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NOMENCLATURE 

𝑘̃𝑐    Complex wavenumber of a porous material 

𝑧̃𝑐    Specific characteristic impedance of a porous material 

𝑧̃𝑛    Specific normal surface acoustic impedance  

𝑐𝑜   Sound speed of air 

𝑐̃   Complex sound speed within porous material 

𝜔   Angular frequency 

𝑓   Temporal frequency 

𝜎   Flow resistivity 

𝜙   Porosity 

𝛼∞   Tortuosity 

𝛬   Viscous characteristic length 

𝛬′   Thermal characteristic length 

𝜌̃   Complex density of a porous material 

𝐵̃   Complex bulk modulus of a porous material 

𝜌𝑜   Air density 

𝜂   Air kinematic viscosity 

𝛾   Fluid specific heat ratio 

𝜅   Thermal conductivity 

𝑝𝑜   Acoustic pressure in airway 

𝑝   Acoustic pressure within porous material 

𝑘   Wavenumber in airway 

𝑘𝑥   Axial component of wavenumber in airway 

𝑘𝑦   Transverse component of wavenumber in airway 

𝑘̃   Wavenumber in porous layer 

𝑘̃𝑥   Axial component of wavenumber in porous layer 

𝑘̃𝑦   Transverse component of wavenumber in porous layer 

𝑢𝑜   Normal particle velocity in airway 

𝑢̃   Normal particle velocity in porous layer 

𝐿𝑐   Axial length of a duct model (= average circumferential length of a tire) 

ℎ𝑎   Height of airway in a duct model 

ℎ𝑡   Height of duct in a duct model 

𝑡𝑝   Thickness of porous layer 
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ABSTRACT 

The tire air cavity mode is known to be a significant source of vehicle structure-borne road 

noise near 200 Hz. A porous lining placed on the inner surface of a tire is an effective 

countermeasure to attenuate that resonance. The two noticeable effects of such a lining are the 

reduction in frequency and the attenuation of the air cavity mode. In this thesis, through both 

theoretical and numerical analysis, the mechanism of the effects of a porous lining was studied. A 

two-dimensional duct-shaped theoretical model and a torus-shaped numerical model were built to 

investigate the lined tire in conjunction with the Johnson-Champoux-Allard model describing the 

viscous and thermal dissipative effects of the porous material. Design parameters of the porous 

lining were varied to study their impact and optimal ranges of the design parameters were 

identified. Finally, in an experimental analysis, the sound attenuation and the frequency drop were 

observed in measurements of force, acceleration, and sound pressure. In conclusion, it was 

demonstrated that the suggested theoretical and numerical models successfully predict the effects 

of porous linings and that the frequency reduction results from the decreased sound speed within 

the tire owing to the presence of the liner. 
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 INTRODUCTION 

1.1 Background of Study 

The NVH (noise, vibration, and harshness) challenges presented by electric vehicles in the 

automotive industry are unique. The absence of a traditional powertrain causes interior structure-

borne road noise to become more audible and prominent due to the disappearance of the masking 

effect provided by the internal combustion engine noise. As a result, at low speeds, road noise 

becomes the primary source of disturbance for passengers, as depicted in Figure 1.1. 

One significant contributor to the structure-borne road noise is the vibration originating 

from the Tire Air Cavity Resonance (TACR). When a tire is rolling on a macro-rough surface, not 

only the tire structure but also the air cavity inside the tire is excited. The air trapped in the tire has 

its natural modes, with its first natural mode called the cavity mode, as shown in Figure 1.2. This 

cavity mode lies around 200 Hz for currently typical passenger car tires, and the frequency varies 

depending on the tire's size. The tire air cavity resonance creates acoustic pressure that excites the 

wheel, and the resulting vibration of the wheel due to the TACR is transmitted to the suspension, 

body, and ultimately reaches the vehicle cabin. This type of structure-borne noise transmission is 

depicted in Figure 1.3. 

