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ABSTRACT 

 Mass spectrometry (MS) is a powerful and versatile technique that is useful for addressing 

a wide range of complex analytical challenges. In this work, mass spectrometry-based assays were 

developed to address issues relating to environmental contamination and for detecting analytes of 

interest to the defense industry.  Chapter one is an overview of the history of mass spectrometry, 

the fundamental operation of a mass spectrometer, as well as, advancements in chromatographic 

separation and ionization methods. Chapter two focuses on the development of an assay that uses 

blow flies as environmental sensors of chemical weapon release. In that work, a liquid 

chromatography – tandem mass spectrometry (LC-MS/MS) method was developed to detect 

chemical warfare agent simulants and chemical warfare agent hydrolysis products in flies exposed 

to the chemicals in controlled feeding experiments. The work in chapter three describes the 

development of a surface enhanced Raman spectroscopy assay coupled to paper spray mass 

spectrometry for a more fieldable and environmentally friendly approach to detect 

organophosphorus compounds.  Chapter four describes the development of a paper spray mass 

spectrometry assay for the detection and semi-quantitation of per- and polyfluoroalkyl substances 

in whole blood without sample cleanup or chromatographic separations. This method would be 

useful in detecting high levels of these carcinogenic compounds in individuals highly exposed via 

their occupations. The final chapter (chapter five) returns to using blow flies as environmental 

sensors, but this time to detect insensitive munitions in the environment. The work focuses on the 

development of two different liquid chromatography mass spectrometry methods for the detection 

of insensitive munitions, which are less shock sensitive explosives, and their transformation 

products in the environment. Controlled feeding experiments were also performed where flies were 

exposed to contaminated soil and water sources to show the feasibility of this method in a more 

realistic scenario. The projects detailed herein show the extensive range with which mass 

spectrometry can be used for the detection of harmful chemistries of environmental concern. 
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 INTRODUCTION 

1.1 History of Mass Spectrometry 

Over the past century, mass spectrometry (MS) has become an indispensable analytical 

tool used in nearly all facets of analytical and bioanalytical chemistry. Due to its innate versatility, 

sensitivity/selectivity, and the ability to multiplex, mass spectrometry is often known as a “gold 

standard” analytical technique[1-4]. While there are many different types of mass spectrometers, 

a commonality between them is that all MS instrumentation analyzes and detects ions in the gas 

phase. Each mass spectrometer is made of an ionization source, a mass analyzer, and a detector, 

each of which having a critical role in the capabilities, operation, and overall function of the 

instrument. Although there are many combinations and permutations of the components, all mass 

spectrometers sort ions by their mass relative to the charge state of the ion. The reported value is 

known as the mass-to-charge ratio (m/z).  

The field of mass spectrometry dates back to the beginning of the 20th century with J.J. 

Thomson who was one of the initial pioneers in mass spectrometry[5]. During Thomson’s work 

studying cathode ray deflection in the presence of an electric and magnetic field, he discovered 

that he was able to indirectly measure the charge relative to the mass (e/m) of small gaseous 

particles, now known as electrons[6]. J.J. Thomson was awarded the 1906 Nobel Prize in Physics 

for this discovery. Thomson and his protégé F. W. Aston went on to build the first mass 

spectrometer and used it to study elemental isotope signatures, winning Aston a Nobel Prize in 

1922[7-9]. In the first years of this new field, physicists utilized mass spectrometry to understand 

more about ions and their trajectory in magnetic and electric fields. However, it wasn’t until the 

Manhattan Project that the usefulness and power of mass spectrometry was finally revealed[5, 10]. 

The calutron mass spectrometer was utilized to separate 235U from 238U and obtain large quantities 

of high-purity, enriched uranium-235, which was used to construct the first atomic bomb[11]. The 

sector instrument was developed in the laboratory of E. O. Lawrence from UC Berkley and 

operated by separating isotopes using a powerful magnetic field[11]. In the years that followed, 

many different types of instruments were developed, MS became more available to the masses, 

and significant advances in both small and large molecule characterization catapulted mass 

spectrometry to the forefront of analytical chemistry. 
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1.2 Mass Spectrometer Components 

Since the initial foray into mass spectrometer development, many different types of 

instruments have been designed and implemented. Although their operating principles differ 

significantly, the three main components of mass spectrometers, the ionization source, mass 

analyzer, and detector, remain constant (Figure 1.1). In short, ions are generated from an ion source 

and then travel into the ion transfer tube of the mass spectrometer. Ion optics plates are used to 

guide the ions into a central beam. The mass analyzer separates and sorts ions by their m/z value. 

The mass analyzer is the most critical component of the mass spectrometer and is oftentimes the 

defining characteristic that differentiates instruments from one another. Finally, the sorted ions hit 

the detector, and the signals can be converted to a mass spectrum which is then relayed to the 

computer for analysis and interpretation.  

 

 

Figure 1.1 Mass spectrometry workflow overview 

 

Mass analyzers are the critical components within a mass spectrometer used to separate 

ions by their mass-to-charge ratio. There have been many advancements in this area, enabling 

applications ranging from untargeted, exploratory experiments to part-per-trillion (ppt) level 

quantitation. Mass analyzers can be separated into two major categories, low- and high-resolution 

instruments[12]. Low resolution instruments such as the ion trap, quadrupole, and sector analyzers 

can only measure a m/z out to two decimal places making separating contaminants and analytes at 

the same nominal mass nearly impossible. Although low resolution instruments are lacking in 

specificity, they make up for it in decreased cost and higher throughput. Additionally, adding a 

fragmentation step (MS/MS) oftentimes overcomes the limitation of background or contaminant 

peaks. High resolution instruments such as orbitrap, time-of-flight, and Fourier transform ion 

cyclotron resonance (FT-ICR) instruments are often necessary when analyzing macromolecules or 

doing untargeted/unknown analysis due to their resolving power (>100,000) and mass accuracy 

Ionization 
Source

Mass 
Analyzer Detector

Sample 
Preparation
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(<1 ppm). While they do provide many advantages in comparison to low-resolution instruments, 

they are costly to purchase/maintain and require more bench space. 

Two mass analyzers were employed in the work in this dissertation: quadrupole and 

orbitrap mass analyzers. While a quadrupole can be used alone, three quadrupoles in tandem, 

known as a triple quadrupole (QqQ) instrument, are utilized frequently in high throughput 

applications, such as for quantitative toxicology assays. Each quadrupole has four cylindrical rods 

(Fig. 1.2A), where radio frequency (RF) voltages and direct current (DC) voltages are applied. 

Opposite rods have the same polarity, which results in an oscillating electric field between the rods. 

As ions are transmitted through the quadrupole, the electric field can be modified so that only ions 

with a certain m/z value have a stable trajectory, resulting in mass selection[13]. In a QqQ 

instrument, the first quadrupole is used for mass selecting a precursor ion that can then be 

fragmented using inert gas molecules in the second quadrupole. The fragments are then mass 

selected in the third quadrupole for detection. The high-resolution instrument (Q-Exactive Focus) 

utilized in this dissertation also contains a quadrupole to mass select precursor ions that can then 

be detected by the high resolution orbitrap (Fig. 1.2B). The orbitrap was invented by Makarov in 

the 1990s and was commercialized by Thermo Scientific in 2005[14]. In this type of mass analyzer, 

ions orbit around a central spindle electrode. Ions are separated based on the frequency with which 

they oscillate around the central electrode. Fragmentation can also be performed by mass selecting 

a precursor ion in the quadrupole and initiating a collision with inert gas molecules in a collision 

cell. From there, the ions are injected into the orbitrap via the C-Trap and fragment and precursor 

ions can be detected simultaneously.  
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Figure 1.2. Schematic of a quadrupole mass analyzer (A) and an orbitrap mass analyzer (B). In 
the quadrupole, at a particular RF and DC voltage ions that are stable (red dash line) are allowed 
to pass through the mass filter whereas unstable ions are ejected (blue line). In the orbitrap, ions 

orbit around a central spindle electrode and are separated based on their mass to charge. 

1.3 Ionization Fundamentals 

While the mass analyzer is important, the ionization source selected for an application is 

critical because it determines the type of ions that are generated and detected by the MS. There are 

two broad categories, hard and soft ionization sources which differ by the amount of energy 

imposed upon a molecule during ionization. The most common hard ionization source is electron 

ionization (EI). EI ionizes molecules by passing the volatilized compounds near a wire filament 

producing electrons with a kinetic energy of 70 eV[12]. The electrons cause the molecules to eject 

an electron, making them positively charged with virtually the same mass as the unionized 

molecule. However, EI not only ionize the molecule of interest, but oftentimes causes it to 

fragment. Fortunately, the fragmentation is very reproducible and a library of fragmentation 

patterns is often utilized to “match” the mass spectra to a known reference material. EI is widely 

utilized when coupled to gas chromatography (GC) for detection and quantitation of volatile and 

semi-volatile compounds. Alternatively, soft ionization methods, such as electrospray ionization 

(ESI), do not cause the precursor compound to fragment, leaving the pseudo-molecular ion peak 

intact. In ESI, a sample in solution is passed through a needle with an applied voltage (2-5 kV), 

which creates a potential difference between the needle and the inlet of the mass spectrometer[15]. 

The potential difference causes the solvent flowing through the needle to spray in charged droplets 

A. B.

Quadrupole Orbitrap
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towards inlet, which is known as a Taylor cone[16]. As the solvated analytes travels from the 

needle to the mass spectrometer, the solvent evaporates and the charged droplets become smaller 

and smaller until they reach the Rayleigh limit, where the charge is too much for the total volume 

of the droplet which makes the droplet unstable[17]. Once this occurs, the droplet undergoes 

fission into many smaller droplets. Eventually the solvent evaporates entirely leaving the charged 

analyte in the gas phase to then enter the MS. Unlike EI, ESI produces a pseudo molecular ion 

peak that differs from the molecular mass. In positive mode, proton addition typically occurs 

creating an [M+H]+ ion, whereas in negative ion mode proton loss occurs forming [M-H]- ions. 

While other adduct ions do occur, it is analyte and condition dependent. Two of the main benefits 

of ESI is that the pseudo molecular ion can be used for identification purposes and the samples 

must be in solution, overcoming the two major pitfalls of EI. ESI allows for labile compounds and 

larger molecules such as proteins to be analyzed by MS. 

1.4 Liquid Chromatography 

It was the advent of ESI that allowed for liquid chromatography couple to mass 

spectrometry (LC-MS) to flourish. Up until then, gas chromatography was the primary 

chromatographic technique able to be coupled to mass spectrometry (GC-MS) due to the sample 

being volatilized in the column prior to the ionization step. The key to gas chromatography, 

however, is that the analytes of interest must be somewhat volatile. Many large molecules, such 

as large biomolecules, are labile and cannot be analyzed by GC-MS. Liquid chromatography (LC) 

is a powerful analytical tool that separates analytes based on their affinity for the mobile and 

stationary phases. There are four major categories for LC separations, reverse phase, normal phase, 

ion exchange and size exclusion chromatography, that differ by their stationary and mobile phase 

composition, as well as their retention modes (Figure 1.2)[18]. Reverse phase chromatography 

(Fig. 1.2 A) is the most common retention mechanism. It relies on a hydrophobic stationary phase 

(typically C8 or C18) and a gradient from an aqueous solvent to an organic solvent. Hydrophobic 

analytes are retained by the stationary phase in the presence of high-water content in the starting 

mobile phase. The hydrophobic interactions are disrupted as the mobile phase increases in organic 

solvent. In contrast to reverse phase, normal phase has a polar stationary phase (typically silica-

based) and a nonpolar mobile phase (Fig. 1.2 B). Normal phase is used to separate polar analytes 

that would otherwise be unretained on a reverse phase column. Analytes that remain charged at a 



 
 

23 

variety of pHs require a different mode of retention. The third mechanism (Fig. 1.2 C) is known 

as ion-exchange, and oppositely charged analytes are retained on a charged stationary phase. There 

are two main types of ion exchange chromatography, cation and anion exchange. Fig. 1.2 C shows 

an anion exchange mechanism, where the stationary phase is positively charged. Analytes are 

eluted by increasing the ionic strength in the mobile phase, displacing the analytes of interest, and 

causing them to elute. The final main mechanism of retention is size exclusion chromatography 

(Fig. 1.2 D). This mechanism is utilized to separate analytes by their size. This technique is often 

used when separating large biomolecules or polymers. The column is filled with porous filtration 

beads that act as the stationary phase. Larger analytes will elute faster because they move around 

the large beads, while smaller analytes slow down as they travel through the pores. There are other 

modalities as well, known as affinity chromatography, hydrophilic interaction chromatography 

(HILIC), and chiral chromatography, which rely on similar principals mentioned here[18]. 
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Figure 1.3 Liquid chromatography retention mechanisms 

1.5 Ambient Ionization 

While many industries and applications rely heavily on chromatographic-based separations 

prior to mass spectral analysis, chromatography is labor intensive, expensive, and increases time 

per sample. Since the early 2000s there has been a heavy focus on the development of ambient 

ionization methods that provide alternatives for sample introduction. The first techniques 

developed were desorption electrospray ionization (DESI)[19] and direct analysis in real time 
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(DART) in the early 2000s. In these two techniques, samples are placed near the ion transfer tube 

of the mass spectrometer. In DESI, electrosprayed solvent is used to desorb the analyte ions from 

a surface to then enter the MS inlet. DART, on the other hand, uses ionized gas molecules directed 

towards a sample to ionize the analyte molecules which will then enter the MS.  Since then, there 

has been an explosion of ambient techniques that continues to this day[20]. Due to the innate 

limitations of ambient methods such as matrix effects, low recovery, and lower specificity, 

oftentimes high resolution or tandem MS is required to improve confidence in the measurements.  

Two projects in this work utilize the ambient ionization technique known as paper spray 

(PS) ionization for rapid detection of analytes relative to protecting the warfighter and civilians. 

PS was initially developed by the R. Graham Cooks and Zheng Ouyang groups at Purdue 

University in the 2010s[21-24]. Traditionally in PS-MS, a small (5-10 µL) drop of biofluid is 

spotted onto a piece of chromatography paper cut to a sharp point (Figure 1.3). A spray solvent 

(100-200 µL) is applied to the paper substrate along with a voltage that induces an electrospray-

like event at the tip of the paper. The resulting plume is known as a Taylor cone and contains 

droplets of analyte molecules dissolved in solvent. Similar to ESI, as the charged droplets travel 

toward the MS inlet, the solvent evaporates leaving charged analyte molecules in the gas phase. 

As soon as the voltage is applied, the analyte signal increases and stays constant until the solvent 

is depleted or the voltage is turned off. In this technique, there is no chromatographic separation. 

