Purdue University Graduate School
Browse

File(s) under embargo

1

year(s)

4

month(s)

30

day(s)

until file(s) become available

ENHANCING RESOURCE-USE EFFICIENCY FOR INDOOR FARMING

thesis
posted on 2023-08-03, 12:57 authored by Fatemeh SheibaniFatemeh Sheibani

Vertical farming (VF) as a newer sector of controlled-environment agriculture (CEA) is proliferating as demand for year-round, local, fresh produce is rising. However, there are concerns regarding the high capital expenses and significant operational expenses that contribute to fragile profitability of the VF industry. Enhancing resource-use efficiency is a strategy to improve profitability of the VF industry, and different approaches are proposed in the three chapters of this dissertation. LEDs are used for sole-source lighting in VF, and although they recently have significantly improved electrical efficiency and photon efficacy, the Lambertian design of the illumination pattern leads to significant loss of obliquely emitted photons beyond cropping areas. In chapter 1, close-canopy lighting (CCL) is proposed as one effective energy-saving strategy, through which unique physical properties of LEDs were leveraged, and two CCL strategies (energy efficiency and yield enhancement) were characterized at four different separation distances between light-emitting and light-absorbing surfaces. Dimming to the same light intensity at all separation distances resulted in the same biomass production while significant energy savings occurred at closer distances. Significantly higher light intensity and yield were achieved under closer separation distances in the yield-enhancement strategy for the same energy input. The energy-utilization efficiency (g fresh/dry biomass per kWh of energy) was doubled in both scenarios when the separation distance between LED emitting surface and crop surface was reduced maximally. At reduced separation distances, the chance of photon escape from growth areas is less, and canopy photon capture efficiency is improved.

Optimizing environmental conditions for indoor plant production also helps improve resource-use efficiency for the nascent vertical-farming industry. Although significant technical advancements of LEDs have been made, use of efficient far-red (FR) LEDs has yet to be exploited. As a recent proposed extension to traditional photosynthetically active radiation (PAR, 400-700 nm), FR radiation (700-750 nm) contributes to photosynthesis as well as photomorphogenesis when added to shorter wavelengths of traditional PAR. However, the interaction of FR with other environmental parameters such as CO2 is less studied. In chapter 2, the interaction effect of four FR fluxes (as substitution for red) in combination with three different CO2 concentrations were investigated at three distinctive stages of young-lettuce production. The highest biomass achieved at all stages occurred at 800 mmol mol-1 CO2 compared to 400 and 1600 mmol mol-1. A photomorphogenic effect of FR to promote leaf length was pronounced at the earliest stages of development, at which FR did not contribute to higher biomass accumulation. At more developed stages, 20 mmol m-2 s-1 of FR substituting for red contributed to biomass accumulation similar to shorter wavelengths of traditional PAR, whereas higher fluxes of FR in the light recipe resulted in undesirable quality attributes such as longer leaves.

Optimizing environmental conditions for indoor production with emphasis on light intensity and CO2 concentration at four distinctive stages of lettuce production was investigated in chapter 3. Utilizing the Minitron III gas-exchange system, light and CO2 dose-response profiles were characterized at four distinctive crop-development stages through instantaneous gas-exchange measurements at crop level. At all developmental stages, as CO2 concentration increased, photosynthesis increased up to 500 mmol mol-1, above which the incremental rate of photosynthesis was reduced. Light-dose response profiles were characterized at 400 or 800 mmol mol-1 CO2, and as light intensity increased, photosynthesis increased up to 650 mmol m-2 s-1. However, when instantaneous power (Watts) consumed for lighting was taken into consideration, power-use efficiency as the ratio of output photosynthesis increment to input power increment (to increase light intensity), decreased at higher light intensities. Vertical farming as a nascent and growing industry is facing limitations including marginal and even elusive profitability. Optimizing environmental conditions for indoor plant production such as these will help improve resource-use efficiency and profitability of the vertical farming industry.

Funding

USDA AFRI

National Institute of Food and Agriculture

Find out more...

USDA SCRI

History

Degree Type

  • Doctor of Philosophy

Department

  • Horticulture

Campus location

  • West Lafayette

Advisor/Supervisor/Committee Chair

Dr. Cary Mitchell

Additional Committee Member 2

Dr. Erik Runkle

Additional Committee Member 3

Dr. Krishna Nemali

Additional Committee Member 4

Dr. Yiwei Jiang

Usage metrics

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC