall increase in the CPI values. The general 

trend in this cluster is upward with a 21.25% increase in the CPI value from 2010 to 2020. 
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(a) Training, target, and predicted output results and errors 

 

 
(b) Epoch and learning rate 

 

Figure 3.8. NARX ANN time series response for Cluster 4 
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Table 3.8. CPI actual and forecast value 

Year Category Actual CPI CPI Forecast  Error  
(Forecast - Actual) 

2017 

World level 47.70 47.45 0.25 
Cluster 1 49.39 49.38 0.01 
Cluster 2 34.82 34.59 0.23 
Cluster 3 78.35 78.98 -0.63 
Cluster 4 34.29 34.11 0.18 

2018 

World level 47.65 47.61 0.04 
Cluster 1 49.71 49.45 0.26 
Cluster 2 34.64 34.65 -0.01 
Cluster 3 77.80 78.12 -0.32 
Cluster 4 34.17 34.00 0.17 

2019 

World level 47.73 47.80 -0.07 
Cluster 1 50.15 49.94 0.21 
Cluster 2 34.11 34.37 -0.26 
Cluster 3 77.65 78.00 -0.35 
Cluster 4 34.58 34.75 -0.17 

2020 

World level 47.86 47.94 -0.08 
Cluster 1 50.44 50.05 0.39 
Cluster 2 34.14 34.35 -0.21 
Cluster 3 77.45 77.61 -0.16 
Cluster 4 34.79 34.71 0.08 

 Concluding Remarks 

Artificial neural networks (ANNs) are effective tools for non-linear mapping of multiple 

variables on one or more outputs. In this chapter, a well-known ANN method − the nonlinear 

autoregressive recurrent neural network with exogenous inputs (NARX), was used to model and 

forecast corruption in clusters of countries. The analysis was carried out using the data on 113 

countries from 2007 to 2017. The development-related attributes that have significant influence 

on the levels of corruption in countries, as measured by CPI, were identified from the literature. 

The countries were split into four clusters based on their development-related attributes, and 

developed corruption forecasting models in each cluster. The NARX neural network training was 

performed on 70% of the data, 15% of the data was used for validation, and the rest of the data 

was used for testing the output.  

Any reliable neural network model needs precise hyperparameter fine-tuning before 

training. The variation of the number of hidden layers, lags, and the number of neurons were 

selected as: 1 to 7, 1 to 3, and 1 to 20, respectively. Considering MSE as a baseline for the 

hyperparameter tuning process showed that 1 lag, 4 hidden layers, and 5 neurons would give an 
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optimum NARX model for forecasting CPI values for the world-level data. For Cluster 1 and 

Cluster 4, the number of hidden layers were found to be 4, versus 3 for Cluster 2 and Cluster 3. At 

the same time, the number of neurons for Cluster 1, Cluster 2, and Cluster 4 were chosen to be 6, 

versus 5 for Cluster 3. Epochs and learning rates were found to have no significant influence on 

the initial hyperparameter MSE values for the NARX models. It was observed that when the 

number of neurons and hidden layers increased, a relatively lower prediction accuracy was 

obtained, due to model overfitting. 

As expected, the NARX NN prediction models showed different results for the world-level 

data analysis and the cluster-level data analysis. For the world-level data, it was found that there 

is a general uptrend momentum in the value of CPI showing a 6.71% increase in CPI from 2010 

to the predicted value of CPI in 2020. Cluster 1, Cluster 2, and Cluster 4 showed the same uptrend 

with 7.41%, 13.37%, and 21.25% increase in CPI from 2010, despite having a relatively minor 

downtrend in CPI from 2007 to 2010. However, Cluster 3 – despite containing developed countries 

mostly – showed a 5.35% decrease in CPI from 2007. For countries within the clusters developed 

in this chapter of the dissertation, the results can be valuable to policymakers, governments, and 

NGOs as they continue to assess the efficacy of their current or prospective future corruption-

mitigation policies, programs, and initiatives.   

In this chapter, one of the main limitations was the lack of adequate data on development-

related attributes. In future studies, access to other data sources will be helpful to develop more 

confident conclusions. Another limitation was the reliance on only one attribute (CPI) as the 

indicator of corruption. Suggested directions for future research include (a) a detailed investigation 

of the causes of the uptrend and downtrend momentum in CPI values in each cluster; (b) adequate 

and explicit assessment of corruption-mitigation initiatives implemented in countries in each 

cluster, and identifying solutions that have worked well as those that failed, and an overall 

assessment of the extent to which these solutions succeeded or failed. Further, future studies could 

investigate project-level data (instead of country-level in this study). In this regard, researchers 

could examine the effect of corruption on infrastructure delivery quality, time delay, and cost 

overruns, and thereby measure, for example, the portion of overrun cost that could be attributed to 

corruption and the portion that could be attributed to inefficiency. 
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CHAPTER 4. CORRUPTION - IMPACT OF E-GOVERNANCE: NEW 

EVIDENCE USING PANEL VECTOR AUTO REGRESSION ANALYSIS 

[A portion of this chapter is presented at the 2018 GIS Conference1] 

 Introduction 

Corruption, the abuse of public power for private benefit (TI, 2017; WBG, 2020), exists in 

a myriad of forms (Heywood, 2014) and typically occurs at the interface of the public and private 

sectors (Ackerman, 1978; Heidenheimer et al., 1989). Corruption is not only damaging to the entire 

society from a political, social, and economic perspective (Heywood, 2014; Nur-Tegin & Czap, 

2012; Tran, 2021) but also is associated with impacts that are inequitable, as low-income groups 

are more adversely affected (Paul, 1997; Thanh et al., 2021). It has been found, for example, that 

in developing countries such as Paraguay and Sierra Leone, higher-income persons generally pay 

a lower percentage of their income in bribes compared to low-income persons (Wright et al., 2007). 

From an economic perspective, the effects of corruption include short-term economic inefficiency, 

specifically in the private market, and long-term dynamic inefficiency and instability in economic 

growth (Mauro, 1995; Sulemana & Kpienbaareh, 2018; World Bank, 1997).  

Irisova (2014) determined that at least 5% of the world’s GDP (worth $2.6 trillion) is lost 

annually due to corrupt practices globally. This is “lost” money that not only denied use for 

development purposes but also is largely being used in crimes involving drugs and human 

trafficking (Integrity Vice Presidency, 2016). From a social standpoint, corruption degrades 

societal or traditional values of honesty, equity, and transparency, weakens social cohesion, and 

damages the integrity of the civil service. The political impact of corruption is even more 

destructive. In corrupt environments where government’s administrative decisions are not merit-

based, and its functions and decisions are neither transparent or objective, public distrust of 

government is exacerbated, and the civil society becomes less engaged. This leads to diminished 

capacity for law enforcement and compromised political legitimacy of the government (Johnston, 

1998), (Mauro, 1995; Sulemana & Kpienbaareh, 2018; World Bank, 1997).  

 
1 Ghahari, S., Ghotbi, S., Labi, S., & Naderpajouh, N. (2018). Is Corruption Influenced by Human Development Index 
and Transparency? A Global Spatial Assessment Using GIS. In 2018 GIS Conference. GIS, Geoinformatics, and 

Remote Sensing at Purdue. (Ghahari et al., 2018c) 
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The problem of corruption continues to plague several countries (Baker et al., 2019; Tanzi, 

1998), and several mitigation initiatives, programs, and polices have been implemented to fight 

the disease (Doig & Riley, 1998). However, these have generally had rather limited or short-lived 

efficacy (Locatelli et al., 2017). The advent of the information and communication technologies 

(ICT) age, accompanied by the inherent openness and transparency it offers to all spheres of human 

activity (Bannister & Connolly, 2011) has led to renewed hope in the fight against corruption 

(Davies & Fumega, 2014; Shim & Eom, 2008).  

An example of ICT applications is electronic governance (e-governance) (Bertot et al., 

2010). The use of ICT, while promising, needs to be initiated or supported by the government 

rather than an NGO or the private sector for it to be effective. However, doing this with a coalition 

of various stakeholders (governmental officials, politicians, contractors, non-governmental 

organizations (NGOs), journalists, and the general public) can be useful. Rossel and Finger (2007) 

defined e-governance as “the use of the technologies that both help to govern and have to be 

governed”. These governance applications include distribution of government amenities, exchange 

of data, incorporation of systems between government and citizens, government-to-business, 

government-to-government, and government-to-employees (Saugata & Masud, 2007). 

Consequently, these systems, if designed properly, could yield an integrated transparent system 

that is amenable to open monitoring where irregular actions can be quickly identified. Having 

access to public information and transparency has been found to be crucial for any economy to 

thrive in international trade (Bertot et al., 2010; Bertot et al., 2012; Cuillier & Piotrowski, 2009).  

Clearly, the visibility of a government’s administrative functions has been found to 

enhance transparency as it helps citizens monitor government activities and track the actions of 

government employees. As such, researchers have identified a need to investigate the relationship 

between e-governance and corruption level. It is anticipated that if such a relationship is identified, 

any causal effects of e-governance on corruption reduction can be identified and measured, and 

this could help provide greater justifications for investments in e-governance. 

The main objective of this chapter of the dissertation is to investigate the association 

between the e-governance and the level of corruption in a country. The analysis is carried out at 

two levels, first, at a global level where all countries are considered as one group, and second at 

the group level where the countries were clustered based on their gross national income per capita. 

E-governance is represented using the e-governance index (EGI) and corruption using the 
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Corruption Perceptions Index (CPI). To what extent does a unit change in EGI associated with CPI 

changes? Does the direction and intensity of this relationship vary across the continents, or is it 

valid for all countries with specific income levels? This research sets out to address these questions 

using panel vector autoregression (PVAR) analysis involving Orthogonalized Impulse-Response 

Functions (IRF), Granger-causality, and variance decomposition analysis on data from 133 

countries from the year 2007 to 2017 using the EGI and the CPI. The analysis considered the low- 

and medium-income level and high-income level countries based on their gross national income 

per capita (GNI). In the next section, a review of the relevant literature is presented, followed by 

a description of the data collection and methodology. The results of the analysis are then discussed, 

and suggestions for the use of e-governance to reduce corruption are made. The chapter ends with 

concluding remarks and recommended directions for future work in this research area.  

 Literature Review   

This chapter of the dissertation seeks to identify any relationship or association between e-

governance and corruption. As such, the review of literature focuses on only corruption factors 

that could potentially be mitigated by e-governance (as the corruption factors that are pertinent in 

this study) and past use of promising analytical methodologies that could be used to address the 

study objective. The first of the pertinent corruption factors is the lack of government 

accountability (Paul, 1997). Klitgaard (1991) stated that “illicit behavior flourishes when agents 

[public servants] have a monopoly power over clients [citizens], when agents have great discretion, 

and when accountability of agents to the principal is weak.” Ackerman (1978) and Dininio et al. 

(2005) argue that the removal of corrupt officials, per se, is not likely to mitigate the problem, and 

that systemic changes in the decision-making processes are needed. E-governance, by enabling 

free and easy access and flow of data among government offices, public and private organizations 

and businesses, and citizens can enhance the transparency of government functions (Bertot et al., 

2010; Rossel & Finger, 2007; Saugata & Masud, 2007). 

The second pertinent corruption factor is the difficulty of clients (the public) to access basic 

government services and to process various forms associated with their business, travel, health 

care, and so on. Such difficulty not only makes the clients willing to pay a bribe to facilitate their 

official requests and processes, but also creates a fertile ground for the concerned government 

employees to demand such bribes. In India and Cameroon, for example, obtaining licenses, 



 
 

93 

construction authorizations, and labor inspections are considered to be the main sources of 

corruption (Kenny, 2009b). E-governance can make available user-friendly and easy-to-use online 

portals where stakeholders and citizens can access and submit forms (Kenny, 2009b) and where 

corruption watchdogs can monitor the integrity of government functions (Northrup & Thorson, 

2003).  

Other pertinent corruption factors that can be mitigated using e-governance are discussed 

in (Andersen, 2009; Garcia-Murillo & Ortega, 2010; Mauro, 1995; Mistry, 2012). Certain 

indicators of macroeconomic performance can be influenced by e-governance, and therefore, can 

impact corruption where e-governance is adopted. Saha and Su (2012) investigated the integration 

effect of democracy and economic freedom on corruption, and Policardo and Carrera (2018) found 

that income inequality could be responsible for high corruption levels in a region.  

Regarding the analysis technique used in this chapter of the dissertation, the literature 

review showed that a few studies have applied panel vector autoregression (PVAR) to data similar 

to the one used in the present study. Sadorsky (2010) used the technique to analyze the impact of 

financial development on energy consumption in emerging economies. The technique has also 

been used in other concepts including examination of the dynamic relationship between corruption 

and inflation (Sassi & Gasmi, 2017), the relationship between asset prices and global excess 

liquidity (Brana et al., 2012), assessment of the influence of external shocks on output stability in 

low-income countries (Raddatz, 2005), and analysis of financial development and dynamic 

investment behavior (Love & Zicchino, 2006).  

 Data  

The data are from 133 countries from 2007 to 2017 using CPI and EGI. In order to cover 

the wide variety of variables, four different databases were used in this study: the databases from 

the World Bank Group (WBG) (the Gross National Income per Capita) (World Bank, 2017b), 

Transparency International (TI) (Corruption Perceptions Index) (TI, 2017), the United Nations 

Department of Economic and Social Affairs (UNDESA) (the E-Governance Index) (UNDESA, 

2017), and the United Nations Development Programme (the Human Development Index) (UNDP, 

2017). Table 4.1. presents the breakdown of the data used in this study.  

 



 
 

94 

Table 4.1. The breakdown of the data included in the study 

Organization WBG  
($/Capita) 

TI  
(0-100 (best)) 

UNDESA  
(0-1 (best)) 

UNDP  
(0-1 (best)) 

Database Gross National 
Income per 
Capita (GNI) 

Corruption 
Perceptions Index 
(CPI) 

E-Governance 
Development 
Index (EGI) 

Human 
Development Index 
(HDI) 

 

Data on the gross national income per capita (GNI) were obtained from the World Bank 

Atlas method (World Bank, 2020b) (shown in Table 4.2.). GNI is defined as the “sum of value 

added by all resident producers plus any product taxes (fewer subsidies) not included in the 

valuation of output plus net receipts of primary income from abroad (WHO, 2020).” It is the main 

indicator of how “rich” or “poor” a country is. The World Bank (2020b) places countries into four 

GNI-based tiers: low-income (below $1,006), lower-middle-income (between $1,006 to $3,955), 

upper-middle-income (between $3,956 to $12,235), and high-income (over $12,235). In this study, 

the GNI per capita data for the year 2017 is used to place the countries into two clusters: low- and 

middle-income (or developing countries) and high-income (or developed countries). The analysis 

also consider the countries as a whole group (global level) and the countries with different level of 

income, i.e., developing (83 countries) and developed (49 countries).  
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Table 4.2. List of the countries and income levels used in this study 

 High-Income Level 
(Over $12,536 GNI per Capita) 

Low- and Medium- Income Level  
(Bellow $12,536 GNI per Capita) 

Europe 

Austria Belgium Croatia Albania Armenia Bosnia & 
Herzegovina 

Cyprus Czech 
Republic 

Denmark Bulgaria Georgia Moldova 

Estonia Finland France Montenegro Romania Serbia 
Germany Greece Hungary Turkey Ukraine  
Iceland Ireland Italy  
Latvia Lithuania Luxembourg 
Malta Netherlands Norway 
Poland Portugal Slovakia 
Slovenia Spain Sweden 
Switzerland UK  

North 
America 

Barbados Canada Panama Costa Rica Dominican 
Republic 

El Salvador 

Trinidad 
and Tobago 

USA  Guatemala Honduras Jamaica 

 Mexico Nicaragua  

Asia & 
Oceania 

Australia Bahrain Brunei 
Darussalam 

Azerbaijan Bangladesh Cambodia 

Israel Japan South Korea China India Indonesia 
Kuwait New 

Zealand 
Oman Iran Jordan Kazakhstan 

Qatar KSA Singapore Kyrgyzstan Lebanon Malaysia 
UAE   Mongolia Nepal Pakistan 
 Philippines Russia Sri Lanka 

Tajikistan Thailand Timor-Leste 
Viet Nam   

South 
America 

Argentina Chile Uruguay Bolivia Brazil Colombia 
Ecuador Guyana Paraguay 
Peru Venezuela  

Africa 

 Algeria Benin Botswana 
Burkina 
Faso 

Burundi Cameroon 

Cape Verde Chad Côte d'Ivoire 
Egypt Ethiopia Gabon 
Gambia Ghana Kenya 
Lesotho Libya Madagascar 
Malawi Mali Mauritania 
Mauritius Morocco Mozambique 
Namibia Nigeria Rwanda 
Senegal South 

Africa 
Tanzania 

Tunisia Uganda Zambia 
Zimbabwe   
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Transparency International, a leader in assessing perceived levels of corruption globally, 

developed the Corruption Perceptions Index (CPI) − an annually reported index that is based on 

thousands of surveys conducted each year on the perceived degree of corruption in governments. 

CPI ranges from zero (“highly corrupt”) to 100 (“very clean”) (GFI, 2020; TI, 2017). It should be 

noted, however, that CPI is perception-based and that is often considered a limitation of that index. 

For example, it does not capture “legalized” corruption, such as excessively high salaries that 

legislators legislate for themselves, lobbying, and so on. Moreover, the number of participants, 

their income level, occupation, school of thought, and many other qualitative variables related to 

the participants and the questionnaires can cause variances and biases in the assessment, which 

need to be studied carefully. Nevertheless, CPI is generally considered a good approximation of 

the level of corruption in a country, according to an extensive study on the reliability of this index 

performed by Lambsdorff (1999). Figure 4.1. presents a spatial heatmap of CPI distribution 

globally. As of 2017, two-thirds of the countries around the globe are ranked under 50, and the 

overall average is 43. Table 4.3. presents the descriptive statistics. The E-governance Development 

Index (EGI), developed by the United Nations, is a survey-based indicator that shows the extent 

of digital interaction of a country’s government and its citizens, at all scales and levels of a 

government authority (U.N., 2018). The e-governance index data was obtained from the United 

Nations Survey (Department of Economic and Social Affairs, 2018). This index takes values from 

0 to 1. Figure 4.2. presents an EGI heatmap.   

Table 4.3. Summary statistics of EGI and CPI - 133 countries from 2007-2017 
Variable Observations Mean Std. Dev. Min Max 
 
All Countries 
        EGI    1854 0.533 0.196 0.1 0.946 
        CPI 1854 45.122 20.167 14 95 
 
Low- and Middle-Income Countries 
        EGI    1193 0.426 0.140 0.1 0.797 
        CPI 1193 33.727 9.949 14 72 
 
High-Income Countries 
        EGI    661 0.728 0.117 0.1 0.946 
        CPI 661 65.664 4.460 17 95 
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Figure 4.1. Corruption Perceptions Index map (TI, 2017)              

 

 

Figure 4.2. E-Governance index map (Department of Economic and Social Affairs, 2018)            
 

The Human Development Index (HDI) was created by the United Nations Development 

Programme (UNDP, 2017) to assess a country’s development in terms of their potential and 

capabilities (da Silva et al., 2020). Figure 4.3. presents the distribution, from 2007 to 2017, of 

countries with respect to CPI (y-axis), EGI (x-axis), and HDI (data point circle size). The highest 

CPI and lowest CPI values of the countries are shown at the top and the bottom of each cell, 

respectively. From the figure, it can be observed that over the study period, 4 out of 5 continents 

shifted towards up and right with a minimal change in HDI levels. However, the countries in South 

America did not follow these trends.    
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0    25                   75 100 
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(a) 2007 

 
(b) 2017 

 

Figure 4.3. CPI, EGI, and HDI trends 
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 Methodology    

An autoregressive statistical model has the ability of predicting its future values based on 

its past values. In this type of model, the assumption is that past values influence current values. 

Vector autoregression (VAR) models simplify single-variable autoregressive models while 

considering panel data and multivariate time series. Analogous to autoregressive models, each 

variable in a VAR model (known as a “vector”) is assigned to an equation which contains an error 

term and two lagged values. Hence, the model identifies all variables as endogenous variables. 

Compared to the conventional structural system-of-equations model, a VAR model needs 

relatively little information on the factors that affect a variable; what a VAR model needs is a list 

of the variables that hypothetically influence each other over time (Sims, 1980). Therefore, VAR 

is considerably helpful when it predicts multiple time series variables using a single model. 

In this study a panel data is involved: panel data is data that is comprised of datapoints for 

various cross sections across time. Therefore, instead of a simple VAR model, a model capable of 

dealing with panel data is required: panel vector autoregression (PVAR) extends the VAR model 

by integrating it with a panel-data technique thereby including (explicitly) fixed effects in the 

model (Holtz-Eakin et al., 1988; Jouida, 2018). A PVAR model was chosen in this study to analyze 

the data in the present study for several reasons: first, it is a dynamic panel analysis that includes 

fixed effect outcomes in its time-series analysis. Second, it accommodates static and dynamic 

properties of interdependent models, and helps to link heterogeneous units considering the 

variations in their attributes over time (Liu & Kim, 2018). Third, PVAR analysis inherently 

incorporates a cross-variable dimension where the variable is the country.  

PVAR consists of “a multivariate panel regression of each dependent variable on lags of 

itself, lags of all other dependent variables, and exogenous variables (the estimation is done by 

generalized method of moments (GMM)” (Abrigo & Love, 2015)). Without performing a PVAR 

analysis, it is not feasible to consider the integration of (a) panel data, (b) time series, and (c) 

impulse response and shocks that our variables may have on each other in the future. Hence, PVAR 

can be considered far superior to traditional regression analysis (Boubtane et al., 2013; Pesaran & 

Shin, 1998).  

To illustrate this, consider Figure 4.4. the results of a regression analysis of CPI and EGI. 

Although the regression gives some insights into the nature of the CPI-EGI relationship, it does 

not provide insights regarding the effect that each side of the equation (EGI or CPI) would have 
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on each over time. Therefore, this result cannot help determining the magnitude of EGI change on 

CPI in the years ahead, or vice versa. Hence, traditional regression is unable to address the 

objectives of this chapter. In this chapter of the dissertation, panel vector autoregression (PVAR) 

is performed to identify any association or causal relationship and shock effects between e-

governance and corruption.  

 

Figure 4.4. Preliminary CPI versus EGI model, countries color-coded by continent of location 
  

Further, the PVAR technique allows three crucial identifications with our analysis: 

Granger-causality (Granger, 1969), variance decomposition (Bernanke, 1986; Sims, 1986), and 

impulse-response functions (IRF) (Koop et al., 1996). For these reasons, PVAR is considered 

appropriate for addressing the research questions in this study. Next, the structure of the PVAR 

model is described. A k-variate PVAR model of order p with panel-specific fixed effects can be 

written as follows: 

Yit= Yit-1 τ1+ Yit-2 τ2+…+ Yit-p+1 τp-1+ Yit-p τp+ƒit+ γi+ɛit  Eq. 4.1. 



 
 

101 

 

where, i is the observation/entity (country), t is the time period, Yit is a 1*k vector dependent 

variables, ƒit is 1*k vector dependent variable fixed effects, ɛit is 1*k vector idiosyncratic errors. γi 

is 1*k vector of forward mean-differencing. β k*k matrix and α 1*k matrix are the estimated 

parameters (Abrigo & Love, 2016).  

For the present study, the following PVAR model specification was used (Eq. 4.2.): 

Ya=τ0+τiYa-1+ƒi+γi+ɛi      Eq. 4.2. 

where, Ya is a two-variable vector: EGI and CPI. ƒi denotes the fixed-effects variable that covers 

unobserved individual heterogeneity, i.e. country fixed effects. The lags in the dependent variables 

cause the regressors to be correlated with fixed effects, and need to be accounted using other terms. 

γi is the forward mean-differencing to preserve the orthogonality between the transformed 

variables and the lagged regressors (Arellano & Bover, 1995; Love & Zicchino, 2006). That way, 

the lagged regressor can be used to estimate the parameters using GMM. ɛi is a vector of errors. 

The Im-Pesaran-Shin panel unit root test (Im et al., 2003) is performed on the dataset to ascertain 

the appropriate temporal properties of the data. This test helps detect the existence of stationarity 

in the panel data, for dependent and independent variables. Eq. 4.3. is used for the unit root test: 

∆Yt = τ0+ϑYt-1+∑ ��ΔC;��D
��� +ɛt    Eq. 4.3. 

where Yt is a vector for the time series variables, p is the optimal lag length, and ɛt is a vector of 

errors. The null hypothesis is: “all panels include unit roots”, versus the alternate hypothesis (“at 

least one panel is stationary”).  

To identify the optimum lag length, the likelihood-ratio test was used. These involved 

Akaike’s information criterion (AIC) (Akaike, 1969), Schwarz’s Bayesian information criterion 

(BIC) (Schwarz, 1978), and Hannan and Quinn’s information criterion (QIC) information criteria 

(Hannan & Quinn, 1979). These criteria are given by Eq. 4.4. - Eq. 4.6.: 

AIC=
�
E FG� + 50 H∑ �F�IJ H     Eq. 4.4. 

 

BIC=
�KLKL�E�

E FG� + 50 H∑ �F�IJ H    Eq. 4.5. 
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QIC=
MN	�E�
E FG� + 50 H∑ �F�IJ H     Eq. 4.6. 

where, O  is the number of observations in the time series data, F is the lag order, H∑ �F�IJ H=
	O��∑ P;QP′;SE;�� , and G denotes the number of parameters in the statistical model (Albert & 

Logubayom, 2014). It may be noted that in this chapter’s analysis, AIC, BIC, and QIC determine 

the optimum maximum lag order. In fact, these criteria are estimators of prediction error. These 

criteria provide a means for model selection by assessing the quality of each model, relative to 

each of the other models (Sakamoto et al., 1986). In assessing the amount of information lost by a 

model, these criteria perform a trade-off between the model’s goodness-of-fit  and simplicity 

(Akaike, 1985), and they deal with both the risk of overfitting or underfitting in time series models 

(Akaike, 1969; Schwarz, 1978).  

To quantify the shock of the variables in question on each other, the impulse-response 

functions (IRFs) (Koop et al., 1996) associated with EGI and CPI is determined. The IRF measures 

the shock of one variable on the present and future values of other endogenous variables while the 

null hypothesis is suspended (Henriques & Sadorsky, 2008). The shocks for 10 consecutive years 

are observed. The error residuals produced by IRF may have a correlation issue. As such, it is 

useful to investigate the IRF along with the forecast error variance decomposition (FEVD) 

(Bernanke, 1986; Sims, 1986). FEVD orthogonalizes the shocks using Cholesky’s decomposition 

method (Sassi & Gasmi, 2017); in this method, orthogonalization constraints are imposed on the 

variance-covariance matrix of errors. This way, the residuals are separated from common 

components. FEVD provides an indication of the cumulative contribution of each variable on the 

fluctuation of the shocked variable. In other words, the variance decomposition determines the 

amount of information each variable contributes to the other variable in the autoregression 

(Lütkepohl, 2005). FEVD for the variables can be calculated using Eq. 4.7., as follows: 

T�K,U = ∑ 2V�WX�VK6�/>?@Y-�,;�ℎ�[U����\    Eq. 4.7. 

where, T�K,U is the FEVD for the variable j accounted for by exogenous shocks to variable l. -; is 

a dimensional column vector, h is the forecast step size, V� is the jth column of Ik in the dimensional 

matrix (Seymen, 2008). After performing IRF and FEVD analysis, the PVAR Granger-cause 

analysis is studied (Granger, 1969). This causality analysis identifies the casual impact of shocks 

and shows the causal relationship between the variables in question. In other words, this test 
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determines if one time series is beneficial in forecasting another. To investigate the Granger 

causality, i.e., to test the null hypothesis that n (a stationary time series) does not Granger-cause m 

(another stationary time series), the lagged values of m is included in a univariate autoregression 

of m as shown below (Eq. 4.8.): 

]; = 	\ + 	�];�� + 	\];�� +⋯+ 	�];�� + 7;     Eq. 4.8. 