The resulting signal over time is therefore known as a chronogram. PS-MS provides an alternative 

to traditional LC-MS assays that is simple, rapid (~1 minute) and can handle complex sample 

matrices such as whole blood or soil without any sample cleanup. Since its advent, this technique 

has been utilized in many clinical[22-32], environmental[33-38], forensic applications[27, 39-56], 

and has even been commercialized. QuantIon Technologies, Inc developed the first commercial 

prototypes for an automated paper spray source and disposable cartridge.  The technology was 

later transferred to Prosolia, Inc. (Indianapolis, IN), which adapted the prototypes into 

commercially available instrument called the Velox. Additionally, Thermo Scientific has 

developed an automated paper spray module called the VeriSpray that can be attached to their 

triple quadrupole mass spectrometers. The VeriSpray has been used for drug checking 

facilities[55], quantitating Remdesivir in patient samples[57], sports drug testing[58], and paper 

spray method optimization studies[59], as well as others. 
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Figure 1.4. Traditional paper spray mass spectrometry (PS-MS) workflow.  

Figure from Shi, et. al. [29] 
 

The work described within this dissertation describes the development of several mass 

spectrometry assays to address applications in the chemical defense and military arenas. Not only 

is it useful when the goal is to protect civilians from dangerous chemical releases, but to also 

monitor sworn personnel for potential line-of-duty exposure. This work aims to address gaps in 

the current methodologies regarding three key areas: the detection of chemical warfare simulants 

and hydrolysis products (Chapters 2 and 3), semi-quantitation of per- and polyfluoroalkyl 

substances (PFAS) in human whole blood (Chapter 4), and environmental contamination of 

insensitive munitions (Chapter 5). 
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2.1 Abstract 

In this work, blow flies are investigated as environmental chemical sample collectors 

following a chemical warfare agent (CWA) attack. Blow flies sample the environment as they 

search for water and food sources and can be trapped from kilometers away using baited traps. 

Three species of blow flies were exposed to CWA simulants to determine the persistence and 

detectability of these compounds under varying environmental conditions. A liquid 

chromatography tandem mass spectrometry (LC-MS/MS) method was developed to detect CWA 

simulants and hydrolysis products from fly guts.  Flies were exposed to the CWA simulants 

dimethyl methylphosphonate and diethyl phosphoramidate as well as the pesticide dichlorvos, 

followed by treatment dependent temperature and humidity conditions. Flies were sacrificed at 

intervals within a 14-day post-exposure period. Fly guts were extracted and analyzed with the LC-

MS/MS method. The amount of CWA simulant in fly guts decreased with time following exposure, 

but were detectable 14 days following exposure, giving a long window of detectability. In addition 

to analysis of CWA simulants, isopropyl methylphosphonic acid, the hydrolysis product of sarin, 

was also detected in blow flies 14 days post-exposure. This work demonstrates the potential to 

obtain valuable samples from remote or access-restricted areas without risking lives. 



 
 

33 

2.2 Introduction 

Chemical warfare agents (CWAs) are highly toxic chemicals that are dispersed as aerosols, 

deposited on surfaces, or are released in the environment[1, 2]. These dangerous chemistries cause 

harm through incapacitation often resulting in lethal effects[3]. CWAs have a long and 

tempestuous history that culminated in the creation of the Chemical Weapons Convention in 

1992[1, 4]. This treaty outlaws the production, stockpiling, or use of chemical weapons. Although 

many nations around the world have signed the treaty thereby agreeing to reduce their disclosed 

stockpiles of chemical weapons, concerns remain that rogue nations and extremist fringe groups 

maintain or can produce unknown amounts of CWAs. This poses a great risk to nations around the 

world. There have been a few recent instances of chemical weapons attacks by both state and non-

state forces. Between 2012 and 2019, there have been over 300 instances of chemical weapons 

attacks during the Syrian Civil War[5-8]. In 2018, the nerve agent VX was used in the assassination 

of Kim Jong-nam[9, 10]. In November 2019, following the Salisbury/Amesbury incidents, the 

Novichok agent A-234 was added to the Chemical Weapons Convention’s list of controlled 

substances[11, 12]. This was the first chemical added since the treaty was agreed upon in the 

1990s[13]. 

New, innovative sample collection and detection methods is needed to help address the 

continued use of chemical warfare agents. Attacks warranting an investigation by the Organization 

for the Prohibition of Chemical Weapons (OPCW), such as in Syria, require multi-national 

cooperation and costly long-term investigations. By the time samples are finally collected and 

analyzed at a qualified laboratory, trace amounts of the intact agent remain, leaving behind 

hydrolysis products[14, 15].  It is essential to be able to rapidly detect these chemicals to determine 

appropriate actions following a suspected CWA attack. While research has shown success in 

detecting chemical and biological warfare agents in the environment, these sample collection 

methodologies still require humans to enter the potentially contaminated area[15-21]. This 

requirement not only potentially exposes responders to the toxins, but also slows the overall 

response in the field. 

In addition to their use as weapons, organophosphorus molecules have a long history of 

environmental contamination and impact[22]. These molecules have been used in agriculture since 

the 1960s as pesticides to prevent crop damage from insects[23]. Approximately 40% of pesticides 

used around the world are organophosphorus molecules[23]. Due to their popularity, the 
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environmental impact of these chemicals has been studied at length and exposure to these 

chemicals can happen via foodstuffs through ingestion or dermal absorption[24, 25]. In addition 

to pesticide usage, old organophosphorus munitions have been disposed of in the environment 

resulting in ecosystem alterations at the dump sites[26]. These alterations can result in 

contaminated foodstuffs, similarly to pesticide usage. Following the discharge of a CWA, through 

disposal or intentional release, there is a need to prevent exposure to the warfighter but also 

secondary exposure to civilians through the environment.  

Fortunately, there have been advancements in remote and passive sample collection and 

subsequent analyses. For example, unmanned aerial vehicles (UAVs) and drone technology are at 

the forefront of hands-off sample collection[27, 28]. However, these utilize complex 

instrumentation that are overt in nature and risk discovery. Additionally, their cumbersome shape 

limits accessibility in rough terrain, restricting their use. Biological species such as 

Tradescantia[29], honeybees (Apis mellifera L.)[30], fruits, and vegetables[31, 32] have been 

monitored for pesticide exposure. In addition, honeybees have been trained and deployed to detect 

explosives[33]. The ideal sample collection method for CWAs would be covert, rapid, easy to use, 

inexpensive, and support sensitive detection, which thus far has yet to be developed.  

This project proposes a solution by utilizing blow flies as environmental sample collectors 

and sensors. Blow flies constantly sample their environment via fluid acquisition from carrion[34], 

feces[35], vegetation[36-38], and standing water. Moreover, they are found in a variety of climates 

and ecosystems on every continent except Antarctica[39]. Blow flies are commonly used by 

forensic entomologists to accurately estimate portions of the postmortem interval (i.e., the time 

elapsed since death, PMI)[40-43]. In addition to forensic entomology, blow flies are powerful 

indicators of vertebrate resource diversity[44]. Blow flies can be used to inexpensively and 

indirectly monitor changes in animal communities by analyzing the stomach contents for animal 

DNA[45-47] and chemical signatures of animal feces[48], as well as by  performing stable isotope 

analysis on fly heads to determine previous carcass resources in the environment[49]. 

Flies can harbor multitudes of important biological and chemical information just by living 

in and sampling their environment.  Chemical analysis of blow flies can therefore be used for 

chemical sampling of dangerous or remote regions[50]. Catch-and-release experiments with 

Phormia regina showed that flies can be recovered from 13 to 45 kilometers away using baited 

traps[34]. Blow flies have the capabilities of traveling large distances; P. regina was recorded up 



 
 

35 

to 45km from its dispersal point[51]. When important resources are plentiful, however, blow flies 

tend to stay in the immediate vicinity and not travel away from valuable reproductive 

opportunities[52]. Flies seem to better detect baits placed upwind relative to their location, but 

they also can locate a bait when no wind is detected in the local environment[53]. Collection of 

blow flies therefore has the potential to provide personnel with valuable samples from targeted 

areas without risking the lives of chemical, biological, radiological, nuclear, and explosives 

(CRBNE) teams, warfighters, or other responders. The goal of this project was to develop 

analytical techniques to detect CWA simulants and CWA hydrolysis products in fly gut contents 

as well as to develop a preliminary understanding of the longevity of these agents in flies using 

controlled feeding experiments.  

2.3 Experimental Methods 

2.3.1 Chemicals and Materials 

High-performance liquid chromatography (HPLC) grade methanol, HPLC grade water, 

and ammonium acetate were purchased form Fisher Scientific (Hampton, NH, USA). Chemical 

warfare simulants: dimethyl methylphosphonate (DMMP), diethyl phosphoramidate (DEPA) and 

diisopropyl methylphosphonate (DIMP), hydrolysis products: ethyl methylphosphonate (EMPA), 

isopropyl methylphosphonate (IMPA), and pinacolyl methylphosphonate (PinMPA), and 

organophosphorus pesticides: dichlorvos, malathion, and methyl parathion were all purchased 

from Sigma Aldrich (St. Louis, MO, USA). The isotopically labelled internal standard d7-IMPA 

was purchased from Sigma Aldrich and 13Cd3 - DIMP internal standard was obtained from Dr. 

Bob Williams and Mark Alvarez at the Los Alamos National Laboratory (Los Alamos, NM, USA).  

2.3.2 Calibrator and QC Preparation 

Working solutions were prepared in methanol from the certified reference materials and 

were frozen for later use. Calibrators were serially diluted from working solutions in water. The 

final concentration range for the chemical warfare simulants and pesticides calibrators was 15.6 

ng/mL to 2000 ng/mL. The final concentration range for hydrolysis products was 3.9 ng/mL to 

500 ng/mL. A separate set of working solutions were made for the quality control (QC) samples. 

QC samples were prepared at low, medium, and high concentrations within the dynamic range. 
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An internal standard solution was prepared by diluting reference materials in methanol to 2000 

ng/mL for the stable isotope labeled chemical warfare simulants/pesticides and 500 ng/mL for the 

hydrolysis products. Prior to analysis, internal standard (7.5 µL) was spiked into calibrators and 

QCs (200 µL). Due to the semi-quantitative nature of this study, calibrators and QCs were analyzed 

in neat solutions and were not matrix matched. 

2.3.3 Blow Fly Extraction 

Experimental flies were freeze-killed and portions of the digestive system were dissected 

out with flame-sterilized forceps. The insect digestive system consists of a foregut (including the 

crop and proventriculus), a midgut, and a hindgut[54]. For the purposes of this study, the foregut 

and midgut were dissected for chemical analysis and will henceforth be referenced to as the “guts”. 

Chemical compounds of the guts were extracted by sonicating in 100 µL of methanol for 30 

minutes followed by nitrogen evaporation and reconstitution in 200 µL of water to improve 

retention of the analytes. All flies were extracted separately and were analyzed individually. The 

internal standard mix was spiked into the reconstituted sample. 

2.3.4 LC-MS/MS Assay Development and Validation 

Assay development and validation were performed on an UltiMate 3000 HPLC system and 

a Q-Exactive Focus mass spectrometer from Thermo Fisher Scientific (San Jose, CA, USA). A 

Hypersil GOLD C18 (100 mm x 2.1 mm, 3 µm particle size) analytical column and a Javelin guard 

column was used for analysis. A 10 µL injection volume was used, and the autosampler needle 

was washed before and after all sample injections. Column temperature was maintained at 40°C 

with an autosampler temperature at 4°C. The mobile phase consisted of 5mM ammonium acetate 

(A) and methanol (B).  The gradient was run at a flow rate of 0.2 mL/min as follows: 0-1.5 min 

hold at 2%B, 1.5-3.5 min linear ramp from 2% to 95% B, 3.5-7 hold at 95%B, then ending with a 

re-equilibration period of 6 minutes at 2% B making for a 13-minute method. 
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Table 2.1 Analytes included in HPLC-MS/MS method validation. The table includes a 
description of the compound, the collision energy, the MS transition, and the deuterated standard 

utilized for each analyte. 

Analyte Description 
Polarity 

(+/-) 

CE 

(V) 
Transition (m/z) 

Retention 

Time 

(min) 

Internal 

Standard 

EMPA [M-H]- MPA - 12 123.0 → 94.9904 1.42 IMPA-d7 

IMPA [M-H]- MPA - 14 137.0 → 94.9904 2.03 IMPA-d7 

DMMP [M+H]+ Simulant + 15 125.0 → 111.0205 4.71 DIMP[C13]-d3 

DEPA [M+H] + Simulant + 12 154.1 → 98.0005 6.11 DIMP[C13]-d3 

PinMPA [M-H]- MPA - 21 179.1 → 94.9904 6.88 IMPA-d7 

Dichlorvos 

[M+H] + 
Pesticide + 14 220.9 → 127.0154 7.1 DIMP[C13]-d3 

DIMP [M+H]+ Simulant + 20 181.1 → 97.0051 7.11 DIMP[C13]-d3 

Methyl parathion 

[M+H] + 
Pesticide + 15 264.0 → 142.9924 7.47 DIMP[C13]-d3 

Malathion  

[M+H] + 
Pesticide + 12 331.0 → 127.0391 7.54 DIMP[C13]-d3 

DIMP[C13]-d3 

[M+H] + 
IS + 13 185.1 → 101.0273 7.11  

IMPA-d7  

[M-H]- 
IS - 14 144.0 → 94.9904 2.03  

 

Following LC separation, the samples were analyzed using the Q-Exactive Focus mass 

spectrometer with the following parameters: 20 sheath gas (arbitrary units), 320 °C ion transfer 

tube temperature, the S-lens set to 50 V, and a 35,000 resolution. As previously described, the MS 

was calibrated in both positive and negative ion mode at least once within a 7-day period[21]. 

Mass spectral data were acquired using parallel reaction monitoring (PRM) with MS/MS 

fragmentation, with an isolation window of ±0.5 m/z in both positive (4 kV) and negative ion 
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mode (3 kV) depending on the analyte. An inclusion list was used with windows around the 

analytes’ retention times to facilitate the correct polarity. Polarity switching was utilized around 7 

minutes because of the close elution of PinMPA (negative ion) and dichlorvos (positive ion). A 

list of the analyte MS conditions, including transitions used for quantitation, can be found in Table 

2.1.  

2.3.5 Internal Validation Procedures 

The validation procedures followed guidelines proposed by the Scientific Working Group 

for Forensic Toxicology (SWGTOX) Standard Practices for Method Validation in Forensic 

Toxicology guidelines[55]. Briefly, eight-point calibration curves were made using serially diluted 

stock solutions. The concentration range was between 15.625 – 2000 ng/mL for the compounds 

analyzed in positive ion mode and 3.9 - 500 ng/mL for the compounds analyzed in negative ion 

mode. These calibration curves were run over the course of 6 days along with separately prepared 

quality control samples. We also evaluated the inter-day variability of the method by calculating 

the bias and %CV over 6 days for the three internally prepared QCs. Blanks with internal standard 

and double blanks were run to show selectivity and specificity. 

2.3.6 Assessment of Short-Term Stability and Degradation 

The stability of the QCs was evaluated at each level during the validation to determine the 

impact of storage conditions on the analysis. The middle level, QC 2, was stored under three 

temperature conditions (−20 °C, 4 °C, and 22 °C) and aliquots were analyzed at 0, 24, 48 and 72 

hours. The QCs were run in duplicate for each storage condition. The freeze-thaw stability of QC 

2 was evaluated by freezing 3 aliquots at -20°C. All aliquots were removed from the freezer and 

re-frozen at each time point during the study over the course of the 72-hour time period culminating 

a total of 3 freeze-thaw cycles for the final analysis. 