 

 

Figure 1.1. Comparison of noise contribution between internal combustion engine vehicles and electric 

vehicles [1]. 
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Figure 1.2. Pressure distribution in the first air cavity resonance of a tire. 

 

Figure 1.3. Transmission of structure-borne tire air cavity noise [2]. 

The TACR noise is particularly troublesome since it produces a peak in a narrow frequency 

range with a relatively high amplitude, which is easily detectable by the human ear. Figure 1.4 

shows the interior noise measurements of two different vehicles and tires. Although the level of 

the TACR noise is different depending on the vehicle and tire, the noise is prominent in both cases 

over the frequency range up to 800 Hz.  
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Figure 1.4. Frequency spectrum of road noise and tire air cavity resonance mode [3]. 

To review some of the previous articles that serve as milestones in TACR research, Sakata 

et al. [4] were the first to discuss the noise issue. They related the peak noise in the cabin to the 

tire cavity resonance by comparing the sound pressure levels at the driver's ear position with the 

hub vertical acceleration during an on-road coasting test. They demonstrated that the vibration and 

tire noise are mainly influenced by the first mode of the cavity resonance. Figure 1.5 shows the 

modes of the tire cavity resonance, including its harmonics, which are multiples of the fundamental 

resonance. One key observation is that only the first mode of the cavity resonance creates a net 

force that vertically excites a wheel, while the higher modes do not create a net force. Since 

Sakata's initial research, several studies have been performed to analyze the influence of tire 

deflection in the contact patch area by Thompson [5,6], rolling speed by Feng et al. [7-11], and the 

coupling mechanisms between the air cavity and the rim/tire structure by Cao and Bolton [12,13]. 

 

 

Figure 1.5. The first, second, and third modes of tire air cavity resonance [4]. 
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1.2 Literature Review of Porous Lined Tire 

Various solutions have been proposed to address tire cavity resonance noise, but only a few 

have been successfully commercialized due to various constraints and challenges. Of the mass-

produced solutions, the porous lining of a tire is an effective and widely adopted countermeasure 

that has received significant attention in recent years. Several theoretical and numerical models 

that incorporate porous material propagation models have been proposed to simulate the noise 

attenuation effects.  

For instance, Baro et al. [14] developed a numerical model of the tire cavity with porous 

lining and analyzed the frequency response functions (FRF) for a fixed set of material properties. 

In their research paper, they proposed a 3-dimensional finite element (FE) model to predict the 

damping performance of a lined tire. The authors evaluated the damping performance by 

comparing the point acoustic impedance at the center of the excitation patch for the non-lined tire 

and lined tire FE models. Figure 1.6 displays the finite element model with porous lining and the 

frequency response of the simulation. Their research revealed that, for fixed material 

characteristics, the volume of the lining treatment had a strong influence on the cavity resonance. 

 

 

Figure 1.6. FE model and FRF result of the air cavity of 20 inch tire lined with polyurethane 

foam [14]. 

In their second paper [15], Baro et al. further studied the design optimization of the porous layer 

in terms of its geometric layout. Figure 1.7 shows the design cases they simulated to compare their 

effectiveness in attenuation. One key finding was that the attenuation of the cavity resonance could 

be increased without changing the volume of sound-absorbing material by selecting a 
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discontinuous layout. In Figure 1.8, the point acoustic impedance of the non-lined and lined cases 

are compared. The point acoustic impedance of design case (d), which features the discontinuous 

layout, is lower than that of design case (b), which has a normal continuous layout, while the 

volumes of (b) and (d) are the same. The discontinuous layout is a good idea, but the reason for its 

better attenuation was not explained in detail. Additionally, their research was limited to a case in 

which the porous material properties were fixed. 

 

 

Figure 1.7. FE models of tire cavity of non-lined and lined tires [15]. 

 

Figure 1.8. Comparison of the point acoustic impedance evaluated at the center of the excitation 

patch for the FE models [15]. 

Regarding the investigation of porous material properties, Zhang et al. [16, 17] proposed 

an eigenvalue analysis of a lined tire in cylindrical coordinates, as depicted in Figure 1.9. By using 

an equivalent fluid model to represent the sound-absorbing material, the resonance of a lined tire 
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cavity can be transformed into a complex eigenvalue problem. The Delany-Bazely-Miki (DBM) 

model was used to describe the acoustic characteristics of the sound-absorbing material, with flow 

resistivity being the single parameter of the DBM model. Based on the eigenvalue analysis, the 

complex frequency was plotted as a function of flow resistivity. 

 

 

Figure 1.9. Schematic diagram of the tire cavity lined with the porous material [17]. 

Building on the research of Zhang et al. [16], Wan et al. [17] used a multi-domain boundary 

element method (MBEM) to assess the impact of porous materials on controlling tire cavity 

resonance and proposed optimal parameters for the porous material. The DBM model was selected 

to describe the sound propagation model in the porous material. The simulation yielded successful 

results, which were validated experimentally. Figure 1.10 illustrates the simulation results, 

demonstrating the effect of changing design parameters, specifically flow resistivity. The primary 

finding of this research, as shown in Figure 1.11, was the introduction of the shifting procedure of 

the real and imaginary part of the cavity frequency with the change of flow resistivity of the porous 

material for different thicknesses and widths. The imaginary part of the cavity frequency represents 

the damping loss resulting from the porous material. The authors found that a flow resistivity 

around 1,850 N s∕m4 or Rayls/m was optimal, and thicker or wider porous material provides better 

attenuation for cavity resonance noise. The proposed method is an effective tool for selecting the 

flow resistivity, thickness, and width of the porous material.
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Figure 1.10. The pressure field of the cross-section diagram of the tire cavity non-lined/lined 

with the porous material of different flow resistivities [17]. 

 

 

Figure 1.11. The shifting procedure of the first eigenfrequency 𝑓1 with the change of the porous 

material flow resistivity, when different thickness, C, and widths, L, are considered [17].
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1.3 Research Objective 

Previous studies were commonly based on the assumption that sound propagation in porous 

materials could be accurately modeled using the Delany-Bazely-Miki model (DBM model) [18,19]. 

In general, that one-parameter empirical model is suitable for high porosity, porous linings. 

However, due to its empirical nature, the design parameters in that model are constrained to lie 

within the boundaries shown in Figure 1.12. 

 

 

Figure 1.12. Working boundary of the flow resistivity in DBM and JCA model  

The focus of the current study was to investigate broader design parameter boundaries by 

employing a more advanced propagation model, the Johnson-Champoux-Allard model (JCA 

model) [20,21], and also to identify the sound attenuation and frequency reduction mechanisms. 

Furthermore, the implementation of the five-parameter semi-phenomenological model, the JCA 

model has resulted in the identification of an additional optimal design range compared to previous 

studies. 

In addition, the other objectives of this research were to develop a systematic and 

comprehensive methodology to analyze and predict the effect of porous linings on the tire air 

cavity resonance. Specifically, the goals here were to identify the mechanisms of sound attenuation 

and frequency reduction of the tire air cavity resonance (TACR), to visualize the effect of sound 

attenuation and frequency reduction of the TACR, to predict and validate the sound pressure and 

force mitigation of the TACR under various boundary conditions, and to suggest optimal design 

parameters of the porous material. 
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 PROPAGATION MODELS OF POROUS MATERIALS AND 

ACOUSTIC MODEL OF A LINED TIRE 

2.1 Introduction 

Porous materials are effective sound-absorbers because they convert acoustical energy into 

heat. The primary mechanism for sound absorption by porous materials is achieved by the visco-

inertial and thermal dissipative effects of the material. By considering these effects, the 

propagation of sound in porous materials can be modeled to compute their acoustical properties. 