Then, the lagged values of n is included in the autoregression (Eq. 4.9.): 

]; = 	\ + 	�];�� + 	\];�� +⋯+ 	�];�� + :�0;�� +⋯+ :_0;�_ + 7; Eq. 4.9. 

The null hypothesis in our study is the left-hand side variable (LHS) does not cause the right-hand 

side (RHS) variable. In the Granger Causality Wald test, the null hypothesis is that “the excluded 

variable does not Granger-cause the Equation variable,” versus “the excluded variable Granger-

causes Equation variable.”  

The entire analysis is carried out at two levels: the global level, where all countries are 

considered as one group, and the country level where the countries are clustered based on their 

gross national income per capita. 

 Results and Discussion 

4.5.1 Spatial-Temporal Trends of CPI 

The global spatial-temporal CPI trends (Figure 4.5.a.), suggest that although there has been 

a slight decrease in corruption (that is, slight increase in the Corruption Perceptions Index (CPI)) 

for all continents, a majority of the continents still have an average CPI below 45. Figure 4.5.b., a 

distribution of CPI observations (each observation represents a country in a specific year) in each 

continent, indicates a bimodal distribution in at least three of the five continents. It is observed that 

except for Europe, all other continents have many countries with CPI values less than 30. This 

exploratory analysis seems to provide some indication of the extent to which corruption (using 

CPI) prevails in each continent, and the distribution of corruption across the countries in a 

continent. This provides some indication of which continent(s) appear to be in immediate need of 

attention regarding corruption control.  

Figure 4.5.c. presents the median and quartiles for each continent. Africa’s median CPI is 

approximately 35, with 1st and 3rd quartiles of 25 and 40, respectively. There are very few countries 
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with CPI over 60. For South America, the median CPI value is 38 with the 1st and the 3rd quartile 

about the same as those of Africa, and this continent has few countries with CPI over 70. Compared 

to Africa and South America, Asia & Oceania has similar median and 1st quartile values; however, 

the 3rd quartile (approximately 50) is significantly higher and that continent has one country at the 

top levels of CPI. North America has a slightly higher 1st quartile value (approximately 30) and 

the same 3rd quartile value as Asia & Oceania. Europe’s 1st and 3rd quartiles are approximately 45 

and 75, respectively, with a median approximately 60. In sum, these broad trends suggest that 

Africa and South America are in critical need of effective policies and actions to control corruption. 

 

 

(a) Trends of Average CPI across the Continents, 2007 to 2017 

Figure 4.5. CPI trends 2007 to 2017 
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Figure 4.5. continued 

 

(b) Frequency Distribution of Average CPI from 2007 to 2017, across the Continents  

 
  

(c) Boxplot for the Continents’ CPI from 2007 to 2017 
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4.5.2 PVAR Analysis Results 

Impulse-Response Functions 

Table 4.4. presents the results of the Im-Pesaran-Shin panel unit root test (Im et al., 2003) 

(carried out to show the appropriate temporal properties of the data). A time series is considered 

to be stationary if a shift in time does not cause a change in the shape of the distribution 

(Marbaniang, 2020). As seen in the table, all the variables are at stationary levels (without unit-

roots) because the null hypothesis (which postulates that all panels contain unit roots) is rejected. 

The model selection criteria are presented in Table 4.5. which helps in identifying the optimal lag 

order in our PVAR analysis. The Akaike’s information criterion (AIC), Bayesian information 

criterion (BIC), and quasi information criterion (QIC) information criteria show first-order lag - 

with the smallest criteria - which denotes that one year of lag for EGI and CPI is appropriate for 

this specific analysis.  

Table 4.4. Panel unit root testing 
 Fixed Effects Fixed Effects and Trends 
Variable Statistic P-value Statistic P-value 
EGI -5.119* 0.000 -4.430* 0.000 
CPI -3.674* 0.000 -3.162* 0.000 
Note: *The null hypothesis of panels, which contain unit roots, is rejected at the 5% significance level. 

 

Table 4.5. Model lag selection criteria 
 Interactions between EGI-CPI 

Lag AIC BIC QIC 
1 -17.962 -64.539 -17.221 
2 -13.384 -46.790 -27.554 
3 -7.102 -24.546 -13.952 

 

Table 4.6. presents the results of the PVAR analysis. In a PVAR analysis, IRF and FEVD 

are used to justify the results and discuss the potential outcomes. With IRF, it is possible to 

ascertain how endogenous variables react to certain structural shocks over time. The table presents 

the IRF for EGI and CPI, for all the three clusters (that is, all countries, countries with low and 

middle income, and countries with high income). This is done with the 95% confidence interval 

bands of the Monte Carlo simulation outcomes. 
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Figure 4.6. presents the IRF Curves for E-Governance Index (EGI) and Corruption 

Perceptions Index (CPI) interactions for 10-year intervals on the abscissa: (a) response of CPI to 

EGI shock, (b) response of EGI to CPI shock, (c) response of CPI to CPI shock, and (d) response 

of EGI to EGI shock. The confidence intervals are obtained using Gaussian estimation based on a 

Monte Carlo simulation. The results indicate that one-unit positive shock on EGI - meaning 

moving towards a society with an overall better e-governance - causes around 0.6 increase in CPI, 

i.e. less corruption, in two years (Figure 4.6.I.a). It is observed that this effect will be is damped 

through the time and after 8 years it becomes negligible.  

As expected, the same shock on EGI causes a slight increase in EGI, and causes a persistent 

change in EGI over time (long-term effect) (Figure 4.6.I.d). In the short run, an EGI variation has 

a relatively negative shock on corruption, which could be due to the following reasons: at the 

beginning of any policy changes, (a) official representatives and people in charge are not fully 

aware that new anti-corruption policy has been implemented; (b) corrupt officials and 

organizations are aware of this initiative and know that the remaining time before the initiative is 

implemented is their last chance to earn illicit gains through corruption. 

As observed, in a long run, the EGI changes still need persistent attention of the 

policymakers and governments. This could be because when new technology or new policy is 

implemented, the corrupt actions are paused or lowered for a while until the culprits identify new 

ways of getting around the new initiatives. Therefore, it will be beneficial for governments and 

policymakers to evaluate the efficacy of their corruption-mitigation policies and initiatives 

periodically, to keep ahead of individuals and organizations that seeking to continue this practice. 

In addition, from the results for the one-unit positive shock on CPI (that is, moving towards a less-

corrupt situation), it is observed that there are no significant changes in EGI over the analysis 

period (Figure 4.6.I.b). The same shock causes a considerably positive increase in CPI: it seems to 

have a long-term and permanent effect on reducing overall corruption in countries (Figure 4.6.I.c). 

This result suggests that the effects of corruption reduction will likely linger on in the long term.  
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Table 4.6. First-order PVAR model results 
Response of EGI 
Response to CPI (t-1) EGI (t-1) 
 
All Countries 

        CPI    
0.569*** 
(3.82) 

5.378** 
(1.58) 

        EGI 
0.016** 
(1.31) 

1.37*** 
(3.28) 

Number of observations 1,854 
Number of countries 133 
 
Low- and Middle-Income Countries 

        CPI    
0.501*** 
(4.53) 

0.017** 
(1.76) 

        EGI 
1.56*** 
(2.73) 

0.983*** 
(3.19) 

Number of observations 1,193 
Number of countries 83 
 
High-Income Countries 

        CPI    
0.225** 
(1.64) 

0.008 
(0.89) 

        EGI 
0.711** 
(1.57) 

1.29*** 
(2.33) 

Number of observations 661 
Number of countries 50 
Note: t-Student statistics are reported in parentheses. 

*, **, *** reflect 10%, 5%, and 1% significance levels, respectively. 

 
 

For developing (low- and middle-income) countries, the analysis results are even more 

significant. Figure 4.6.II.a-d illustrates the outcome of the IRF curves for these countries. From 

the results, a one-unit shock on EGI will lead to an immediate increase in CPI, and such an effect 

seems to persists over time (Figure 4.6.II.a). This CPI increase is 20% greater compared to that for 

all countries together. This result suggests that the e-governance efficacy in corruption control at 

developing countries is considerably higher compared to developed countries. The same shock 

causes a slight increase in EGI, and it considerably causes EGI to improve persistently over time 

(Figure 4.6.II.d). This results also supports the hypothesis that e-governance implementation can 

help control corruption in these countries. Furthermore, observing the results for the one-unit 

positive shock on CPI for this cluster suggest findings that are similar to those of the first cluster: 
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there are no significant changes in EGI over the time (Figure 4.6.II.b). The same shock leads to a 

significant positive increase in CPI with a long term and persistent effect as seen from the “all 

countries” category. In the case of high-income countries, it is noted that the shocks from either of 

the two variables, are not significant. 

Figure 4.6.III.a-d shows the IRF curves for the developed countries. According to the 

results, one-unit EGI shock leads to an almost 0.5 increase in CPI (for the first two years) (Figure 

4.6.III.a) with a damping pattern after almost 8 years. The same shock causes a slight increase in 

EGI with a negligible change on EGI over time (Figure 4.6.III.d). This finding shows that although 

developing new e-governance models and techniques are beneficial for developing countries, a 

dramatic change in the control of corruption in those countries cannot be expected. Hence, there 

must be other underlying means and methods that need to be used to reduce corruption in that 

category. This could be addressed in future research. Furthermore, the results for the one-unit 

positive shock on CPI for countries in this cluster suggest that findings similar to those above, are 

made: there are no significant changes in EGI over time (Figure 4.6.III.b). The same shock causes 

a relatively low increase in CPI with a long-term effect. 

 

  

(a) response of CPI to EGI shock (b) response of EGI to CPI shock 

  

(c) response of CPI to CPI shock (d) response of EGI to EGI shock 

I: All Countries 

Figure 4.6. IRF Curves: E-Governance Index and Corruption Perceptions Index interactions 
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Figure 4.6. continued 
 

  

(a) response of CPI to EGI shock (b) response of EGI to CPI shock 

  

(c) response of CPI to CPI shock (d) response of EGI to EGI shock 

II: Low- and Middle-Income (or Developing) Countries 

 

 

  

(a) response of CPI to EGI shock (b) response of EGI to CPI shock 

  

(c) response of CPI to CPI shock (d) response of EGI to EGI shock 

III: High-Income (or Developed) Countries 
 

*Note: 10 years steps (x axis).  

**Confidence intervals are obtained using Gaussian estimation based on a Monte Carlo simulation. 
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Determining the Direction of Influence using the Forecast Error Variance Decomposition 

(FEVD) & Granger Causality Test 

Table 4.7. presents the results of forecast error variance decomposition (FEVD). In this 

table, the percentage of variation in the row variable is explained by the column variable for a ten-

year period. The e-governance index explains the corruption perceptions index over ten years with 

a value of 38.7%. For the low- and middle- income level countries, this value is 45.2% and for 

high-income countries it is reduced to 16.3%. This suggests that EGI can explain 16.3% of the 

total CPI variations in high-income countries over the ten years. CPI contributes to 2.8%, 1.8%, 

and 9% of the variation of EGI in the first, second, and third categories, respectively – a negligible 

influence as seen previously. The findings from FEVD confirm the one-way relationship between 

EGI and CPI – as seen in the IRF analysis – thereby corroborating the notion that the former 

influences the latter to a greater extent compared to the vice versa case. This causal relationship 

can be verified by performing a panel Granger causality test. As shown in Table 4.8., causality 

between the two variables is one way. A robust causal relationship between EGI and CPI with a 

relatively negligible feedback from CPI to EGI is observed.  

 

Table 4.7. Forecast Error Variance Decomposition (FEVD) 

Response Variable Impulse Variable 
CPI EGI 

All Countries CPI 0.613 0.387 
EGI 0.028 0.972 

Low- and Middle-Income Countries CPI 0.548 0.452 
EGI 0.018 0.982 

High-Income Countries CPI 0.837 0.163 
EGI 0.090 0.910 
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Table 4.8. Panel Granger-Causality results 

Equation/Excluded  Chi2 
All Countries CPI/EGI 0.011** 

EGI/CPI 0.492* 
N observations 1,854 
N countries 133 

Low- and Middle-Income Countries CPI/EGI 0.015** 
EGI/CPI 0.693* 
N observations 1,193 
N countries 83 

High-Income Countries CPI/EGI 0.006 
EGI/CPI 0.155** 
N observations 661 
N countries 50 

Note: * and ** reflects 5% and 10% significance level. 

 Concluding Remarks 

E-governance, as an emerging application of information and communication technology, 

has been suggested in the literature to be a promising tool to reduce corruption. E-governance 

potentially not only fosters transparency but also encourages citizen participation in governance, 

among other benefits. It has been suggested or ascertained that by providing citizens access to 

information on the functionality of public entities and providing open media for public debate, e-

governance can help improve openness and accountability associated with government functions, 

and ultimately significantly reduce instances of corruption. 

In this chapter of the dissertation, the focused was made on finding the associative or causal 

relationships between e-governance and corruption. The hypotheses developed in this chapter 

included the efficacy of e-governance in developed countries comparted to developing countries. 

In this chapter, a panel vector autoregression (PVAR) analysis was performed to identify the 

associative or causal relationships and shock effects of e-governance and corruption. To quantify 

the shock effects, the impulse-response functions (IRFs) associated with EGI and CPI along with 

the forecast error variance decomposition (FEVD) were performed to find how much EGI 

contributes cumulatively to CPI fluctuations. The accuracy of the results was confirmed using 

PVAR Granger-causality analysis.  

The analysis showed that e-governance can significantly help to reduce the levels of 

corruption. The results of forecast error variance decomposition (FEVD) suggest that EGI explains 
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38.7% of the CPI variation of the ten-year period. For low- and middle- income level countries, 

this value was 45.2%, and for high-income countries it was 16.3%; these results indicated that EGI 

can explain 45.2% and 16.3% of the total CPI variations in developing and developed countries, 

respectively, over the ten-year analysis period. The results of IRF showed that a one-unit positive 

shock on EGI leads to a 60% increase in CPI in two years. The results suggest that this effect fades 

off after eight (8) years.  

The results for the low- and middle-income countries were more significant statistically 

compared to the results for all countries or the high-income countries. In addition, the results 

indicated that one-unit shock on EGI would lead to an immediate increase in CPI, and that the 

effects persist over time. This level of increase in CPI is approximately 20% higher compared to 

that of all countries together. This suggests that in developing countries, the efficacy of EGI will 

be more profound compared to developed countries. Moreover, it was shown that electronic 

governance can have permanent positive effects on controlling corruption in developing countries.  

The results for high-income countries indicated little or no significant shocks from CPI to 

EGI or vice versa, suggesting that the beneficial effects of EGI may have already reached a plateau, 

and other corruption reduction initiatives may be more effective in those countries. In addition, it 

was found that in the short run, EGI has a relatively low shock on corruption. However, in the long 

run, it needs a fresh effort to become as effective. This indicated that policymakers and executive 

administrations should evaluate their policies periodically to “stay ahead of the curve” as corrupt 

entities will seek new channels when corruption-control initiatives are implemented. The IRF 

analysis suggested that low- and middle- income countries are in immediate need of attention 

regarding corruption, and that effective e-governance can provide an effective and lasting solution. 
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CHAPTER 5. CORRUPTION - PROPENSITY AND MITIGATION AT 

DIFFERENT INFRASTRUCTURE DEVELOPMENT PHASES 

[A version of this chapter is presented at the Transportation Research Board 100th Annual Meeting1] 

 Introduction 

Civil infrastructure systems, including transportation of all modes, water and wastewater 

plants and distribution networks, are developed with the intention of satisfying some specific 

objectives. These objectives can be traced back to overarching goals including human welfare and 

well-being, quality of life, and livability, within the social, economic and ecological environment, 

in which the infrastructure is situated or has an influence (Khisty et al., 2012; Labi, 2014). These 

overarching goals, in turn, emanate from a set of principles that govern the behavior of humans or 

corporate entities that can be described as values. The values serve as a moral compass to identify 

whether an action is good or bad, and often serve as the basis for a religion, culture, laws, or ethical 

behavior in a professional society. Hence, the development of civil infrastructure, which enhances 

the lives of thousands or millions of people, is inherently a noble and selfless endeavor, and the 

often far-reaching and longstanding future societal benefits are a source of great pride to the civil 

engineer. Unfortunately, in the development of civil infrastructure, some humans engage in selfish 

behaviors that not only betray this honorable purpose but also lead to significantly reduced societal 

benefits of the new infrastructure. As Transparency International (TI) notes, “Corruption erodes 

trust, weakens democracy, hampers economic development and further exacerbates inequality, 

poverty, social division, and the environmental crisis” (International, 2020). 

Every year, more than 5% of the world GDP ($2.6 trillion) is lost due to collusion, 

corruption, and fraud (Irisova, 2014). Given that 1.2 billion people live on $1.25 or less per day, 

the magnitude of these losses are a reminder of their far-reaching impacts. Furthermore, these 

losses are not only diverted from development but are also used to support criminal activities such 

as drugs and human trafficking (Integrity Vice Presidency, 2016). Irrespective of location, 

corruption imposes losses, and exacerbates social issues and inequities. Hence, formulating 

 
1 Ghahari, S.A., Alabi, B. N.T., Queiroz, C., Labi, S., & McNeil, S. (2021). Corruption Propensity and Mitigation at 
the Various Phases of Infrastructure Development – An Exploratory Discussion. Transportation Research Board 

100th Annual Meeting.(Ghahari et al., 2020)  
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mitigation strategies on a global basis to identify, minimize, and even prevent misconduct is 

practical (Integrity Vice Presidency, 2009). 

In this chapter of the dissertation, the corruption propensity at each phase of infrastructure 

development is considered. Moreover, the problem of corruption in the context of infrastructure 

systems delivery is discussed to show how corruption can be minimized and how engineering 

ethics could be leveraged to help in the fight against corruption. The chapter is organized as follows: 

first, the broad background concepts for the study and the motivation for the dissertation are 

presented. Then corruption is defined, and its impacts are identified. Next, the role of engineering 

ethics is discussed followed by the corruption propensity at each phase of infrastructure 

development. This leads to the next section where recommendations are made on corruption 

mitigation from strategic, tactical, and operational perspectives. In the last section, some 

concluding remarks are offered, the study limitations are listed, and possible avenues for future 

work are presented. 

 Study Background 

5.2.1 Values and Value Systems 

Any discussion of corruption needs to be set in the context of the values of the society in 

question. Values can be defined as the set of preferences regarding what is appropriate and what 

is not, and the types of values held by society including ethical, moral, religious, political, cultural, 

social, and aesthetic values (McCuen et al., 2011). A community’s value system is a set of 

consistent values that are drawn from multiple types of values, and unlike personal values, those 

are generally stable across time or situations. In either of these two cases, values represent an 

internal gauge for what is right or wrong.  

Over several millennia, societal values led to the development of customs, traditions, and 

laws within communities; and with the formation of professions and organizations of common 

interest, values also led to the development of rules of behavior for members of that organization. 

Values that ultimately underlie the code of ethics of most professional societies include honesty, 

stewardship, and discipline. For example, engineers should be loyal to society, their clients, and 

their employers and ensure that the products of their engineering designs do not impair the welfare 

of others, be truthful in testimony or public statements regarding their work, and ensure that their 
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work is done diligently according to standards and specifications. In this chapter of the dissertation, 

values and ethics are addressed from the perspective of a civil engineer, but these concepts are also 

applicable to other professions (Labi, 2014). 

5.2.2 The Properness Triad – Morality, Ethics, and Law 

Those who engage in corruption are very much aware of what they are doing, and lack of 

knowledge is not a good excuse. As discussed in the previous section, the values of an individual 

or community often ultimately evolve into morality, ethics, and law. Morality is what distinguishes 

between actions that are considered right by society and those that are wrong, and is heavily 

influenced by religion and culture, particularly where explicit moral codes are established to guide 

human behavior. The most famous example of a moral code is the Golden Rule: “Treat others how 

you wish to be treated.” Ethics is a branch of philosophy that addresses what can be considered a 

right or a wrong behavior. Law is a collection of rules that are enforced through social institutions 

to govern the behavior of individuals and organizations, and thus protect the individual or natural 

resources from the malicious actions of others. The importance of law in society is underscored by 

the fact that in most countries, the law-making body (or legislature) constitutes one of the three 

arms of government (the other two are the executive and the judiciary). As civil engineers plan, 

design, and operate civil systems, they constantly encounter situations related to morality, ethics, 

and law (Labi, 2014). For this reason, corruption is not only a legal issue, but also a moral and 

ethical issue. 

5.2.3 Revisiting the Definition of Corruption 

Nye (1967) defines corruption as “... behavior that deviates from the formal duties of a 

public role (elective or appointive) because of private-regarding (personal, close family, private 

clique) wealth or status gains.” Werlin (1973) characterizes corruption as “… the use of public 

office for private needs”, and Blackburn et al. (2004b) consider public sector corruption as the 

“illegal, or unauthorized, profiteering by officials who exploit their positions for personal gain.” 

Regarding a specific narrow context, Shleifer and Vishny (1993) defines it as “… the sale by 

government officials of government property for personal gain”. In echoing Nye’s definition, Khan 

(1996) defined corruption as “... behavior that deviates from the formal rules of conduct governing 
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the actions of someone in a position of public authority because of private-regarding motives such 

as wealth, power, or status.” Treisman (2000) offers what is consistent with what is probably the 

most common definitions of corruption: “... the misuse of public office for private gain.”  

Corruption is generally motivated by personal gain, which may not be only monetary but 

also power or prominence. Given these definitions, a broad notion of corruption is used: the 

exploitation of public authority with the intention of achieving personal benefits. When shared 

public goods are transformed into private settlements, corruption occurs in both private and public 

entities (Corvellec & Macheridis, 2010; Heidenheimer et al., 1989). Acts of corruption can be seen 

as either a cultural moral issue and/or a structural issue of economics or politics. Moreover, moral 

decay, misuse of public power, bribery, and transfer of tangible resources all can be considered as 

acts of corruption. 

 The Role of Engineering Ethics 

In this section, corruption is characterized in infrastructure systems delivery and solutions 

to the problem are sought through the lens of engineering ethics to connect actions to the 

responsibility for safety, equity and societal outcomes. Ethics is a branch of philosophy that deals 

with the values associated with human behavior, and addresses the wrongness or rightness of 

motives, the badness or goodness of actions in terms of their consequences (Josephson & Hanson, 

2002). Ethics is closely related to morality and can be defined as a collection of moral principles 

or rules of conduct that guides the behavior and attitudes of a specific group of people, such as 

engineers, medical practitioners, or members of a religious group (Labi, 2014). Professional 

engineering organizations in most countries have established codes of ethics by which their 

members regulate their work practices, conduct and relationships. These organizations also urge 

engineers to hold themselves to the highest standards of professional and ethical conduct and 

recognize explicitly the obligation of individual engineers to uphold the integrity, self-respect, and 

honor of the engineering vocation by honest and impartial service to their employers, patrons, and 

the community (ASCE, 2020).  

In the United States, ethical behavior is guided by codes established by professional 

organizations, including the National Council of Examiners for Engineering and Surveying 

(NCEES), the American Society of Civil Engineers (ASCE), and the National Society of 

Professional Engineers (NSPE). In Asia, codes of ethics have been established by the Chinese 
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Academy of Engineering, the Engineering Academy of Japan, and the National Academy of 

Engineering of Korea. Similar codes have been established by engineering professional 

organizations in other countries, including New Zealand, Australia, Canada, Brazil, and Russia, to 

regulate the behavior of engineers. The World Federation of Engineering Organizations (WFEO) 

(2001) has established a model code of ethics where professional engineers are expected to 

demonstrate an ethical and honorable conduct, and to uphold the values of integrity and honesty, 

and to hold sacrosanct all human life, the public welfare, and the natural environment. 

These professional codes of conduct govern the obligations of registered engineers to 

society, their employers, and their clients and to other registered engineers. These codes exhort 

members of the engineering profession to uphold high principles of integrity and honesty, that in 

providing their services, engineers must ensure fairness, impartiality, and equity, and always seek 

the safeguard of the public safety, health, and welfare. Engineers must therefore be guided by a 

standard of professional conduct that adheres to the top levels of honorable behavior.  

The preamble to NSPE’s Code of Ethics for Engineers (2019) states that “members of the 

profession recognize that their work has a direct and vital impact on the quality of life for all 

people.” Furthermore, any services rendered by engineers require “honesty, impartiality, fairness, 

and equity, and must be dedicated to the protection of public health, safety, and welfare” and 

“perform under a standard of professional behavior that requires adherence to the highest 

principles of ethical conduct.” ASCE (2020) released an updated code of ethics in 2020 to reflect 

technological changes by focusing on “behavioral intent, rather than prescriptive rules.” The 

preamble states, “Members of the ASCE conduct themselves with integrity and professionalism, 

and above all else protect and advance the health, safety, and welfare of the public through the 

practice of civil engineering.”  Building on fundamental principles, responsibilities to (1) society, 

(2) the natural and built environment, (3) the profession, (4) clients and employers, and (5) peers 

are articulated in the code of ethics. Specific responsibilities are directly associated with corruption 

(ASCE, 2020): 

• “have zero tolerance for bribery, fraud, and corruption in all forms, and report violations 

to the proper authorities” (responsibility to society); 

• “reject practices of unfair competition” (responsibility to the profession); 

• “promote and exhibit inclusive, equitable, and ethical behavior in all engagements with 

colleagues” (responsibility to peers); and  
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• “act with honesty and fairness on collaborative work efforts” (responsibility to peers). 

 

Other examples of responsibilities related to the four fundamental principles, shown in Table 

5.1., are impacted by corruption. 

The NSPE and ASCE code of ethics are similar to the engineering codes of other countries 

and other professions. Below, some of these rules of practice that are associated with civil 

engineering ethics, and how they are related to corruption are discussed. The discussion is built 

around the ASCE Code of Ethics but could also be applied to codes from other countries or 

professional organizations. 

Engineers aware of potential infringements of any of the regulations of professional 

conduct are expected to deliver information to the governing board and assistance, when required. 

Most engineering professional societies worldwide recognize that the practice of professional 

engineering is not a right but a privilege. Also, these societies invariably charge engineers with the 

accountability of “adhering to the highest standards of ethical and moral conduct in all aspects of 

their professional practice” (Institution of Engineers, 2019), and in certain cases, their personal 

lives. As such, this privilege (in the form of a license to practice) could be withdrawn in the event 

of behavior deemed unethical or immoral by the professional society. In some countries such as 

Australia, there is explicit recognition in the code of ethics that engineers need to respect the 

dignity of the individual, and to act only on the basis of a “well-informed conscience” (Institution 

of Engineers, 2019).   
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Table 5.1. Fundamental principles and examples of responsibilities in the ASCE code of ethics 
(ASCE, 2020)  

Fundamental Principle Examples of Responsibilities  
Create safe, resilient, and sustainable 
infrastructure 

• First and foremost, protect the health, safety, 
and welfare of the public 

• Enhance the quality of life for humanity 

• Adhere to the principles of sustainable 
development 

  

Treat all persons with respect, dignity, 
and fairness in a manner that fosters 
equitable participation without regard 
to personal identity 

• Treat all persons with respect, dignity, and 
fairness, and reject all forms of 
discrimination and harassment 

• Recognize the diverse historical, social, and 
cultural needs of the community promote 
and exhibit inclusive, equitable, and ethical 
behavior in all engagements with colleagues 

  

Consider the current and anticipated 
needs of society 

• Consider the capabilities, limitations, and 
implications of current and emerging 
technologies 

• Consider and balance societal, 
environmental, and economic impacts, along 
with opportunities for improvement 

• Mitigate adverse societal, environmental, 
and economic effects 

• Use resources wisely while minimizing 
resource depletion 

• Present clearly and promptly the 
consequences to clients and employers if 
their engineering judgment is overruled 
where health, safety, and welfare of the 
public may be endangered 

  

Utilize knowledge and skills to enhance 
the quality of life for humanity 

• Uphold the honor, integrity, and dignity of 
the profession 

• Promote mentorship and knowledge-sharing 
equitably with current and future engineers 

• Educate the public on the role of civil 
engineering in society 
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 Corruption Propensity at Each Phase of Infrastructure Development 

An examination of corruption in infrastructure development through the phases of 

infrastructure development or stages in the life cycle helps to identify opportunities for mitigating 

corruption. Figure 5.1. presents the phases of infrastructure development. As stated in a World 

Bank report (World Bank, 2020a), “Every phase in an infrastructure project involves distinct 

combinations of institutions and stakeholders, each with their own vulnerabilities to particular 

types of misconduct.” Building on the work of Sohail and Cavill (2008), the specific areas where 

corruption could occur within each phase (or stage) are discussed, and examples are presented. 

 

Figure 5.1. Phases of infrastructure development 

5.4.1 The Needs Assessment Phase 

At this phase, the infrastructure agency determines whether an infrastructure deficit exists 

and the magnitude of the deficit, identifies the stakeholders that will be affected by the 

infrastructure, and establishes the infrastructure goals and objectives of the system. New proposed 

construction projects themselves can be a sign of corruption as investment in maintenance for the 

existing infrastructure may be a better solution (Kenny, 2006; Labi, 2014). 

Corruption in the needs assessment phase could be motivated by tribal, partisan, or pecuniary 

reasons. For example, a government decision maker may decide that a need exists to build 

infrastructure at a location not in response to a genuine socio-economic need, but because the 

decision-maker seeks to curry favor with residents of the area, to show that the decision maker has 
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not “forgotten his roots”, or to support the operations of a business venture that is not only located 

near the site of the proposed infrastructure but also would benefit from the proposed infrastructure. 

A good example is the infamous “bridge to nowhere” in Alaska, a proposed bridge earmarked for 

funding which was never built as it did not really serve any real need (Egan, 2004). Examples in 

other countries include election-time promises, where vote-seeking politicians seek to initiate 

“progress and development” infrastructure projects as pre-election gifts to their constituencies. In 

such cases, the need is not identified by an appropriate professional but some vote-seeking 

politician, often one who is a member of the ruling party and is therefore in a position of power to 

allocate or disburse funds. In certain cases, consultants are hired to assess the existence and 

magnitude of the infrastructure deficit; however, they could be influenced to skew the results to 

what the politician seeks. Such influence may be in the form of promises, rewards, or blacklisting 

regarding future contracts.  

5.4.2 The Planning and Financing Phase 

Planning includes assessment not only of the infrastructure impact (to the environment, 

economic development, air quality, noise, land-use, social equity, and so on) but also of the impact 

of the natural and built environment on the infrastructure. Also, in this phase, the technical and 

financial feasibility of the proposed infrastructure are determined; the latter is done by comparing 

costs and benefits of the infrastructure that are expected over a planning horizon that is often a 

function of the infrastructure service life. 

The responsibility for systems planning is often borne by agencies that have been granted 

statutory authority for a specific type of infrastructure. In many countries, a formal and distinct 

unit of the national government carries out or supervises planning for public infrastructure systems. 

In other countries, such as the United States, most public infrastructure planning is carried out by 

regional, state, or local governments, and the federal government’s role is to provide the funds and 

to ascertain that all the subsequent phases of the system development are consistent with legislation. 

The infrastructure agency carries out the planning task in-house or outsources it to consultants. 

The infrastructure planners liaise with other engineering professionals in the transportation, water, 

energy, and environment sectors, and also solicit input from other professionals and stakeholders 

including the general public (Sinha & Labi, 2007). 
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This phase is susceptible to corruption in a variety of ways, and for several reasons. For 

example, the planning analysis methodologies tend to be esoteric and rather difficult to 

comprehend by non-experts or the general public. Stakeholders of the planning process include 

the infrastructure owner or agency, the infrastructure financiers (such as financial institutions, non-

governmental organizations, and governments of all levels, national regional, and city), residents 

of the area of the infrastructure location, and the general public (Labi, 2014). The planning process 

is an interplay of these stakeholders, and a great deal of trust and integrity is required. However, 

any one of these stakeholders, or faithful or unfaithful agents acting on their behalf, may gain some 

financial advantage (at the expense of other stakeholders and more importantly, at the expense of 

the long-term interest of the infrastructure).  

Examples of such instances of corruption are as follows: (a) A financial institution, seeking 

to be selected as the financier of the infrastructure, may influence monetarily, a decision maker at 

the infrastructure agency. To make matters worse, the financial institution may seek to recover 

such payments by financing the project at an interest rate that exceeds the normal rate. (b) A 

representative of the prospective financier may conceal unfavorable data to receive a bonus 

associated with a decision to fund the infrastructure. (c) A representative of the prospective 

financier may be influenced monetarily by the infrastructure owner to influence the selection of a 

financier for the infrastructure. (d) An official employed by the infrastructure agency may secretly 

purchase or inflate the value of the land which is intended to serve as part of the right of way, and 

later sell it to the agency project owner at a profit. (e) An official employed by the infrastructure 

agency may purchase stocks associated with the proposed infrastructure after receiving inside 

information regarding the project.  

Other areas of corruption at the planning phase are: permits, regulations, rules, and 

authorizations, public expenditure decisions, provisions of services and resources at below-market 

prices, discretionary foreign investments, and financing political party operations (Tanzi, 1998). 

Indirect factors that promote corruption include low quality of bureaucracy, low levels of the 

public sector wages, absence of or unenforced penalty systems, the absence of institutional controls, 

lack of transparency of rules, laws, and procedures, and leaders not setting an example (Sadiqi et 

al., 2017; Tanzi, 1998).  
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5.4.3 The Design Phase 

Engineering design may be defined broadly as a creative problem-solving process in which 

the engineer works within the budget, time, legal, institutional, and other constraints to convert 

data, information, and technical know-how to translate ideas into a product or service. In this phase, 

detailed designs are generated by engineers, who also calculate the associated costs. Here is an 

ideal time to choose gratuitously high specifications for the method of construction, the materials, 

and the design. The amount of bribe money can be maximized when the total cost of the project is 

set to be higher than needed. Another way of bribery maximization is to allow for considerable 

low-quality design, materials, and/or methods of construction, and in the meantime increasing the 

contract price. This way, a considerable fraudulent profit will be potentially available to the 

beneficiaries in various occasions.  

One specific method of construction might be falsely chosen in order to let one specific 

qualified bidder win the contract. This fraudulent activity is also possible when it comes to 

choosing materials. Specific materials might be selected to favor some selected suppliers. 

Engineers might perform or might be instructed to perform an incomplete design in order to enable 

the manipulation of any future changes and bribery or fraudulent claims.  

The design phase is vulnerable to corrupt practices, for example, (a) The designer selects 

specific materials to favor some selected suppliers, particularly where there exist other superior 

materials to play that role in the design, (b) Deliberate submission of an incomplete design with 

the expectation that the client will return to the designer, at the construction phase, to carry out 

additional design work for a fee, (c) Incomplete or superficial analysis of loading, or usage 

scenarios resulting in an inadequate design, and (d) Influencing (monetarily or in kind), the public 

official responsible for permits to approve designs that do not conform to government regulations.  

In some countries with the highest reported level of corruption, such as India and Cameroon, 

attaining licenses, construction authorizations, and labor inspections are known to be the main 

sources of corruption (Kenny, 2007b).  

5.4.4 The Construction Phase 

The construction phase can be defined loosely as the process of “translating the design into 

reality” and involves the physical assembly of the infrastructure system. The multiplicity of the 
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contractual parties involved in construction, often provides opportunities for corrupt actions. For 

this reason, this phase is often considered the most corrupt phase, and the construction industry in 

general, the most corrupt sector (Kenny, 2009b; Kottasova, 2014; Locatelli et al., 2017; Suen et 

al., 2007).  

The propensity for corrupt actions manifests at each stage of the construction phase. At the 

stages of tender, bidding, and contract award, there could be collusion in the selection of the 

contractor, often with kickbacks paid to the client’s personnel responsible for the pre-construction 

stage. Other areas of potential corruption at this stage include: (a) The client’s personnel, seeking 

to favor a specific bidder in return (or in expectation) of a monetary or in-kind illicit payment, leak 

confidential information (such as the engineers estimate) or impose unduly strict and unnatural 

requirements in the biding process that can be met by that bidder only, (b) Collusion between 

bidders, where the bidders bid collaboratively such that one of them wins the contract. (c) In order 

to win the contract, the bidder submits false bidding data, such as much reduced unit prices of 

certain items, with the expectation that they can make up for such “losses” through change orders 

or other illicit ways during the construction process. An example of corrupt practices at the pre-

construction stage was the 2009 conviction of a major U.S. construction firm of foreign bribery 

charges regarding a bidding for the construction of liquefied natural gas in a developing country 

and the imposition of a $402 million criminal fine. According to court documents, the firm 

“pleaded guilty to conspiring with its joint-venture partners and others to violate corruption 

legislation by authorizing, promising, and paying bribes to a range of government officials of that 

country to obtain contracts (United States Department of Justice, 2009). Another example was 

kickbacks paid to the Chief Executive Officer of the Lesotho Highland Development Authority 

(Darroch, 2003). A survey of international construction firms revealed that the main reason why 

these firms attempt to influence the owner’s officials is the fear of not getting new contracts or 

losing existing contracts awarded to them. 

The Odebrecht case in Brazil is particularly notable as the corruption was involved in the 

planning and financing, construction and operation phases but had the most impact in the 

construction phase (GPO, 2019). Extending beyond Brazil, Odebrecht bribed high-ranking 

officials to get initial contracts that were later renegotiated (Morales & Morales, 2019). This is 

also a reminder that corruption extends beyond infrastructure in many countries, and context plays 

an important role as evidenced by the Lava Jato (Car Wash) investigation in Brazil (The Economist, 
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2019). Bowen et al. (Bowen et al., 2015; Bowen et al., 2012b), Oyewobi et al. (Oyewobi et al., 

2011), Sichombo et al. (Sichombo et al., 2009), and Ling et al. (Ling et al., 2014) provide several 

examples of corruption in this phase. 

The global construction industry is dominated by large firms. In developing countries, the 

relatively large construction companies are often owned by government-related corporations. 

According to a comprehensive research performed in 2006, in Vietnam, 60% of the construction 

sector’s revenue comes from 900 construction firms owned by states, and about 40% of the revenue 

is captured by 7,000 private firms (Copplestone, 2006).  

Corruption, particularly for international projects and foreign transactions, is mostly driven by the 

host country conditions. According to a comprehensive survey on international company practices, 

the fear of losing contracts is the main reason firms attempt bribery (Søreide, 2006).  

Technical challenges in the actual process of construction, for example, decision-making 

and planning with insufficient information, design inadequacies and uncertainties, project change 

of scope, incomplete estimations, and unreliability in price forecasting are factors that increase 

vulnerability to corrupt actions. Examples of corrupt actions at this stage include: (a) The project 

owner’s site representative is influenced by the contractor to (i) issue a not-needed scope change, 

(ii) sign a payment certificate for a work that is not done, not completed, or not carried out to 

material or workmanship specification, (iii) approve an extension of time for the wrong reason or 

to state falsely that the delay is not the fault of the contractor; and (b) Potential deviations from 

specification (with regard to material or workmanship quality) may be associated with defective 

finished surfaces, use of low quality materials, and incorrect dimensions (widths, thicknesses, 

heights, depths) of the final product.  

5.4.5 Operations, Monitoring, and Maintenance Phase  

At this phase, the activities of the triad – operations (use of the infrastructure), monitoring 

(assessing changes in condition of the infrastructure, threats imposed by the natural and built 

environments and opportunities for change), and maintenance (carrying out physical repairs to 

address imminent defects or to correct existing ones) - are carried out synchronously (Ghahari et 

al., 2019d). Where the infrastructure operations, monitoring, and maintenance are carried out in 

house, inefficiency, rather than corruption, seems to be the bane. On the other hand, where these 
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tasks are contracted out, then the nature of the corruption and the instance of corrupt activities are 

similar to those discussed for the construction phase. 

Tangible evidence of the cost of corruption in this phase is presented in an analysis of 

asphalt concrete and road rehabilitation and reconstruction costs based on data from Europe and 

Central Asia, and corruption has been identified as a cause of significant cost variability of the 

materials and processes associated with those projects (Cirilovic et al., 2014). 

Renegotiation of Public-Private Partnerships (PPP) in this phase also has the potential for 

abuse in this phase as the contracting process is less open (Ling et al., 2014; Wang et al., 2019; 

World Bank et al., 2020). The Global Infrastructure Hub (2018) found 48 instances of 

renegotiation in 146 PPPs studied. Of the renegotiated projects, the cause of renegotiation was 

cited as increased operation costs (9%), wrong demand forecasts (7%), other inaccurate projections 

(9%), and government strategy shift (19%).   

5.4.6 The End-of-Life Phase 

One cannot refer to infrastructure end of life without specifying what constitutes end of 

life. Lemer (1996) defined system life as the time between construction and its subsequent 

replacement, due to any of several reasons including technological obsolescence, substandard 

performance, regulatory changes, or changes in consumer behavior and values. Hence, the reasons 

for demolishing an infrastructure system (and in many cases, rebuilding it) could include the need 

to accommodate the changing nature, patterns, or levels of user demand; to mitigate user or 

community safety or security problems associated with the infrastructure operations; or to avoid 

excessive maintenance or operating costs associated with its current infrastructure. In many cases, 

infrastructure systems provide service during their design lives, and may even be doing so at a cost 

of economic efficiency and safety. Therefore, the lack of definite standards to specify what end-

of-life really means can open opportunities for corrupt actions.  

At the end-of-life phase, the infrastructure material may be reused, modified, and 

repurposed, recycled, dismantled, sold, upgraded, and/or integrated with the proposed new 

infrastructure. Examples of corrupt activities at this phase include: (a) Representatives of the 

infrastructure owner declare that an infrastructure system has reached its end-of-life due to the 

expectation of receiving prospective illicit benefits associated with the reuse or recycling of the 

physical infrastructure, or to make way for alternative developments; (b) The infrastructure 
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owner’s representatives specify the disposal of construction waste to unapproved sites for their 

personal gain; and c) Hazardous materials are improperly disposed of. For example, Doshi and 

Ranganathan (2017) document the premature demolition of housing in Chennai and Bangalore, 

and the subsequent land grabbing.  

 Corruption Mitigation Initiatives 

The international attention on anti-corruption attempts – particularly, developing countries 

– is a relatively new development. Since the delivery of the “Cancer of Corruption” speech in 1996 

by the 9th World Bank President, the development-related financial institutions dropped inhibitions 

and started using the “c-word” in public (Wolfensohn, 1996). Since then, billions of dollars have 

been spent to assist governments tackle corruption challenges (Wang, 2020). This investment in 

corruption mitigation is relatively small compared with the investments in development. 

International development banks (IDBs) help with the social and economic development of 

developing countries by providing loans with favorable interest rates (Nelson, 2015). For example, 

the World Bank finances 20,000 to 30,000 contracts with total worth of more than $60 billion per 

year and is the largest IDB in the world (World Bank, 2016). The contracts fund infrastructure, 

agriculture, education, and health, and are provided to countries with low and middle incomes. In 

some of those countries, the government is unstable, and  given that the value of these transactions 

are high, several contracts are susceptible to collusion, corruption, and fraud (Integrity Vice 

Presidency, 2016).  

The Business Environment and Enterprise Performance Survey (BEEPS) indicates that 14% 

of all firms attempted to secure government contracts through unofficial payments to public 

officials, and the median amount spent by firms from all sectors for this purpose represented about 

7% of the contract value (Kisunko & Ponomariov, 2014). For instance, in Indonesia, losses due to 

employee theft were reported to be 24% of expenditures for road construction projects overseen 

by heads of the villages (Olken, 2007). Strategies and initiatives to mitigate corruption include 

policy statements, guidelines and codes, organizational and political structures, and monitoring 

and penalties. These types of strategies and initiatives are discussed followed by examples of 

initiatives in each phase of the infrastructure life cycle. The discussion is also associated with the 

ASCE Code of Ethics. 
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5.5.1 Policy Statements, Guidelines, and Codes 

Concerns regarding corruption has an international scope and is not limited to developing 

countries. For this reason, efforts to fight corruption, at least from a strategic perspective, have 

largely been international in nature. Several international organizations have published policy 

statements, guidelines, codes, and manuals on the issue.  

On the global scale, international agencies produce official publications, and engage in 

various ways to address the problem of corruption:  

• The Organization for Economic Co-operation and Development (OECD) released the 

“Recommendation for Further Combating Bribery of Foreign Public Officials,” or Anti-

Bribery Recommendation in 2009 (OECD, 2009c). Currently, OECD is reviewing this 

policy, following a broad public consultation carried out in 2019 (OECD, 2019).  

• The World Economic Forum, Transparency International, and a collection of engineering 

and construction firms initiated a “zero tolerance” policy on bribery in 2004 (WEF, 2016). 

The policy promotes the monitoring of all payments, donations, gifts, and charitable 

payments, to individuals associated with projects. The policy also protects the rights of the 

firms that refuse to give bribes, and encourages strict audits and penalties for violators and 

more auditing for those firms.  

• The World Bank Group (WBG) has in place procedures that scrutinize all prospective 

projects and collaborates with member countries to reduce the risks of any potential 

corruption. The WBG has established a Sanctions System (which includes an Integrity Vice 

Presidency) that investigates any reports or allegations of corruption and fraud in the 

projects they support (Integrity Vice Presidency, 2016). WBG is a leader in this effort 

(World Bank, 2016) insisting on zero-tolerance toward corruption in the infrastructure 

projects it supports. Their corruption fighting approach consists of proactively anticipating 

risks and avoiding them. Avenues are available for the public to make complaints about 

planned, ongoing, or completed projects, and the project implementation receives rigorous 

oversight and is supervised by WBG-financed consultants with satisfactory records.  

• The International Chamber of Commerce (ICC) published Rules and Recommendations to 

Combat Extortion and Bribery in 1977 and revised this document in 2005 (International 

Chamber of Commerce, 2005, 2011, 2015). The ICC encourages enterprises to self-

regulate themselves in the drive to fight corruption, bribery, and extortion, and provides 



 
 

130 

critical perspectives from the business sector, towards international corruption-fighting 

programs, policies, and initiatives (International Chamber of Commerce, 2011).  

• Transparency International has worked with multi-stakeholders and an global operating 

committee of firms, business organizations, scholars, union commissioners, and civil 

society associations to issue an anti-corruption code entitled Business Principles for 

Countering Bribery (Transparency International, 2010). This code created the foundation 

for the Partnering Against Corruption Initiative (PACI) Principles, developed with the 

World Economic Forum (WEF) (WEF, 2007). Transparency International organizes 

workshops in various countries to develop and train individuals on tools that support the 

development and implementation of anti-corruption policies and to monitor the 

effectiveness of these tools.  

• The United Nations, in 2004, published its Global Compact to include a 10th “principle” 

that sent a power message to the private sector that is partially responsible for fighting 

corruption (Brun et al., 2011; UN Global Compact & Transparency International, 2009). 

The principle stated that “Businesses should work against corruption in all its forms, 

including extortion and bribery.”  The United Nations continues to encourage the private 

sector to not only prevent bribery, extortion and other forms of corruption, but also to 

cultivate strategies and solid programs to tackle it (Brun et al., 2011; United Nations, 2018).  

• The World Bank, OECD and UNODC (2020) published principles for avoiding and 

controlling conflicts of interest in the public sector.  

• The World Economic Forum (WEF) runs a Partnering Against Corruption Initiative 

(PACI), a multi-national and multi-industry private sector driven platform where 

organizations create, maintain, implement and monitor their anti-corruption initiatives 

(International Chamber of Commerce et al., 2008; WEF, 2007, 2009).  

Strategic-level corruption mitigation initiatives are consistent with the fundamental 

principles or canons in the codes of ethics of engineering organizations in many countries. The 

responsibility to “have zero tolerance for bribery, fraud, and corruption in all forms, and report 

violations to the proper authorities” in the ASCE Code of Ethics (ASCE, 2020). When these 

initiatives are systemically instituted across all phases of the infrastructure development life cycle, 

it becomes easier to address corruption. 
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5.5.2 Organizational and Political Structures 

Montinola and Jackman (2001) found that partisan rivalry, a feature of democracies, can 

help lessen corruption: monitoring the activities of public officials is easier in freedom-of-

information environment, therefore, it can restrict the chances of corrupt activities. Moreover, the 

potential power reversal at the ballot box is beneficial to corruption mitigation because it helps 

ensure that politicians involved in corruption may lose the election and will become subject to 

investigation and punishment following their election defeat. Kunicova and Rose-Ackerman (2005) 

asserted that a viable electoral procedure can provide politicians a motivation not only to divulge 

the corrupt activities of their rivals but also to make certain that they themselves are truthful. The 

researchers addressed issues of honesty and trust in relation to the operation of the parliamentary 

government and markets.  

Bribery may happen in construction firms who seek to unethically raise profit margins by 

reducing their actual project spending through reduction in quantity or quality. Therefore, it seems 

that if projects are delivered on time, with the anticipated quality and cost, the instances of 

corruption can be limited. Hence, any tool, method, or intervention that could guarantee the quality, 

on-time delivery, and cost, can help as an anti-corruption tool. Overall, improving planning and 

budgeting processes and the transparency of the project cycle, raising awareness and civil society 

contribution and financial auditing agencies, reducing the unrestricted power of individual 

bureaucrats and unnecessary regulation, could significantly lower corruption (Lederman et al., 

2005; Svensson, 2005; Van Rijckeghem & Weder, 2001).  

Government ownership of construction firms adds more complexity to the transparency of 

contracts and bidding process. Governments that function as the regulatory sector and do not 

participate in construction activities can institute a more merit-based selection and less politically 

influenced environment of contract award, and more importantly, quality monitoring. Two clear 

indications of the impact of the government ownership of projects are (ILO, 2005; Mkenda & 

Aikaeli, 2015): (1) Indonesian road construction projects corrupted by local government 

employees involved in theft of materials, and (2) violation of labor standards in 11 large 

construction sites in Tanzania, reported by the National Housing Corporation .  

The privatization of firms can cause its own problems and related corruption, and when 

there is an opaque privatization procedure, few will benefit from the privatization process, as was 

experienced in Vietnam (Copplestone, 2006). Where the bureaucratic values are not merit-based, 
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the competitive politics are not institutionalized, the government processes are not transparent, and 

the active media is not fostered and is filtered, corruption takes place more often. For example, in 

most developing countries where the civil society is generally less engaged, the capacity for law 

enforcement is diminished (Johnston, 1998). Moreover, compared to the cost of human capital, 

corrupted countries invest more in tangible assets (De la Croix & Delavallade, 2009).  

The Infrastructure Transparency Initiative (CoST) is a multi-stakeholders effort that 

leverages earlier efforts (for example, Integrity Pacts), and tools (such as Open Government 

Partnership and Open Contracting Partnership) to enhance public accountability (World Bank et 

al., 2020). CoST is a membership organization that supports national and subnational governments 

to implement the multi-stakeholder approach to transparency. The four key elements are the 

formation of multi-stakeholder working groups, disclosure, and social responsibility. The World 

Bank (2020) describes the experiences and results with the CoST program in Thailand, Ukraine 

and Honduras. In each instance, gains have been documented (World Bank et al., 2020) in the 

form of savings (Thailand), more projects for less money (Ukraine), and additional smaller project 

with significant social impacts (Honduras).  

The institutional and organizational structures are strategic initiatives aiming to produce 

tactical responses. These structures provide frameworks in which ethical responsibilities related to 

unfair competition, equity, honesty, and fairness are practiced consistent with the codes of ethics 

of the engineering professional bodies of most countries.    

5.5.3 Monitoring and Penalties 

Establishing transparent, accountable, capable organizations and institutions that can 

moderate anti-corruption programs is a major step in fighting corruption. Where the monitoring, 

reporting and enforcements are insignificant, the electronic governance is poor, and there are 

benefits that can be gained by exploiting a position of control, the instances of corruption are likely 

to be high. Monitoring and penalties that leverage advanced technologies can help in corruption 

mitigation (Ghahari et al., 2018b). 

Contractors and private firms experience several different types of issues related to 

financing, building, and/or operating highways. By providing well-established contract 

agreements that have pricing flexibility, a sound debt structure, and transparency, and by reducing 

the project risks contractors and private firms face, the risk of corruption will be lowered. Li and 
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Cai (2017) showed that the incentives from the government such as lump-sum subsidy, concession 

period extension, fee subsidy (e.g., shadow toll), and revenue guarantee can reduce the investment 

risks of the private partner. Offering private partners, during the bidding phase, a wide range of 

government incentives related to investment timing, capacity, and pricing, can be a viable 

approach to reduce corruption. The incentives are structured to benefit the contractor and there is 

a freedom to select from several alternatives. Under the competitive bidding process, the risk of 

corruption can be reduced. In such circumstances, the cost of corruption would be more than the 

net outcome, and that would lower the instances of projects involving corruption (Li & Cai, 2017).  

Corruption is often exacerbated by excessive bureaucracy, for example, the number of 

licenses that are required to get permission for construction. Upper-income countries require 16 

on average, and developing countries require 20 (Djankov et al., 2002). It is likely that with more 

licenses required, the risk of fraud and corruption is increased.  

A useful strategy that helps ensure quality is output-based aid (OBA). It supports supplying basic 

services using unequivocal performance-based subsidies. By clearing  “who” receives the grant, 

“why” it is given, and “what” it is going to be spent on, the aid is less likely to be associated with 

misinterpretations, low quality, and possible corruption (Kenny & Mumssen, 2007).  

Involving more audits and required licenses does not always reduce corruption. Sometimes, 

a long process leads firms to attempt bribery to accelerate the procedure. Simplifying the health 

and safety regulations, and working closely with labor syndicates, consumers, and industry to craft 

an enforceable code can lower the likelihood of corruption. Other simple but crucial cultural 

changes need to be established and initiated with the reform of government agencies overseeing 

construction affairs. These changes include, but are not limited to, the prohibition of ghost-workers, 

defining specific roles, responsibilities and the levels of staffing, institutional budgeting in a 

transparent way, and digitalized ways of tracking and auditing of expenses. For example, over 

1999-2000, Tanzania’s Treasury changed the way of transferring funds from central to local 

government after a considerable leakage in the system (Sundet, 2004).  