A 10-day degradation study was performed to assess the stability of the DMMP, 

Dichlorvos, and DEPA over time. High, medium and low QCs were aliquoted and analyzed on 0, 

1, 3, 5, 7, and 10 days at room temperature using the validated method. The area under the curve 

(AUC) was compared to the frozen standards on the day of analysis.  
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2.3.7 Recovery 

Extraction recovery was estimated by spiking blank fly guts with a known quantity of the 

analytes. The guts were allowed to dry and then extracted as described above. Recovery was 

calculated as the ratio of fly gut spiked before extraction to fly gut extract spiked after the 

extraction process relative to the internal standard signals.  

2.3.8 Detection of Transformation Products 

Hydrolysis of the chemical warfare agent simulant DIMP was studied to assess the 

likelihood of detecting transformation products, in addition to the fed chemical, in the fly after 

exposure. A benchtop experiment was performed where a 1 mg/mL solution of DIMP was 

acidified with formic acid (0.1%) and heated at 80 °C for an 8-hour time period. Aliquots were 

sampled at 0, 0.5, 1, 2, 4, and 8 hours and were diluted in water to 1000 ng/mL. A 1 mg/mL 

solution of DIMP was also fed to the flies and the signal of DIMP and IMPA was monitored in the 

fly gut over the 14-day period. 

2.3.9 Blow Fly Colony Formation 

Wild adult blow flies were collected from a local urban park (Military Park, Indianapolis, 

IN, USA; 39.770555, -86.168611) using a rancid chicken liver bait and an aerial sweep net. Live 

flies were anesthetized by placement in a refrigerator set at approximately 4˚C for 30 min and 

morphologically identified to species using a dichotomous key[56]. Species of interest were sorted 

and placed into their respective cages, representing generation zero (G0) of each laboratory colony. 

Blow fly species used in this study included the black blow fly Phormia regina  (Meigen), the 

secondary screwworm Cochliomyia macellaria (Fabricius), and the common green bottle fly 

Lucilia sericata (Meigen). Approximately 200 to 500 adults comprised each G0 colony.  

After formation of each colony, oviposition (i.e., egg-laying) was encouraged by 

introducing approximately 20g chicken liver along with a chicken blood-soaked Kimwipe 

(Kimberly-Clark Global Sales, Inc., Roswell, GA, USA) and a distilled water-soaked Kimwipe 

within an 88.7 mL white plastic cup to each cage. Exposure to this resource lasted approximately 

18 h and continued daily for 3 – 4 d. Rearing containers consisting of 946 mL mason jars, were 

made each day to house cohorts of eggs and growing larvae. Each jar contained an 88.7 mL bath 
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cup with ~50g chicken liver inoculated with 100 – 200 eggs which sat on top of a pupation 

substrate of soft pine bedding. Each jar was topped with a breathable Wypall disposable paper 

cloth (Kimberly-Clark Global Sales, LLC, Roswell, GA, USA) secured by the jar ring. Larvae 

were allowed to develop in the jar until adult emergence was observed. Adults of each species 

were then integrated into their respective colonies. To ensure that large colonies were maintained 

throughout the duration of this project, protein-feeding and oviposition induction of adults took 

place every three to five days. Additional wild collections were performed throughout the study 

period to supplement the colonies. For each species, there existed a maintenance colony (to 

continue propagating individuals for the next generation) and an experimental colony. All adults 

and larvae of laboratory colonies were maintained under ambient conditions (~22˚C, 50%RH, 

12:12 L:D cycle) in the “fly room” at IUPUI. 

2.3.10 Feeding Experiments 

All feeding experiments followed the same general design. All flies used for experiments 

were <G10. For each experiment, an equal number of three- to four-day old male and female adult 

flies were randomly selected from the experimental colony. These flies were placed in a sterilized 

cage and only exposed to water and sugar. Each fly was individually placed inside of a clean 37.0 

mL plastic portion cup (Carolina Biological Supply Company, Burlington, NC, USA) containing 

a 2.54cm2 Kimwipe soaked in 100 µL of either a CWA simulant or distilled water (negative 

controls). Exposure lasted 4 h under ambient conditions in a chemical fume hood. Following 

exposure, flies were placed into treatment or negative control cages and given water and sugar ad 

libitum. Flies were maintained under a 12:12 L:D cycle, with treatment dependent temperature and 

humidity conditions, in a Percival I-36VL incubator (Percival Scientific Inc., Perry, IA, USA). 

Flies were killed via freezing at -20˚C at different time intervals post-exposure: 0h, 1d, 3d, 5d, 7d, 

10d, and 14d. At each sample collection time, an equal number of male and female flies were 

removed from each of the treatment and control cages and freeze-killed until further use.  

 

Experiment 1: CWA Variation. Cohorts of N = 6 P. regina (3 male, 3 female) were exposed to 

either 0.0 mg/mL (negative control) or 1.0 mg/mL of either DMMP or DEPA and maintained post-

exposure at 25˚C and 60%RH.    
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Experiment 2: Temperature Variation. Cohorts of N = 6 P. regina (3 male, 3 female) were exposed 

to 0.0 mg/mL (negative control) or 1.0 mg/mL DMMP and maintained post-exposure at five 

different temperatures: 17, 20, 25, 30, and 35˚C. Percent RH was maintained at 60% for all 

temperatures.  

 

Experiment 3: Relative Humidity Variation. Cohorts of N = 6 P. regina (3 male, 3 female) were 

exposed to 1.0 mg/mL DMMP and maintained post-exposure at four different relative humidity 

settings: 25, 40, 60, and 80%RH. Temperature was maintained at 25˚C across all humidity 

treatments.  

 

Experiment 4: Variation in Blow Fly Species. Cohorts of N = 6 flies (3 male, 3 female) from two 

additional blow fly species (C. macellaria and L. sericata) were exposed to either 0.0 mg/mL 

(negative control) or 1.0 mg/mL DMMP and maintained post-exposure at 25˚C and 60%RH.  

 

Experiment 5: Lethality of Dichlorvos. Cohorts of N = 12 P. regina (6 male, 6 female) were 

exposed to six concentrations of Dichlorvos: 0.0 mg/mL (negative control), 0.01, 0.1, 1.0, 5.0, and 

10.0 mg/mL. All flies died within 1.5 h of exposure.  

 

Experiment 6: DIMP Transformation Product.  Cohorts of N = 6 P. regina (3 male, 3 female) were 

exposed to either 0.0 mg/mL (negative control) or 1.0 mg/mL of DIMP and maintained post-

exposure at 25˚C and 60%RH. 

2.3.11 Data Analysis 

Tracefinder version 3.3 from ThermoFisher Scientific (San Jose, CA) was used to analyze 

the LC-MS/MS data. Calibration curves were prepared using the ratio of the analyte AUC to the 

internal standard AUC; the line of best fit was determined using 1/x weighted linear least squares 

regression[57]. The LOD was estimated by multiplying the quotient of the standard error of the y-

intercept and the slope by a factor of 3.  
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2.4 Results and Discussion 

2.4.1 Method Validation  

Figure 2.1 shows an overlaid chromatogram of the analytes included in the study. Two of 

the three alkyl methylphosphonic acid hydrolysis products eluted within the first 3 minutes of the 

method, which was expected due to their high water solubility. DMMP eluted towards the middle 

of the analytical method. The remaining analytes required higher organic content in the mobile 

phase before eluting from the column. Although there were some co-eluting peaks, adequate 

selectivity was still achieved because both the precursor ion and the MS/MS fragmentation of the 

compounds were different.  

 

 
Figure 2.1 Overlayed extracted ion chromatograms of the analytes measured in the LC-MS/MS 

method 

 

The aim of this assay was to measure approximate amounts of the simulants and hydrolysis 

products in fly guts. Accurate and precise quantitation was not possible because the sample amount 

(fly gut) could not be exactly known; the mass of an individual fly gut was variable but too small 

to weigh. Moreover, the fluid intake by the blow flies, even during the controlled feeding 

experiments performed here, is expected to vary from fly to fly. General trends can therefore be 

elucidated from the analytical data, but quantitative concentrations cannot be determined from 

individual measurements.  
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With these inherent limitations in quantitation in mind, the linearity, accuracy, precision, 

limit of detection, and stability was assessed according to SWGTOX guidelines[55]. Table 2.2 

shows the detection limits and performance for the calibration curves over the six-day validation.  

The detection limits were found to be in the low ng range. These amounts are the mass of analyte 

in the 100 µL methanol extract and therefore represent the amount detectable in the fly gut. Table 

2.3 details the inter-day variation of the quality control response at each level. In a traditional 

toxicology LC validation, the %CV and bias should be no higher than 15%. The vast majority of 

the values from the validation fell around 15%. The recovery of the extraction protocol ranged 

from 49% for the pesticide dichlorvos and to a high of 87% for the G-series simulant DIMP (Table 

2.3). This quantitative performance was considered adequate for our application.   

To evaluate the stability of the neat calibrators, analyte signal was assessed at various 

temperature conditions and over three freeze-thaw cycles. The analytical signal between QC 2 

aliquots at these different conditions was not deemed statistically significant (p > 0.16) for all 

compounds, in all conditions. These results indicated that samples could be stored either in the 

freezer, chilled autosampler, or benchtop prior to analysis and could be freeze-thawed without 

degradation risk. In addition, QCs were monitored when frozen and stored on the benchtop with 

the same sampling frequency as the feeding experiments.  
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Table 2.2 The average LODs, range of LODs, and the range of coefficient of determinations (R2) 
obtained across the six-day validation. 

Compound  
Avg. LOD 

(ng) 

LOD Range 

(ng) 
r2 Range 

EMPA 0.12 0.02 - 0.28 0.9907 – 0.9987 

IMPA 0.12 0.08 – 0.3 0.9714 – 0.9976 

DMMP 0.72 0.3 – 1.34 0.9464 – 0.9920 

DEPA 0.9 0.22 – 2.2 0.9724 – 0.9939 

PinMPA 0.28 0.16 – 0.62 0.8982 – 0.9908 

Dichlorvos 0.6 0.22 – 1.26 0.9706 – 0.9936 

DIMP 0.72 0.14 – 2.24 0.9733 – 0.9970 

Methyl Parathion 0.66 0.3 – 1.42 0.9546 – 0.9894 

Malathion 0.62 0.1 – 1.78 0.9840 – 0.9985 

 

 
Table 2.3 Inter-day bias and precision values over the course of the six-day validation 

period. %Bias= (grand mean of calculated concentration-nominal concentration/nominal 
concentration). %CV=standard deviation/mean. % Recovery was determined only at the high. 

 Low QC Medium QC High QC  
% CV Bias % CV Bias % CV Bias % Recovery 

EMPA 5 -7 4 -13 8 -9 52 
IMPA 13 -13 19 -19 5 -12 56 
DMMP 4 4 8 -17 9 7 59 
DEPA 19 -6 14 17 14 -4 72 
Dichlorvos 3 3 5 -20 8 1 49 
DIMP 6 -4 3 -2 12 1 82 
PinMPA 9 6 13 -26 7 -38 52 
Malathion 9 -14 20 -22 7 -11 55 
Methyl 
parathion 22 -17 15 -27 14 1 58 
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2.4.2 Feeding Studies  

Controlled feeding experiments were performed in which DMMP and DEPA were fed to 

P. regina under controlled environmental conditions. The amount and detectability of the two 

simulants in individual blow flies are shown in Figure 2.2A. In general, the amount of simulant 

decreased as the time since exposure increased.  The decreased amount measured in the fly is likely 

due to metabolism and excretion.  Strikingly, both DEPA and DMMP were frequently detectable 

14 days after fly exposure, which could give a long window for detection of fly exposure to 

chemical agents and hydrolysis products. DMMP clearance rate was found to depend on 

environmental conditions. Figure 2.2B shows a decrease in the detectability of DMMP at higher 

temperatures for 7-14 days post-exposure; we hypothesize that the higher temperature increased 

the fly metabolic rate. A similar result, albeit less pronounced, was also observed for humidity 

(Figure 2.2C). Finally, two additional species of blow fly, C. macellaria and L. sericata, were 

exposed to DMMP along with P. regina to determine if additional species of blow fly could be 

used as environmental sensors. Detection of DMMP, both in terms of the amount and clearance, 

was similar in C. macellaria and L. sericata compared to P. regina. Samples were not collected 

for Day 14 of this experiment.  



 
 

46 

 

Figure 2.2 Results from the feeding experiments. The left column shows box-and-whisker plots 
plotting the analyte amount detected in blow fly guts at each day post-exposure. The right 

column shows the proportion of flies in the cohort with detectable analyte sign. 

 

It should be noted that there are cases where the proportion of positive flies is higher later 

in the study. For example, Figure 2.2C shows 50% of the flies were positive for DEPA on Day 10 

whereas 100% were positive on Day 14. Unlike traditional biofluid assays where a single patient 

is monitored over a given time period, different flies were sacrificed and dissected at each time 

interval. Therefore, there is innate variability in the volume of water consumed by each individual 

fly as well as variable metabolism.  

Feeding experiments were also performed for dichlorvos, which, unlike DMMP and DEPA, 

is a toxic pesticide. All exposure concentrations (ranging from 0.01 to 5.0 mg/mL) resulted in 
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deaths of all flies, but with no detectable dichlorvos signal in the guts of the flies. Dichlorvos is 

used as both a contact insecticide and as a fumigant[58]. Blow flies presumably died from either 

exposure to fumes or from contact with the solution prior to any consumption. The heads, guts, 

and whole bodies of dichlorvos-exposed flies (1 mg/mL) were extracted and analyzed to determine 

the detectability of dichlorvos in other parts of the fly. Dichlorvos was detected in 2/10 heads and 

8/10 whole flies, indicating that the flies died due to inhalation and/or physical contact with the 

chemical, not via ingestion. One implication of this finding is that blow flies may be killed on 

contact with CWA, and therefore would not be trapped remotely.  Future work utilizing actual 

chemical agents will need to be carried out to determine if chemical agents can be detected in flies 

after nonfatal exposures.   

2.4.3 Detection of CWA Transformation Product 

Considering the toxicity of G and V-series CWAs, exposure to the intact agents, depending 

on the concentration, would be fatal to blow flies. If the insects are killed or their motility 

significantly reduced, they obviously cannot be trapped remotely using bait.  However, nerve 

agents readily hydrolyze in the environment to give nontoxic organophophonic acids[59].  The 

rate of hydrolysis is pH and temperature dependent. Sarin, for example, hydrolyzes to form IMPA 

with a half-life of 24h at pH 7.4 and 25°C[60] while soman hydrolyzes to PinMPA with a half-life 

of 9.6 hours at pH 7.6 and 30°C[61]. In the actual environment, degradation could be slower if the 

nerve agents are sequestered in organic-rich compartments away from water. Significant amounts 

can remain for weeks[60]. Nevertheless, we hypothesize that flies entering a contaminated area at 

some point after chemical agent release may be exposed to significant amounts of hydrolysis 

product rather than the intact CWA. EMPA, IMPA, and PinMPA, which are hydrolysis products 

of VX, sarin, and soman, respectively, were included in the LC-MS/MS method for this purpose.  