This chapter will begin with an explanation of the mechanisms of visco-inertial and thermal 

dissipative effect of porous material. Next, two sound propagation models of porous materials, 

namely the DBM model and the JCA model will be compared. The decision to use the JCA model 

will be explained as well. In addition, an acoustic model of a lined tire will be proposed, and by 

implementing appropriate boundary conditions, and as an outcome of the model, a transcendental 

equation will be derived from the model. Finally, this chapter will include a discussion of how the 

sound propagation model of a porous material and the acoustic model of a lined tire will be 

integrated to compute the axial wavenumber in the tire air cavity. The behavior of the axial 

wavenumber will be further discussed with respect to the change in design parameters of porous 

materials. 

2.2 Dissipative Effects of Porous Materials 

The use of a porous material lined tire can reduce tire air cavity resonance because acoustical 

energy inside the tire is dissipated as it interacts with the porous materials. To fully understand this 

mechanism, it is crucial to have a thorough understanding of porous materials. Porous materials 

are composed of two phases: the solid, typically fibrous component known as the frame, and the 

fluid that fills the pores formed by the frame, typically air [22]. Figure 2.1 depicts the magnified 

view of a porous material, polyurethane acoustic foam, and a schematic of the solid and fluid 

components of the material.  The dissipation of acoustical energy in porous materials is primarily 

achieved through the interaction of the solid and fluid phases. The interaction of the solid and fluid 

phases occurs through various mechanisms, such as viscous means that involve the shearing of the 
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fluid in the boundary layer formed on the fibrous surface and thermal means that represents 

irreversible heat transfer between fluid and solid [22]. 

 

 

Figure 2.1. Magnified view of polyurethane acoustic foam and schematic of its solid and fluid 

components [23-25]. 

To be more specific about each effect, the viscous-inertial effect can be divided into two 

parts: the viscous effect and the inertial effect. First, the viscous effect is defined as the dissipation 

of acoustical energy in the form of heat due to internal friction in the boundary layers. The 

boundary layer formed on the solid walls, including pores and inter-connections, produces a 

gradient in particle velocity as shown in Figure 2.2. The velocity difference between the layers 

creates shearing of the fluid, and the resulting internal friction dissipates energy in the form of heat. 

Next, the inertial effect also plays an important role in energy dissipation, which is concentrated 

at the inter-connections of pores. The small radius of the inter-connections creates resistance to 

acoustic flow propagation. This resistance also works as an internal friction, dissipating acoustical 

energy. Based on the mechanisms explained above, a design parameter of porous material, called 

the viscous characteristic length (VCL), 𝛬, is defined as the value of the radius (or hydraulic radius) 

of the inter-connections depicted in Figure 2.1, and this value usually ranges from 10 to 350 

micrometers for typical acoustical materials. [24] 

 

 

Figure 2.2. Velocity boundary layer on a semi-infinite flat plate [26]. 
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While the visco-inertial effect generates heat, the thermal effect can be considered more of 

a heat transfer effect. The thermal dissipative effect can be defined as an irreversible heat transfer 

between the fluid (air) and solid (fibrous component). The heat transfer occurs when a longitudinal 

sound wave compresses and expands air during the propagation process. During compression of 

the sound wave, the air heats up, and the heat is transferred to the surrounding solid. During the 

expansion of the sound wave, the air cools down and pulls back heat energy from the solid. Due 

to the temperature difference between the fluid and solid, the heat transfer is irreversible. Since the 

heat transfer mainly occurs in the pores, a relevant design parameter of the porous material is called 

the thermal characteristic length (TCL), 𝛬′. This value is close to the radius of the pore, as depicted 

in Figure 2.1.  

2.3 Propagation Models of Porous Materials 

The models that describe the propagation of sound in acoustical porous media can be 

classified into two categories, motionless skeleton model and diphasic model [24,25].  These 

models differ in their assumptions about the fibrous component and where wave propagation 

occurs. The motionless skeleton model is based on the assumptions of a rigid frame and that wave 

propagation occurs only in the fluid that fills the pores formed by the frame. The Delany-Bazely-

Miki [18,19] model and the Johnson-Champoux-Allard model [20,21] are examples of this type 

of model, based on empirical or phenomenological observations. In the diphasic model, the inter-

connected fibrous component is assumed to be elastic, and sound waves are considered to 

propagate in both the fluid and elastic phases. These models integrate Biot theory for elastic wave 

propagation and a fluid model from the motionless skeleton model, known as the "Biot-JCAL 

model" [27,28]. The main features of the two model types are summarized in Table 2.1. 