Predicting the outcome of projects using the existing models generated from previous similar 

projects can be another way of selecting projects that lead to the best outcomes. Doing this requires 

a comprehensive technical, economic, social, and environmental analysis. This way, the accuracy 

of the bidders can be revealed, a trustful relationship formed, and all results publicized for further 

discussion, debate, and/or detailed review. In the meantime, by sharing the risk of having 



 
 

134 

unsatisfactory outcomes with the private partners, fewer projects with such problems might be 

seen. Reduction in the risk of having a low-quality project increases the returns to public 

investments. This entails comprehensive reform on pricing and regulations to make financial 

returns transparent and let the private sector make robust decisions based on the costs and benefits, 

which would lead to more reliable bids. These punitive and educational strategies are tactical and 

operational strategies. They are less directly tied to the engineering codes of ethics but provide 

some of the tools for enforcement. 

5.5.4 Leveraging Advanced Technologies  

Evidence from the literature suggests that advanced technologies can be used as an 

effective tool in the fight against corruption. These technologies include information and computer 

technologies, blockchain, artificial intelligence, big data analytics, and civic technologies (OECD, 

2021). Each of these technologies and their potential role in corruption mitigation, are presented 

below. 

Blockchain technology 

Blockchain is a database technology for storing verified and trusted financial transactions. 

This technology provides transparency and helps build trust in financial systems. Also, by reducing 

the need for intermediaries, it lowers the risk and opportunities for corruption of the financial 

system (Mackey & Cuomo, 2020; Rangel et al., 2019). Nevertheless, because it does not disclose 

the identities of sender and receiver, blockchain may be misused for money laundering, illicit trade, 

and criminal activities (Adam & Fazekas, 2018; OECD, 2021). 

Artificial intelligence (AI) 

The reduction of corruption starts by identifying corruption, and as demonstrated in 

preceding chapters of this dissertation. AI can also be leveraged to help learning from past 

corruption incidents, improving the accuracy of financial and technical inspections and reviews, 

and detecting loopholes within project finance procedures. Yet still, AI could lead to biased 

predictions (and hence, decisions), and therefore fine-tuning and careful training of the AI 

algorithms are vital. 
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Big Data Analytics 

As shown in this dissertation, statistical data analysis can help in detecting and measuring 

corruption in numerous ways. The availability of additional data is expected to yield more accurate 

analysis outcomes, and can afford oversight agencies a holistic view of the efficacy of their policies 

(Silveira, 2016). Big data and its associated analytics, on the other hand, may jeopardize individual 

privacy and cause threats to personal security, and therefore may constitute a concern for citizens 

(Ashenden et al., 2018).   

Civic Technologies 

E-governance can enhance communications between governments and citizens, and 

provides a foundation for citizens to have greater participation in government decision making and 

activities, and greater citizen engagement in public service policy making is another benefit of 

civic technologies is that they can encourage and facilitate greater public participation in 

government affairs and increase transparency. An example mechanism for this is crowdsourcing 

of data collection (via digital platforms such as cell phones) regarding infrastructure-related 

performance (Garcia-Molina et al., 2016; OECD, 2021).   

Information and communication technologies (ICT) 

Defined by the international federation of global and green information communication 

technology (IFGICT) as the integration of telecommunications and computers (IFGICT, 2020), 

ICT has helped not only facilitate government and citizen interaction but also educate citizens and 

reduce barriers in information delivery to and from governments (Köbis et al., 2021). Accordingly, 

ICT has helped citizens to become more engaged in bureaucratic processes and more aware of 

public service schedules and levels of service (Vrasidas et al., 2009). Other potential benefits of 

ICT in combating corruption are: automation (reduce chances of corruption in repetitive processes), 

transparency (reduce the probability of discretion), anomaly detection (including underperforming 

jurisdictions and outliers), passive defense (through networks of monitoring individuals), reporting 

systems, raising awareness (educating citizens) and deterrence (through public announcement of 

corruption cases) (Grönlund et al., 2010; Wickberg, 2013; Zinnbauer, 2012). However, despite all 

the advantages of ICT, it must be noted that some citizens with limited access to technologies, due 

to lack of knowledge of using devices, may be unable to effectively report any infrastructure 

abnormalities. In addition, some limitations from political environments may inhibit citizen 
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attempts to access ICT capabilities and functionalities (Hellström, 2010). One other important 

challenge is the potential misuse of such technologies; the 2007/2008 presidential election crisis 

in Kenya is a clear example of the misuse of ICT against citizens (Goldstein & Rotich, 2009). ICT 

may be associated with risk of reduced security and confidentiality and protection from malicious 

individuals or repressive governments (LaFraniere, 2010).   

The Christian Michelsen Institute (CMI) and TI (2012) provided some insight on how 

mobile phones can help to detect and deter corruption. The report suggests ways that mobile 

phones and camera/satellite technologies implemented in various countries, can help corruption 

reduction in the areas such as social accountability and mobilization (Mexico), communication 

and citizen-to-government interaction (South Africa), budget tracking (Kenya), whistleblowing 

and reporting (Panama and Georgia), and land transfer transaction monitoring (Pakistan) (Bailard, 

2009; Fung et al., 2010; Hellström, 2010). The examples include “community monitoring of health 

and education services, public monitoring of budgets, and contrasting performance between 

government bodies in different districts (TI, 2012).”  In addition, smart phone applications, e-tools, 

and e-procurement systems are now being used more for anti-corruption purposes (Mackey & 

Cuomo, 2020; Wellisz, 2018; Wickberg, 2013).  

The corruption mitigation potential of ICT exists at all phases of infrastructure 

development. At the construction phase, for example, connectivity (communication) capabilities 

between the infrastructure being constructed and a central monitoring office (or construction 

inspector’s mobile device such as cell phone) could be established. Through such connectivity, the 

inspection engineer could carry out a variety of activities in data collection (using  image-

processing, GPS, GIS, remote sensing) and analysis (using  machine learning, heuristics, and 

mathematical models) to monitor the quality and quantities associated with the construction project 

in real time (Wellisz, 2018). In addition, data on the dimensions and quality of in-progress or 

completed work could be collected using sensors installed in intelligent construction equipment or 

connected and automated vehicles during post-construction use of the facility.  

Sensing 

The sensors that could be used in construction inspection fall into two categories: active 

and passive. Active sensors send out energy in the form of a wave and characterizes the features 

of the target based upon the returning information. Examples of sensor technologies include radar, 

LiDAR, and ultrasonic (Dubayah & Drake, 2000; Massaro et al., 2014). An example is the ground 
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penetrating radar (GPR) which can be used to measure the quality and thicknesses of constructed 

layers of soil, aggregate, or asphaltic concrete. Passive sensors, on the other hand, take in 

information from the environment without emitting waves, such as regular cameras (Reindl et al., 

1996). As discussed in the preceding paragraph, sensors facilitate real-time monitoring of physical 

construction (in progress or completed work). They are typically fitted on tall structures 

overlooking the construction site, mounted on drones, or fitted on construction equipment or 

passing traffic vehicles to collect data on the construction as it progresses or when it is completed.    

Overall Discussion 

An integrated system to mitigate corruption at the construction phase would typically consist of 

several of the technologies described above, as portrayed in Figure 5.2. To provide the contexts 

and the applications of this integrated system that is, some practical examples related to the 

infrastructure construction are discussed herein. 

.   

 

Figure 5.2. Schematic figure of leveraging advanced technologies for fighting corruption at the 
construction phase  
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For example, aerial photos of the project site could be taken before the construction starts, 

and before and after each day’s activities. In addition, the entire construction process (not only the 

overall site but also areas of specific tasks) can be recorded on video. These tasks include 

excavation, filling or embankment construction in layers, concrete pouring, asphalt laying, 

assembly of steel or precast concrete members, and so on. Using artificial intelligence techniques, 

the construction images can be processed to ascertain the quantities of materials used, the 

dimensions of the constructed product, and in certain cases, the quality of the material used in the 

constructed product, such as the level of soil compaction, moisture content of fresh concrete, and 

so on. The aerial photos can be used in conjunction with photogrammetric techniques to ascertain 

the dimensions and positions (heights, depths, angles) of constructed elements. Ground Penetration 

Radar (GPR) can help verify the quality of materials used in the construction including asphalt and 

concrete. Remote sensors installed in the crane buckets and trucks, used with GPS (Teizer et al., 

2007) can measure the exact amount of soil that is hauled from one site to another. Intelligent 

compactors can help ascertain if the appropriate compaction levels have been achieved. 

Concrete and asphalt mixer trucks equipped with GPS systems can alert the engineer at the 

laying site if they encounter undue delays between the batching plant and the site. Sensors installed 

inside their rotating drums report to the central monitoring office, the amount of concrete they are 

carrying, any changes in the concrete properties along their haul trip, and the mixture design of 

their load. Connectivity features also enable comparison of material specifications and in-situ 

properties of the materials after construction, and any deviations can be addressed. 

Smart sensors implemented in workers’ vests can capture the number of times they have 

moved objects during the day and show the calories burnt in that day, thereby monitoring workers’ 

overall health and performance (Navon & Goldschmidt, 2003). Finally, in such an integrated 

autonomous and connected system for construction inspection, the collected and analyzed data can 

be stored in a data cloud, processed according to established standards and guidelines that are 

consistent with a secure cyber environment, and given access to all relevant stakeholders including 

corruption mitigation personnel.  

 Examples of Mitigation Initiatives  

Corruption mitigation measures may be preventive, educational, or punitive. Examples of 

mitigation initiatives applicable to specific phases of project development that also support the 
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relevant codes of ethics are outlined. The examples include both tactical and operational strategies 

that are supported by strategic initiatives. 

5.6.1 The Needs Assessment Phase 

Journalists and NGOs could play a role as watchdogs. Also, an anonymous public 

complaint and whistleblower program, could lead to less corruption. Projects that have used these 

approaches have slashed costs by 50% to 66% in competitive bidding strategies for a community-

based construction of schools in Zambia and Mauritania (Theunynck, 2002), and savings of 25% 

to 56% compared with conventional infrastructure projects (Wong & Guggenheim, 2005).  

Establishing transparent, accountable, capable organizations and institutions that can 

implement anti-corruption programs is a major step for this movement. Where the discretion is 

extensive, the monitoring system and reporting are deficient, the electronic government is poor, 

and the benefits that can be gained by exploiting a position of control are large, the instances of 

corruption are likely to be high.  
 

As an example of applying a penalty system, South Korea’s road sector applied the sanction 

policy on the firms that had broken laws and had agreed not to bribe or collude. Such firms can be 

subjected to comprehensive oversight by a self-regulating inspector with access to classified, 

internal documents (Lee & Larnemark, 2007). Accordingly, by publicizing detailed information 

about contract awards, so that all have access to the documents, the level of corruption will be 

lowered. Argentina, Turkey, Philippines, and Uganda are among the countries that have embraced 

this initiative (Kenny, 2007a). The disclosed information includes when and how the funds are 

going to be spent, by whom, and at what unit price the project is going to be delivered. Besides, 

the government officials who are auditing and monitoring the quality of the project should 

specifically be identified and announced.     

5.6.2 The Planning and Financing Phase 

To address corruption at the planning phase, it is important to ensure transparency 

throughout the planning process. All the options, as well as the merits and demerits of each option, 

should be made available to all stakeholders using the same dissemination platform. The agency 

should raise awareness of the proposed infrastructure and should facilitate the participation of the 
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general public in the decisions made at this phase. The selection of the project financier should be 

done openly and the reasons for selection should be shared with the general public. In addition, 

the discretionary power of individual bureaucrats should be reduced. The infrastructure agency 

should undertake comprehensive fiscal reform to reflect transparency in agency’s planning 

processes. Other initiatives could include procurement procedure reform in the rules and audit 

processes, mechanisms for competitive selection of planning consultants and infrastructure 

financiers, and legal reform that could lead to a significant increase in the society’s awareness 

about the proposed infrastructure. Also, as the planning phase involves an ex-ante assessment of 

the infrastructure project outcomes (technical, economic, social, and environmental), and an open 

evaluation process can help verify whether the chosen plan was indeed the optimal, and this 

information could help guide the selection of plans for similar future infrastructure systems.  

5.6.3 The Construction Phase 

The Convention on Combating Bribery in International Business Transactions, which were 

enacted in 1999 by the Organization for Economic Cooperation and Development (OECD), would 

alleviate the ongoing culture of bribing foreigners (OECD, 1999). A “zero tolerance” policy on 

bribery initiated by WEF, TI, and other known engineering, and construction firms in 2004 is 

another approach. The policy also monitors payments (particularly, donations, gifts, and charitable 

payments) to make sure they are not an indication of bribery. It protects the rights of the firms, 

which refuse to bribe, and, in the meantime, it considers penalties for violators and more auditing 

for those firms. At a more local level, the Colombia Society of Civil Engineers supported open 

contracting using standard documents (World Bank, 2020a). This initiative has also leveraged new 

technology to make data more publicly available resulting in more competitions. 

5.6.4 Operations, Maintenance, and Monitoring Phase  

When there is a joint venture which includes entities from different countries, the joint 

venture might initiate an agency agreement through the entity that resides in the host country. This 

entity has less risk to be discovered for the corrupt activities. This entity is usually associated with 

a government official, project owner or their relatives. The entity will receive a larger portion of 

the profit (as a bribe) than it should normally receive. 
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Using well-documented best practices for operations, maintenance, and monitoring are the 

most obvious tactical and operational corruption mitigation measures. There is also evidence that 

digital reporting of issues added accountability and improved road conditions in Moscow (Gorgulu 

et al., 2020). Limiting the opportunities for renegotiation of PPPs, using moratoria, prescriptive 

language in the original contract, or letting the market respond, has proved effective in Brazil, 

Colombia, Peru, India, Australia, and Chile (World Bank et al., 2020).  

5.6.5 The End-of-Life Phase 

When it comes to the last project development phase, there are numerous ways to gain 

revenues through corruption. Excavation/removal of materials from the site is a very sensitive step 

and it is susceptible to corruption. Confirmation notes and documents might be falsely generated 

inflating the amount of material being removed. Site inspectors/surveyors/engineers might ask for 

bribe from contractors or vice versa to issue a proper record. Moreover, false invoicing for an 

equipment purchased/rented for a specific task of the project, e.g. a mid-size bulldozer to build 

road embankments, is another ground for fraud activities. In this case, site inspectors are offered 

bribes or threatened by contractors to falsely record the activities. 

Corruption in the end-of-life phase can be symptomatic of larger issues. Premature 

demolition is often driven by new development and mitigation strategies are required, accordingly. 

Similarly, the improper management of materials can be addressed through regulation and best 

practices (Yeheyis et al., 2013). Early consideration of sustainable options can increase 

opportunities to optimize economic, environmental, and social indicators. Design engineers and 

decision makers can specify materials and designs that can be reused, modified and repurposed, 

recycled, dismantled, sold, upgraded, and/or integrated with new systems. This foresight can 

minimize landfill deposits and increase usability and salvage values. However, many end-of-life 

sustainability opportunities can still be taken advantage of without foresight and planning during 

early infrastructure development phases (OECD, 2009a). 

 Concluding Remarks 

This chapter of the dissertation sought to identify the common ways that corrupt actions 

may occur in the development of infrastructure systems. The findings from publications related to 
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corruption, projects, and infrastructure systems were condensed. The chapter’s contents may be 

used to develop guidelines to measure, detect, and address corruption in the infrastructure sector. 

The fight against corruption is clearly not an easy one. For example, there have been several cases 

where government officials appointed to lead the fight against corruption have been ensnared in 

corrupted practices they had been tasked to eliminate. On the other hand, actions grounded in the 

appropriate value systems and codes of ethics should be adopted, and such implementations 

require optimism and persistence.  

Corruption, in all forms, skews incentives and could lead to the loss of expert workforces, 

engineers, and people who do not want to be involved in such activities. In a corrupt industry, 

disqualified people will take the lead and will often overrule qualified experts, which in turn will 

cause economic loss. Corruption causes inefficiency in both public and private sectors. Corruption 

conflicts with fundamental values of honesty, equity, and transparency; it gradually weakens the 

unity of a society and ethical aspects of the civil service, which in turn, inhibits the capability of 

governments to enact public policies that promote social welfare. In this chapter, different aspects 

of corruption were reviewed and discussed. The study outcomes can be used to guide corruption 

mitigation efforts throughout the infrastructure lifecycle.  
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CHAPTER 6. INEFFICIENCY – ANALYTICAL MEASUREMENT 

METHODS 

 Introduction 

Efficiency analysis is associated with the development of analytical tools that assist policy 

makers and agencies in measuring the efficiency of a system. Such tools contribute to the decision-

making processes and help reduce inefficiencies accordingly. The proposed frameworks assess the 

productivity of the objectives as a whole as well as the relative productivity of the individual 

contributors to the objective. The analytical methods for efficiency measurement may be placed 

in at least two categories: (a) non-parametric vs. parametric, and (b) stochastic vs. deterministic 

(Kringos et al., 2010). In this chapter, the focus is made on deterministic non-parametric methods 

of efficiency measurement.   

Other analytical methods for  efficiency measurement include, corrected ordinary least 

squares (COLS), stochastic frontier analysis (SFA), and data envelopment analysis (DEA) are 

well-known in the field (Pelone et al., 2015). COLS is a parametric deterministic approach that 

uses ordinary least squares regression in estimating the relationship between inputs and outputs 

(Agbelie et al., 2015). The resulting residuals from COLS correspond to the inefficiency of the 

system. SFA is a stochastic parametric approach where the unknown parameters of the efficiency 

factors are estimated using maximum likelihood models. In an SFA model, the residuals are split 

into symmetric and asymmetric errors, which translate into statistical noise and inefficiency, 

respectively. DEA is a deterministic non-parametric approach which uses linear programming 

models to evaluate the relative productivity of organizational units. Due to the fact that DEA 

models are non-parametric, they can capture the convexity and monotonicity of data. Recently, a 

stochastic DEA has been introduced that adds the characteristics of both DEA and SFA together 

to increase the capabilities of DEA models. This reduces the potential limitations of DEA models 

by releasing the deterministic characteristic limitation of those models (Olesen & Petersen, 2016).         

Frontier method applications have been studied in numerous fields, such as human resource 

management, transit agencies, public administration, management control system, health care 

system, etc. DEA is a well-known frontier analysis method. The main difference between DEA 

and other parametric methods is that DEA does not need an ex-ante specification of a production 

or a cost function, and therefore involves no functional relationship between inputs and outputs.  
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 DEA Models for Efficiency Measurement 

DEA uses a non-parametric mathematical programming to determine optimal individual 

frontiers. DEA is particularly efficient when the problem includes multiple inputs and outputs with 

uncontrollable factors. Moreover, it does not assume any functional form for the frontier or the 

distribution of productivity, therefore, the productivity analysis outcome is relatively easy to be 

interpreted by decision makers (Olesen & Petersen, 2016). 

DEA is used to empirically quantify the effectiveness of decision-making units (DMUs) 

(Charnes et al., 1978). Emrouznejad et al. (2008) reported over 4000 studies on DEA models in 

their review dissertation on the very topic, and found that this technique is used particularly for 

benchmarking in operations management, and its applications have become widespread through 

the time.  

Organizational units are typically eager to identify the sources of any inefficiencies in their 

agencies. Inefficiencies can be identified by breaking down the productivity components into the 

elements that contribute to efficiency. An influential capability of a DEA model is that it can be 

decomposed into those components when needed. Figure 6.1 presents the architecture of a general 

multi-stage model for efficiency assessment. This model takes direct inputs at each stage, and 

similarly, it gives direct outputs at each stage. Intermediate measures can toggle between two 

stages, common inputs can be given at each level, and shared inputs can be given to the stages at 

each level. In DEA models, there is no predefined distinction among inputs and outputs, therefore, 

all variables equally influence an organization’s productivity (Epstein & Henderson, 1989).  

In a DEA model, DMUs must be homogeneous; this means that the units of comparison 

must be similar in technology, have similar market conditions, and have similar tasks and 

objectives (Dyson et al., 2001; Golany & Roll, 1989).  Another advantage of a DEA model is that 

it does not require all factors to have a common unit of measurement (Cook et al., 1994), and 

therefore, the inputs and outputs can be comprehensive as noted by Ozbek et al. (2010a). On the 

other hand, too many inputs and outputs will lead to larger values for the DMUs with high 

productivity scores. Hence, there is a rule of thumb in determining the number of inputs and 

outputs: number of inputs times number of outputs times 2 roughly determines the optimum 

number of DMUs (Dyson et al., 2001).  
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Figure 6.1. Architecture of a general multi-stage DEA model for efficiency assessment  
   

 Network DEA 

The concepts in this section focuses on one of the most applicable DEA methods in real 

data called network DEA. In a traditional, typical DEA, the internal architecture of DMUs are 

typically disregarded. As such, the efficiency of a DMU is assumed to be a function of the inputs 

and outputs as a whole. To overcome this limitation, Färe and Primont (1984) proposed the 

assessment of productivity by considering internal factors. Later, Färe and Grosskopf (2000) 

developed a general multi-stage DEA model (i.e. network DEA) including internal inputs and 

outputs. They also used a network model to assess the performance of an organization (Färe & 

Grosskopf, 1996). In a similar effort, Cook et al. (2000) suggested a non-linear DEA model to 

assess the efficiency of a financial sector with the consideration of shared resources. Building upon 

this model, Jahanshahloo et al. (2004b) linearized the model by considering flexible and non-

flexible share resources for their specific model.  

Yang et al. (2000) considered a system containing several independent parallel subsystems. 

They suggested a DEA assessment model to measure the productivity of systems based on the 

efficiency of subsystems. Golany et al. (2006) proposed a similar approach to assess the 
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productivity of a system as a whole as well as within its subsystems. Chen (2009) suggested a 

dynamic network DEA by proposing another productivity assessment for estimating the efficiency 

of hierarchical levels in a dynamic system. Later, Chen and Yan (2011) discussed returns to scale 

based on mixed organization, centralized and decentralized systems, and the relationship between 

productivity among systems.  

Of all network DEA models, the two-stage DEA covers a large set of real data productivity 

assessment studies (Castelli et al., 2010). The two-stage DEA model was suggested by Wang et al. 

(1997) for productivity assessment in firms. Charnes et al. (1986) used a two-stage DEA model in 

the U.S. army recruitment system. Later, Seiford and Zhu (1999) used the same concept in 

measuring efficiency and marketability of the U.S. financial sector. In their model, independent 

constant returns to scale (CRS) models were used to assess the overall productivity (Eq. 6.1), 

productivity of stage 1 (Eq. 6.2), and productivity of stage 2 (Eq. 6.3). The overall productivity 

measurement equations are presented below: 

Max E0(X1.Y2.Z.crs)sz = uY0
2, Eq. 6.1. 

s.t. γX0
1 = 1,  

 τY2 - γX1 * 0,  
 γ,τ ≥ 0.  

where, X1 is the input for stage1, Z is an intermediate input for stage 2, and Y2 is the output for 

stage 2. Accordingly, stage 1 is modeled according to the following equation: 

Max E0
1(X1.Y2.Z.crs)sz = ψZ0, Eq. 6.2. 

s.t. γX0
1 = 1,  

 ψZ - γX1 * 0,  
 γ,ψ ≥ 0.  

where, X1 is the input for stage1 and Z is an output for stage 1, and an intermediate input for stage 

2. Finally, stage 2 is calculated based on Eq. 6.3: 

Max E0
2(X1.Y2.Z.crs)sz = uY0

2, Eq. 6.3. 
s.t. ψZ0 = 1,  
 τY2 - ψZ0 * 0,  
 ψ,τ ≥ 0.  

where, X1 is the input for stage1, Z is an intermediate input for stage 2, and Y2 is the output for 

stage 2. The overall architecture for a two-stage network DEA model is shown in Figure 6.2. 
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Figure 6.2. The architecture for a two-stage network DEA model 
    

Chen and Zhu (2004) demonstrated that the conventional two-stage network DEA model, 

shown above, can potentially characterize the stages incorrectly due to the probable conflict that 

Z (intermediate measures) can create; this happens when Z+Y2 is used as an output in assessing 

the overall productivity. In other words, Eq. 6.1. lacks the ability to correctly measure the 

efficiency of the two stages, since it only reflects the inputs and outputs of the whole procedure, 

and it disregards Z (intermediate measures) related to the two stages. Accordingly, in order to 

reduce the inaccurate assessments, Zhu (2014) suggested using the following method that takes an 

average productivity of the stages: 

Max E0(X1.Y2.Z.crs)sz = 
�
� abc


d
efcd +

gh"d
b"
di, Eq. 6.4. 

s.t. ψ1Z - γX0
1 * 0,  

 τY2 – ψ2Z * 0,  
 γ,τ,ψ1,ψ2 ≥ 0.  

This approach still does not contemplate the connection among the two stages due to the fact that 

it decouples the stages via different multipliers. Hence, a variable returns to scale (VRS)-like linear 

DEA model is required to solve the problem (Chen et al., 2006; Chen & Zhu, 2004):  
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Min E0(X1.Y2.Z.vrs)cz = X�	 − X�:, Eq. 6.5. 

s.t. X1δ * αX0
1  

 Zδ ≥ Z0                
l δ = 1 
δ ≥ 0 

 

 Zδ ≥ Z0 
Y1ϑ * βY0

2 
 

 l ϑ = 1 
ϑ ≥ 0 

 

where, Ɵ1 and Ɵ2 are pre-set weights signifying the productivity of the stages, and Z0 is a decision 

variable that characterizes an intermediate measure for a particular DMU. Eq. 6.5., accordingly, 

measures both overall productivity and optimal values for Z (intermediate measures). Chen et al. 

(2006) used this approach to measure the productivity of firms considering of the impact of 

information technology (IT). Similarly, Saranga and Moser (2010) implemented the same 

approach in assessing the performance of supply managements. Table 6.1. presents other types of 

network DEA models including those mentioned above. 

 DEA Applications 

DEA is a non-parametric and deterministic approach and it determines the most efficient 

objective in the system. Moreover, it captures the relative efficiency of other influential units in 

the system, and since it is non-parametric, it can capture convexity and monotonicity of the data. 

Furthermore, DEA does not take any functional form for the frontier or the distribution of 

efficiency, therefore, the analysis output is comparatively straightforward to be construed by 

decision makers.  

DEA application has been investigated in various sectors such as health care system, public 

administration, transit agencies, human resource management, etc. Table 6.2. presents the 

application of DEA techniques in performance assessment in various industries. Note that a 

limitation in DEA analysis is that the results are sensitive to the selection of inputs and outputs. 

Hence, the variables have to be comprehensive, and they must include the relevant factors to cover 

the essence of the objective. On the other hand, when the number of inputs and outputs increase, 

the number of DMUs increase as well. In fact, an increase in the number of inputs and outputs 

makes the between DMUs much harder. Hence, although increasing the factors may seem to 

Stage 1, 

Stage 2. 
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enhance the analysis, the presence of agencies within one sector that have considerably different 

types of services may provide flawed results and explanations. In the following sections, the focus 

is made on introducing the studies that have concentrated on the application of DEA in 

performance assessment of supply chain and manufacturing, healthcare system, energy sector, and 

transit agencies.  