Data on the persistence of the hydrolysis in environmental samples limited.  EMPA was found to 

have a half-life of 8 days[62] while Baygildiev found IMPA and PinMPA soil concentrations in 

the low µg/g range at a chemical weapons plant that had been decommissioned for 25 years[19].  

Methylphosphonic acid is stable in the environment[60]. 

To investigate the detection of a CWA transformation product, we selected the simulant 

DIMP for further investigation. Preliminary experiments indicated that DIMP hydrolyzed in the 

blow fly into IMPA, the same hydrolysis product formed by sarin. To test for in vitro hydrolysis, 
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aqueous solutions of DIMP were prepared at pH 7 and 2.7 (to simulate the pH of the blow fly 

midgut[63]) and heated for 8 hours. The area under the curve of DIMP was plotted over the 8-hour 

period (Figure 2.3A). No degradation of DIMP was observed under either condition. A feeding 

experiment was also performed in which the flies were fed 1 mg/mL concentrations of DIMP 

(Figure 2.3B). Interestingly, DIMP was not detected in any of the flies in this study even at the 0-

day time point (4 hours after exposure). However, all of the flies had detectable signal for the 

hydrolysis product IMPA. Because the benchtop experiment showed no DIMP hydrolysis even 

with heat and acidification, the formation of IMPA in the fly suggests some rapid in vivo metabolic 

process rather than simple hydrolysis in the acidic environment of the fly gut. These results indicate 

that even if the parent CWA is not detected in the fly, metabolic transformation or hydrolysis 

products could still be detectable for days after exposure. Therefore, both the target molecules and 

their hydrolysis products should be analyzed when utilizing blow flies for environmental chemical 

detection. 
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Figure 2.3 (A) Benchtop degradation experiment showing no DIMP degradation after heated and 
acidified. (B) Box-and-whisker plot showing IMPA amount detected in the flies after exposure to 

DIMP. 

2.5 Conclusion 

 The experimental data presented in this work shows the potential for blow flies to be used 

as indicators of CWA dispersal in the environment. A 13-minute LC-MS/MS assay was developed 

and validated to detect nine chemical warfare agent simulants, chemical warfare hydrolysis 

products, and organophosphate insecticides. This LC-MS/MS method was used to monitor the 

CWA simulants DMMP and DEPA in flies up to 14 days post-exposure in a variety of 

environmental conditions. In addition, this work has shown the ability to not only detect CWA 

simulants but also CWA hydrolysis products in the flies. Future work is needed to make the 
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analysis more field-friendly, which will include testing fieldable instrumentation and a simpler 

extraction protocol using whole flies. Research is also needed to establish detectability of actual 

chemical nerve agents in realistic scenarios, though work with these agents requires special 

precautions and regulatory approvals. Overall, our method shows promise in using a wild, 

untrained organism to naturally acquire important chemical information from its environment 

while minimizing physical harm to frontline workers.  
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3.1 Abstract 

Forensic and environmental sciences often rely on chromatographic separations coupled to 

mass spectrometry to detect contaminants in complex matrices. However, these methods require 

lengthy analysis times and sample preparation that is not suitable for analysis in the field. In this 

work, two analytical methods were combined that are known for their potential for portable 

analysis. The ambient ionization technique, paper spray mass spectrometry (PS-MS) was coupled 

to paper-based surface enhanced Raman spectroscopy (pSERS) to detect toxic organophosphorus 

molecules from the same substrate, with a total analysis time of less than five minutes. The 

coupling of these techniques presents a potential for portable Raman screening followed by MS 

confirmation in a field-forward laboratory. A cartridge insert was designed and 3D printed to 

facilitate the sample collection and analysis for PS-MS and pSERS. Three chemical warfare agent 

simulants: dimethyl methylphosphonate (DMMP), diethyl phosphoramidate (DEPA), and 

diisopropyl methylphosphonate (DIMP) were included in the method due to having similar 

chemistries to G- and V-series chemical warfare agents (CWAs). Organophosphorus pesticides, 

malathion and dichlorvos, with similar mechanisms of action to the CWAs, were also included in 

the method. Because CWAs quickly degrade in the environment, the CWA hydrolysis products, 

ethyl methylphosphonic acid (EMPA), isopropyl methylphosphonic acid (IMPA), pinacolyl 

methylphosphonic acid (PinMPA), methylphosphonic acid (MPA), 2-Diethylaminoethanethiol 

(EDA), and 2-Diisopropylaminoethanethiol (IDA) were also studied. A mixture of the analytes 

was used to create calibration curves using the dual-polarity, PS-MS method with sub-ng to low 

ng limits of detection. A dilution series, spanning 3 orders of magnitude, was made using pSERS, 

also with low ng limits of detection. These experiments show the potential and feasibility for PS-
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MS coupled to pSERS to be used to rapidly, screen and confirm the presence of organophosphorus 

molecules, in complex matrices, with portable instrumentation. 

3.2 Introduction 

Mass spectrometry (MS)-based assays are the quintessential analytical methods for clinical, 

environmental, and forensic fields[1-4]. However, mass spectrometry assays traditionally rely on 

chromatographic separation prior to MS analysis, and these techniques are associated with lengthy 

analysis times, complex sample preparation, bulky instrumentation, and require rigorous 

maintenance to continue operation. These factors make traditional mass spectrometry assays 

impractical for in situ analysis. Researchers over the last 10+ years have addressed these concerns 

in one of two ways: (1) Make the instrumentation more field-friendly through miniaturization of 

the mass spectrometer[5-11]; or (2) Simplify the sample preparation step by using ambient 

ionization techniques to eliminate the chromatographic separation[12-20]. The focus of this paper 

is on the latter approach. 

Following the development of desorption electrospray ionization (DESI)[19] and direct 

analysis in real time (DART)[21] in 2004-2005, a multitude of ambient ionization techniques have 

emerged that are alternatives to traditional ionization mechanisms. One of the most popular 

techniques developed was paper spray ionization. First developed in 2010, paper spray MS works 

by applying a sample in solution to a piece of chromatography paper cut to a sharp point[12]. Prior 

to MS analysis, solvent is applied to extract the analytes of interest. After the application of a 

voltage, an electrospray-like event occurs at the tip of the paper. Paper spray and its previous 

applications have been reviewed in McBride et. al[22] and Cardozo da Silva et. al[23].  

Raman spectroscopy is a compelling option for pairing with mass spectrometry.  It is 

nondestructive and gives orthogonal information with MS. However, due to the inherent 

inefficiency of inelastic photon scattering, classical Raman experiments cannot be used for trace 

analysis[24]. Research over the last 30+ years has focused on developing a solution to this issue 

through Surface Enhanced Raman Spectroscopy (SERS)[24-33]. SERS increases the intensity of 

inelastically scattered photons.  Enhancement arises due to increased local electric field strength 

at the surface of plasmonic particles. Molecules in close proximity to the surface exhibit 

significantly enhanced Raman sensitivities. A wide variety of substrates have been developed for 

SERS analysis[34]. The vast majority of SERS applications, however, utilize materials fabricated 
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in the research laboratory and have not been commercially produced. In this study, commercially 

available paper-based SERS (pSERS) substrates were used, making the method more attractive to 

practitioners looking to adopt these methods. 

In addition to the rapid and field friendly nature of these two analytical techniques, they 

provide a greener analytical methodology that is beneficial for both cost effectiveness and reducing 

overall waste production. Neither analytical method requires any sample preparation or extraction, 

and the only solvent required for the assay is a spray solvent (120 µL) which is entirely consumed 

during the paper spray method. The only waste being produced during a PS-MS assay is the paper 

tip. The pSERS substrates are biopsy punched into 3 mm disks in order to analyze more samples 

per strip reducing overall costs. The pSERS and paper spray methods described in this work 

operate in tandem to rapidly pre-screen samples to reduce the burden on an analytical laboratory. 

Although the coupling of these analytical methods is fairly new, researchers have recently 

proven the feasibility and usefulness of the pairing. Since 2017, Patrick Fedick and coworkers 

have published three papers coupling SERS and paper spray. The first paper published in 2017 

gave the first description of the combination and gave an overview of applications[30]. The second, 

focused specifically on fentanyl and fentanyl analogs, used both a portable Raman and portable 

mass spectrometer[35]. The most recent paper took a different approach and designed a laboratory 

experiment for undergraduate chemistry students, showing that individuals other than experienced 

researchers can learn and execute these analytical methods[36]. In addition, Christopher Mulligan 

and coworkers showed how using SERS in combination with paper spray MS can be used to 

differentiate isomers that were indistinguishable by MS or MS/MS[37]. Finally, Christopher Gill 

and coworkers used paper spray and SERS (separately) for point-of-care illicit drug checking and 

overdose prevention[38, 39].   

In this work, paper spray MS and pSERS were used to detect toxic organophosphorus 

molecules from the same substrate. The rapid, field-friendly, and nondestructive nature of pSERS 

makes it amenable as a screening method prior to confirmation by MS. Commercially available 

pSERS substrates were used with a fieldable Raman spectrometer. An automated, plate-based 

paper spray source coupled to a triple quadrupole MS was used to perform MS analysis from the 

SERS paper for additional confirmation. In addition, 3D printed devices were developed to 

facilitate a seamless transfer between the analytical methods. A proof-of-concept experiment was 
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performed to show the potential for these two analytical methods to be used for surface detection 

via wiping (Figure 3.1). 

 

 

Figure 3.1 SERS to PS sample analysis workflow 

3.3 Experimental Methods 

3.3.1 Chemicals and Materials  

High-performance liquid chromatography (HPLC) grade methanol, HPLC grade water, 

and formic acid were purchased form Fisher Scientific (Hampton, NH, USA). Chemical warfare 

simulants: dimethyl methylphosphonate (DMMP), diethyl phosphoramidate (DEPA) and 

diisopropyl methylphosphonate (DIMP), methylphosphonic acid (MPA) hydrolysis products: 

ethyl methylphosphonate (EMPA), isopropyl methylphosphonate (IMPA), and pinacolyl 

methylphosphonate (PinMPA), and organophosphorus pesticides: dichlorvos and malathion were 

all purchased from Sigma Aldrich (St. Louis, MO, USA). V-series organosulfur hydrolysis 

products: 2-diethylaminoethanethiol (EDA) and 2-diisopropylaminoethanethiol (IDA) were 

purchased from AA Blocks (San Diego, CA, USA). The isotopically labelled internal standards 

d7-IMPA and N-Acetyl-L-cysteine methyl ester (ACME) were purchased from Sigma Aldrich and 

Ag SERS 
strips

Wipe surface with 3 
mm punch

Analyze with 
Raman

SERS 
Spectra

PS MS ion ratios Analyze using PSMS

Deposit punch into 
PS sample plate

1



 
 

60 

13Cd3 - DIMP internal standard was obtained from Dr. Bob Williams and Mark Alvarez at the Los 

Alamos National Laboratory (Los Alamos, NM, USA). Silver pSERS substrates were purchased 

from Metrohm USA, Inc. (Riverview, FL, USA). A 3 mm biopsy punch was purchased from Henry 

Schein Inc. (Melville, NY, USA). Whatman 31 ET chromatography paper was purchased from GE 

Healthcare Life Sciences (Pittsburg, PA, USA). The paper was laser cut using a Speedy 300 laser 

engraver from Trotec (Plymouth, MI, USA). 

3.3.2 3D Printing SERS to PS Adapter  

In order to combine paper-based SERS analysis to PS-MS, a part was designed to hold the 

SERS paper sample punch. The insert was designed with Sketchup and printed on an Ultimaker 2 

Extended+ (Geldermalsen, Gelderland, Netherlands). Polypropylene filament with a diameter of 

2.85 mm and nozzle diameter of 0.4 mm was used to print the design. Polypropylene tape was 

applied to the plate bed to assist with print adhesion. The nozzle temperature was 220 °C and the 

print bed was heated to 100 °C with a printing speed of 20 mm/s. 

3.3.3 SERS Analysis  

Raman spectra were collected on a B&W Tek iRaman Plus from Metrohm USA Inc. 

(Riverview, FL, USA). This instrument contains a 785 nm laser. A 3 mm punch was taken from 

the pSERS paper and placed into a 3D printed holder shown in Figure 3.2. A sample volume of 3 

µL was drop cast onto the punch and was analyzed wet. Raman spectra were collected from the 

pSERS paper using 30% power and an average of 5 spectra at 10 seconds per scan. Dark 

subtraction and baseline corrected (Lambda = 1125) were performed on the spectra. Dilution series 

from 1 to 1000 part-per-million (ppm, mass to volume) for EDA, IDA, and malathion and from 3% 

to 50% for DIMP and DMMP) were analyzed to estimate the limit of detection for each analyte in 

the assay. 

3.3.4 Paper Spray Analysis 

The 3D printed holder containing the pSERS paper disc were loaded into the sample wells 

on a VeriSpray sample plate (Thermo Scientific, San Jose, CA) as shown in Figure 3.2B. 

Following addition of an internal standard solution, the sample plate was loaded into the plate 
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loader magazine for subsequent analysis by a VeriSpray automated paper spray source coupled to 

an Altis triple quadrupole mass spectrometer from Thermo Scientific (San Jose, CA, USA)[39-41]. 

Methanol with 0.1% formic acid was used as the spray solvent. The mass spectrometer was 

operated in dual polarity. The first 0.6 min of the method were in negative ion mode (NIM) and 

the second half of the method, 0.6-1.2 min, was in positive ion mode (PIM). The chemical warfare 

agent simulants (DEPA, DIMP, DMMP), V-series organosulfur hydrolysis products (EDA and 

IDA), and pesticides (dichlorvos and malathion) were analyzed in PIM. Four of the CWA 

methylphosphonic acid hydrolysis products (EMPA, IMPA, MPA, PinMPA) were analyzed in 

NIM[42, 43]. The voltages were 3.7 kV and 3 kV for PIM and NIM, respectively. The instrument 

parameters and internal standard for each analyte can be found in Table 3.1.  While the sample 

plates utilized for the paper spray method could be viewed as consumables, they in fact can be 

reused by washing the plates and by replacing the paper substrate. These steps would eliminate 

waste production arising from the used sample plates.  

To characterize paper spray MS performance, calibration solutions containing all of the 

analytes were prepared in water with concentrations ranging from 1.6 to 25 ppm (4.8 to 75 ng on 

paper). Standards (3 µL) and internal standard solution (3 µL) (5 ppm DIMP[C13]-d3 and ACME, 

0.5 ppm IMPA-d7) were spotted onto the pSERS punch and were analyzed within the sample insert. 

Tracefinder version 3.3 (Thermo Scientific) was used for mass spectral data analysis. Calibration 

curves were prepared by plotting the area under the curve (AUC) of the analyte versus AUC of the 

internal standard. The correlation coefficients were determined using 1/x weighted least squares 

regression line. The limits of detection were calculated by the standard error of the y-intercept, 

divided by the slope, and multiplied by a factor of 3. The relative slope error was calculated by 

dividing the standard error of the slope by the slope and multiplying by 100. 