In this study, the motionless skeleton model will be used to describe sound propagation in a 

porous material, despite the fact that the diphasic model offers a more comprehensive description 

of the vibro-acoustics of porous media. This decision is based on the fact that the motionless 

skeleton model requires fewer parameters, and both models produce similar results in the 

frequency range of our interest, below 1 kHz, as depicted in Figure 2.3. 
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Table 2.1. Classification of the models describing the propagation of sound in porous media. 

 

 

 

Figure 2.3. Comparison of absorption coefficient between JCAL and  Biot-JCAL propagation 

models [23]. 

2.3.1 Delany-Bazely-Miki model 

Delany and Bazley [18] conducted numerous measurements on fibrous materials with high 

porosities and developed an empirical formula to represent the complex wavenumber, 𝑘̃𝑝, and 

specific characteristic impedance, 𝑧̃𝑐, for these materials. Due to its simplicity, their model is still 

widely used and requires only one parameter, flow resistivity, σ, to describe the acoustic behavior 

of a material within a certain frequency range. Flow resistivity can be defined as resistance to 

steady state flow through a porous material [22]. Based on that information, the acoustical 

performance of porous material can be predicted. Miki [19] further refined this model by proposing 

modifications to address the non-physical surface impedance behavior in the case of shallow 
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layers. The result was the Delany-Bazley-Miki model, which provides the following expressions 

for the complex wavenumber, 𝑘̃𝑝, and specific characteristic impedance, 𝑧̃𝑐: i.e.,  

 𝑘̃𝑝 =
𝜔

𝑐𝑜
[1 + 0.109 (

𝑓

𝜎
)
−0.618

− 𝑗0.16 (
𝑓

𝜎
)
−0.618

] (1) 

 𝑧̃𝑐 = [1 + 0.07 (
𝑓

𝜎
)
−0.632

− 𝑗0.107 (
𝑓

𝜎
)
−0.632

] (2) 

where 𝑐𝑜  is the sound speed, 𝜔  represents the angular frequency, and 𝑓  denotes the temporal 

frequency. As mentioned in Section 1.3, despite the wide usage owing to its simplicity, the design 

parameter in this model, the flow resistivity, is constrained to lie within the boundaries shown in 

Figure 1.12 due to its empirical nature.  

2.3.2 Johnson-Champoux-Allard model 

In this research, the Johnson-Champoux-Allard model (JCA model) [20,21] was used to 

describe the propagation of sound in porous materials, as an alternative to the DBM model. The 

semi-phenomenological JCA model is based on the assumption of non-uniform pore cross-sections 

and requires five parameters to describe the visco-inertial and thermal dissipative effects that 

operate within porous media. The five non-acoustical physical parameters are: flow resistivity 𝜎, 

porosity 𝜙, tortuosity 𝛼∞, viscous characteristic length (VCL) 𝛬, and thermal characteristic length 

(TCL) 𝛬′. The outputs of the JCA model are complex density, 𝜌̃, and complex bulk modulus, 𝐵̃: 

i.e., 

 𝜌̃(𝜔) =
𝛼∞𝜌𝑜
𝜙

[1 +
𝜎𝜙

𝑗𝜔𝜌𝑜𝛼∞
√1 + 𝑗

4𝛼∞
2 𝜂𝜌𝑜𝜔

𝜎2𝛬2𝜙2 ] (3) 