Table 6.1. Selected network DEA methods 

Method Application Reference 

Initial DEA Generation 
Multi-plant firms  (Färe, 1991; Färe & Primont, 1984) 
Production (Färe & Whittaker, 1995) 

Seminal Study Power Plant (Cook et al., 1998; Yang et al., 2011) 

Radial Method 
Financial sector (Cook et al., 2000; Jahanshahloo et al., 2004a) 
Supply chain (Chen & Yan, 2011) 

Non-radial Method 
Supply chain (Avkiran, 2009; Chang et al., 2014; Tone & 

Tsutsui, 2009) 

Two-stage 

Supply chain (Chen et al., 2006; Chen & Zhu, 2004; 
Saranga & Moser, 2010; Wang et al., 1997) 

Financial sector (Seiford & Zhu, 1999) 
Multi=plant firm (Chen & Zhu, 2004; Wang et al., 1997) 

Dynamic DEA 
Supply chain (Färe & Grosskopf, 1997) 
Ψ - efficiency (Chen, 2009) 

6.4.1 Supply Chain & Manufacturing 

In the manufacturing industry, Hoopes et al. (2000) used a goal-programming model to 

assess the performance of serial manufacturing process. In the oil and petroleum industry, Ross 

and Droge (2002) applied an integrated DEA model to a large-scale supply chain distribution 

network. They used a benchmarking methodology on data from over 100 distribution centers to 

assess temporal productivity in the industry. Vas et al. (2010) used a network DEA to assess the 

efficiency of retail stores considering the interdependencies of each store.  

Talluri and Baker (2002) suggested a three-phase DEA model for designing a productive 

supply chain. In their approach, the first phase included DEA models along with an efficiency 

game to assess the productivity of distributors, manufacturers, and suppliers. In the second phase, 

building upon the previous stage, they chose nominees for supply chain model using an integer 
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programming model with a hindsight on location, capacity, and demand constraints. Finally, the 

third phase included a transshipment model with minimum cost to choose ideal routing decisions.  

Using a two-stage method, Sexton and Lewis (2003) assessed the productivity of baseball 

teams’ management. In this approach, productivity was identified per stage, therefore, inefficient 

stages could be pinpointed by managers to increase the productivity. In another study, Narasimhan 

et al. (2004) used a two-stage DEA approach to investigate the relationship between productivity 

and flexibility in manufacturing. In order to consider productivity at each stage, they used the 

reduced DEA model under the constant returns to scale (CRS) approach.  

6.4.2 Healthcare System 

DEA in the context of primary care (PC) is an important topic and the attention to this 

efficiency assessment technique in healthcare systems has been increased over the years. Two 

main DEA approaches of constant return to scale (CRS) or variable returns to scale (VRS) have 

been taken by researchers in this field (Amado & Dyson, 2008). The CRS approach is applicable 

when analysis needs to be performed through policy makers’ perspectives. In other words, when 

the assessment of productivity of a whole system is the objective of the analysis, regardless of any 

other managerial factors, it has been suggested to use the CRS approach. On the contrary, when a 

managerial viewpoint is required from the analysis and it is important to investigate the influential 

factors and elements, the VRS approach has been suggested (Jacobs et al., 2006).  

Building upon the Färe and Grosskopf model, Löthgren and Tambour (1999) investigated 

the (in)efficiency of the pharmaceutical industry in a European country using a network DEA 

model. Also, Amado and Dyson (2009) explored the use of a CRS DEA model in assessing the 

productivity of a primary diabetes care system. Similarly, Wagner et al. (2003) performed a DEA 

analysis in finding the overall efficiency of physician practices in a large primary care organization 

in the United States. They found a linear relationship between inputs and outputs in their CRS 

DEA study. Salinas-Jimenez and Smith performed a similar CRS DEA analysis considering 

adjusted values for DMUs by normalizing those based on sizes (Salinas-Jiménez & Smith, 1996).  

    Rahman and Capitman (2012) adopted a VRS DEA model to investigate the effect of an 

increase in the use of supporting PC health practitioners on the productivity of health clinics. The 

study was followed by a Tobit regression analysis in order to identify the factors that affect 

productivity. In another similar study using a VRS DEA model, Guiffrida and Gravelle (2001) 
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investigated the performance of English Family Health Services Authorities (FHSAs) in providing 

PC for patients. It was found that the correlation among the variables of the regression methods 

and among the variables of the DEA model were significant. Moreover, it was noted that 

assumptions about the fundamental technology of PC cause a relatively more changes in rankings.  

6.4.3 Energy Sector 

In this sector, Lansink and Silva (2003) used DEA models to assess the CO2 and energy 

efficiency of a production line in Netherlands. Building upon the previous study, Sarkis and Talluri 

(2004) investigated the feasibility of using DEA models in ecoefficiency measurement of the 

energy industries. Gomes and Lins (2008) improved a CO2 emission model using a DEA approach 

by considering non-parametric productivity assessment methods. Similarly, Mo et al. (2005) 

applied DEA approaches in determining the ecological productivity assessment in agriculture.  

Amalnick et al. (2007) assessde the efficiency of energy-intensive sectors using an 

integrated DEA principal component analysis (PCA) numerical taxonomy approach for energy 

efficiency assessment and consumption optimization in energy intensive manufacturing sectors. 

Later, Azadeh et al. (2007) implemented an adaptive neural network algorithm on performance 

assessment of electric power generation to confirm the previous results obtained from the 

integrated DEA PCA assessment.    

Hu and Kao (2007) performed an extensive research on improving the sustainability of the 

Asia-pacific economic cooperation (APEC) economies. They suggested a DEA model for the 

sustainable development of 17 APEC economies based on energy saving target ratios (ESTR). 

Yang and Pollitt (2009) incorporated unwanted outputs and uncontrollable attributes into DEA to 

assess the productivity of coal-fired power plants in China. They proposed six DAE models to 

evaluate the efficiency of the power plants. In a similar study, Yeh et al. (2010) considered two 

undesirable outputs - SO2 and CO2 releases – in their energy use performance assessment by means 

of a DEA method. They found that 11.28% less CO2 emission is attainable for China assuming the 

optimal efficiency is achieved.       



 
 

152 

6.4.4  Transportation and Transit Agencies 

In the realm of transportation and transit, Sheth et al. (2007) used a network DEA and goal 

programming approach to assess the productivity of bus routes. Yu an Lin (2008) investigated the 

productivity of railway firms in terms of freight and passenger service efficiency using a multi-

activity DEA technique, and Yu and Fan (2009) suggested a two-stage DEA model to assess the 

efficiency of a bus transit system on a national scale. Rouse (1997) proposed a methodology of 

performance measurement with applications using DEA, and investigated the feasibility of using 

modified input-oriented variable returns to scale (VRS) model. Similarly, Zhang et al. (2015) 

assessed the efficiency of bridge management in the U.S. using the DEA VRS model.  

Humphrey et al. (1993) analyzed the feasibility of DEA in estimating the operational 

productivity of highway agencies. Also, comprehensive analysis on the operational performance 

of public transportation agencies by Arman et al. (2013) showed that although an improvement 

may be achieved when the number of inputs and outputs increase, considering multiple transit 

agencies with considerably different services may provide erroneous results. Later, Olesen and 

Petersen (2016) found that such limitations can be alleviated by combining SFA and DEA 

techniques, which translates into stochastic DEA models. 

Ozbek (2007) investigated the application of DEA in road maintenance in general and they 

continued the study in bridge and road maintenance afterward. Ozbek et al. (2010b) studied the 

efficiency measurement of bridge maintenance using DEA and proposed DEA as a decision-

making tool for transportation professionals (Ozbek et al., 2009). Similarly, Fallah-Fini et al. (2009) 

proposed the performance measurement of highway maintenance operation using DEA along with 

environmental considerations. Wang and Tsai implemented the same technique to evaluate the 

highway maintenance performance in Taiwan (Wang & Tsai, 2009). London (2011) assessed the 

application of DEA in exploring state transportation infrastructure performance and economic 

health.  
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Table 6.2. Selected DEA applications in performance assessment in various industries  

Method Application Reference 

Multi-criteria decision 
models 

Supply chain (Talluri et al., 1999)  

Transportation 
(London, 2011; Ozbek, 2007; Ozbek et al., 
2010b; Wang & Tsai, 2009) 

Energy (Yang & Pollitt, 2009) 

Integer Programming 
Models 

Supply chain (Talluri & Baker, 2002) 
Manufacturing (Azadeh et al., 2007) 
Energy (Azadeh et al., 2007) 

Throughput Planning Supply chain (Troutt et al., 2001) 

Network 

Pharmaceutical 
Industry 

(Löthgren & Tambour, 1999) 

Energy (Gomes & Lins, 2008; Mardani et al., 2017) 
Retail stores (Vaz et al., 2010) 

Transportation 
(Sheth et al., 2007) (bus transit) 
(Taboada & Han, 2020; Yu & Lin, 2008) 
(rail transit) 

Two-stage Modeling 

Transportation 
(Yu & Fan, 2009) (bus transit) 
(Yu, 2008) (rail transit) 

Recruitment (Charnes et al., 1986) 

Sports 
(Fukuyama & Weber, 2010; Sexton & 
Lewis, 2003) 

Socio-economic (Ünsal & Nazman, 2018) 

Infrastructure 
(Cook et al., 1994; Fallah-Fini et al., 2009; 
Ozbek et al., 2009) 

Goal-programming 

Manufacturing 
Industry 

(Hoopes et al., 2000) (Narasimhan et al., 
2004) 

Recruitment (Charnes et al., 1986) 
Sports (Sexton & Lewis, 2003) 

Constant returns to scale 
(CRS) models 

Manufacturing (Narasimhan et al., 2004) 

Primary care 
(Amado & Dyson, 2009; Salinas-Jiménez & 
Smith, 1996; Wagner et al., 2003) 

Supply chain (Hu & Kao, 2007) 
Energy (Yeh et al., 2010) 

Variable returns to scale 
(VRS) models 

Primary care 
(Lansink & Silva, 2003; Rahman & 
Capitman, 2012) 

Energy (Lansink & Silva, 2003) 
Infrastructure (Arman et al., 2013; Zhang et al., 2015) 

Integrated constant returns 
to scale (CRS) & (VRS) 
Models 

Oil & Petroleum (Ross & Droge, 2002) 

Healthcare 
(Giuffrida & Gravelle, 2001; Rouse et al., 
2011) 
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 Concluding Remarks 

Efficiency measurement analytical methods were assessed in this chapter. Corrected 

ordinary least squares (COLS), stochastic frontier analysis (SFA), and data envelopment analysis 

(DEA) are among the productivity assessment techniques, which can be implemented to acquire 

reliable measures in such cases. COLS is a parametric and deterministic approach and the resulting 

residuals correspond to the level of unproductivity of the system. SFA is a parametric and 

stochastic approach and the residuals are separated into symmetric errors (statistical noise 

indicators) and asymmetric errors (inefficiency indicators).  

It was noted that as the significant efficient efficiency measurement analysis, Data 

Envelopment Analysis is a pioneer method in the realm. DEA can take multiple inputs and multiple 

outputs in the transformation process. It does not need significantly reliable assumptions about the 

fundamental technology that relates inputs to outputs. The incorporation of various inputs and 

outputs in the productivity assessment models, such as DEA, could assist policy makers and 

managers in figuring out the relative efficiency of their agencies with respect to the individual 

units of the subsystems. Due to having such unique characteristics, DEA has widely been used in 

performing accurate productivity measurements in various sectors. Its applications have been 

investigated in various sectors, namely public administration, health care system, human resource 

management, transit agencies, etc.  

 A limitation to DEA models is its deterministic characteristic. This means that 

unproductivity is assessed compared to a deterministic frontier; therefore, the assessment errors 

(noises) and the specification errors will not be included in the results. SFA, in turn has this 

capability to consider both errors. Hence, a stochastic DEA approach is necessary to gain more 

accurate and interpretable results. This limitation can be significantly controlled by performing a 

non-parametric and stochastic DEA, which is achieved by combining SFA and DEA methods. The 

combination of SFA and DEA method provides DMU-based inefficiency and noise distributions, 

which in turn, makes the assessment simpler to be interpreted by decision makers, especially when 

multiple inputs and outputs need to be included. A future work the stochastic DEA method could 

focus on making the territory between inefficiencies and errors – in models with composite error 

term – clearer. 

The next two chapters are dedicated to analytical efficiency measurement methods in 

finding inefficiencies in infrastructure projects. The background of non-parametric and parametric 
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methods as well as stochastic and deterministic approaches to each methods with a focus on non-

parametric deterministic approaches are investigated. The chapters examine the relationship 

between infrastructure investment and performance using state-level data, and conclude with a 

nonparametric efficiency methodology for comparative assessment of infrastructure agency 

performances. The methodology presented the following chapters of this dissertation can help 

oversight agencies to promote the overall accountability of infrastructure agencies by establishing 

a clearer connection between infrastructure investment and performance, and by carrying out 

comparative assessment of infrastructure performance across the jurisdictions under their 

oversight or supervision. 
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CHAPTER 7. INEFFICIENCY - EXAMINING THE RELATIONSHIP 

BETWEEN INFRASTRUCTURE INVESTMENT AND PERFORMANCE 

USING STATE-LEVEL DATA  

[A version of this chapter is published in the Journal of Infrastructure Systems3, presented at the 
Transportation Research Board 98th Annual Meeting4, and published in the proceedings of the 11th 

International Bridge and Structures Management Conference5] 

 Introduction 

Most development sectors have in place oversight processes where oversight bodies 

monitor the performance of jurisdictions (agencies, divisions, units, etc.) under their purview. 

These sectors include agriculture (Anríquez et al., 2016), healthcare (Levitt et al., 2014; Schieber 

et al., 1992), local administration (FMPO, 2017), education (Boser, 2011). Irrespective of the 

jurisdiction or sector type in question, the oversight body monitors the overall accountability of 

each jurisdiction’s by (a) assessing whether the jurisdiction’s outcomes are consistent with their 

spending levels, and (b) measuring and tracking the expenditures and performance of each 

jurisdiction. In certain cases, the oversight body plays a purely observatory role; in other cases, it 

carries out both observatory and presecretory roles. In the specific context of the infrastructure 

sector, performance of the jurisdictions can be measured in terms of physical preservation 

(enhanced condition) which translates into greater longevity, reduced frequency and intensity of 

repairs, reduced user costs, enhanced mobility and safety, and other benefits. It is useful to duly 

recognize that there often exists a time lag between such expenditure and the resulting performance 

outcomes in any system.    

 
3 Ghahari, S.A., Alabi, B. N.T., Alinizzi, M., Alqadhi, S., Chen, S., & Labi, S. (2019). Examining relationship between 
infrastructure investment and performance using state-level data. Journal of Infrastructure Systems, 25(4), 04019026. 
4  Ghahari, SeyedAli, Bortiokor Nii Tsui Alabi, Majed Alinizzi, Saeed Alqadhi, Sikai Chen, and Samuel Labi 
(2019). The Bridge Investment-Performance Nexus at an Aggregate Level–Accounting for Situational and 
Measurement Biases. In Transportation Research Board 98th Annual Meeting. 
5 Ghahari, S.A., Qiao, Y., & Labi, S. (2017). Exploring the US Interstate Highway Bridge Maintenance Expenditure 
Versus Condition Trade-Off Relationship Using Aggregate Data. In Eleventh International Bridge and Structures 

Management Conference. 
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 Legislative and Executive Backing 

The monitoring of infrastructure performance earned due to expenditures is motivated by 

legislative actions intended to promote agency accountability in terms of their spending outcomes 

(Agbelie et al., 2015; Ghahari et al., 2019c). In the United States, for example, a significant 

watershed related to government supervision and responsibility of infrastructure agencies was the 

Government Performance and Results Act (GPRA) passed by the U.S. Congress in 1993. The 

GPRA caused the government to pay increased attention to the outputs and outcomes that are 

expected from federal programs. According to GPRA, federal agencies were required to define 

“levels of achievements” in order to be able to compare the outputs from the programs to the 

quantified goals (GAO, 2001). This legislation helped provide support to local, state, and federal 

legislators who were eager to identify the benefits of public expenditures in terms of performance 

outcomes within the system.  

The 1995 National Performance Review (NPR) ushered in a broader definition for 

performance management, which corresponds with evaluating progress toward achieving pre-

defined objectives. NPR fostered examination of the relationship between how well the outcomes 

are delivered and the extent to which intended goals are achieved by investment expenditures; thus, 

NPR facilitated the “tying of the knot” between the efficacy of actual government operations and 

program goals and objectives (Shaw, 2003). In 2012, the Moving Ahead for Progress in the 21st 

Century Act (MAP-21) required state agencies to focus more on monitoring performance and 

target outcomes. MAP-21 specifically requested the DOT secretary to ensure that all states 

implement performance measurement in order to adequately monitor the condition of interstate 

highway infrastructure and the national highway system. This call was consistent with the need 

for systemwide monitoring of expenditures and performance. It is expected that by developing 

such a monitoring system that identifies the relationship between expenditures and performance 

outcomes, the states will be placed in a better position to track their progress toward national goals 

and targeted outcomes, and that this will enhance the accountability of agency spending.  

In the United States, the Department of Transportation (USDOT) is one of the agencies 

that has responded most effectively to all these legislations. This federal body oversees the 

transportation infrastructure investments and the performance of state highway agencies. Through 

its policies and actions, the USDOT has indicated recognition of the importance of monitoring the 

expenditures and performance of the states’ transportation infrastructure. For example, the 
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USDOT’s Federal Highway Administration (FHWA), in initiatives that align with the NPR vision, 

continues to evaluate the level of consistency and progress toward targeted outcomes, and assesses 

the efficiency of projects from perspectives of resource-outcome efficiency. A similar position was 

espoused by the National Surface Transportation Policy and Revenue Study Commission 

(NSTPRSC) which aims at fostering proper assessment of infrastructure performance early in the 

life cycle (NSTP, 2007). The U.S. Government Accountability Office (GAO) has emphasized that 

spending should be tied to outcomes (GAO, 1999). In a similar move, the National Performance 

Management Advisory Commission (NPMAC) stated that the relation between expenditures and 

predetermined outputs as organizational objectives needs to be realized (NPMAC, 2010). 

These instances of legislative and executive backing have been corroborated by 

infrastructure management research. For example, a study sponsored by the National Cooperative 

Highway Research Program (Cambridge Systematics, 2000) indicated that significant insights can 

be earned by establishing a relationship between project spending and project performance. They 

argued that a clearer link will “foster greater allocation of resources to highways, make the overall 

effectiveness of highway projects more visible, and improve financial management” and reported 

that such benefits are already becoming manifest in states including Florida, Minnesota, and 

Washington (Cambridge Systematics, 2000).  

 Motivation and Objectives 

As evidenced by past practice in this area, there seems to exist the need for a general 

methodology that characterizes the relationship between infrastructure expenditures in a specific 

area of infrastructure management (preservation, safety, and mobility, for example) and the 

resulting performance in terms of enhanced condition or longevity, crash reduction, reduced travel 

delay and travel time reliability, and so on). In this chapter of dissertation, the focus is made on 

infrastructure condition only, for purposes of demonstration. Also, it is useful to ensure that such 

methodology is robust in the sense that it duly accounts for extenuating factors that could explain 

better the nexus between expenditure and performance at certain jurisdictions. The benefits of such 

a methodology could include the ability of individual jurisdictions to assess their performance 

(duly “normalized” by their inventory size or investment thereof, and other extenuating factors) 

compared to their peer jurisdictions. This could also help the oversight body to compare the relative 

performance across the jurisdictions under the supervision of the oversight body.  
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This chapter of the dissertation, therefore, presents and demonstrates a methodology to 

address part of this research need, namely, infrastructure condition impacts of preservation 

expenditures. The chapter carries out a literature review of past studies that have attempted to 

characterize the expenditure-performance relationship, develops a methodology to account for this, 

and uses data from highway interstate bridges in the USA to demonstrate the methodology.  

 A Synthesis of the Literature 

From the perspective of the management level of the data used for analyzing the 

expenditure-performance nexus, such relationship can be examined in one of three dimensions: (a) 

at the project level using project-level data, (b) at the network level using project-level data, or (c) 

at the network level using network-level data. At the network level, Hartgen and Krause (1993) 

used aggregate data to investigate the link between spending and performance of highway 

infrastructure. Also, for over two decades, Hartgen and Krause have reported the overall ranking 

of 50 state DOTs based on resource-related factors and performance-related factors of each state.  

        Some researchers subsequently stated that Hartgen and Krause’s series of reports do 

not provide an adequate characterization of the relative performance across the various 

transportation agencies because they do not account for the differences in the key prevailing 

conditions or performance factors across the agencies. For example, Goode et al. (1993) argued 

that the Hartgen et al. reports yielded a “simple listing” of the highway agencies of the various 

states. In a study similar to Hartgen et al’s, Spears clustered peer states using key factors from each 

state including VMT, population, highway inventory size (mileage), and the number of bridges 

(Spears, 1995). The Spears study, data for which spanned only one year (1993), used variables that 

were the subject of discussion in a subsequent study (Hendren & Niemeier, 2006). In the literature, 

Agbelie et al. (2015) commented that the Spears study could nevertheless be credited for raising 

awareness regarding state agency placement into peer groups for purposes of assessing the 

agencies overall performance relative to others.  

In past work in this domain, it has been acknowledged that the unique characteristics of 

specific states, as such local climate conditions are important for comprehending the relationship 

between a state’s expenditures and its performance outcomes. Using data from at least 10 state 

highway agencies, Hendren and Niemeier (2006) investigated this relationship using spending 

amounts of specific project types and the resulting performance in terms of safety and congestion 
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(Hendren & Niemeier, 2006). The results of their analysis not only provided evidence that it is 

possible to establish the link between spending and performance but also established a platform 

upon which highway agencies could make their highway planning functions more transparent and 

accountable. In a subsequent expansion of their 2006 research, using empirical data on at least 

forty (40) indicators related to the inventory, climate and topography associated with transportation 

infrastructure at state level, the same researchers applied cluster and principal components analysis 

to establish nine “peer state” groups (Hendren & Niemeier, 2008). 

At least one researcher used Data Envelopment Analysis (DEA) techniques to examine 

states economies (instead of their infrastructure investment levels) and the performance of their 

transportation infrastructure (London, 2011). In this aggregate analysis of data, their objective was 

to compare the efficiencies across the states, and the input variables for their analysis included 

environmental conditions, gross state product, mortality rate, debt per capita, and an index of 

“transportation performance”.  The London et al. study established DEA scores for each state that 

was then used to rank the states in terms of their overall performance. In a similarly-themed study, 

a group of researchers developed a DEA efficiency frontier to establish the overall pavement 

performance of interstate highways in the USA (Zhang et al., 2015). They developed a productivity 

model over time (years), to measure the changes in the efficiency of the state highway agencies 

and the nationwide change in productivity. It has been pointed out that for investigating the 

investment-outcome connection, a limitation of DEA is the paucity of input and output variables 

at the state level. Where such data are available most of them such as traffic load intensity and 

climate severity, are largely uncontrollable by the highway agency and therefore cannot be used 

as a basis for developing remedies to enhance the performance of deficient states.  

Researchers in Indiana used historical network-level highway expenditure and 

performance data from the Indiana DOT capital program to carry out an ex post assessment of the 

state’s program outcomes (Everett et al., 2013). They characterized the relationships between 

investment and performance for highway physical assets (pavement and bridge condition), 

highway operations (safety and mobility), and community impacts (short-term changes in 

economic development).  

In addition, researchers in pavement management have attempted to quantify the 

relationship between interstate highway pavement preservation expenditures and their resulting 

performance (Agbelie et al., 2015). Using 2000–2008 data and lagged panel model specifications, 
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the researchers developed an econometric model that quantified the expenditure–performance 

connection. They then used the resulting model parameters to develop an overall performance 

index and attempted to explain for the differences that were observed in the states’ overall 

performance levels.  

Overall, the existing literature, clearly, has not only highlighted the usefulness of 

investigating the relationship between expenditure and performance but also has proceeded to 

attempt to quantify such relationship using some (albeit limited number of) evaluation criteria.  

 Methodology 

This section presents a general methodology that characterizes the link between 

expenditures and the resulting infrastructure performance. The methodology duly recognizes that 

it takes a few years before the effect of infrastructure spending becomes manifest in the form of 

increase condition of the infrastructure. This time lag is due to the period between the end of the 

project duration and the time of the condition measurement. A number of researchers have 

ascertained that a time lag of 2 years is often appropriate (Ghahari et al., 2019c; Ghahari et al., 

2018d; Oh et al., 2007). This chapter therefore used a 2-year time lag between the infrastructure 

investment and subsequent performance. 

This chapter’s methodology for characterizing this expenditure-performance relationship 

duly recognizes that the integrity of such relationship could be jeopardized by situational and 

measurement biases. Situational bias refers to the differences in the existing jurisdiction-specific 

attributes, namely, climate severity, loading, average age of the infrastructure inventory, that could 

influence the expenditure-performance relationship. Measurement bias refers to the differences in 

the measurement scale of the attributes, which if left unaddressed, could result in distortion of the 

relationship in favor of attributes that are measured using large numerical units. To remove the 

measurement bias, the attributes of each jurisdiction are normalized by expressing them as a ratio 

of the average value of the variable across all the jurisdictions. With respect to the situational and 

measurement bias, the study considers four scenarios:  

Scenario 1 (Raw2): The first scenario for the analysis involves the raw (not normalized) 

values of infrastructure performance and expenditure only. After that, the chapter proceeds to 

hypothesize that such expenditure-performance relationship does not account for biases, and hence, 

it could lead to misleading conclusions regarding the relationship and subsequently jeopardizes 
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any comparative analysis of the infrastructure agencies in various jurisdictions. Regarding 

performance, two jurisdictions that are similar in size could show very different levels of spending 

due to differences in climate severity, coastal location, traffic loads, average age of the 

infrastructure inventory. Therefore, Scenario 2 (below) was established to account duly for the 

various recuperative factors and deterioration factors or stressors. 

Scenario 2 (Raw5): This uses the raw values of a wider range of the evaluation criteria: 

infrastructure performance, truck traffic, climatic conditions, age, and expenditure. The 

dissertation tests the hypothesis that incorporating a larger number of evaluation criteria can 

influence the evaluation outcome. 

Scenario 3 (Norm2): In the third scenario for the analysis, the methodology for the two 

evaluation criteria (as in Scenario 1) is repeated using scaled or normalized values instead of raw 

values, albeit for only two evaluation criteria: infrastructure performance and expenditure only. 

Scenario 4 (Norm5): In the fourth scenario, the methodology for the wider range of 

evaluation criteria (as in Scenario 2) is repeated using scaled values instead of raw values. 

Scenarios 3 and 4 were established in a bid to remove the measurement scale bias associated with 

the different units of measurement of these factors. The factor values in each jurisdiction are 

normalized by expressing them as a ratio of the average value of the variable in the nation (across 

all the jurisdictions). 

For each of the scenarios, the chapter carries out the quadrant analysis (Figure 7.1.) using 

the infrastructure performance on one hand, and various criteria related to the infrastructure 

deterioration/recuperation. The y axis (ordinate) of the quadrant analysis plot is the average 

condition of the infrastructure in a jurisdiction. The x axis (abscissa) represents the overall net 

effect of the recuperative factors. In its simplest form, the x axis is the repair expenditure per area 

of inventory. In a more refined form, it is the reciprocal of the stress factors (climate severity and 

traffic loading) (Ghahari et al., 2018d).  