3.3.5 Sample Wipe 

Two concentrations (333 ppm and 1000 ppm) of EDA, IDA, and malathion (10 µL) were 

spotted onto a surface and were allowed to dry. Methanol was used to wet the surface (5 µL) before 

wiping with a dry pSERS punch. The pSERS punch was rewet with water before SERS analysis 

(3 µL). Following SERS, the disk was placed in the insert for paper spray analysis. 
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Table 3.1 Analytes included in PS-MS method. 

Analyte Description 
Polarity 

(+/-) 
RF 

CE 

(V) 

Transition 

(m/z) 

Internal 

Standard 

DEPA  Simulant + 45 
14 

10 

154.1 → 98.1 

154.1 → 126.0 
DIMP[C13]-d3 

Dichlorvos  Pesticide + 
55 

57 

21 

25 

220.9 → 109.0 

220.9 → 126.9 
DIMP[C13]-d3 

DIMP  Simulant + 54 14 181.1 → 97.0 DIMP[C13]-d3 

DMMP  Simulant + 46 24 125.0 → 62.9 DIMP[C13]-d3 

EDA  Hydrolysis Product + 30 16 133.2 → 86.2 ACME 

EMPA  Hydrolysis Product - 30 
46 

14 

123.0 → 63.0 

123.0 → 95.1 
IMPA-d7 

IDA  Hydrolysis Product + 30 
16 

18 

161.4 → 118.1 

161.4 → 86.1 
ACME 

IMPA  Hydrolysis Product - 41 
27 

15 

137.0 → 77.1 

137.0 → 95.1 
IMPA-d7 

Malathion  Pesticide + 
54 

60 

13 

23 

331.0 → 127.0 

331.0 → 99.0 
DIMP[C13]-d3 

MPA  Hydrolysis Product - 46 
18 

45 

95.0 → 79.0 

95.0 → 63.0 
IMPA-d7 

PinMPA  Hydrolysis Product - 46 
55 

17 

179.1 → 63.1 

179.1 → 95.1 
IMPA-d7 

ACME  IS + 30 11 178.1 → 135.9  

DIMP[C13]-

d3  
IS + 35 14 185.1 → 101.0  

IMPA-d7  IS - 41 15 144.0 → 96.0  

The table includes a description of the compound, the collision energy, the RF values, the polarity 

used for analysis, the selected reaction monitoring (SRM) transitions, and the deuterated standard 

utilized for each analyte. 
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Figure 3.2 (A) Rendering of 3D printed cartridge insert for sample analysis. (B) Close-up of 

pSERS insert with paper spray tip extended for analysis. (C) Image of pSERS inserts (gold) in 
the paper spray sample plate. (D) Cross section of VeriSpray plate assembly. 

3.4 Results and Discussion 

3.4.1 Workflow 

Figure 3.1 shows the overall workflow from wipe collection, to fieldable screening by 

Raman, to confirmation by mass spectrometry. A 3D printed piece was designed to facilitate the 

transition between SERS and PS (Figure 3.2). Figure 3.2A shows a rendering of the piece while 

Figure 3.2B shows the printed insert contained within the paper spray plate for MS analysis. The 

3D printed insert holds the 3 mm sample punch and has a small hole where analyte, dissolved in 

solvent, can wick through to the Whatman 31 ET paper spray tip underneath.  

3.4.2 SERS 

Following sample collection, samples were first analyzed with SERS. Characteristic 

spectra were obtained for five analytes in the assay, shown in Figure 3.3. A range of concentrations 

were drop cast onto the SERS punch. For EDA, IDA, and malathion the concentrations ranged 

10 mm 
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from 1 to 1000 ppm and 3 to 50% for DIMP and DMMP. EDA and IDA, which are structurally 

similar, showed strong peaks at 641 cm-1 and 718 cm-1 corresponding to the C-S stretch[44, 45]. 

The malathion SERS spectrum differed significantly from the ethanethiol molecules. It has strong 

a strong peak at 510 cm-1 for the P-S stretch and 636 cm-1  for the P=S stretch[46].  DIMP and 

DMMP both share a characteristic stretch at 710 cm-1 indicating a P-C stretch[47]. 

For some compounds, as the concentration increases, the signal intensity plateaus. This is 

not uncommon in SERS analysis and calibration curves often follow the Langmuir adsorption 

model[48-50]. Although not the focus of this study, a calibration curve could be fitted to the points 

for a pseudo-quantitative model. As seen in Fig. 3A and B, the intensities for 3000 ng of EDA and 

IDA are lower than 300 ng. This is due to the SERS surface being saturated with analyte molecules 

and exceeding monolayer coverage which in turn causes the signal to decrease[51]. DIMP and 

DMMP could only be detected at concentrations of ~3% and higher, compared to the ppm level 

detection for than EDA, IDA or malathion. To determine if SERS enhancement was taking place 

despite the poor detection limits, a 50% concentration was spotted onto regular paper and 

compared to the pSERS paper. While signals corresponding to DIMP and DMMP were obtained 

from plain paper, the signal intensities were 2x and 6x higher for DIMP and DMMP respectively 

when using the pSERS paper. No peaks were detected for EDA, IDA, or malathion when analyzed 

from plain paper at 3000 ng, indicating the importance of SERS for detecting ng concentrations of 

these analytes by Raman. 
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Figure 3.3 SERS spectra of EDA (A), IDA (B), malathion (C), DMMP (D), DIMP (E)  
 

The alkyl methylphosphonic acid (MPA) hydrolysis products (Table 3.1) are often difficult 

to detect with SERS[52-54].  These organophosphonic acids and the DMMP and DIMP analytes 

have a weak interaction with the noble metal nanoparticle substrate[52]. Therefore, there is little 

to no enhancement of the Raman signal via SERS[53, 54]. EMPA and IMPA were detected at 50% 

concentrations, however, the SERS paper did not provide any enhancement of the signal compared 

to bulk Raman. Surprisingly, PinMPA was detected down to 2000 ppm using SERS paper, much 

lower than the other organophosphonic acids (Figure 3.4). PinMPA was not detected at any 

concentration using bulk Raman without surface enhancement. Further work could be done to 

create a substrate capable of capturing the acidic hydrolysis products and pulling them closer to 

the nanoparticle surface.  Zhao et al., for example, employed this approach by using a linker 

molecule (2-aminoethanethiol) to induce an amidation reaction with the MPAs[53].  
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Figure 3.4 . PinMPA SERS dilution series spectra 

3.4.3 PS-MS 

After analysis by SERS, the paper was placed into the 3D printed insert shown in Figure 2.  

This insert enabled automated paper spray analysis on a triple quadrupole mass spectrometer. SRM 

ratios for obtained for four of the analytes are shown in Figure 3.5, one of each sub-type of 

organophosphate is represented in the figure: EMPA (methylphosphonic acid hydrolysis product), 

DEPA (CWA simulant), EDA (V-series organosulfur hydrolysis product), and malathion 

(pesticide). Calibration curves using pSERS paper punches and the 3D printed inserts were created 

(Figure 3.6). The limits of detection, correlation coefficients and relative slope errors for the assay 

are detailed in Table 3.2. The limits of detection are in the low ng range with many at or below 

that level. Correlation coefficients ranging from 0.94 to 0.99 shows the potential for semi-

quantitation. The relative slope error was below 10% indicating that the points fall near the 

regression line. Due to the non-ideal internal standards, EDA and IDA showed higher variance 

and poorer linearity. While an internal standard that more closely matches the chemical and 
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physical properties of those molecules would improve quantitation, the current performance is 

adequate considering our focus on fast, relatively simple screening applications. 

 

Figure 3.5 SRM ratio mass spectra for EMPA, DEPA, IDA and malathion 
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Figure 3.6. Select Paper spray mass spectrometry calibration curves 

 

Table 3.2 Correlation coefficients, limits of detection, and relative errors of the slope for 
compounds in PS-MS assay. 

 LOD (ng) R2 Relative Slope Error 
(%) 

DEPA [M+H] + 2.4 0.99 4.1 
Dichlorvos [M+H] + 0.6 0.99 1.2 

DIMP [M+H]+ 1.5 0.99 2.8 
DMMP [M+H]+ 3.0 0.99 5.1 
EDA [M+H] + 6.6 0.96 11.5 
EMPA [M-H]- 0.12 0.99 0.2 
IDA [M+H] + 7.8 0.94 13.9 
IMPA [M-H]- 0.6 0.99 1.2 

Malathion 
[M+H] + 3.3 0.98 5.9 

MPA [M-H]- 0.12 0.99 0.2 
PinMPA [M-H]- 1.2 0.99 2.3 
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3.4.4 Sample Wipe 

Malathion, EDA and IDA were wiped off a tabletop surface to explore detection of residues 

from surfaces. The overlayed blank and sample SERS spectra and chronograms are shown in 

Figure 3.7 for three analytes. The SERS signal intensity is lower than would be expected for the 

same concentration spotted directly onto the pSERS paper. This could be due to dilution during 

the wiping protocol or incomplete recovery when wiping the sample off the surface. However, the 

overlayed chronograms for the wiped samples versus the blank shows that the compounds were 

detected from the wipe (Figure 3.7). This proof of concept experiment shows potential to recover 

samples off surfaces via wiping at microgram levels for subsequent screening and confirmation 

via SERS-MS. A wider variety of surfaces will need to be tested and the wiping protocol will need 

to be improved before it can be used in the field. 
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Figure 3.7 SERS spectra and overlayed chronograms for (A) EDA, (B) IDA, and (C) malathion 

after wiping 3 and 10 µg off of a surface 
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3.5 Conclusion 

In this study, a combined SERS-MS approach was developed to combine nondestructive 

screening using by Raman spectroscopy with subsequent confirmation by mass spectrometry. A 

device was developed and 3D printed to facilitate both analytical methods from the sample paper 

disc. After adding a sample to a silver pSERS paper substrate, it was analyzed first using Raman 

spectroscopy and then directly analyzed using PS-MS using an automated PS source coupled to a 

triple quadrupole mass spectrometer. A dual-polarity mass spectrometry method was utilized to 

analyze CWA simulants, CWA hydrolysis/degradation products, and organophosphorus pesticides. 

Finally, a proof-of-concept wiping experiment was performed to show the potential for field 

analysis of dried residues. The SERS assay detailed in this work can be performed in the field, for 

rapid screening of organophosphorus chemicals, which can then be followed by lab-based 

confirmation using the PS-MS assay.  Future work will focus on wiping chemicals off a variety of 

surfaces and a specialized pSERS substrate will be developed for the analysis of the MPAs. 

Additionally, realistic field samples, such as mixtures, should be analyzed to determine 

detectability in the presence of interferences. Nevertheless, the coupling of these green analytical 

techniques has the potential to provide rapid pre-screening of a sample in the field, for the detection 

of harmful organophosphorus chemicals.  
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4.1 Abstract 

Per- and polyfluoroalkyl substances (PFAS) are a group of environmental pollutants that 

have been highlighted in recent years due to their toxicity and propensity to bioaccumulate. In this 

work, paper spray mass spectrometry (PS-MS) was utilized to screen for the presence per- and 

polyfluoroalkyl substances in whole blood without sample pretreatment or cleanup. Eleven PFAS 

compounds were included in the targeted screening method. Single donor whole blood was spiked 

with varying concentrations of PFAS, and 5 µL of this spiked blood was spotted onto a paper 

substrate and allowed to dry. The substrate was positioned in front of a quadrupole-orbitrap mass 

spectrometer that was operated in negative ion mode using targeted MS/MS fragmentation. To 

improve the assay’s performance, solvent and spot size optimization experiments were completed. 

Limits of detection ranged from 1.4-9.2 ppb with the optimized method.  

4.2 Introduction 

Per- and polyfluoroalkyl substances (PFAS) are a group of persistent organic pollutants of 

concern due to their toxicity and ability to bioaccumulate in humans and animals1. High levels of 

PFAS exposure have been linked to a wide array of adverse health effects, including decreased 

immune response, increased cholesterol levels, and increased risk for some cancers2. PFAS contain 

many carbon-fluorine bonds, which are the strongest single bonds in organic chemistry (130 

kcal/mol)3-5. Due to this high bond strength, PFAS are often known as “forever chemicals” and 

are resistant to break down in the environment6. Since their widespread commercialization in the 

1940s, PFAS have been utilized for many consumer products and industrial applications7. Many 
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nonstick or water repellant products, such as Polytetrafluoroethylene (PTFE)-coated cookware and 

upholstery protector sprays, contain PFAS molecules. Additionally, PFAS can be found in 

lifesaving products such aqueous film forming foams (AFFF), which are used to suppress 

hydrocarbon fires8. Currently there are approximately 14,000 registered PFAS molecules9, and 

nearly all individuals have some level of PFAS in their blood10, 11.   

Although most of the population has some exposure to PFAS through commercial goods, 

individuals that have to regularly use AFFF to contain petroleum fires have significantly higher 

risk of exposure. Recent environmental studies have shown that the areas around military bases 

and airports, where AFFF are used, have increased PFAS contamination of ground water7, 12, 13. In 

June 2022, the EPA reduced its previous lifetime health advisory of 70 part-per-trillion (PFOA 

and PFOS) to less than 1 ppt (PFOA and PFOS) in water14, 15. Unfortunately, some military AFFF 

training sites have groundwater levels in the part-per-billion (ppb) range, making the levels 

approximately a million times higher than the EPA recommended concentration12. Military 

personnel and other individuals who work with and around AFFF have increased levels of PFAS 

in their blood due to increased exposure via inhalation of AFFF fumes and absorption of the 

chemicals through their skin16, 17. Recent studies by researchers who compared PFAS levels in 

firefighters within multiple fire departments in the United States highlight the elevation of PFAS 

in firefighters when compared to the general population17. A similar study in Australian firefighters 

had detected various PFAS compounds at median ranges between 1.5 ng/ml and 14 ng/ml, with 

some PFAS compounds in concentrations exceeding five times the average population16.  

The current gold standard for PFAS analysis in biofluids is through liquid chromatography 

and tandem mass spectrometry18. Additionally, Baker and coworkers have shown the applicability 

of liquid chromatography-ion mobility-mass spectrometry for the untargeted identification of 

PFAS19. While sensitive, methods utilizing liquid chromatographic separations are costly and time 

consuming, limiting widespread screening of highly exposed populations. Ambient ionization 

techniques, that require far less sample clean-up, would be aptly suited for this type of analysis. 

Fedick and coworkers developed a method to detect PFAS in raw soil samples, without extraction, 

using cone spray coupled directly to mass spectrometry20. Additionally, Seró, et al. developed a 

method to detect PFAS in waterproofing products using paper spray coupled to atmospheric 

pressure photoionization21. Paper spray mass spectrometry (PS-MS) is an ambient ionization 

technique that was first developed in the 2010s as a way to detect small molecules in dried blood 
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spots without extraction22, 23. Since its development there have been a multitude of studies on the 

advancement of the technique and showcasing its use in a wide variety of fields and as a solution 

to diverse analytical problems21, 24-36. 