 
𝐵̃(𝜔) =

𝛾𝑃𝑜/𝜙

𝛾 − (𝛾 − 1) [1 + 𝑗
8𝜅

𝛬′2𝐶𝑝𝜌𝑜𝜔
√1 + 𝑗

𝛬′2𝐶𝑝𝜌𝑜𝜔
16𝜅

]

 

(4) 

where 𝜌𝑜 is the air density, 𝜂 is the air kinematic viscosity, 𝛾 is the fluid specific heat ratio, 𝐶𝑝 𝐶𝑣⁄ , 

𝐶𝑝 is the heat capacity at a constant pressure, 𝐶𝑣 is the heat capacity at a constant volume, and 𝜅 

is the thermal conductivity. Figure 2.4 summarizes the comparison between the DBM model and 

the JCA model. The decision to use the JCA model was based on the observation that the DBM 

model places limitations on the range of the flow resistivity (FR) design parameter, as shown in 
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Figure 1.12, which displays the available boundary of the FR for each propagation model under 

the same frequency range of interest. The DBM model results in a negative real part of the complex 

density above a certain FR, which is a non-physical result. Consequently, that model has a 

restricted boundary on its design parameter. To explore a wider range of design parameters, the 

JCA model was employed in this research. 

 

 

Figure 2.4. Sound propagation models in a porous material (DBM and JCA) 

2.4 Acoustic Model of a Two-dimensional Lined Tire 

2.4.1 Theoretical Analysis 

A two-dimensional lined duct was constructed theoretically to investigate the frequency 

reduction and attenuation of the tire cavity mode in a lined tire. Figure 2.5 shows a schematic 

diagram of the two-dimensional duct lined with a porous layer. For this study, the tire size of 

235/50R18 was selected. The length of the duct was assumed to be equivalent to the average 

circumference of the tire cavity, 1.669 m, to ensure that the first duct cavity mode occurs at the 

first modal frequency of the tire cavity. The wavenumbers were computed from the governing 

equation and boundary conditions to analyze the effect of the porous layer. An extended reaction 

case [29], which assumes that sound propagates axially in both the air layer and porous layer, was 

used in the theoretical derivation. 
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Figure 2.5. Schematic of the two-dimensional duct lined with a porous layer. 

 

The wave equation governing sound propagation in the air cavity of the lined tire is the Helmholtz 

equation,  

 ∇2𝑝𝑜 + 𝑘2𝑝𝑜 = 0 (5) 

where 𝑘 = 𝜔 𝑐⁄  denotes the wavenumber, 𝑐  represents the sound speed, and 𝜔  represents the 

angular frequency. The acoustic pressure distributions within the tire in the airway, 𝑝𝑜, and within 

the porous material, 𝑝, are expressed as follows: 

 
𝑝𝑜 = (𝐴𝑒𝑗𝑘𝑦𝑦 + 𝐵𝑒−𝑗𝑘𝑦𝑦)𝑒−𝑗𝑘𝑥𝑥𝑒𝑗𝜔𝑡 

𝑝 = (𝐶𝑒𝑗𝑘̃𝑦𝑦 + 𝐷𝑒−𝑗𝑘̃𝑦𝑦)𝑒−𝑗𝑘̃𝑥𝑥𝑒𝑗𝜔𝑡. 
(6) 

The constants A to D express the complex amplitudes of the waves and the axial and transverse 

wavenumbers in the airway are represented as 𝑘𝑥 and 𝑘𝑦, respectively, while the corresponding 

values in the porous layer are denoted as 𝑘̃𝑥 and 𝑘̃𝑦, respectively. The relationship between the 

wavenumbers is expressed as 

 𝑘𝑥
2 + 𝑘𝑦

2 = 𝑘2   and   𝑘̃𝑥
2 + 𝑘̃𝑦

2 = 𝑘̃2. (7) 

2.4.2 Boundary Condition 

The duct boundary conditions can be written as 

 

 