In this chapter of the dissertation, it is taken as the product of the average expenditure per 

inventory size and the reciprocal of the stress factors. Each jurisdiction is plotted using its 

coordinates (its corresponding values of the ordinate and abscissa variables). The average value of 

the ordinate and abscissa values of all the jurisdictions is calculated and plotted as a horizontal and 

vertical line, respectively, on the Quadrant Plot. The two lines intersect with each other and yield 
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the four quadrants. Then, quadrant locations of each jurisdiction are determined. The dashed line 

represents the average values of the evaluation criteria across all the jurisdictions. 

 

Figure 7.1. Interpretations of quadrant positions 
   

The first quadrant represents the jurisdictions with generally favorable environments (low 

volume of truck traffic and mild climate), low spending levels and good condition of infrastructure. 

These states can be considered to be “privileged” in that they generally possess relatively 

auspicious conditions (low value of stressors). Their good performance may not necessarily be 

attributed to superior management of funding but is likely due to the good conditions they enjoy. 

They are fair-good performers. The second quadrant represents the jurisdictions with good 

condition of infrastructure in spite of their generally unfavorable environments (high truck traffic 

volume and severe climate) and low expenditure levels. They are the best performers. The third 

quadrant represents the jurisdictions with poor condition of infrastructure and generally 

unfavorable environments and high expenditure levels. The relatively poor performance of 

jurisdictions in this quadrant could probably be “shrugged off” as a consequence of the high stress 

encountered by their infrastructure. Clearly, the high spending level of these jurisdictions are 

unable to offset the effects of the stressors. The fourth quadrant represents jurisdictions with poor 

condition of infrastructure in spite of their generally favorable environments (low volume of truck 

 

 

 

 

 

 

 

 

QUADRANT 1: THE PRIVIES 

(Good overall performance of the agency) 
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traffic and mild climate) and high expenditure levels. Clearly, the jurisdictions in this quadrant are 

facing serious problems associated with the management of their funding and they are the poorest 

performers. In sum, the quadrant position of a jurisdiction, after correcting the biases in both 

categories, could be used to reflect how “well” the infrastructure agency in that jurisdiction is using 

the funds allocated to it. Later in this chapter, some possible extenuating circumstances that could 

cause a jurisdiction to be misjudged as poorly performing is discussed.  

 Data for the Case Study 

To demonstrate the methodology, the chapter uses a case study involving interstate 

highway bridges. The jurisdiction level used is the state, so the data is for each of the fifty states 

in the USA. This analysis is “aggregate” in the sense that it is the jurisdictions (agencies), not 

individual assets that are being evaluated, and this is appropriate from the perspective of the 

oversight body. The FHWA National Bridge Inventory (NBI) database, which contains bridge 

information from the year 1992-2016, served as a primary source of data for this dissertation. The 

bridge attributes considered in this chapter include the weighted average condition rating of all 

components, truck traffic volume, bridge structure length, and bridge width. The metadata for this 

database is available in FHWA’s Recording and Coding Guide for the Structure Inventory and 

Appraisal of the Nation’s Bridges(FHWA, 1995). The database is updated using information 

submitted annually by the individual states to the FHWA. Other data sources used in this chapter 

include FHWA’s Highway Statistics reports and the National Climatic Data Center. The FHWA’s 

Office of Highway Policy Information (USDOT, 2016) provided information of state highway 

expenditures on highway construction and maintenance. The National Climate Data Center 

(NCDC) database (NCDC, 2016) described climate information. Among the primary and 

secondary indicators of climate, freeze index is used in this dissertation since past researchers have 

found that the freeze index (Liao et al., 2018) is one of the most significant climate factors of 

infrastructure deterioration. For each state, the average freeze index from 1992 to 2012 (Liao et 

al., 2018) was used in this dissertation. To adjust for the spatial variation in infrastructure costs, 

the expenditures in each state was duly adjusted using spatial cost adjustment factors from the 

literature (Sinha & Labi, 2007).  
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 Descriptive Analysis of the Input Data 

Figure 7.2a. presents the distribution of the weighted average interstate bridge condition 

across the States. The states with highest weighted average condition of bridges include Nevada, 

North Dakota, Vermont, Florida, Illinois, Missouri, Mississippi, Wisconsin, and Ohio, while 

Pennsylvania, South Dakota, and Oklahoma have on average, bridges in poor condition. Figure 

7.2b. presents the distribution of normalized interstate highway bridge repair expenditure ($/m2 of 

bridge deck area) for the states in the US. The data suggests that 70% of the states have a lower 

climate severity (in terms of freeze-index) than the US average. Alaska and North Dakota have 

climate severity that is approximately 80% over the US average, whereas Oklahoma and Alabama 

have climate severity less than 2% of the US average.  Regarding traffic loading, 68% of the states 

have truck traffic less than the US average. Arizona and Maryland each have 77% truck traffic 

more than the US average, whereas Nebraska and Montana has 7% truck traffic compared with 

the US average. Figure 7.2c. and Figure 7.2d. present the distribution of weighted average levels 

of the key evaluation attributes (climate severity in terms of freeze index, expenditure per m2 of 

deck, freeze index, and age) of the interstate highway bridges. The interstate highway bridges in 

Hawaii and District of Columbia are 32% older than the U.S. average, whereas, in Nevada and 

Alaska the age is 25% lower than the U.S. average. States with older bridges are expected to incur 

higher repair expenditures. Figure 7.3. presents the average age of interstate highway bridges by 

state. Nationwide, the average age is 43 years. About 50% of the states are have an average bridge 

age that exceeds the national average. 
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(a) Normalized average condition ratings 

 
 
 
 

 

 

(b) Normalized average expenditure per m2 of bridge deck area 

 
 
 
 



 
 

167 

 
 
 

 

 

(c) Normalized average climate severity (Freeze Index) 

 
 
 
 

 

 

(d) Normalized average age 

 

 

Figure 7.2. Distribution of normalized weighted average levels of the key evaluation attributes 
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Figure 7.3. Average age of interstate highway bridges by state 

 Results and Discussions 

Figure 7.4. presents the states’ positions on the normalized performance-expenditure plot. 

The red lines represent the criteria values averaged across all the states. The dot size for each state 

represents the size of the interstate bridge inventory (m2) in that state. For example, Texas (TX) 

has the largest inventory. Figure 7.4.a. unlike Figure 7.4b., considers only performance and does 

not account for differences in climatic conditions, bridge age, and traffic loading. In Figure 7.4a., 

it can be seen that most states are in Quadrant 2 (that is, relatively lower expenditure and higher 

stress factors, yet higher performance). These include Nevada, Texas, and Florida. A few states 

including Pennsylvania, New York, and New Jersey, are in Quadrant 4 (as they exhibit relatively 

higher expenditures and lower stress factors, yet relatively lower performance). Figure 7.5. 

presents the percentage of states in each quadrant (%). 
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Figure 7.4. Quadrant positions by state 
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Figure 7.5. Percentage of states in each quadrant 

7.8.1 Sample Calculations (for the State of Utah)  

To clarify how the analysis was carried out, Table 7.1. presents sample calculations for the 

state of Utah. For the abscissa (the X axis), the amalgamated effect of all factors is: = 

jkl	mno	p"
qqrs∗u�vNwnx∗qyn	= 4.24. This value is what is shown for that state, on the abscissa of the plots.  A 

higher value of this abscissa coordinate means a less favorable situation (higher spending, lower 

traffic, mild climate, and low age), that is, Quadrant 1 and 4. For the ordinate (the Y axis), the 

coordinate for that state is: 6.77/6.54 = 1.03. 
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Table 7.1. Example of calculations 

 Raw values of the evaluation 
criteria (Mean), USA 

Raw values of the evaluation 
criteria (Mean), Utah 

Normalized values 
of the evaluation 
criteria, Utah 

Annual freeze 
index (⁰F-days) 

4.17 4.20 4.20/4.17 = 1.007 

Average age of 
the bridges 

42.81 years 33.88 years 33.88/42.81 = 0.79 
 

Average annual 
inventory Size 

5,064,543 m2 of bridge deck area 1,731,320 m2 of bridge deck 
area 

- 

Average annual 
expenditure 

$391.4 M (in 2012 dollars, raw 
expenditure) 
$401.03M (in 2012 dollars, 
national dollars) 

$99.58M (in 2012 dollars, Utah 
dollars) 
= $120.49M (in 2012 dollars, 
national dollars) 

- 

Annual 
expenditure per 
m2 

$401.03M/5,064,543m2 = 
$79.18/m2 

$120.49M/1,731,320  
= $69.59/m2 

=$69.59/$79.18 = 
0.87 

Average annual 
daily truck 
traffic 

8,569 2,226 2,226/8,569 = 0.26 

Average NBI 
rating 

6.54 6.77 6.77/6.54 = 1.03 

7.8.2 State Shifts across the Quadrants 

After accounting for the bridge age, climate severity, and traffic loading, the quadrant 

positions change somewhat. For example, Pennsylvania moves from a quadrant of poor 

performing states to a quadrant representing superior overall performance. Clearly, it is of interest 

to analyze the stability of quadrant positions when a full set of evaluation criteria is considered. 

Figure 7.6. presents the change in states’ quadrant locations when the state performance is 

measured with and without accounting for measurement and situational biases, specifically, in 

their raw form, normalized form, and so on.  

To avoid overcrowding the figure, these changes are presented for seven randomly-selected 

states only. The vertical axis represents the four quadrants, quadrant 2 as the best performers, 

quadrant 4 as the worst performers, and quadrants 1 and 3 falling in between these extremes. The 

four scenarios on the horizontal axis representing the extents to which measurement and situational 

biases were addressed: (a) Raw2 is un-normalized values of performance (NBI ratings) and 

expenditure ($/m2) only; (b) Raw5 is un-normalized values of performance (NBI ratings), truck 

traffic, climatic conditions, age, and expenditure ($/m2); (c) Norm2 is normalized values of 
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performance (NBI ratings) and expenditure ($/m2) only; (d) Norm5 refers to the normalized values 

of performance (NBI ratings), truck traffic, climatic conditions, age, and expenditure ($/m2). 

It can be observed that for certain states, there is significant shift of the state locations 

across the different scenarios. When a wider range of performance criteria are considered, 

Pennsylvania departs from the worst performance quadrant to a mid-performance quadrant; New 

Mexico moved from a mid-performance quadrant to the worst performer quadrant when it is 

analyzed with Norm5, and Illinois moved from a mid-performance quadrant to the best 

performance quadrant.  

 
 
 
 
 

 
 

 
 

 

 

 

 

 

 

 

 

 
 

Figure 7.6. Stability quadrant positions (for a sample of 7 states) 
   

A consistency analysis was carried out to measure the extent of shifts when situational and 

measurement biases were addressed (that is, from Scenario 1 to 4). A significant percentage of 

shifts were observed (Figure 7.7.). The results indicated that when situational and measurement 

biases were addressed, 24% of states moved from a lower-performance quadrant to a higher 

performance quadrant, 33% of states moved from a higher-performance quadrant to a lower 

performance quadrant, and 43% of states remained at their positions. 
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Figure 7.7. Quadrant shifts when situational and measurement biases are addressed 

 Practical Application of the Methodology 

The chapter’s methodology can be useful to oversight bodies that seek to not only monitor 

the performance of individual jurisdictions under their supervision but also compare their 

performance relative to each other. The oversight bodies may use the results not to penalize or 

pillory poor-performing jurisdictions but instead to establish a basis upon jurisdictional 

deficiencies can be identified and discussed, and any remedial measures recommended to address 

extenuating circumstances that are within the control of the agency in that jurisdiction. The 

methodology can also be used to establish peer jurisdictions (and possibly, to rank them) based on 

their expenditures and performance outcomes. Also, the individual jurisdictions themselves may 

use the methodology to compare their overall performance relative to their peers or other 

jurisdictions with which they share some common characteristic (such as regional location, design 

and maintenance philosophy and practices, and work culture) (Ghahari et al., 2019a). It is 

important to note that a jurisdiction may be observed from this analysis to be “low performing” 

due to some natural or anthropogenic factor beyond their control. At least one past researcher 

(Hendren & Niemeier, 2008) cautioned that it is useful to pay heed to state-specific conditions 

because such local conditions can be is vital in any effort to establish peer groups regarding the 

“overall performance of state transportation systems, the fairness of the interpretations, and the 

informative use of the resulting information”. It is noteworthy that the chapter’s case study 



 
 

174 

involved interstate bridges which “enjoy” some uniformity in design across the various 

jurisdictions (states); Hence, it may be reasonable to posit that this chapter’s analysis was not 

unduly compromised by unobserved variables of such nature. There are plentiful avenues, however, 

for extensions of this work in future research, as discussed in the next paragraph. 

 Potentially Influential Variables that could be Considered in Future Research 

First, this chapter used, as the evaluation criteria, the normalized average levels of 

expenditure ($/m2 of deck), climate, age, and truck traffic loading. Regarding expenditure, it can 

be argued that the level of expenditure is not always a good indicator of the actual work done, 

because it does not account for wastage, management and operational inefficiencies, and 

corruption. As such, the actual work done may be more or (often) less than what the expenditure 

records suggest. Regarding truck loading, it may be more accurate to use, instead of the average 

of the daily truck count, the average structural load imposed. From AASHTO bridge design 

equations, the structural load is a function of (a) the bridge design type and (b) for each truck that 

uses the bridge, its gross weight and axle distribution. Clearly, the calculation of the average 

structural loading across all interstate bridges in a state would require a tremendous amount of data 

related to each bridge and each of the thousands of trucks that use each bridge daily.      

Regarding climate severity, the freeze index was used to represent climate severity; 

however, in certain cases, precipitation, and temperature are more influential factors of bridge 

deterioration. Furthermore, in this dissertation, it is assumed that the non-load factors of bridge 

deterioration (freeze index was used) has the same weight as the load factor. In other words, 

doubling the climate severity, for example, would have the same effect on deterioration as 

doubling the loading. If the actual split of the load and non-load share of bridge deterioration is 

known, this could be applied to the data to yield a more balanced performance evaluation of the 

jurisdictions. If, in reality, the non-load factors contribute a larger share of bridge deterioration, 

then by assuming an equal split share of, this dissertation underestimates the non-load effects and 

overestimates the load effects, and Hence underestimates bridge performance of states in colder 

regions.  It has been reported that there is a 30%-70% split of load and non-load factors is 

reasonable (Everett et al., 2013). Also, cost allocation studies have reported various load and 

nonload splits for the different bridge components (FHWA, 1997; Oregon Department of 

Transportation, 2013).    



 
 

175 

Regarding the statistical issue of omitted variables, any performance comparison analysis 

such as that of this dissertation could be impaired by the absence of evaluation criteria that vary 

significantly across the jurisdictions being evaluated. These include administrative culture 

prevailing at the jurisdiction, the quality of available construction materials, the availability of 

effective technology for construction and maintenance, the extent of use (and efficacy) of 

innovative project delivery approaches (design-build, warranty, and so on), quality of audit 

processes, and operating policies such as overweight-vehicle restrictions. There is also the issue 

of coastal proximity – jurisdictions located near the sea have chloride-laden environments that 

accelerate the corrosion rate of reinforcement and accelerate the bridge deterioration.  

For the reasons explained above, it may very well be that the position of a jurisdiction in 

the poor-performance quadrant is not necessarily a reflection of inadequate or inefficient 

infrastructure construction or maintenance practices in that jurisdiction but rather could be 

reflecting the omission of variables that are important in such analysis. Such unobserved 

heterogeneities, if identified but left unaddressed, could very well impair the integrity of any 

expenditure-outcome relationship.   

 Concluding Remarks 

Oversight organizations seek to monitor regularly the expenditures and the resulting 

performance of infrastructure agencies under their authority. A context of this expenditure-

performance connection is that of infrastructure preservation spending and the physical condition 

of the infrastructure. This chapter presented a methodology for examining this relationship.  The 

chapter duly recognized that the integrity of the expenditure-performance relationship could be 

impaired by situational and measurement biases associated with these attributes, and attempted to 

correct for these biases. The methodology is demonstrated using aggregate (state-level) data on 

repair expenditures and performance for interstate highway bridge infrastructure in the USA. The 

methodology can help oversight agencies to promote the overall accountability of infrastructure 

agencies by establishing a clearer connection between infrastructure investment and performance, 

and by carrying out comparative assessment of infrastructure performance across the jurisdictions 

under their oversight or supervision.  

The methodology uses aggregate data on infrastructure investment condition and age, 

environment, expenditures (normalized by their inventory size) and performance outcomes to 
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quantify this relationship. The chapter’s analysis duly recognized that the integrity of the 

expenditure-performance relationship could be jeopardized by situational and measurement biases. 

Measurement bias refers to the differences in the measurement scale of the attributes. If left 

unaddressed, measurement bias could result in distortion of the relationship in favor of attributes 

that are measured using large numerical units. To remove the measurement bias, the analysis 

normalized each attribute by expressing it as a ratio of the average value of the variable across all 

the jurisdictions. Based on these attributes, the methodology ultimately placed the jurisdictions in 

one of four quadrants or peer groups.  

This case study used in this chapter created only four peer groups. However, it is possible 

to subdivide these into a greater number of groups that may take the shape of rectangular blocks 

or any other shape whose boundaries are established by the oversight body. The methodology can 

be used by oversight agencies to monitor the overall accountability of individual jurisdictions with 

respect to their expenditures and performance outcomes and to identify poor-performing 

jurisdictions as a first step towards improvement. It can also be used by agencies to carry out 

critical self-assessment to identify the possible causes of such performance as a first step towards 

their resolution.  
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CHAPTER 8. INEFFICIENCY - A NONPARAMETRIC EFFICIENCY 

METHODOLOGY FOR COMPARATIVE ASSESSMENT OF 

INFRASTRUCTURE AGENCY PERFORMANCE 

[A portion of this chapter is presented at the Transportation Research Board 98th Annual Meeting1] 

 Introduction 

Past and current highway-related government legislation emphasize the need for continual 

assessment of performance outcomes vis-à-vis expenditures, not only at the project level but also 

systemwide (entire state or district networks or specific classes therefrom). Such legislation 

includes the Government Performance and Results Act (GPRA) of 1993, which advocates the 

assessment of the outcomes of federal programs (GAO, 2001) and the National Performance 

Review (NPR) Act of 1995, which requires evaluation of the extent to which intended goals are 

achieved by investment expenditures (Shaw, 2003). The Moving Ahead for Progress in the 21st 

Century Act (MAP-21) similarly requires that state agencies focus on monitoring performance and 

target outcomes, particularly for highway infrastructure on the national highway system.  

In response to these pieces of legislation, the US Department of Transportation (USDOT) 

has emphasized monitoring the expenditures and performance of transportation infrastructure and 

continual assessment of the efficiency of programs in terms of resources and outcomes. Other 

agencies in the executive branch that have espoused assessment of agency expenditures and 

resulting performance include the National Surface Transportation Policy and Revenue Study 

Commission (NSTPRSC) (NSTPRSC, 2007) and the National Performance Management 

Advisory Commission (NPMAC) (NPMAC, 2010). The US Government Accountability Office 

(GAO) has similarly emphasized that spending should be tied to outcomes (GAO, 1999). A study 

sponsored by the National Cooperative Highway Research Program (Cambridge Systematics, 

2000) indicated that these oversight agencies can obtain significant insights if they possess 

knowledge of the relationships between spending and performance and that a clearer link will 

 
1 Chen, S., Ghahari, S.A., Miralinaghi, M., & Labi, S. (2019). Assessing Performance Outcomes and Ranking of 
Jurisdictions–a Nonparametric Efficiency Approach for Asset Management. Transportation Research Board 98th 

Annual Meeting.  
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“foster greater allocation of resources to highways, make the overall effectiveness of highway 

projects more visible, and improve financial management.” 

One way to carry out an assessment of performance outcomes with respect to expenditures 

at the highest level is to compare, across various organizational entities (jurisdictions) and for a 

defined domain of infrastructure, spending levels on the one hand and the resulting performance 

on the other. The jurisdictions of interest could be cities and towns, counties, sub-districts, states, 

or nations (Ghahari et al., 2018a). The infrastructure in question can range from specific assets to 

all assets combined within a jurisdiction. In studies of this nature, it is necessary to account for the 

differences in inventory size (that leads to scale effects) and measurement bias (due to the 

differences across the various units used to measure the levels of various performance criteria). It 

is also important to consider the effect of the differences across jurisdictions, of the average ages 

of infrastructure assets, climate severities, and traffic loading levels. 

The objective of this chapter is to present and demonstrate a methodology for overall 

efficiency ranking of transportation organizations. The chapter first reviews similar past work and 

then presents a nonparametric efficiency methodology. The chapter uses empirical data on 

performance and expenditures that are duly adjusted for inventory size and measurement bias and 

the effect of the different average ages of infrastructure assets, different climate severities, and 

different traffic intensities across the jurisdictions. The scale of the evaluation is such that the 

analysis needs to be aggregate in nature and therefore devoid of project-level assessment; therefore, 

the analysis does not use detailed data on design, materials, and site characteristics. In the final 

section, the chapter discusses the results of the ranking and identifies the practical usefulness of 

the methodology. 

 A Review of Past Research 

Over two decades ago, Hartgen and Krauss (1993) used aggregate data to assess the 

relationship between spending and the performance outcomes of state highway agencies and 

ranked agencies based on these two metrics. A number of researchers have subsequently argued 

that such analysis must account for differences in the key evaluation factors across agencies 

(Goode et al., 1993). Spears (1995) clustered states into peer groups based on data that included 

the amount of travel, population, and highway inventory size. In explicit recognition that different 

states’ unique characteristics could impair an impartial comparison of states in terms of their 
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expenditures and performance outcomes, Hendren and Niemeier (2006) used a sample of ten state 

highway agencies for which requisite data were available, to investigate this relationship more 

closely. In a subsequent study Hendern and Niemeier (2008), these authors used an expanded data 

set and carried out cluster analysis and PCA to establish nine “peer state” groups. 

In more recent work, Agbelie et al. (2015) proposed a quadrant-based clustering method to 

compare investments and performance outcomes separately for pavement and bridge preservation 

across different states in the US. In these two studies, states were placed in four clusters, or 

quadrants, based on their expenditures and performance outcomes, duly normalized by traffic 

levels and climate severities. Ghahari et al. (2019c) demonstrated a similar methodology for 

interstate highway bridge infrastructure in the United States. The two studies, nevertheless, 

commented on the drawbacks associated with their approach and the clustering approach in general. 

First, is the limitation of classifying the states into groups based on excellent, good/fair, and poor 

overall performance. Within each cluster, there was no attempt to assess the relative performance 

of the states. Secondly, the quadrant or cluster boundaries were based on some rather arbitrary 

standard (often the mean values) for all states in the US. These values can and do change from 

year to year due to changes in the evaluation factors (namely, traffic, climate, infrastructure 

condition, expenditures, and so on). The stochastic nature of these factors implies that the 

boundaries of the peer groups (clusters or quadrants) are non-stationary. Regarding the states that 

are located close to the peer group boundaries, a small change in any of these factors can cause 

that state to shift into another peer group. Third, with regard to the states that are clustered within 

the “poor overall performance” peer group, the cluster method presented in their study does not 

provide any states worth emulating.  

Although it may be argued that poorly performing states could learn from the states in the 

“excellent performance” peer group, there is no clear guidance on which states should be 

considered role models in terms of their investment levels, weather and traffic loading severity, 

and so on. For example, suggesting that a certain state should learn from the several states clustered 

in the “excellent overall performance” quadrant makes it difficult for that state to acquire insight 

from those states because they may be having very different investment and operational conditions. 

A number of researchers have proposed nonparametric efficiency approaches. Sarıca and 

Or (2007) stated that the relative efficiency of similar jurisdictions (or organizational units) can be 

assessed objectively using nonparametric efficiency testing. As such, this approach has been 
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implemented in a broad range of disciplines to estimate the efficiency of production units; these 

disciplines include civil engineering, agriculture, education, health, finance, and macroeconomics 

(Fancello et al., 2014; Jiang, 2009; Kuosmanen & Kortelainen, 2005; Ozbek et al., 2009; Shen et 

al., 2012). Anastasopoulos et al. (2011) used aggregate state-level data from 1999 to 2006 in the 

United States to examine the relationships among pavement performance (pavement roughness) 

on one hand, and pavement preservation expenditure, dominant surface geology, and climate on 

the other hand, using a random-parameters logit (mixed logit) to accounting for any random 

variations in the model parameters across geographic locations and time periods.  

London (2011) applied a nonparametric method to assess transportation performance and 

the economies of state highway agencies in the U.S. (in terms of the state GDP, transportation 

performance index, mortality rate, and debt per capita) and ranked them based on their overall 

performance. Arman et al. (2013) presented a DEA-based framework to assess the operational 

productivity and efficiency of transit agencies in the State of Indiana; this involved non-parametric 

linear programming and input data including the transit agency’s annual operating expenses, 

number of employees, and total fuel consumption to evaluate the efficiency of public transit 

agencies in terms of ridership and vehicle miles traveled, over an eight-year period (2002 to 2009). 

Zhang et al. (2015) used a nonparametric method to develop a productivity boundary across SHAs 

with regard to their interstate highway pavements. The authors implemented a productivity model 

over a horizon period to account for variances in the agencies’ technical efficiencies and 

technological changes.  

Nonparametric methods have also been used to assess the efficiency of transportation 

programs, including public transportation services (Barnum et al., 2007; Barros & Peypoch, 2010; 

Caulfield et al., 2013; Lao & Liu, 2009; Tran et al., 2017; Van Vuuren, 2002), and airports and 

airlines (Barros, 2011; Fung et al., 2008; Marques, 2011; Oum et al., 2005; Schaar & Sherry, 2008). 

Lan et al. (2014) used integrated fuzzy data envelopment analysis to compare the performance of 

bus transit companies. Further, Sampaio (2014) identified peer states for transportation policy 

analysis regarding application to handheld cell phone bans, using Synthetic Control Methods 

(SCM) to address bias. This line of research application was continued by Dong et al. (2017) who 

analyzed the effectiveness of implemented highway safety laws (related to handheld cellphone 

bans, speed limits, speed camera systems, and ignition interlock devices) across U.S. states using 

random-parameter zero-truncated negative binomial models. 
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 Methodology 

In this section, a nonparametric efficiency testing, a linear programming-based approach, 

is presented to evaluate the efficiency of organizational entities or jurisdictions (in this 

dissertation’s case study, an entity or jurisdiction refers to a state highway agency) in terms of their 

investment levels and performance outcomes. 

Decision variables:            

��, ��, … , �{                  Eq. 8.1 

 

objective function:            

Maximize				P = ∑ P<�<{<��      Eq. 8.2. 

 

subject to: 

∑ 4L<�< * 4L� 								0 = 1, … , �{<��      Eq. 8.3. 

∑ �< = 1{<��           Eq. 8.4. 

�< ≥ 0								= = 1,… , G     Eq. 8.5. 

where: 

k is the index of the organizational entity, = = 1, … , G 

n is the input index, 0 = 1,… , �, which refers to N different types of inputs 

P< is the output of entity k 

4L< is the type n input of entity k 

4L�  is a fixed value of type n input 

P is the maximized output that can be produced given inputs 4L�  

�< is the weight associated with each entity k 

The formulation used in this chapter is adopted from Preckel et al. (1997). The role of the 

decision variables �< as weights is to form a convex combination of the input and output vectors 

(Eq. 8.4. makes the weights non-negative and sum to unity). The first constraint ∑ 4L<�< * 4L�{<��  

is to ensure that no more type n inputs than 4L�  are used. The objective function ∑ P<�<{<��  to be 

maximized represents the output that can be produced feasibly given the fixed amount of inputs 

�� = �4�� , 4�� , … , 4L��. 
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The feasible set of outputs u using inputs �� is as follows: 

O�4�� , 4�� , … , 4L�� = 			{P| ∑ P<�<{<�� = P; 				    Eq. 8.6. 