In this work, paper spray mass spectrometry (PS-MS) was utilized for detecting PFAS in 

whole blood. This method could provide an alternative approach for screening at-risk groups for 

harmful PFAS chemicals in the blood. Earlier detection would provide individuals with more 

options regarding medical monitoring and would hopefully reduce the overall risk of developing 

adverse health effects such as cancer. 

4.3 Experimental Methods 

4.3.1 Chemicals and Materials 

Solid PFAS standards (Table 4.1) were obtained from Dr. Patrick Fedick at the Naval Air 

Warfare Center Weapons Division. Internal standard (IS) solution of PFOS, PFOA, PFHxS (13C, 

99%) at 2000 ng/mL was purchased from Cambridge Isotope Laboratories (Andover, MA, USA). 

HPLC grade water, methanol, acetonitrile, formic acid, ammonium hydroxide, 3-((3-

cholamidopropyl) dimethylammonio)-1-propanesulfonate (CHAPS), carbon tetrachloride (CCl4), 

ammonium hydroxide, and Whatman 31 ET chromatography paper were purchased from Fisher 

Scientific (Hampton, NH, USA). Paper spray cartridges were purchased from Prosolia Inc. 

(Indianapolis, IN, USA).  
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Table 4.1 PFAS standards utilized in assay development 

PFAS Structure 
MW 

(g/mol) 

[M-H]- 

(m/z) 
CE 

MS/MS 

quan 

fragment 

(m/z) 

Internal 

Standard 

Perfluoroheptanoic acid 

(PFHpA)  
364.1 362.9 25 118.9922 

PFOA-
13C8 

Perfluorooctanoic acid 

(PFOA)  
414.1 412.9 20 368.9753 

PFOA-
13C8 

Fluorotelomer sulfonic 

acid 6:2 

(6:2 FtS)  
428.2 426.9 30 406.9605 

PFOA-
13C8 

Perfluorononanoic acid 

(PFNA)  
464.1 462.9 15 418.9723 

PFOA-
13C8 

Perfluorooctane- 

sulfonamide (PFOSA)  
499.2 497.9 25 77.9652 

PFOS-
13C8 

Perfluorooctanesulfonic 

acid 

(PFOS)  
500.1 498.9 45 168.9887 

PFOS-
13C8 

Perfluorodecanoic acid 

(PFDA)  
514.1 512.9 18 268.9820 

PFOA-
13C8 

Perfluoroundecanoic 

acid (PFUdA)  
564.1 562.9 15 518.9656 

PFOA-
13C8 

Perfluorododecanoic 

acid (PFDoA)  
614.1 612.9 13 568.9623 

PFOA-
13C8 

Perfluorotridecanoic 

acid (PFTrDA)  
664.1 663.0 12 618.9591 

PFOS-
13C8 

Perfluorotetradecanoic 

acid (PFTeDA)  
713.0 662.9 15 668.9561 

PFOA-
13C8 
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4.3.2 Sample Preparation  

Solid PFAS standards were dissolved in 96:4 methanol:water at a 1000 part-per-million 

(ppm, mass:volume) concentration37. All samples were stored in polypropylene vials as noted in 

EPA Method 537.1 to prevent adsorption. All standards were combined and diluted to 6 ppm in 

96:4 methanol:water. From there, the solution was diluted to 2.4, 0.96, 0.38, 0.15 ppm in 96:4 

methanol:water. These spiking solutions were used to spike into blood and create calibration 

curves.  

Single donor whole blood was used for analysis. To create calibrators, whole blood (195 

µL) was spike with 5 µL of calibration solutions (0.15-6 ppm). The resulting concentrations in 

blood ranged from 3.8 to 150 part-per-billion (ppb, mass:volume). Isotopically labeled internal 

standards (IS) were also added to the blood samples (2.5 µL of 2000 ppb IS). 

4.3.3 Paper Spray 

Teardrop-shaped paper tips were laser cut using a VLS 2.30 laser engraver with a CO2 laser 

from Universal Laser Systems (Scottsdale, AZ). Spiked blood samples (5-10 µL) were spotted into 

the center of the paper and were allowed to dry for approximately 30 minutes prior to analysis. 

Following the dry time, samples were loaded into a holder built in-house to facilitate paper spray 

(Figure 4.1). The holder has an X, Y, Z stage that slides onto a mount connected to the mass 

spectrometer. A high voltage cable runs from the high voltage port on the MS to a copper connector 

that contacts the ball bearing inside the paper spray cartridge (Figure 4.1). The paper spray tip was 

positioned approximately 5 mm away from the ion transfer tube of the mass spectrometer. An 

extraction/spray solvent (150-200 µL) was applied to the cartridge in the rear well. The method 

was not started until the solvent had visually wicked through the paper and dried blood spot to the 

tip (approximately 5 seconds). After application of 3000 V in negative ion mode, an electrospray-

like event occurs at the tip of the paper. The voltage was set to 0 V for the first and last 0.1 minutes 

of the 1-minute method to bring the signal down to the baseline to facilitate automatic peak 

integration. 
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Figure 4.1 Manual paper spray set-up (bottom); paper spray cartridge (top) 

 

 To improve the performance of the assay, spray solvent and sample spot size were 

optimized. Six solvents/solvent blends were utilized in the optimization: 90:10 methanol:carbon 

tetrachloride with 0.1% ammonium hydroxide (v:v), 90:10 methanol:carbon tetrachloride with 0.1% 

formic acid, 90:10 methanol:trifluoroethanol, methanol with 0.05% CHAPS, 90:10 

acetonitrile:carbon tetrachloride with 0.1% ammonium hydroxide, 90:10 methanol:water with 0.1% 

ammonium hydroxide. Three solvent spot sizes: 5, 7.5, and 10 µL were compared. 
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4.3.4 Mass Spectrometry and Data Analysis 

For this study, a Q-Exactive Focus Mass Spectrometer from Thermo Scientific (San Jose, 

CA, USA) was utilized. The ion transfer tube was held at 320 °C, the S-lens was set to 50, and the 

resolution was 35,000. The system was operated in parallel reaction monitoring (PRM) (MS/MS 

mode using an inclusion list) with an isolation width of ±0.5 m/z. The fragments and collision 

energies were optimized for each compound by ramping the collision energy from 0-100 (Table 

1). PRM fragmentation provides not just fragmentation information for one specific fragment, but 

all fragment ions arising from the precursor ion. Therefore, ions not used for quantitation, can be 

used for as qualifier ions for true unknown samples. The instrument was calibrated once every 

seven days, and the ion transfer tube was changed each day before analysis. 

Data analysis was performed using Xcalibur Qual Tracefinder Version 3.3 (Thermo 

Scientific). Tracefinder was used to automatically integrate chronograms with a 5 ppm mass 

precision. Calibration curves were fit with a 1/x weighted least squares regression. The limits of 

detection were determined by the ratio of the standard error and the y-intercept of the slope, 

multiplied by 3. In order to identify a true unknown sample as being positive for a specific PFAS 

molecule, the detected concentration would need to be above the limit of detection and contain 

one or more qualifier ions. The area under the curve (AUC) and signal-to-blank (S:B) was used 

for comparing different optimizations. Due to the high resolution and accurate mass of this 

instrument, sometimes the blank samples (whole blood without spiked in PFAS), did not have 

integratable signal. In those cases, an approximation was made using Xcalibur Qual Browser. Qual 

Browser can be used to find the instrument noise of a measurement; however, it cannot be used 

for comparison with an AUC since the noise noted on the spectra is for a single scan. The following 

relationship was used for approximating the AUC of the noise: 

 
𝑁𝑜𝑖𝑠𝑒	𝐼𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦 ∗ 𝐴𝑛𝑎𝑙𝑦𝑡𝑒	𝐴𝑈𝐶

𝐴𝑛𝑎𝑙𝑦𝑡𝑒	𝐼𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦 = 𝑁𝑜𝑖𝑠𝑒	𝐴𝑈𝐶 
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4.4 Results and Discussion 

4.4.1 Paper Spray of PFAS Molecules 

Blood samples were spotted onto a paper spray cartridge and were allowed to dry. The 

extraction/spray solvent was manually applied to the rear of the cartridge. The solvent wicked 

through both the paper and the blood spot as it traveled from the rear to the front of the paper spray 

cartridge. As the solvent wicked through the blood spot, it extracted the PFAS molecules. 

Following the potential application, an electrospray plume occurred at the tip of the paper, ionizing 

the molecules of interest. After application of the spray voltage, the ions are detected immediately 

by the mass spectrometer. Since there is no chromatographic separation prior to MS analysis, the 

resulting graph of signal intensity over time is known as a chronogram (Figure 4.2). The method 

was designed to apply no voltage for the first and final 0.1 minutes of the method and 3 kV for the 

middle 0.8 minutes of the method. This was done to ensure that the data processing software would 

fully integrate the area under the curve (AUC) for the analytical run.  

 

 

Figure 4.2 Extracted ion chronograms for PFOA, PFOS, PFOA-13C8, PFOS-13C8 in whole blood 
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Due to the complex nature of blood matrix, PFAS are oftentimes at a much lower 

concentration than other ionizable constituents in the sample. The PFAS precursor and fragment 

ions are not the dominating peaks in the mass spectra. However, sensitivity and specificity can still 

be accomplished using MS/MS fragmentation coupled to the high mass accuracy of the Orbitrap 

instrument. As PFAS molecules are fragmented in the HCD cell of the instrument, they break into 

reproducible fragment ions that can be detected simultaneously using parallel reaction monitoring. 

The presence of more than one fragment ion increases the specificity for confirmation of the 

presence of the target PFAS molecule. 

4.4.2 Solvent Optimization 

Previous works have shown that the spray solvent selected for a paper spray assay has a 

significant effect on the analytical performance. Recent work by Skaggs et. al. show how spray 

solvent optimization can increase the signal-to-blank by up to three orders of magnitude 34. 

Additionally, paper spray assay development in negative ion mode has often lagged behind its 

positive counterpart, due to the frequency and ease of corona discharge. In this work, the spray 

solvent was optimized to stabilize the Taylor cone and reduce the propensity for electrical 

discharge. A variety of solvent blends (Table 4.2) were selected that have been shown in the 

literature to suppress discharge in negative ion mode electrospray ionization or are typical paper 

spray solvents included for comparison to the more niche blends. Three blank replicates and three 

test replicates were performed for each solvent type. Figure 4.3 shows the average signal divided 

by the average blank signal the solvent study. 
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Table 4.2 Solvents utilized in the solvent study and the reasons they were chosen 

Solvent Number Solvent Blend (v/v) Reasoning 
Solvent 1 90/10 Methanol/Carbon 

tetrachloride with 0.1% 
Ammonium hydroxide 

Negative ion mode solvent previously reported  
to reduce discharge in negative ion mode 38 

Solvent 2 90/10 Methanol/Carbon 
tetrachloride with 0.1% 
Formic acid 

Assess addition of weak acid in negative ion 
mode 39 

Solvent 3 90/10 
Methanol/Trifluoroethanol 

Trifluoroethanol shown to suppress discharge 
40 

Solvent 4 Methanol with 0.05% 
CHAPS 

CHAPS improves spray stability 41 

Solvent 5 90/10 Acetonitrile/Carbon 
tetrachloride with 0.1% 
Ammonium hydroxide 

Polar aprotic solvent 

Solvent 6 90/10 Methanol/Water 
with 0.1% Ammonium 
hydroxide 

Inclusion of water to mimic a typical paper 
spray solvent 42 

 

 

Figure 4.3 Results from the solvent study for the quan ions for each analyte reported in Table 1. 
Due to the increase in S:B/S:N for most of the analytes, solvent 4 (methanol with 0.05% 

CHAPS) was selected for future experiments and method development 

 

Solvent 4 (methanol with 0.05% CHAPS) yielded the best the S:B or S:N for the majority 

of the analytes (9 out of 11). While some analytes like PFHpA had similar results with multiple 

solvent types, for others like PFOA or 6:2 FTS the solvent significantly improved the signal 

relative to the other blends tested. Additionally, the total ion chronogram (TIC) for solvent 4 was 

stable for all of the blanks and test replicates (6/6 samples). A sample was labeled as having a 
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stable TIC if the signal intensity was mostly consistent over the 1-minute analysis period (Figure 

4.4). Solvent 1 was previously used to reduce discharge and was the best performing after solvent 

4, in terms of the signal to blank value. However, only 2/6 samples had a stable TIC. Solvent 2 

was identical to solvent 1 with the addition of formic acid instead of ammonium hydroxide. The 

formic acid solvent was the worst performing across the analyte panel in terms of the S:B, but had 

4/6 stable TICs. The 90/10 Methanol/trifluoroethanol solvent system performed moderately (5/6 

stable TICs), but not as well as solvent 4. Acetonitrile (solvent 5) did not wick through the 

bloodspot, resulting in poor S:B values and 4/6 stable TICs. The methanol/water mixture of solvent 

6 did not perform well for any PFAS except PFHpA, which is unsurprising due to the ease of 

discharge in negative ion mode when water is present43. Additionally, only half of the samples had 

a stable total ion chronogram for the water-containing solvent. 

 

 

Figure 4.4 Examples of an (A) unstable and (B) stable total ion chronogram. Solvent 1 and 
solvent 4 were used for the unstable and stable chronogram, respectively 

4.4.3 Spot Size 

Although the spray solvent was optimized for PFAS molecule sensitivity, the stability was 

still an unaddressed issue. It was observed that the formation of a stable Taylor cone was 

inconsistent, and sometimes the sample would not spray at all. It was hypothesized that the 10 µL 

sample spot used in the initial method development experiments was creating a barrier that the 

solvent could not wick through effectively. This hypothesis was tested by using different sized 

sample spots. In this work 5, 7.5, and 10 µL blood sample spots were evaluated for their spray 

stability. The 10 µL spot spanned the width of the paper, whereas the 5 and 7.5 µL samples did 

not. Blood samples were spiked with PFAS to a 24 ppb final concentration and were spotted onto 
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the spray substrate before analysis. Three replicates were analyzed and were averaged for the 

signal-to-blank calculations. The percent relative standard deviations (% RSD) was then calculated 

on the three replicate AUC signals to assess reproducibility between replicate analyses. It was 

found that the smallest sample spot had the most reproducible analysis, and oftentimes the highest 

signal-to-blank. The average % RSD for 5, 7.5, and 10 µL was 34, 60 and 59, indicating that the 

replicates for 5 µL were more reproducible than those at 7.5 and 10 µL. While most of the analytes 

also had the highest S:B at the 5 µL  level, PFDoA and PFOSA, had highest S:B ratios for 7.5 µL 

and 10 µL, respectively. Across the analyte panel, the 5 µL spot size had the lowest %RSD. 

