Enabling Wing Morphing Through Compliant Multistable Structures
The ability to change the shape of aerodynamic surfaces is necessary for modern aircraft, both to provide control while performing maneuvers and to meet the conflicting requirements of various flight conditions such as takeoff/landing and level cruise. These shape changes have traditionally been accomplished through the use of various mechanical devices actuating discrete aerodynamic surfaces, for example ailerons and flaps. Such control surfaces and high-lift devices are generally limited to their specific functionality and create surface discontinuities which increase drag and aircraft noise. Broadly speaking, the design and study of morphing wings typically seeks to improve the performance of aircraft by completing one or more of the following objectives: reducing the drag from discontinuities in the aerodynamic surface of the wing by closing hinge gaps and creating smooth transitions, reducing weight and/or mechanical complexity by integrating mechanism functionality into compliant structures that can bear aerodynamic load and maintain shape adaptability, and providing unique or optimal functionality to the aircraft by allowing it to adjust its aerodynamic shape to meet the needs of various flight conditions with conflicting objectives and constraints.
The concepts proposed in this work represent potential methods for addressing these objectives. In each case, a compliant structure with multiple stable states is embedded into the wing. Exploiting elastic structural instabilities in this way provides the advantage that a structure can be made relatively stiff while still allowing for large deformations. In the first case, the development of a 3D-printable rib with an embedded bistable element creates a truss-like 2D structure that allows for modification of the airfoil. Switching states of the elements changes their local stiffness, and therefore the global stiffness of the system. By optimizing the topology of the airfoil, a passive deflection of the trailing edge can be leveraged to change the camber to leverage different lift characteristics for varying operating conditions. Primary work on this concept has included the construction of multiple experimental demonstrators for validating the concept through static structural and wind tunnel testing. In the second case, a cellular material has been investigated incorporating a bistable unit cell with a sinusoidal arch. This provides a metamaterial that can exhibit large, reversible deformations with as many stable configurations as there are rows in the honeycomb. This metamaterial is incorporated into a beam-like structure which can serve as a spar for a spanwise morphing wing, providing sufficient bending and torsional stiffness, particularly when utilized at the wing tip. Extending and retracting the wing by switching the states of the honeycomb rows provides a significant change to the wing’s induced drag and wing loading, making it ideal for optimal flight in both loitering and cruising conditions. Contributions to this concept have been the development and characterization of the bistable unit cell and honeycomb, as well as the design and analysis of the metabeam and morphing wing concept.
History
Degree Type
- Doctor of Philosophy
Department
- Aeronautics and Astronautics
Campus location
- West Lafayette