∑ 4L<�< * 4L� 								0 = 1, … , �{<��       Eq. 8.7. 

∑ �< = 1{<��          Eq. 8.8. 

�< ≥ 0								= = 1,… , G}       Eq. 8.9. 

It may be noted that this set is a function of the input levels ��. For a given entity indexed 

by E, the question of interest is as follows: Given the input and output vector (��, P�), is it possible 

to achieve a higher output value (that is greater than P�)? Figure 8.1. illustrates the goal of the 

proposed output-oriented efficiency test. In this example, entities 1, 2, and 3 are considered to be 

efficient entities because they are located on the efficiency frontier (shown as the dashed red line 

in the figure). In other words, it is not possible for any other entity with the same inputs as these 

entities to achieve a higher output value. Entity E is considered “inefficient” because it is not 

located on the efficiency frontier. It is assumed that inefficient entities could potentially learn from 

the entities located on the frontier so that the former could behave similarly to the latter (in terms 

of their efficiency in utilizing inputs and producing outputs). In real-life asset management practice, 

such learning takes place through peer exchanges jointly sponsored by FHWA, TRB, and 

AASHTO such as those held recently in Cheyenne, Wyoming (Park & Robert, 2011), Burlington, 

Vermont (Park et al., 2014), and Miami, Florida (Park et al., 2014).  

Consider an inefficient entity, say, E. A path to utilize entity E’s inputs in a manner similar 

to that of the efficient entities (in this example, entities 2 and 3) can be represented by the vertical 

line shown in Figure 8.1. The vertical line reaches the efficiency frontier at a point that lies between 

entities 2 and 3. Hence, entity E can succeed in its efforts if it learns from entities 2 or 3. If entity 

E succeeds in reaching the efficiency frontier, then the maximized output u will be a value on the 

frontier (a convex combination of P�  and P� ; in this example, P = ��P� + ��P�, �� + �� = 1 ) 

that is larger than the original value P�. The percentage improvement in this analysis can be then 

computed as 
I�I�
I� . 

The weight �< indicates the degree to which organizational entity E should learn from or 

operate in a manner similar to entity k in order to achieve the maximized output. Therefore, a 

higher value of �< indicates that there is greater opportunity for entity E to learn more from and 



 
 

183 

operate in a manner similar to entity k. For a given entity E, if �� = 1 and �< = 0, 1�)	= � @, 

entity E is on the frontier. 

 

 

Figure 8.1. Conceptual illustration of the output-oriented nonparametric efficiency test 
  

Based on these definitions, a method is proposed to rank entity efficiency using the 

framework shown in Figure 8.2. The premise of this ranking method is the assumption that the 

inefficient entities will seek to learn from the efficient entities. Initially, the list contains all the 

entities. In the first round of analysis, the optimization framework analyzes each entity on the 

current list to determine: (1) whether the entity is on the frontier, (2) how much more output the 

entity could achieve if it learns from and behaves like other entities on the frontier, and (3) the 

degree or extent to which the entity should learn from and behave similarly to the superior entities 

(��< indicates the degree to which entity j learns from entity k). Then, for each entity k that is 

currently on the list, the sum of weights according to which other entities should learn from this 

entity is computed as ∑ ��<�
�  (only the entities that currently stay on the frontier have a positive 

value). The entity that has the largest value of ∑ ��<�
�  receives the highest rank in the current list. 

After identifying the most efficient entity in the current list, this entity is removed from the list, 

and the analysis proceeds to the next round. This process is repeated until all of the entities are 

removed from the list, and the resulting list indicates the final ranking of all of the entities.  
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In this chapter, the organizational entities represent state highway agencies. State highway 

agencies are the U.S. equivalent of organizations in other countries that are termed regional or 

district departments of transportation or highways. These are public agencies that receive 

budgetary allocations from the government and are tasked with ensuring that the transport 

infrastructure is maintained in a state of acceptable physical condition (through reconstruction, 

rehabilitation, and maintenance) and operational performance (safety, mobility, and access). 

Depending on the administrative structure of a country, these regional agencies are overseen by an 

umbrella national oversight body (such as the federal department of transportation (in the U.S.), 

or the national ministry of transportation in certain countries, and so on. As explained in the 

introduction of this chapter, the oversight national agencies have a responsibility to make the 

agencies at the next jurisdictional level accountable for their stewardship of the public funds. The 

approach described in this methodology places them in a better position to carry out this duty.    

 Data 

To demonstrate the methodology, this dissertation uses the states in the US as the 

jurisdiction of interest (with the oversight agency being the Federal Highway Administration 

[FHWA] or GAO). The infrastructure in question is the set of interstate highway bridges. The data 

on bridge performance were obtained from the National Bridge Inventory (NBI) database and are 

supplemented by the FHWA’s recording and coding guide for the inventory and appraisal of the 

nation’s bridges (FHWA, 1996). The NBI database contains inventory sizes (in terms of deck 

surface areas), condition ratings, and average daily truck traffic. The average traffic volume per 

bridge inventory size was calculated for this case study.  

Other data sources include the Office of Highway Policy Information (OHPI) and the 

National Climatic Data Center of the National Oceanic and Atmospheric Administration (NCDC, 

2016). The climate data from the NCDC include the annual average temperature and precipitation 

records from 1992 to 2012. The climate data are used in this dissertation to provide the average 

number of freeze-thaw cycles as well as the average annual freeze index in each state. For each 

state, the average freeze index for the period from 1992 to 2012 is used in this study. The 

expenditure data (over three years) were obtained from the FHWA’s highway statistics reports. To 

adjust the expenditures for inflation to their year 2014 equivalents, the FHWA construction price 

index (Sinha & Labi, 2007) was used. 
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Figure 8.2. Ranking method for evaluating the performance efficiency of entities 

 

For entity j, 

let 4L� = 4L�  

Carry out the nonparametric  

efficiency test 

Achieve optimal solutions: 

u, �<		∀= 

Save results as: 

P� = P 

 ��< = �<		∀= 

j = j + 1 
(repeat until 

 P� and ��< are 
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all the 

organizational 
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Compute ∑ ��=��  for each entity remaining on the list  

Establish Entity k with largest ∑ ��=����  as the most efficient 

entity on the current list. Final rank for entity k is i. 
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To remove the measurement scale bias associated with the different units of measurement 

of these factors, each factor is normalized by expressing it as a ratio of the average value of the 

variable for all jurisdictions in the population (in this case, all states in the nation). Table 8.1. 

presents the normalized values for the key evaluation attributes (climate severity in terms of freeze 

index, expenditure per inventory size (m2 of deck area), freeze index, and age) of interstate 

highway bridges in each state.  

Table 8.1. Normalized values of the key evaluation attributes 

STATE Norm_COND Nom_EXP/m2 Norm_AADT Norm_F-INDEX Norm_AGE 

AL 1.00 0.28 1.11 0.00 0.978 
AK 1.01 1.60 0.10 4.90 0.694 
AZ 1.01 0.27 0.34 0.05 0.896 
AR 1.03 0.59 1.09 0.00 0.909 
CA 1.00 0.76 2.40 0.06 1.086 
CO 1.02 0.67 0.77 1.67 0.849 
CT 0.98 2.55 0.36 0.63 1.181 
DE 0.99 0.97 0.07 0.00 0.966 
DC 0.93 4.25 0.02 0.00 1.326 
FL 1.07 0.32 1.07 0.00 0.794 
GA 1.01 0.33 1.06 0.00 0.923 
HI 0.98 0.72 0.09 0.00 1.356 
ID 0.98 0.80 0.42 1.45 0.957 
IL 1.06 1.18 2.53 0.83 0.908 
IN 0.99 0.69 1.86 0.75 0.958 
IA 0.96 0.36 2.33 2.24 1.055 
KS 1.01 0.11 1.89 0.28 1.122 
KY 0.99 0.38 1.28 0.01 0.882 
LA 0.99 0.65 1.10 0.00 0.827 
ME 0.97 0.52 0.23 2.90 1.211 
MD 0.97 1.12 0.24 0.09 1.026 
MA 0.97 2.97 0.50 0.69 1.267 
MI 1.00 1.32 1.07 2.13 1.031 
MN 1.02 0.50 0.89 4.21 0.857 
MS 1.07 0.24 1.55 0.00 0.756 
MO 1.07 0.66 2.24 0.31 0.903 
MT 0.99 0.61 0.43 2.24 1.052 
NE 1.03 0.30 1.34 1.31 1.074 
NV 1.06 0.25 0.12 0.28 0.740 
NH 1.01 0.83 0.32 2.22 1.195 
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Table 8.1. continued 

STATE Norm_COND Nom_EXP/m2 Norm_AADT Norm_F-INDEX Norm_AGE 
NJ 0.97 2.24 0.62 0.19 1.173 
NM 0.95 0.47 0.23 0.29 0.925 
NY 0.99 2.30 1.28 1.64 1.139 
NC 0.96 0.44 1.51 0.01 0.858 
ND 1.08 1.10 0.09 4.78 1.180 
OH 1.07 0.81 2.48 0.66 0.983 
OK 0.92 0.70 1.89 0.00 0.962 
OR 1.02 0.93 0.80 0.24 0.977 
PA 0.91 1.95 2.09 0.81 1.210 
RI 0.90 4.84 0.07 0.38 1.197 
SC 0.99 0.51 0.91 0.00 0.902 
SD 0.92 0.31 0.53 2.80 1.146 
TN 0.99 0.50 1.28 0.00 0.950 
TX 1.04 0.20 3.84 0.00 0.815 
UT 1.03 0.87 0.26 1.01 0.791 
VT 1.05 2.40 0.29 2.92 1.308 
VA 0.97 0.56 1.22 0.04 1.076 
WA 1.03 1.34 0.78 0.36 0.997 
WV 1.02 0.95 0.71 0.19 0.835 
WI 1.05 0.45 1.06 3.21 0.835 
WY 0.94 0.34 0.23 2.17 0.961 

 Results and Discussion 

Table 8.2. presents the final ranking for the top 26 performing states in the US using the 

proposed nonparametric efficiency method. The complete results of rankings are presented in 

Table 8.3: For a state in row l, the results show that by learning from and adopting practices similar 

to that of state k (represented by the weight �<), a relatively inefficient state could improve its 

bridge condition rating to the extent indicated by the percentage value shown in the respective cell. 

The table suggests that, for example, Hawaii (HI) could possibly achieve a 10% improvement in 

bridge condition if it operates (including the use of its resources) in a manner 48% similar to that 

of Florida in terms of administrative procedure. Fortunately, highway agencies in the United States, 

carry out peer exchanges that serve as valuable platforms through which the agencies continually 

interact and learn from each other (Park & Robert, 2011; Park et al., 2014).  
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Table 8.2. Final efficiency rank (regarding interstate highway bridges): the top 26 states 

Rank State   Rank State 

1 ND  14 AZ 

2 OH  15 KS 

3 MO  16 CO 

4 IL  17 VT 

5 WI  18 WA 

6 NE  19 WV 

7 FL  20 OR 

8 MS  21 NH 

9 NV  22 AK 

10 TX  23 GA 

11 MN  24 AL 

12 AR  25 CA 

13 UT  26 MI 

 

 Table 8.3. presents the first-round analysis results (without any state removed from the 

frontier) when efficiency levels of all 50 states (including the District of Columbia) are compared. 

Of the 51 jurisdictions, 10 states lie on the frontier (as shown in Figure 8.3). It may be noted that 

a state’s position on the frontier does not necessarily indicate they are unequivocally efficient 

overall; rather, it means that they are most efficient from at least the perspectives considered in 

this chapter of the dissertation (that is, this study’s infrastructure “strength” and “stress” factors) 

for which their operational and resource allocation experiences could serve as useful knowledge 

to other states that seek to learn and make improvements (Chen et al., 2019). For the 41 

jurisdictions that are not on the frontier, the percentage values that indicate the possible amount of 

improvement that these states can achieve by learning from other states range from 0.3% to 20.4%. 

Figure 8.4. presents the distribution of possible percentages of improvement for the 41 inefficient 

states. More than half of these states could improve by less than 10% if they use their resources 

more efficiently. 



 
 

189 

 

T
ab

le
 8

.3
. P

er
ce

nt
ag

e 
of

 th
e 

op
po

rt
un

it
ie

s 
fo

r 
le

ar
ni

ng
 



 
 

190 

 

Figure 8.3. The frontier states after the first round of the evaluation 

 

Level of improvement that could be achieved by “learner” states 

Figure 8.4. Distribution of the extent of possible improvement across the “learner” states 
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After the data had been adjusted duly for biases associated with inventory size and 

deterioration factors (age, climate, and traffic), the analysis identified the following states as the 

top performers: North Dakota, Ohio, Missouri, Illinois, Wisconsin, Nebraska, Florida, Mississippi, 

Nevada and Texas. Further research will be necessary to assess the consistency of these rankings 

across the years and to identify the reasons why certain states have relatively high ranking.  

It may be noted that a state may exhibit superior efficiency due to extenuating factors that 

may be within or outside of its control but are not considered in the analysis. Factors that are within 

a transportation agency’s control may exist at several levels of management and may be loosely 

categorized as strategic, tactical, and operational: 

• Strategic factors include the agency’s mission and goals (such as system 

preservation) in the years in which data were collected, as well as policies that 

promote transparency and accountability.  

• Tactical factors include policies on overweight trucking and minimum performance 

standards in the agency’s asset preservation manuals, enforcement of penalties for 

substandard road work by contractors, and the level of maturity of management 

systems for the individual asset types.  

• Operational factors include the quality of contract documents, frequency of staff 

training, and quality of supervision of contractual or in-house workmanship. The 

prudent use of technology to enhance efficiency is an influential factor at all three 

management levels.  

• Factors outside the transportation agency’s control include the quality of available 

materials (from local borrow pits and quarries) and frequency and severity of 

natural disasters (e.g., floods, earthquakes, and landslides).  

• Other factors that cut across all the three categories include the prevailing work 

culture, design- or material-related resilience of the infrastructure to man-made or 

natural threats, and political instability.  

 Concluding Remarks 

In this chapter, for the proposed ranking method, the output was bridge condition rating 

and the inputs include strength and stress factors. The strength factors are those whose higher 

levels cause an increase in infrastructure performance; the strength factor was preservation 
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expenditure, which is the sum of the costs of all treatments applied to any component of a bridge. 

To avoid bias due to inventory size, the statewide total expenditure was divided by inventory size. 

The stress factors are those whose higher levels cause a decrease in infrastructure performance; 

stress factors included traffic (truck) loading, climate severity, and age. Climate severity was 

described in terms of the freeze index in degree-days and was calculated by subtracting the number 

of degree-days between the highest point and lowest point on a cumulative degree-day curve for 

one freezing season. 

It was found that a jurisdiction may exhibit extremes of efficiency due to prevailing levels 

of factors that are within or are outside of the control of its infrastructure agency. As stated in the 

discussion section of this chapter, factors within the control of the agency may be classified as 

strategic, tactical and operational factors. Strategic factors include the agency’s mission and goals, 

and policies that promote transparency and accountability. Tactical factors include policies such 

as overweight limits and asset performance standards, quality assurance of roadwork, maturity 

level of management systems. Operational factors include the quality of contract documents, 

frequency of staff training, and quality of supervision of contractual or in-house workmanship, and 

use of technology. Factors outside the agency’s control include the quality of available materials 

(from local borrow pits and quarries) and frequency and severity of natural disasters. Other factors 

may include the work culture in the agency, resilience of the infrastructure to man-made or natural 

threats, and political instability. The effect of these factors on the efficiency of a jurisdiction’s 

agency, can be investigated in future research in this domain. 

 



 
 

193 

CHAPTER 9. CONCLUDING REMARKS 

 Introduction 

This chapter provides a summary of the conclusions, the contributions of the dissertation, 

policy recommendations regarding corruption and inefficiencies reduction actions at the global 

level and at the infrastructure project level that may be useful for government and non-government 

agencies, study limitations, and recommendations for future work. 

 Summary and Conclusions 

This dissertation addressed the issues of corruption and inefficiencies associated with the 

provision of transport infrastructure. Part 1 of the dissertation investigated and assessed attributes 

that influence corruption levels among countries from 2007 to 2017. Using principal component 

analysis (PCA), and K-means machine learning and hierarchical structure cluster analysis, groups 

of countries that share similar levels of development-related attributes were identified. The cluster 

analysis helped identify countries where corruption control initiatives should receive high priority. 

Also, using a machine learning technique (random forest algorithm) the Corruption Perceptions 

Index (CPI) for each cluster were predicted based on development-related attributes. Furthermore, 

building upon the results from the first chapter the corruption levels at countries were also 

forecasted using an artificial neural network time series analysis - a nonlinear autoregressive 

recurrent technique with exogenous inputs (NARX).  

 Transparency can help address corruption. With information and communication 

technologies (ICT) advancements, it is possible to enhance transparency. One way to use ICT to 

increase transparency is electronic governance. This dissertation used a panel vector 

autoregression (PVAR) to analyze the relationship and shock effects between electronic 

governance and corruption. In the final chapter of Part 1, this dissertation identified the ways where 

corrupt actions may occur in the development of infrastructure systems, and by setting the 

discussion of corruption in this context, it connected the propensity for corruption in each phase 

of infrastructure development to strategic, tactical, and operational mitigation actions supported 

by examples in practice. The dissertation’s contents may be used to develop guidelines to measure, 

detect, and address corruption in the infrastructure sector. 
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Part 2 began with a discussion of various methods used in the literature to measure the 

performance efficiency of organizational units. Part 2 of the dissertation also addressed 

inefficiencies associated with transportation infrastructure management. In the United States, 

oversight agencies such as the U.S. Department of Transportation, the Federal Highway 

Administration, and the Government Accountability Office are responsible for the measuring and 

monitoring the overall accountability of state highway agencies. To help these oversight bodies to 

carry out this task, it is often useful to show the extent to which the infrastructure expenditures 

influence infrastructure performance. Further, oversight agencies typically seek to establish a 

methodology to assess how well the individual states are doing compared to each other. In response 

to these two issues, this part established an empirical relationship between expenditures and 

performances, using Interstate highway bridge decks as a case study. The unit of observation in 

this dissertation was the state level (each state contains a collection of bridge decks whose average 

annual expenditures and average condition rating are known). The dissertation recognized that 

there exist jurisdiction-specific variables that affect infrastructure performance, and therefore 

attempted to remove some of this bias by normalizing the expenditure as a ratio of the inventory 

size and by considering state-specific values of the key deterioration variables. Also, the 

dissertation identified the factors found significant in the condition-expenditure relationship and 

used these factors as a basis for assessing the performance of state highway agencies.  

The concluding chapter of Part 2 performed a nonparametric efficiency methodology for 

comparative assessment of infrastructure agency performance by duly adjusting for inventory size 

and measurement bias and the effects of the different average ages of infrastructure assets, different 

climate severities, and different traffic levels across jurisdictions. The methodology involved the 

development of an efficiency frontier using optimization, identification of frontier-located 

jurisdictions (FLJs), removal of the FLJs and re-development of the next frontier, and continuing 

this cycle until all jurisdictions have been removed. The dissertation presented an overall 

efficiency ranking of the US states regarding the performance of the infrastructure used as a case 

study. Oversight agencies can implement the methodologies presented in this study to monitor the 

accountability of jurisdictions regarding their performance outputs and expenditures. 
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 Overall Strategic Practical Implications of this Research 

There are several strategic practical implications of this dissertation’s results that can 

provide governmental and non-governmental oversight agencies with some guidelines for policies 

regarding corruption and efficiencies in the future. 

9.3.1 Corruption 

 In Part 1 the attributes that have a significant influence on the corruption levels in countries 

was determined. PCA biplot showed that GNI (C1), EGI (C2), human development index (C3), 

public-sector performance (C5), and labor market efficiency (C9) are the most determining and 

influential attributes for countries’ development-related attributes when plotted with regards to the 

first two principal components. 

  Partial dependence plots from the random forest analysis showed that when considering 

countries altogether, there is a positive relationship between technological readiness (C11) and 

human development index (C3) in improving CPI values. The Gini charts obtained from the 

random forest machine learning technique showed that among the attributes C1 to C13, 

technological readiness (C11), human development index (C3), and e-governance index (C2) are 

of the highest importance in predicting CPI values. This outcome indicated that efforts to reduce 

corruption need an emphasized attention to these factors. 

The cluster-based analysis showed that the most influential attributes of corruption in each 

cluster are: 

• Cluster 1: Technological readiness (C11), GNI (C1), and security (C6) 

• Cluster 2: Human development index (C3), undue influence (C4), and e-governance 
index (C2) 

• Cluster 3: Public-sector performance (C5), labor market efficiency (C9), and e-
governance index (C2) 

• Cluster 4: Undue influence (C4), public-sector performance (C5), and security (C6) 

The NARX NN prediction models showed different results for the world-level data 

analysis and the cluster-level data analysis. Using world-level data, it was found that there is a 

general reduction in corruption over the years studied (a 6.71% increase in CPI from 2010). Cluster 

1, Cluster 2, and Cluster 4 showed the same uptrend with 7.41%, 13.37%, and 21.25% decreases 

in perceived corruption from 2010, despite having a comparatively minor increase in perceived 
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corruption from 2007 to 2010. However, Cluster 3, despite containing developed countries in 

major, showed a 5.35% increase in perceived corruption from 2007.  

The results of PVAR impulse response function (IRF) showed that a one-unit positive 

shock on EGI leads to a 60% increase in CPI in two years. This effect was shown to fade off in 8 

years. The results were more significant for the low- and middle-income countries. The results 

indicated that a one-unit shock on EGI would lead to an immediate increase in CPI, and it persisted 

over time. This level of increase in CPI is around 20% higher than that of the CPI increase when 

all countries were considered together, meaning that in developing countries EGI would have a 

more critical effect in controlling corruption than in developed countries. When analyzing the 

results for high-income countries, it was noted that the shocks from neither CPI nor EGI were 

significant, indicating there must be other underlying reasons that cause corruption in those 

countries. 

9.3.2 Inefficiency 

Consistent with the principles of transportation asset management, government legislations 

emphasize the need for continual assessment of performance outcomes vis-à-vis expenditures. One 

way to do this is to compare, across various organizational entities (jurisdictions) and for a defined 

domain of infrastructure, spending levels on one hand and the resulting performance on the other 

hand. The jurisdictions of interest could be cities and towns, counties, sub-districts, states, or 

nations. The infrastructure in question can range from specific assets (or parts thereof) to the 

combination of all assets within a jurisdiction.  

In Part 2 of this dissertation, the framework and results showed how oversight agencies 

can monitor the overall accountability of individual highway agencies. The observed differences 

in the state performance could be due to extreme differences in construction cost across states, 

differences in agency audit quality, work culture, poor geotechnical conditions in a state, 

unfavorable design–construction practices, and possibly, poor quality of quarry or borrow pit 

materials available in or near a state. The relative rankings could also prompt those agencies seen 

as not well performing, to carry out critical self-assessment to identify the possible causes of such 

performance as a first step towards their resolution. 

The dissertation identified the highest efficiency states after the data had been adjusted duly 

for biases associated with inventory size and deterioration factors (age, climate, and traffic). It was 
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found that based on the data, 10 of the 51 U.S. jurisdictions (i.e., the 50 states plus the District of 

Columbia) lie on the efficiency frontier in the first round of analysis, indicating that they are 

efficient from one or more perspectives considering their strength and stress factors for which their 

operation experiences could be useful to other states to make improvements. It was also determined 

that for each of the 41 non-frontier states, an increase in efficiency ranging from 0.3% to 20.4% 

could be earned by learning from the frontier states. For more than half of these states, an up to 

10% increase in efficiency can be gained by more efficient use of their resources. 

 Contributions of the Dissertation  

The main contributions of this dissertation for the two main parts are as follows: 

9.4.1 Corruption 

In a pioneering effort to determine the attributes that have a significant influence on the 

corruption levels in countries using advanced statistical techniques, this dissertation used three 

approaches: principal component analysis (PCA), hierarchical structure cluster analysis, and 

regression tree analysis and random forest (RF) machine learning (ML) technique. In addition, the 

dissertation applied an artificial neural network (ANN) technique − a nonlinear autoregressive 

recurrent method with exogenous inputs (NARX) to analyze the level of corruption in any country.  

This dissertation also addressed the efficacy of e-governance in reducing Corruption 

Perceptions Index (CPI) in any country. To what extent does a unit change in EGI cause CPI 

changes? Is the trend valid for all continents, or is it valid for all countries with any category of 

gross national income per capita (GNI)? This dissertation answered this question using a panel 

vector autoregression (PVAR) analysis, including Orthogonalized Impulse-Response Functions 

(IRF), Granger-causal, and variance decomposition analysis on data from 133 countries from the 

years 2007 to 2017. 

9.4.2 Inefficiency  

The dissertation addressed the requirements of past and current highway legislation that 

emphasize the need for continual assessment of performance outcomes vis-à-vis expenditures. The 

dissertation showed that one way to do this is to compare, across various jurisdictions and for a 
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defined domain of infrastructure, spending levels on the one hand and the resulting performance 

on the other hand, and to rank the jurisdictions duly considering their spending levels and 

performance outcomes.  

The dissertation reviewed past work and presented a nonparametric efficiency approach 

based on linear programming by developing an efficiency frontier using optimization, 

identification of frontier-located jurisdictions (FLJs), and re-development of the next efficient 

frontier by removing the FLJs. In addition, based on the linear programming approach, this 

dissertation proposed a method to rank US states using the optimization results. The proposed 

methodology can be used by individual jurisdictions to learn from each other and estimate the 

expected benefits they could earn if they move up to the efficiency frontier through enhanced 

utilization of their resources. 

 Study Limitations 

In Part 1 of this dissertation, there are several limitations that could be addressed in future 

research studies. First, the amount of data is significantly limited, which might cause bias in the 

results. Consequently, including more data in the analysis makes the results more accurate and 

reliable. Moreover, relying on only one attribute as the indication of corruption in countries, i.e. 

CPI, was another major limitation of this study. Hence, providing more data and giving more 

access to the public would be significantly beneficial for policymakers, governments, and NGOs 

that are active in this important field. Another study limitation is due to the intrinsic machine 

learning hyperparameters. Fine-tuning the hyperparameters in machine learning techniques plays 

a significant role in finding the most accurate results. This is mainly important in small scale 

analysis such as, state-level predictions, where the scales are smaller, and more accuracy is 

required, accordingly.   

In Part 2 of this dissertation, the limitations include the assumption that the recorded bridge 

repair expenditures reflect the actual work done, and the split share of deterioration caused by load 

and non-load factors. Regarding the inputs and outputs, the inefficiency analysis assumed that all 

states are independent of each other. This means that, for example, the condition of bridges in a 

state is assumed to be a function only of that specific state’s input factors (such as the level of 

maintenance spending, traffic, weather, and so on). In reality, factors such as traffic may often be 

correlated between or across states, particularly where the states are adjacent to each other. Certain 
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states (particularly, those that share borders) depend on each other in various ways including cross-

border commuting and truck movements associated with agriculture and industrial operations 

between workstations that straddle the border, for example. Such interdependency could be 

benefitting some states to a larger extent, compared to others, and if this can be measured, the 

analysis can be modified accordingly. Furthermore, nonparametric methods generally tend to 

assume a linear relationship between inputs and outputs. This assumption may not be valid because 

of returns to scale and other effects that are inherently non-linear. For example, not only do larger 

states generally enjoy the benefits of scale economies but also the rate of change in such benefits 

depends on the size of the state. 

 Recommendations for Future Work 

There are several opportunities for future work related to corruption analysis. First, as seen 

from the results, the policymakers need to focus on a specific cluster in terms of the corruption 

level and development-related attributes. Hence, as a future work, it is suggested that the focus to 

be made on each individual country in that cluster and investigate the further needs in reducing 

corruption in the countries. The starting attributes can be undue influence, public-sector 

performance, and security for this cluster. Secondly, reduction of corruption in a country cannot 

be achieved without comprehensive cooperation of entities within its society. Such cooperation 

includes, for example, a coalition of government officials, politicians, and NGOs who can help 

reveal or present surreptitious acts of corruption. Corruption reduction can happen through raising 

awareness, which includes an integrated public digital portal where data is captured through crowd 

sourcing and processed, and is organized for easy comprehension by citizens. The feasibility of 

implementing such approaches could be assessed in future work (Ghahari et al., 2019e).  

Other suggestions for future work include (a) a thorough investigation of the reasons 

behind the uptrend and downtrend momentum in CPI values in each cluster of countries; (b) 

considering the policies applied to the countries in each cluster, finding the solutions that have 

been applied to those countries, and assess the effectiveness and the impacts of the policies; (c) 

finding out how much portion of the overestimated costs in projects is associated with corruption 

and how much is related to inefficiencies.  

Also, future work could include a greater number of data points (a longer analysis period) 

as additional annual data become available. Also, data on additional factors that affect corruption, 
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and other corruption indicators, can be collected and analyzed. Secondly, the study results suggest 

that enhancing electronic governance in developed countries will not be as effective compared to 

developing countries. Hence, future studies could identify other initiatives that could be more 

efficacious at developed countries.  

Finally, e-governance may be accompanied by increased surveillance of private-sector 

activities and records that are associated with government functions. Therefore, even though this 

may be originally intended for the greater good, there is the downside of potentially reduced 

privacy and greater opportunity of an overbearing government to use the e-governance platforms 

to suppress the populace. Both the negative, as well as, the positive implications of enacting this 

remedy may be worth investigating in future studies. 

In Part 2 of the dissertation, the suggested future work is as follows. First, in the absence 

of reliable research-driven split numbers between the recorded expenditures and the actual work 

done, sensitivity analysis can be carried out in the future research to establish, the jurisdictions 

status (locations on a Cartesian axis of efficiency factors, such as quadrants) and position shifts or 

different splits. Furthermore, future studies could consider other model specifications such as the 

lagged panel model, not just a one-year lag (t–1) as done in this dissertation but also t (same year), 

t–2, t–3, and so on, to confirm the investment-performance lag time that best captures the field 

conditions.  

Future work could also consider including omitted variables as valuation criteria where 

such data are available, and also extend the work to the other bridge components (superstructure 

and substructure) and other asset types. The methodology could also be extended to infrastructure 

management in other sectors where oversight bodies seek to monitor the performance of 

jurisdictions associated with agriculture, healthcare, energy, education and other sectors. Another 

future research in this area could be the improvement of the optimization framework by duly 

accounting for spatial and situational interdependencies.  

In addition, for the ranking method proposed in this dissertation, the weights ��< (the degree 

to which agency or entity j learns from entity k) were considered to be equally weighted across all 

entities j. For example, when computing ∑ ��<�
�  for a state that other states can learn from, if the 

learning weights of both New York State and New Mexico are 30%, both states’ contributions to 

∑ ��<�
�  are considered equal. However, using equal weights may not be ideal because some entities 

possess certain attributes that make them inherently more efficient compared to others. 
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Furthermore, research projects are needed to focus on assessing the consistency of these rankings 

across the years and to identify the reasons why certain states have a high ranking. Also, the 

analysis could be replicated for another transport asset type and other jurisdictional levels.  

Finally, there is continuing evolution of not only transportation per se (autonomous and 

connected vehicle operations, ride sharing, aerial transport units, focus on resilient and sustainably 

developed infrastructure) but also the transportation environment (climate change, infrastructure 

interdependencies, and smart cities). These developments are expected to cause shifts in the 

number and intensity of the factors that either exacerbate or ameliorate the rate of infrastructure 

deterioration, and cause redistributions of budgets and expenditures across the various 

infrastructure program areas. These and other related developments will likely lead to changes in 

the relative inputs and outputs (and hence, relative efficiencies) that are associated with 

infrastructure jurisdictions at any level of government. For this reason, in the future, performance 

efficiency analysis will need to be conducted regularly.  
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APPENDIX A. PUBLICATIONS ON CORRUPTION ASSOCIATED WITH 

EACH CATEGORY  

Table  A.1. List of the publications associated with each category 

Category Description References 

Impact of 
the corrupt 
behaviors on 
governance 
of commons 

Types of impact 
(emerging from 
the literature) 

(Ades & di Tella, 1997; Aghion et al., 2016; Ahsan & 
Gunawan, 2010; Aisen & Veiga, 2013; Alexeeva et al., 2011; 
Alzahrani & Emsley, 2013; Ameyaw et al., 2017a; Amoako 
& Lyon, 2014; Amoatey et al., 2015; Amponsah, 2010; 
Anderson & Tverdova, 2003; Asunka, 2016; Ateloye et al., 
2016; Athanasouli & Goujard, 2015; Babos, 2015; Bardhan, 
1997; Bob-Milliar, 2012; Bose et al., 2008; Bowen et al., 
2012a; Boycko et al., 1996; Castro et al., 2014; Chan et al., 
2015; Cheng, 2014; Collier et al., 2015a, 2015b; Damoah et 
al., 2018; Del Monte & Papagni, 2001, 2007; Dobson & 
Ramlogan-Dobson, 2012; Esfahani & Ramı́rez, 2003; Farooq 
et al., 2013; Fazekas & Tóth, 2018; Fiorino et al., 2012; 
Fredriksson & Svensson, 2003; Frey, 1994; Gillanders, 2014; 
Guasch et al., 2008; Guiso et al., 2004; Gupta et al., 2002; 
Hall & Lobina, 2004; Hellwig & Samuels, 2008; Hessami, 
2014; Hofstede, 1983; Hunt, 2005; Jetter et al., 2015; Kaliba 
et al., 2009; Kenny, 2009a; Leff, 1964; Leys, 1965; Mauro, 
1995; McGee, 1999; Méon & Sekkat, 2005; Morse, 2006; 
Neeman et al., 2008; Paunov, 2016; Percoco, 2014; Picur & 
Riahi‐Belkaoui, 2006; Porter & Graycar, 2016; Rădulescu et 
al., 2016; Rose-Ackerman, 1996a; Rui et al., 2008; Saha & 
Gounder, 2013; Slemrod & Katuščák, 2005; Thillairajan & 
Menon, 2014; Transparency International, 2015; Von 
Hirschhausen, 2002; Wei, 2000; Yehoue et al., 2006) 

Causes of 
Corruption 

 (Abdulai, 2009; Aghion et al., 2016; Amadi & Higham, 
2016; Ameyaw & Chan, 2015; Asenova & Beck, 2003; 
Ateloye et al., 2016; Ball et al., 2003; Baumol, 1996; 
Bildfell, 2018; Boase, 2000; Bruzelius et al., 2002; Button, 
2016; Castro et al., 2014; Collier et al., 2015b; Czibik et al., 
2014; Damoah et al., 2018; Edomah et al., 2016; Estache et 
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al., 2009; Fazekas & Tóth, 2018; Frank & Martinez-
Vazquez, 2014; Gillanders, 2014; Golden & Picci, 2005b; 
Guasch et al., 2007; Hall & Lobina, 2007; Halpern et al., 
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2007; Kwak et al., 2009; Laffont & Tirole, 1991; Lengwiler 
& Wolfstetter, 2006b; Makoni, 2014; Maskin & Tirole, 
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2014; Piga, 2011; Porter & Graycar, 2016; Rebosio & Wam, 
2011; Rose-Ackerman, 1999; Şentürk et al., 2004; Treisman, 
2007; UNECE, 2004; Yehoue et al., 2006; Zábojník, 2002) 

Level of 
corruption  

 

Individual (Abdulai, 2009; Africa Research Bulletin, 2008; Aghion et 
al., 2016; Ameyaw et al., 2017a; Benitez et al., 2012; Bowen 
et al., 2007b; Brown & Loosemore, 2015; Bruzelius et al., 
2002; CDD Ghana, 2000; Collins et al., 2009; Damoah et al., 
2018; Dewatripont et al., 1999; Felix & Hines, 2013; 
FMI/CMAA, 2004; Mensah et al., 2003b; Munavar Ali, 
2017; Nordin et al., 2011; Osei-Tutu et al., 2010b; Porter & 
Graycar, 2016; Rafi et al., 2012; Saenz & Brown, 2018; 
Wilson & CFE, 2004; Yan & Oum, 2014; Zou, 2006) 

Organization (Ahsan & Gunawan, 2010; Ameyaw et al., 2017b; Brass et 
al., 1998; Cheng, 2014; Clarke & Xu, 2004; Damoah et al., 
2018; de Jong et al., 2010; Doh et al., 2003a; Graycar & 
Villa, 2011; Jon, 1999; Kaliba et al., 2009; Kaniki & 
Gwatidzo, 2012; Kivyiro & Arminen, 2013; Krackhardt, 
1999; Locatelli et al., 2017; Luo, 2005; Marcel & Heller, 
2012; Martin et al., 2007; Munavar Ali, 2017; Osei-Tutu et 
al., 2010b; Otairu et al., 2013; Otairu et al., 2014; Percoco, 
2014; Pinto, 2013; Saenz & Brown, 2018; Sohail & Cavill, 
2008; Sovacool, 2017; Transparency International, 2011; 
Vee & Skitmore, 2003; Winch & Leiringer, 2016; Wu, 2009; 
Yan & Oum, 2014; Zhang et al., 2017) 

Project (Alam & Ahmad, 2013; Alexeeva et al., 2011; Ameyaw et 
al., 2017a; Armijo & Rhodes, 2017; Bajari, 2001; Bildfell, 
2018; Bowen et al., 2007a; Chan et al., 2014; Cheung et al., 
2006; Chotibhongs & Arditi, 2012; Collier et al., 2015b; 
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Collins et al., 2009; Damoah et al., 2018; Doh et al., 2003b; 
Dorée, 2004; Fazekas & Tóth, 2018; Frank & Martinez-
Vazquez, 2014; Golden & Picci, 2005a; Gordon & Miyake, 
2001; Hall & Lobina, 2004, 2007; Hardon & Heinrich, 2011; 
Husted, 1999; Jiménez et al., 2017; Krishnan, 2009; Lewis-
Faupel et al., 2016; Locatelli et al., 2017; Mahmud, 2007; 
Makoni, 2014; Martin et al., 2007; May et al., 2001; 
Munavar Ali, 2017; Osei-Tutu et al., 2010a; Sachs et al., 
2007; Signor et al., 2016a; Sultana et al., 2013; Thillairajan 
& Menon, 2014; Vee & Skitmore, 2003; Wu & Liu, 2013a; 
Zarkada-Fraser & Skitmore, 2000; Zou, 2006) 

Society (Ades & di Tella, 1997; Aghion et al., 2016; Aidt, 2003; 
Alam & Ahmad, 2013; Ameyaw et al., 2017a; Anderson & 
Tverdova, 2003; Assiotis & Sylwester, 2014; Bildfell, 2018; 
Boubaker & Nguyen, 2014; Bremer & Kok, 2000; Charron et 
al., 2017; Choi, 2009; Damoah et al., 2018; Della Porta & 
Vannucci, 2016; Edwards et al., 2014; Fazekas & Tóth, 
2018; Frank & Martinez-Vazquez, 2014; Godinez & Liu, 
2015; Graycar & Prenzler, 2013; Huther & Shah, 2000; 
Jankauskas & Šeputienė, 2007; Jensen & Smith, 2000; 
Jiménez et al., 2017; Khlif et al., 2016; Knox, 2009; 
Laurance, 2004; Lee & Weng, 2013; Li & Mayraz, 2017; 
Locatelli et al., 2017; Owusu-Ababio & Acheampong, 2018; 
Piquero & Albanese, 2011; Porter & Graycar, 2016; Putnam, 
2001; Rădulescu et al., 2016; Rafi et al., 2012; Sampson et 
al., 1999; Sohail & Cavill, 2008; Sumkoski, 2016; Tabish & 
Jha, 2012b; UNDOC, 2010; Unruh & Shalaby, 2012; 
Wagner et al., 2009; Zimring & Johnson, 2007)  

Institutional 
elements 

 

Regulation (Abbott & Snidal, 2002; Abramowitz, 1998; Ameyaw et al., 
2017b; Berg, 2000; Bildfell, 2018; Bird et al., 2007; 
Bukovansky, 2006; Coffé & Geys, 2005; Damoah et al., 
2018; Donohoe, 2011; Edwards et al., 2014; Estache et al., 
2009; Feld & Frey, 2007; Gasmi et al., 2009; Getz, 2006; 
Gilardi, 2002; Hansen, 2011; Huther & Shah, 2000; IPMA, 
2015; IWA, 2010; Kaniki & Gwatidzo, 2012; Kenny, 2009a, 
2009b; Kivyiro & Arminen, 2013; Kuperan & Sutinen, 1999; 
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Laurance, 2004; Le et al., 2014a; Lengwiler & Wolfstetter, 
2006a; Locatelli et al., 2017; Maggetti, 2009; Makoni, 2014; 
Mensah et al., 2003a; Miranda Sarmento & Renneboog, 
2017; Mitnick, 1980; Munavar Ali, 2017; Nordin et al., 
2011; Osei-Tutu et al., 2010a; Pressman, 1997; Rafi et al., 
2012; Rodrik et al., 2004; Rose-Ackerman, 2002; Saenz & 
Brown, 2018; Seim & Søreide, 2009; Shapiro et al., 2006; 
Signor et al., 2016a; Sohail & Cavill, 2008; Sovacool, 2017; 
Stansbury, 2009; Sumkoski, 2016; Transparency 
International, 2011; Tun et al., 2012; USSC (US Sentencing 
Commission), 2015; Vannucci, 2009; Vee & Skitmore, 2003; 
Weaver, 2001; Wei, 2000; Wrage & Wrage, 2005; Wu, 
2009; Yan & Oum, 2014; Zábojník, 2002) 

Normative (Alm et al., 1999; Ameyaw et al., 2017a; Amponsah, 2010; 
Anderson & Tverdova, 2003; Armijo & Rhodes, 2017; 
Beets, 2005; Bob-Milliar, 2012; Bowen et al., 2007b; Brown 
& Loosemore, 2015; Choi, 2009; Christensen & Lægreid, 
2005; Colledge, 1999; Damoah & Akwei, 2017; Damoah et 
al., 2018; Estache & Martimort, 1999; Felix & Hines, 2013; 
Husted, 1999; Kivyiro & Arminen, 2013; Knox, 2009; Li & 
Mayraz, 2017; Maingot, 1994; Makoni, 2014; Munavar Ali, 
2017; Owusu-Ababio & Acheampong, 2018; Pinto, 2013, 
2014; Pinto & Patanakul, 2015; Posner, 2000; Robertson & 
Watson, 2004; Saenz & Brown, 2018; Signor et al., 2016a; 
Sumkoski, 2016; The Hofstede Insights, 2019; Wagner et al., 
2009; Wibowo & Wilhelm Alfen, 2014; Zarkada-Fraser & 
Skitmore, 2000; Zou, 2006) 

Cognitive (Asmar et al., 2013; Brass et al., 1998; Damoah et al., 2018; 
Kent & Becerik-Gerber, 2010; Munavar Ali, 2017; Vee & 
Skitmore, 2003) 

Geographic 
location (the 
focus of the 
study) 

 

East Asia and 
pacific 

(Brown & Loosemore, 2015; Chan et al., 2014; Hartley, 
2009; Jones, 2006; Li & Mayraz, 2017; Ling et al., 2014; 
Macdonald, 1997; May et al., 2001; Phillips, 2006; Sha, 
2004; Vee & Skitmore, 2003; Wang et al., 2000b; Zarkada-
Fraser & Skitmore, 2000) 
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Europe and 
central Asia 

(Alexeeva et al., 2011; Armeanu et al., 2018a; Auditors, 
2013; Becker et al., 2013; Bologna & Del Nord, 2000; 
Bremer & Kok, 2000; Castro et al., 2014; Charron et al., 
2017; Choi, 2009; CIOB, 2006; Coopers, 2013; Day, 2012; 
Doig & McIvor, 2003; Donohoe, 2011; Dorée, 2004; 
Fazekas & Tóth, 2018; Golden & Picci, 2005a; Golden & 
Picci, 2005b; Jiménez et al., 2017; Kanin, 2003; Ke et al., 
2011; Kenny, 2009b; Kersan-Škabić, 2013; Lai et al., 2004; 
Miranda Sarmento & Renneboog, 2017; Priemus, 2004; 
Rădulescu et al., 2016; Sachs et al., 2007; Schamis, 2002; 
Shan et al., 2015; Sohail & Cavill, 2008; Vazhenin & 
Gerasimov, 2011; Wang et al., 2000a; Winch, 2000; Wu & 
Liu, 2013a; Xu et al., 2010; Zhang et al., 2017; Zhu, 2017; 
Zou, 2006) 

Latin America 
and Caribbean 

(Armijo & Rhodes, 2017; Auriol et al., 2016; Estache et al., 
2009; Martimort & Straub, 2009; Regis et al., 2017; Saenz & 
Brown, 2018; Schamis, 2002; Signor et al., 2016a; Takano, 
2017) 

Middle east and 
north Africa 

(Fallahnejad, 2013) 

North America (Abramowitz, 1998; Bajari, 2001; Chotibhongs & Arditi, 
2012; Doran, 2004; Felix & Hines, 2013; Gardiner, 1970; 
Globerman & Shapiro, 2003; Meier & Holbrook, 1992; 
Porter & Graycar, 2016; Pressman, 1997; The Economist, 
2002; USSC (US Sentencing Commission), 2015; Yan & 
Oum, 2014) 

South Asia (Abdulai, 2009; Alam & Ahmad, 2013; Arnold & Buchanan, 
2008; Davis, 2004; Dutta, 2005; Fox & Treakle, 2003; Gulati 
& Rao, 2006; IWA, 2010; Jones, 2006; Knox, 2009; 
Mahmud, 2007; Olken, 2007; Rafi et al., 2012; Seligson, 
2006; Sumkoski, 2016; Tabish & Jha, 2011, 2012b; 
Thillairajan & Menon, 2014; Unruh & Shalaby, 2012; Wei, 
2000; Wibowo & Wilhelm Alfen, 2014; Yeoh et al., 2007) 

Sub-Saharan 
Africa 

(Abdulai, 2009; Abdullahi & Usman, 2013; Adinkrah, 2017; 
Africa Research Bulletin, 2008; Alexeeva et al., 2008; Alutu, 
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2007; Amadi & Higham, 2016; Ameyaw et al., 2017a; 
Ameyaw et al., 2017b; Anyanwu, 2006; Ateloye et al., 2016; 
Babalola & Odunowo, 2010; Bowen et al., 2007a; Bowen et 
al., 2012a; Bowen et al., 2007b; CDD Ghana, 2000; Clark, 
2003a, 2003b; Damoah et al., 2018; Demuijnck & 
Ngnodjom, 2011; Edomah et al., 2016; Edwards et al., 2014; 
Effah & Chan, 2015; Ibimilua, 2011; Ibrahim et al., 2006; 
ILO, 2005; Kaliba et al., 2009; Kaniki & Gwatidzo, 2012; 
Kivyiro & Arminen, 2013; Makoni, 2014; Mawenya, 2008; 
Mensah et al., 2003a, 2003b; Mlambo, 2005; Nwankwo & 
Richards, 2001; Osei-Tutu et al., 2010a; Osei-Tutu et al., 
2010b; Otairu et al., 2013; Otairu et al., 2014; Owusu-
Ababio & Acheampong, 2018; Oyewunmi & Olujobi, 2016; 
Sonuga et al., 2002; Utzinger et al., 2005; World Bank, 
2009b) 

Methodolog
y of the 
study 

Types (emerging 
from the papers) 

(Aghion et al., 2016; Ahsan & Gunawan, 2010; Alam & 
Ahmad, 2013; Amadi & Higham, 2016; Ameyaw & Chan, 
2015; Ameyaw et al., 2017a; Armeanu et al., 2018a; Ateloye 
et al., 2016; Atkinson, 1999; Banerjee et al., 2006; Benitez et 
al., 2012; Bildfell, 2018; Castro et al., 2014; Chan et al., 
2014; Chang & Chu, 2006; Collier et al., 2015b; Damoah et 
al., 2018; Edomah et al., 2016; Estache et al., 2009; Fazekas 
& Tóth, 2018; Felix & Hines, 2013; Flyvbjerg & Molloy, 
2011; Galilea & Medda, 2010; Gillanders, 2014; Glaeser & 
Molloy, 2006; Golden & Picci, 2005b; Grace et al., 2016; 
Graff, 2013; Hall & Jones, 1999; Jiménez et al., 2017; 
Kaniki & Gwatidzo, 2012; Ke et al., 2011; Kenny, 2009a; 
Kenny & Musatova, 2010; Kersan-Škabić, 2013; Khlif et al., 
2016; Kivyiro & Arminen, 2013; Law & Bany-Ariffin, 2008; 
Li & Mayraz, 2017; Lin & Zhang, 2009; Locatelli et al., 
2017; Ma & Xu, 2009; Martimort & Straub, 2009; Miranda 
Sarmento & Renneboog, 2017; Mukabeta Maumbe et al., 
2008; Munavar Ali, 2017; Nordin et al., 2011; Osei-Tutu et 
al., 2010a; Otairu et al., 2013; Owusu-Ababio & 
Acheampong, 2018; Porter & Graycar, 2016; Rădulescu et 
al., 2016; Rafi et al., 2012; Regis et al., 2017; Rodrik et al., 
2004; Saenz & Brown, 2018; Schneider et al., 2010; Scott et 
al., 2011; Signor et al., 2016a; Signor et al., 2016b; Sohail & 
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Cavill, 2008; Sovacool, 2017; Sumkoski, 2016; Takano, 
2017; Vazhenin & Gerasimov, 2011; Wibowo & Wilhelm 
Alfen, 2014; Wu & Liu, 2013b; Wyatt, 2003; Xu et al., 2010; 
Yan & Oum, 2014) 

Types of 
corruption 

 

Bid rigging (Ameyaw et al., 2017b; Bajari, 2001; Ballesteros-Pérez et al., 
2015; Chotibhongs & Arditi, 2012; Dorée, 2004; Le et al., 
2014b; Lockard & Tullock, 2001; Priemus, 2004; Regis et 
al., 2017; USSC (US Sentencing Commission), 2015) 

Bribery (Ades & Tella, 1996; Africa Research Bulletin, 2008; Aidt, 
2003; Alam & Ahmad, 2013; Alam, 1989; Ameer, 2015; 
Ameyaw et al., 2017a; Amundsen, 2000; Armeanu et al., 
2018b; Beets, 2005; Benitez et al., 2012; Bildfell, 2018; 
Blackburn et al., 2004a; Boycko et al., 1996; Bray, 2004; 
Brinkerhoff & Goldsmith, 2002; CIOB, 2006; Collier et al., 
2015b; Collins et al., 2009; Damoah et al., 2018; Doh et al., 
2003b; Fazekas & Tóth, 2018; Globerman & Shapiro, 2003; 
Goel & Rich, 1989; Gordon & Miyake, 2001; Guasch et al., 
2005; Hamel, 2007; Hardon & Heinrich, 2011; ISO 37001, 
2016; Kaniki & Gwatidzo, 2012; Ke et al., 2011; Kenny, 
2009b; Leff, 1964; Lengwiler & Wolfstetter, 2006a; Lin & 
Zhang, 2009; Lui, 1985a; Lui, 1985b; Ma & Xu, 2009; 
Mahmud, 2007; Martimort & Straub, 2009; Mawenya, 2008; 
Meier & Holbrook, 1992; Mensah et al., 2003a; Nordin et al., 
2011; Osei-Tutu et al., 2010b; Otairu et al., 2013; Rafi et al., 
2012; Rashid, 1981; Sachs et al., 2007; Saenz & Brown, 
2018; Shah, 2006; Shleifer & Vishny, 1994; Sohail & Cavill, 
2008; Tanzi, 1994; Tanzi, 1998; The Economist, 2002; 
UNDOC, 2010; United Nations Global Compact, 2012; 
Unruh & Shalaby, 2012; Wang et al., 2000a; Wells, 2013) 

Collusion (Ameyaw et al., 2017a; Bajari, 2001; Bildfell, 2018; Bowen 
et al., 2012a; Chotibhongs & Arditi, 2012; Collier et al., 
2015b; Damoah et al., 2018; Dorée, 2004; Klitgaard, 2012; 
Lai et al., 2004; Le et al., 2014b; Messick, 2011; OECD, 
2009b; Regis et al., 2017; Rose-Ackerman & Truex, 2012; 
Zarkada-Fraser & Skitmore, 2000) 
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Embezzlement (Ameyaw et al., 2017a; Damoah et al., 2018; Fazekas & 
Tóth, 2018; Hartley, 2009; Lin & Zhang, 2009; World Bank, 
2009a; World Bank et al., 2007) 

Facilitation of 
payments and 
fraud 

(Alutu, 2007; Damoah et al., 2018; Greame Hamilton, 2014; 
Osei-Tutu et al., 2010a; Sohail & Cavill, 2008; Tabish & Jha, 
2011; UN, 2006; Vee & Skitmore, 2003) 

Fronting (Ameyaw et al., 2017a; Bowen et al., 2007a; Jong et al., 
2009; Le et al., 2014b) 

Gerrymandering (Munavar Ali, 2017) 

Rent seeking (Acemoglu et al., 2003; Acemoglu & Verdier, 2000; Aidt, 
2016; Auriol et al., 2016; Bahmani-Oskooee & Nasir, 2002; 
Banerjee, 1997; Bardhan, 1997; Brown & Loosemore, 2015; 
Buchanan, 1980; Congleton, 2015; Gradstein, 1993; Hauk & 
Saez-Marti, 2002; Hodges & Dellacha, 2007; Iossa & 
Martimort, 2013; Isaac Ehrlich & Francis T. Lui, 1999; 
Kenny, 2009a; Krueger, 1974; Laffont & Martimort, 1994; 
Leung et al., 2006; Linster, 1993, 1994; Ma & Xu, 2009; 
Maskin & Tirole, 2008; Mensah et al., 2003a; Miraftab, 
2004; Mueller, 2003; Osei-Tutu et al., 2010b; Ostrom et al., 
1961; Posner, 1975; PPIAF, 2014; Rafi et al., 2012; Rose-
Ackerman, 1996a; Schamis, 2002; Takano, 2017; Tang et al., 
2003; Tanzi, 1998; Tullock, 1967, 1980, 2001; Vee & 
Skitmore, 2003; Wu & Liu, 2013b) 

Theft (ILO, 2005; Kenny, 2009b) 
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