4.4.4 Analytical Performance 

Following the method optimizations, calibration curves were created using spiked single 

donor blood to assess the sensitivity and reproducibility of the assay. In the final method, 5 µL of 

calibrator samples were spotted onto laser cut paper substrates and were allowed to dry for 30 

minutes. Each sample was analyzed manually by applying 200 µL of methanol with 0.05% 

CHAPS as the spray solvent. After the application of the voltage, the Taylor cone formation was 

monitored using a camera. Due to the optimizations, there were no discharge sparks near the tip of 

the paper substrate. The chronograms were consistent for the duration of the analysis. Calibration 

curves were constructed by taking the area under the curve of the quantitative fragment ions 

relative to the area under the curve of the internal standard. Figure 4.5 shows the select calibration 

curves for three analytes PFOA, PFUDA and 6:2 FTS. Each point is an average of three replicates. 

The LODs and correlation coefficients are listed in Table 3. The calibration curve correlation 

coefficients ranged from 0.83-0.99, indicating the potential for semi-quantitation. The limits of 

detection were in the low ppb range, ranging from 1.4-9.2 ppb (Table 4.3). As shown in Figure 

4.5, there is some variability in the replicate measurements that would hinder the quantitative 

capabilities of the method. The use of isotopically labeled internal standards is critical for the 

quantitative performance. Without an internal standard, the limits of detection are approximately 

three times higher and the correlation coefficients decrease to 0.75-0.93. Because only two internal 

standard molecules were used in this study, there is a potential to improve the quantitation by 

expanding the internal standards utilized. The limits of detection reported here were adequate for 

detecting concentrations of PFAS in blood for individuals with high levels of occupational 
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exposure to PFAS or AFFF44, 45. For example, Leary, et al. investigated the association between 

PFAS occupational exposure and metabolic syndrome detected blood serum concentration levels 

in firefighters ranging from 1.57 to 30.42 ng/mL for PFOS, 1.02-4.65 ng/mL for PFOA, 0.84-

22.49 ng/mL for PFHxS, and 0.2-1.36 ng/mL for PFNA45.  

 

 

Figure 4.5 Select calibration curves for PFAS detection in whole blood using PS-MS without 
protein precipitation. Each point is an average of three replicates 

 

Table 4.3 Analytical performance of PS-MS method 
 Quan Peak IS R2 LOD (ppb) 

6:2 FTS 406.9605 PFOA IS 0.9748 3.2 
PFDA 268.982 PFOA IS 0.9840 2.6 
PFDoA 568.9623 PFOA IS 0.9935 1.6 
PFHpA 118.9922 PFOA IS 0.9704 3.5 
PFNA 418.9723 PFOA IS 0.9949 1.4 
PFOA 368.9753 PFOA IS 0.9829 2.6 
PFOS 168.9887 PFOS IS 0.9346 5.3 

PFOSA 77.9652 PFOS IS 0.8265 9.2 
PFTeDA 668.9561 PFOA IS 0.9667 3.7 
PFTrDA 618.9591 PFOS IS 0.9830 2.6 
PFUDA 518.9656 PFOA IS 0.9900 2.0 
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4.5 Conclusion 

In this work, a method was developed to rapidly screen whole blood samples for PFAS 

exposure. While many PFAS biofluid assays utilize LC-MS/MS, this work focused on a rapid, 

simplified approach by means of paper spray mass spectrometry. The sensitivity and 

reproducibility of the method was optimized through solvent and spot size studies. Calibration 

curves were constructed and used to evaluate the limits of detection for the method. The work 

shows the potential for PS-MS to be utilized as a “first line of defense” screening technique for 

those highly exposed to PFAS on a regular basis. It is ideal for firefighters to have routine and 

regular testing, and PS-MS provides a cost-effective alternative to traditional LC-MS assays. 

Future work will focus on improving the variability of the method by incorporating more 

isotopically labeled internal standards, as well as analyzing realistic samples from individuals 

highly exposed to PFAS through their occupation. 
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5.1 Abstract 

In this work, blow flies were investigated for their use as environmental sensors of 

insensitive munitions contamination in the environment. Blow flies are constantly sampling their 

surrounding environment in search of food and water, traveling 10s of kilometers towards a 

nourishment source. Therefore, they were selected for this study due to their ability to cast a wide 

sampling net in a potentially contaminated environment. This work focused on initial feeding 

experiments showing the feasibility to detect insensitive munitions (IM) in the flies after exposure 

to contaminated environmental sources. A liquid chromatography mass spectrometry (LC-MS) 

method was developed to detect IM components and their transformation products in fly matrix. 

Flies were exposed to the IM components, 2,4-dinitroanisole (2,4-DNAN), nitroguanidine (NQ) 

and nitrotriazolone (NTO) in controlled feeding experiments. After exposing the flies to IMs in 

soil (100 µg/g (DNAN)/200 µg/g (NTO and NQ)), it was found that the components were detected 

in whole flies at these levels. Additionally, after exposure to the parent IM component 2,4-DNAN, 

the transformation product 2,4-dinitrophenol (2,4-DNP) was also detected in the fly samples. The 

preliminary work outlined in this chapter indicates that blow flies could be a potentially useful 

organism for sampling the environment for IM contamination and transformation. 

5.2 Introduction 

The defense industry has moved away from using shock sensitive explosives in favor of 

insensitive munitions (IM) which are less susceptible to unintentional detonation[1]. When using 

traditional explosives, a small fire, or accidental discharge can set off a chain reaction leading to a 
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large number of casualties and significant damage to property. For example, in 1967 there was an 

accidental rocket launch on the U.S.S. Forrestal supercarrier that set off a large fuel fire[2]. This 

accident led to the deaths of many service members following the detonation of the cargo 

containing traditional explosives. In response to this and other similar incidents, the U.S. military 

prioritized the development of new explosives that would not as easily detonate in the event of 

combat threats, blast threats, or fuel fires[3].  

Insensitive munitions are often composed of mixtures of multiple constituents. One of the 

most popular IM formulations is IMX-101 which was developed by BAE Systems and the U.S. 

Army to replace traditional high energy explosives such as 2,4,6-trinitrotoluene (TNT) in artillery 

rounds[4]. IMX-101 contains 2,4-dinitroanisole (DNAN), nitrotriazolone (NTO), and 

nitroguanidine (NQ). Additionally, IMX-104, composed of DNAN, NTO and royal demolition 

explosive (RDX), is being used to replace Composition B which is a combination of TNT and 

RDX[5, 6].  

While IM-based chemistries are safer to transport than more conventional explosives, due 

to incomplete detonation and high water solubility of constituents, they may pose a higher risk to 

the environment[6]. TNT, and its environmental impact, have been studied extensively over the 

last 40+ years, therefore much is known about the fate, transportation, and toxicity risk to the 

environment[7-12]. IM formulations were implemented fairly recently in comparison, therefore 

not as much is known about their potential harm post-detonation. The major constituents of 

insensitive munitions, NTO, NQ, DNAN and RDX, have water solubilities of 16,642[13], 

5000[14], 0.216[15], and 56 mg/L[15] respectively, indicating that NTO and NQ would be highly 

soluble in groundwater and not adsorbed to soil upon release into the environment.  

Recent works have identified biotic and abiotic transformation products for many of the 

major IM constituents. For example, DNAN is degraded to 2-amino-4-nitroanisole (2-ANAN) and 

2,4-diaminoanisole (2,4-DAAN) under aerobic and anaerobic conditions, respectively[16]. Under 

photolysis, DNAN degrades to 2-hydroxy-4-nitroanisole and 2,4-dinitrophenol (2,4-DNP), which 

are considered eco-toxic transformation products [16, 17]. NTO degrades primarily to 3-amino-

1,2,4-triazol- 5-one (ATO) and urazole (UZ)[18, 19]. Finally, nitroguanidine degrades to 

cyanoguanidine (CQ)[20]. Many studies focus on degradation in soil/water matrices, however, this 

type of sample requires sending personnel into the field to collect samples. Oftentimes these 

locations are remote, inaccessible, or dangerous, so remote sampling would be advantageous. This 
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work offers a potential solution by using insects as environmental samplers of IM contamination 

and transformation. 

Blow flies (Diptera: Calliphoridae) are well-suited to address the issue of sampling since 

they are constantly sampling their surrounding environment[21]. They are found on all continents 

except for Antarctica, and in a variety of climates and ecosystems. Due to their scavenging nature, 

they are constantly in search of sustenance, and will travel kilometers to a food/water source. For 

example, Phormia regina has been recorded to travel up to 45 kilometers from a release point[22]. 

Previous work has shown that blow flies harbor chemical and biological information, such as DNA 

and fecal metabolites in their stomach contents after exposure[23, 24]. 

In a recent project published in 2022 in Environmental Science and Technology, blow flies 

were utilized as chemical sensors of chemical warfare agent (CWA) release[25]. In this work, blow 

flies were exposed to chemical warfare agent simulants and then subjected to a variety of 

temperature and humidity conditions. A liquid chromatography-tandem mass spectrometry (LC-

MS/MS) assay was developed to detect chemical warfare agent simulants, CWA hydrolysis 

products, and organophosphorus pesticides. Chemical signatures were detected in the fly guts up 

to 14 days post-exposure indicating a long window of detectability for these chemicals. 

Additionally, the chemical warfare hydrolysis product, isopropyl methylphosphonic acid (IMPA), 

was detected in the fly gut after feeding the fly diisopropyl methylphosphonate (DIMP), indicating 

that not only are the flies consuming the chemicals but they are transforming them metabolically.  

In this project, blow flies were shown to harbor insensitive munition chemical signatures 

after exposure to a contamination source. Two LC-MS methods, hydrophilic interaction 

chromatographic (HILIC) and reversed phase (RP), were developed to detect the IM components 

and allows for retrospective analysis of the fly samples for transformation products. While the 

previous work focused on controlled feeding experiments from a Kimwipe, this work investigated 

the interaction between flies and contaminated soil and water matrices. The overall goal of this 

project was to develop an analytical technique to detect IM and their transformation products in 

whole blow flies, as well as, understand the longevity of these chemicals in the flies using 

controlled feeding experiments and more realistic environmental samples. 
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5.3 Experimental Methods 

5.3.1 Chemicals and Materials  

High-performance liquid chromatography (HPLC) grade acetonitrile, HPLC grade 

methanol, HPLC grade water, and ammonium acetate were purchased form Fisher Scientific 

(Hampton, NH, USA). IM compounds: 2,4-dinitroanisole (2,4-DNAN) and nitrotriazolone (NTO) 

were acquired from BAE Systems (Kingsport, TN, USA). Cyanoguanidine (CQ), royal demolition 

explosive (RDX), 2,4-diaminoanisole (2,4-DAAN), 2-methoxy-5-nitrophenol (2,5-MNP), urazole 

(UZ), and nitroguanidine (NQ) were purchased from Sigma Aldrich (St. Louis, MO, USA). The 

isotopically labeled internal standard 2,4-dinitrophenol-d3 and cyanoguanidine-13C were 

purchased from Cambridge Isotope Laboratories (Andover, MA, USA) and the internal standard 

p-toluidine-d3 was purchased from C/D/N Isotopes Inc. (Pointe Claire, Quebec, CAN). 

5.3.2 Calibrator and QC Preparation  

Stock solutions were prepared individually by dissolving standards in methanol or water. 

The stock solutions were used to prepare a 50-µg/mL working solution in methanol containing all 

standards. The 50-µg/mL solution was used to create the calibrators. The final concentration range 

was 15 – 1215 ng/mL. A separate set of working solutions was prepared for the quality control 

(QC) sample at 135 ng/mL. An internal standard solution was prepared by diluting reference 

materials in methanol to 50 µg/mL. Prior to analysis, 2.5 µL of IS solution was spiked into the 

calibrators and QC sample (300 µL). 

5.3.3 Blow Fly Extraction 

Experimental flies were freeze-killed. For initial experiments, the fly digestive system was 

dissected out using flame-sterilized forceps. The dissection was omitted for later experiments and 

chemical analysis was instead performed using whole flies. Chemical components in the fly 

samples were extracted by sonicating the sample for 30 minutes in methanol (300 µL). A sample 

aliquot of 200 µL was transferred to an autosampler vial before being spiked with a 50 ppm internal 

standard solution (1.67 µL). 
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5.3.4 LC-MS Assay Development  

Assay development was performed on an UltiMate 3000 HPLC system coupled to a Q-

Exactive Focus mass spectrometer from Thermo Fisher Scientific (San Jose, CA, USA). Two 

separate columns were utilized in this study. The first was an XBridge BEH Amide Column 

(2.1x100 mm, 2.5 µm particle size) from Waters Corporation (Milford, MA, USA), with an 

Acquitiy Column In-Line Filter, BEH Amide XP VanGuard Cartridge (2.1 mm X 5 mm, 2.5 µm 

particle size), and a VanGuard Cartridge Holder (Waters). The mobile phase consisted on 95/3/2 

acetonitrile/methanol/water with 10 mM ammonium acetate. The 10-minute method was run 

isocratically. The second method used a Hypersil GOLD C18 column (100 mm x 2.1 mm, 3 µm 

particle size) from Thermo Fisher Scientific. The mobile phase consisted of 98:2 water:methanol 

with 5 mM ammonium acetate (A) and 98:2 methanol/water  with 5 mM ammonium acetate (B). 

The gradient was run at a flow rate of 0.2 mL/min as follows: 0-7 minute linear ramp from 20 to 

75% B, 7-9.5 minute hold at 75 %B, then ending with a re-equilibration period of 5.5 minutes at 

20% B making for a 15-minute method. For both methods, a 2 µL injection volume was used, and 

the column compartment and autosampler module were not temperature controlled. 

Following chromatographic separation, the eluent was analyzed by the mass spectrometer, 

a Q-Exactive Focus from Thermo Fisher Scientific (San Jose, CA, USA). The instrument was 

operated with the following parameters: Full MS mode, scan range 65-700 m/z, positive (4 

kV)/negative (3.5 kV) ionization polarity switching, 35,000 resolution, 12 sheath gas (arbitrary 

units), and s-lens set to 50 V. The mass spectrometer parameters and the component retention 

times are detailed in Table 5.1. 
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Table 5.1 Analytes included in HPLC-MS method development and assessment. The table 
includes the polarity, the exact mass, the retention times and the deuterated standard utilized for 

each analyte  

Analyte 
Polarity 

(+/-) 

Exact Mass 

(m/z) 

Retention 

Time 

HILIC 

(min) 

Retention 

Time 

C18 

(min) 

Internal 

Standard 

cyanoguanidine (CQ) - 83.0364 3.95 1.71 CQ[13C] 

2,4-diaminoanisole (2,4-DAAN) + 139.0866 1.72 2.84 Tol-d3 

2,4-dinitroanisole (2,4-DNAN) - 183.0048 1.79 10.28 2,4-DNP-d3 

2,4-dinitrophenol (2,4-DNP) - 183.0048 1.79 5.09 2,4-DNP-d3 

2-methoxy-5-nitrophenol  

(2,5-MNP) 
- 168.0303 1.65 9.03 2,4-DNP-d3 

nitroguanidine (NQ) - 103.0264 3.60 1.80 CQ[C13]) 

nitrotriazolone (NTO) - 129.0054 17.33 1.66 2,4-DNP-d3 

royal demolition explosive 

(RDX) 
- 281.0487 1.52 7.30 2,4-DNP-d3 

urazole (UZ) - 

97.9994 

(HILIC) 

100.0151 

(RP) 

6.17 1.61 2,4-DNP-d3 

cyanoguanidine-13C (CQ[C13]) - 85.0431 3.95 1.71  

2,4-dinitrophenol-d3  

(2,4-DNP-d3) 
- 186.0236 1.79 5.09  

toluidine-d3 (Tol-d3) + 111.0997 1.50 8.50  
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5.3.5 Analytical Performance Evaluation 

Analytical performance was evaluated for both chromatographic methods to ensure method 

quality and reproducibility over time. Five-point calibration curves were made using serially 

diluted stock solutions, where the concentrations ranged from 15-1215 ng/mL in 75/25 

acetonitrile/methanol (HILIC) or methanol (RP). Limits of detection (LODs) and linearity of the 

calibration curves was compared across the two LC column modalities. Additionally, quality 

control (QC) samples (135 ng/mL) were used to evaluate the inter-day variation via percent 

coefficient of variation (% CV) and bias associated with the method.  

5.3.6 Recovery  

To assess recovery, a known amount of analyte was spiked into the fly matrix before and 

after the extraction protocol. Percent recovery was calculated by taking the ratio of the analyte 

AUC divided by the internal standard of the fly samples spiked before to the fly samples spiked 

after extraction.  

5.3.7 Detection of Transformation Products 

Since the LC-MS method was untargeted, this allowed for retrospective analysis of the 

data. Previous work shows that flies are transforming the chemicals they are fed into new 

products[25]. Additionally, IMs undergo both environmental and microbial degradation in 

environmental matrices. Following the controlled feeding experiments, Xcalibur Qual Browser 

from Thermo Fisher Scientific (San Jose, CA, USA) was used to identify the presence of suspected 

biological and environmental transformation products. 

5.3.8 Blow Fly Colony Formation 

Blow flies were colonized in the “fly room” located at IUPUI. A detailed description of the 

conditions can be found in Chapter 2. Only Phormia regina were used in this study. 
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5.3.9 Feeding Experiments 

Experiment 1: Midgut vs. Whole Fly Sample Matrix. Cohorts of N = 5 P. regina were exposed to 

water solutions of either 0.0 µg/mL (negative control) or 50 µg/mL of DNAN, NTO and NQ for 

four hours. 

 

Experiment 2: Contaminated Water Exposure. Cohorts of N = 5 P. regina were exposed to a water 

solution of either 0.0 µg/mL (negative control), 50 µg/mL, or 1000 µg/mL (DNAN: 250 µg/mL) 

of DNAN, NTO and NQ for four hours. DNAN was at a lower concentration in the last solution 

because of its lower water solubility. Following exposure period, half of the flies were immediately 

frozen, while the remaining flies were maintained post-exposure at 25˚C and 60%RH. 

 

Experiment 3: Contaminated Soil Exposure. Cohorts of N = 5 P. regina were exposed to soil/water 

mixtures of either 0.0 µg/g of sterilized soil (negative control), 2 µg/g, 10 µg/g, 50 µg/g, 200 µg/g 

(DNAN: 100 µg/g) or 1000 µg/g (DNAN: 200 µg/g) of DNAN, NTO and NQ for four hours. 

Following exposure period, the flies were immediately frozen. To prepare the soil, a 1-gram 

sample of vacuum autoclaved Richfield clay loam or sand was deposited into an individual portion 

cup (Table 5.2). Then, 800 µL of either water spiked with chemicals or pure water (negative control) 

was used to wet the soil. The soil:water slurry was allowed to equilibrate for 12 hours prior to the 

feeding experiment. 

 

Experiment 4: Contaminated Soil Exposure with Adjusted Methodology. Cohorts of N = 5 P. 

regina were exposed to soil/water mixtures of either 0.0 µg/g of sterilized soil (negative control) 

or 200 µg/g (DNAN: 100 µg/g) of DNAN, NTO and NQ for four hours. Following the exposure, 

the flies were refrigerated in the soil-containing vessel to slow the flies speed. The flies were 

transferred to a clean Eppendorf tube and then were frozen. The frozen flies were rinsed by 

submersion in methanol prior to extraction and LC-MS analysis. The soil:water slurry was 

prepared the same way as in Experiment 3. 
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Table 5.2 Soil characteristics 

Soil Texture pH 
Organic 

Material 
Sand Silt Clay 

Richfield Clay Loam 7.4 3.3% 30% 43% 27% 

Sand Sand 5.9 0.0% 99.2% 0.55% 0.20% 

5.3.10 Data Analysis  

Tracefinder v. 3.3 from Thermo Fisher Scientific (San Jose, CA, USA) was used for data 

analysis. Calibration curves were made by plotting the area under the curve (AUC) of the analyte 

chromatography peak divided by the AUC of the internal standard chromatography peak. A 1/x 

weighted least squares regression was used to fit the data points. Additionally, the limits of 

detection (LOD) were calculated by dividing the standard error of the y-intercept by the slope of 

the best fit line and multiplying by a factor of 3. In order for an analyte to be considered detected, 

the exact mass must be within 5-ppm mass error of the standard, and the retention time must be 

within 30 seconds of the standard. 

5.4 Results and Discussion 

5.4.1 Method Development  

Due to the highly polar and ionic nature of the insensitive munition compounds, a HILIC 

column was initially selected to retain the more polar species. Ammonium acetate buffer was found 

to be the optimum additive to the mobile phase, compared to formic acid, because it maximized 

sensitivity. CQ, NQ, and 2,4-DNP increased 3-5x in intensity, while RDX and 2,5-MNP increased 

greater than 10-fold. An isocratic method eliminated the need for long re-equilibration times that 

are common of HILIC methods. The HILIC method had two limitations. 2,4-DNAN and its major 

transformation product, 2,4-DNP, eluted at the same retention time. Due to unavoidable 

demethylation of 2,4-DNAN during ionization, the DNAN also produced a peak with an exact 

mass of m/z 183.0048, identical to 2,4-DNP. Additionally, NTO eluted much later than the other 

analytes (RT ~18 minutes). We were unable to eliminate these limitations despite gradient and 

mobile phase optimization. A reverse phase method using a C18 column was developed to 
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overcome these issues. For the HILIC method, the more hydrophobic analytes, such as RDX, 

eluted early in the method, while the converse was true of the RP method as seen in the extracted 

ion chromatograms in Figure 5.1. Additionally, 2,4-DNAN and 2,4-DNP were resolved using the 

RP method, and the peak shape for urazole was improved as well. A limitation of the RP separation 

is the poor retention and chromatographic resolution for the water soluble analytes.  However, the 

LODs for the water soluble analytes were similar between the two methods, and the unretained 

analytes were well-resolved in the m/z domain. The poor retention therefore did not have a 

deleterious impact on assay performance. 

 

 

Figure 5.1 Overlayed extracted ion chromatograms of the analytes measured in the HILIC (A) 
and RP LC-MS (B) methods 

 

 To evaluate the analytical performance of the assays, calibration curves and QCs were 

analyzed across 6-days. Tables 5.3 and 5.4 outline the performance of the HILIC and RP methods, 

respectively. The limits of detection were comparable and were in the low ng range for most 

analytes. These values are the mass of analyte (ng) in 300 µL of methanol extraction solvent, and 

therefore represent the lowest mass of analyte detectable in the fly samples. The QC level was 

used to assess the %CV and bias of the methods. While not a formal validation, these values should 

typically be below 15%, and most of the values do fall around 15-20%. Additionally, the recoveries 

for the RP method ranged between 58 for 2,4-DAAN to 114% for NTO. The quantitative 
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performance of both methods was comparable. Due to the ability to separate 2,4-DNAN and 2,4-

DNP, the RP method was selected for future experiments. 

 
Table 5.3 The average LODs, the range of coefficient of determinations (R2), inter-day bias and 

precision values obtained across 6 days for the HILIC method. %Bias= (grand mean of 
calculated concentration-nominal concentration/nominal concentration). %CV=standard 

deviation/mean 

Compound 
Avg. LOD 

(ng) 
r2 Range 

QC 

% CV Bias 

CQ 3.6 0.9878-0.9985 7.7 10.9 

2,4-DAAN 22.0 0.5997-0.9852 25.9 4.1 

2,4-DNP 3.1 0.9823-0.9996 7.7 13.8 

2,5-MNP 4.9 0.9816-0.9979 3.4 8.7 

NQ 5.4 0.9835-0.9983 10.0 21.8 

RDX 4.8 0.9896-0.9973 16.9 14.0 

UZ 17.7 0.9731-0.9888 7.3 22.6 
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Table 5.4 The average LODs, the range of coefficient of determinations (R2), inter-day bias and 
precision values obtained across 6 days for the RP method. %Bias= (grand mean of calculated 
concentration-nominal concentration/nominal concentration). %CV=standard deviation/mean 

Compound 
Avg. LOD 

(ng) 
r2 Range 

% 

Recovery 

QC 

% CV Bias 

CQ 2.9 0.9798-0.9991 91 9.2 6.3 

2,4-DAAN 4.3 0.9621-0.9966 58 15.2 11.5 

2,4-DNAN 4.3 0.9670-0.9970 94 7.9 3.9 

2,4-DNP 2.0 0.9915-0.9992 81 10.0 -1.1 

2,5-MNP 3.1 0.9870-0.9983 88 8.3 -2.0 

NQ 3.4 0.9843-0.9974 110 9.9 0.07 

NTO 4.3 0.9706-0.9946 114 14.6 29.1 

RDX 9.6 0.5676-0.9963 90 10.2 7.1 

 UZ 7.6 0.9688-0.9969 108 10.3 -2.5 

5.4.2 Feeding Studies 

Previous works using blow flies to collect chemical signatures focused on midgut 

dissection to both extract the portion of the fly most likely to contain the chemical and to identify 

whether the flies were consuming the chemicals. However, midgut dissection is a specialized 

technique that would be difficult to implement for routine analysis. We assessed the difference in 

analyte intensity in the whole flies versus the fly midgut. When flies were fed 50 µg/mL of DNAN, 

NTO and NQ, the detected concentration in the whole fly was an order of magnitude higher or 

more. Additionally, more flies were positive for chemicals when analyzing the whole flies than 

the midguts. The intensity of the total ion chromatograms (positive and negative mode) for 

negative control flies were approximately three times higher when analyzing the whole fly versus 

the fly gut, but there was no interference in the extracted ion chromatograms at the exact mass and 

retention time for the analytes. 

To assess the how quickly IM were cleared by the blow flies, the flies were fed either a 

low (50 µg/mL) or high (1000 µg/mL for NTO/NQ and 250 µg/mL for DNAN) dose. Half of the 

flies were frozen for analysis after the 4-hour exposure period. The other half of the flies were kept 
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at ambient conditions for 7-days post-exposure. No IM munitions were detected 7-days post. Table 

5.5 shows amount of IM detected for the 0-day flies.  

 

Table 5.5 Results from contaminated water feeding experiment. Each trial (T) represents an 
individual fly 

Concentrations 50 µg/mL 250/1000 µg/mL 

Fly Replicates T1 T2 T3 T4 T5 T1 T2 T3 T4 T5 

NQ 95 151.6 181 59.2 133.8 0 0 117.2 12.3 10.4 

DNAN 5.8 6.1 6.0 8.0 7.3 14 20 31.2 21 39.8 

NTO 0 8 0 2.1 17.8 0 0 33.4 0 0 

 

To simulate a more realistic sample matrix, a feeding experiment was performed where 

blow flies were exposed to a water:soil slurry that contained the IM components DNAN, NTO and 

NQ. Richfield clay loam and sand were selected for the study due to their different properties 

(Table 5.2).  

 

 

Figure 5.2 Results from the repeated preliminary soil feeding experiment where soil was spiked 
with varying concentrations of IM components DNAN, NQ and NTO. Flies were exposed to the 
contaminated soil for 4 hours before analysis. Half of the flies were rinsed with methanol prior to 

extraction and LC-MS analysis 
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In the initial soil feeding experiment, the flies were frozen in the portion cups containing 

the contaminated soil. Therefore, the flies were laying in the soil:water slurry when they were 

transferred for extraction, and high levels of chemicals were detected in the flies (thousands of 

nanograms per fly sample). It was hypothesized that the flies were absorbing the chemicals during 

the freezing process, which would not be representative of real-world conditions. Therefore, a 

second experiment was performed where the flies were not only transferred from their original 

exposure vessel before freezing, but were also washed with methanol prior to extraction. Figure 

5.2 shows the results from the second soil feeding experiment. While rinsing the flies did not have 

a significant impact on the amounts detected in the flies, the amended sampling protocol was more 

realistic than the original experimental design. The US Army Regional Screening Levels (RSL) 

for IM components 2,4-DNAN, NTO and NQ are 20, 6300, and 2500 ppm respectively[26]. This 

method was able to detect IMs in the flies at 100 ppm for DNAN and 200 ppm for NTO and NQ 

indicating the possibility to use flies as samplers at relevant concentrations. Future work should 

evaluate the detectability of the chemicals following the fly exposure to different temperature and 

humidity conditions. However, these experiment shows the potential for IM components to be 

detected in the fly following environmental exposure. 

5.4.3 Detection of IM Transformation Products 

Insensitive munitions undergo transformation in the environment due to microbial 

degradation, UV exposure, and hydrolysis. Therefore, the flies that were fed DNAN, NQ, and 

NTO were monitored for the presence of transformation products both known and unknown. Due 

to previous work involving blow fly exposure to chemical signatures, it was hypothesized that the 

transformation products would simultaneously be detected alongside the parent compound[25]. In 

the top panel of Figure 5.3, a fly sample was positive for both 2,4-DNAN, which was fed to the 

flies via contaminated water, and 2,4-DNP which was not fed to the fly. The middle panel shows 

the EIC for a calibration standard containing both chemicals. The bottom panel shows the extracted 

ion chromatogram (EIC) for a negative control fly. The 2,4-DNAN ether bond undergoes abiotic 

or biological hydrolysis to form the alcohol on 2,4-DNP[27].  
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Figure 5.3 Extracted ion chromatograms (m/z 183.0048) of (A) Fly sample fed 50 µg/mL of 
DNAN in water, (B) 45 ng/mL calibrator, (C) Negative control fly sample 

5.5 Conclusion 

The data presented in this work shows the potential for blow flies to be used as 

environmental monitoring agents of IM contamination in the environment. Two LC-MS methods, 

using HILIC and RP stationary phases, were developed for the detection of insensitive munitions 

in the blow fly following an exposure. While both methods performed similarly, the RP was 
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selected because it was able to separate the insensitive munition component 2,4-DNAN and its 

transformation product 2,4-DNP. Three preliminary feeding experiments were performed to assess 

detectability in water/soil matrices, as well as compare the detectability when using the midgut or 

whole fly as a sample matrix. Future work should focus on the longevity or clearance of these 

chemicals from the flies in different temperatures and humidity conditions. This work described 

shows the potential for this assay to be useful to military personnel who desire a way to track IM 

contamination in the environment without deploying personnel for sampling. 
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