𝑢𝑜|𝑦=0 = −
1

𝑗𝜔𝜌𝑜

𝜕𝑝𝑜
𝜕𝑦

= 0 

𝑢̃|𝑦=ℎ𝑡 = −
1

𝑗𝜔𝜌̃

𝜕𝑝̃

𝜕𝑦
= 0 

𝑢𝑜|𝑦=ℎ𝑎− = 𝑢̃|𝑦=ℎ𝑎+ 

(8) 
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𝑝𝑜|𝑦=ℎ𝑎− = 𝑝|𝑦=ℎ𝑎+ 

where the normal particle velocity in the airway and within the porous layer are represented as 𝑢𝑜 

and 𝑢̃, respectively. Rigid boundary conditions apply at the top and bottom of the duct, causing 

the particle velocity to be zero at those locations. Continuity of pressure and normal particle 

velocity are defined at the interface between the airway and porous layer. As a result of applying 

the boundary conditions, the following transcendental equation that can be solved for the axial 

wavenumber was obtained: i.e.,  

 

 
−𝜌̃√𝑘2 − 𝑘𝑥2 tan (ℎ𝑎√𝑘2 − 𝑘𝑥2) = 𝜌𝑜√𝑘̃2 − 𝑘̃𝑥

2
tan⁡(𝑡𝑝√𝑘̃2 − 𝑘̃𝑥

2
) (9) 

 

where 𝜌̃ is the complex density in the porous layer. A MATLAB function “vpasolve” was used to 

numerically compute the axial wavenumber, 𝑘𝑥 , which is assumed to be the same in both the 

airway and the porous layer: i.e., it is assumed that 𝑘𝑥 = 𝑘̃𝑥. 

2.5 Integration of Propagation Model with the Acoustic Modeling of the Lined Tire 

The analysis of the effects of a porous lining requires an analysis of the axial wavenumber 

in the airway direction. This is because the axial wavenumber, 𝑘𝑥, which can be calculated through 

integration of the JCA model within the acoustic model, determines the cavity frequency and 

pressure distribution in the tire cavity, as expressed in Equation (6). By using the complex density, 

𝜌̃, and complex bulk modulus, 𝐵̃, that are output from the JCA model, Equation (9), can be used 

to find the complex axial wavenumber in the airway: i.e.,   

 𝑘𝑥 = 𝛽 − 𝑗𝛼. (10) 

In Equation (10), 𝛽 is the real part, and 𝛼 is the imaginary part of the axial wavenumber. Note that 

𝛽  determines the first cavity resonance frequency when the relationship between the axial 

wavenumber and the circumferential length can be expressed as 

 𝛽𝐿𝑐 = 2𝜋, (11a) 
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or alternatively,  

 
2𝜋𝑓1
𝑐𝑝ℎ

𝐿𝑐 = 2𝜋 (11b) 

where 𝑓1 is the cavity resonance frequency, and 𝑐𝑝ℎ is the speed of wave propagating within the 

airway. In addition, 𝛼 represents the rate of pressure attenuation along the duct. To investigate the 

effect of the design parameters on 𝑘𝑥 , sixteen different cases and two thicknesses of porous 

material were considered in this research. Among these cases, eight involved high flow resistivity 

and were within the extended design boundary made possible by using the JCA model. The 

behaviors of both the first cavity frequency and the imaginary part of 𝑘𝑥 with respect to the change 

in the design parameters are shown in Figure 2.6. The imaginary part of 𝑘𝑥  indicates the 

attenuation performance for the TACR, with a larger negative value indicating a greater 

attenuation effect. Table 2.2 summarizes the changes in the design parameters and the theoretical 

results. 

 

 

Figure 2.6. Behaviors of the first cavity frequency and the imaginary part of 𝑘𝑥 with respect to 

the change in the flow resistivity. 
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An increase of the flow resistivity (FR) from a low value leads to a decrease in the first cavity 

frequency and an increase in the mode attenuation effect. As an example, in the 2 inch case, the 

first optimal range occurs at a FR of approximately 2,000 Rayls/m. Beyond that value, the cavity 

frequency continues to decrease, but the attenuation performance deteriorates. An inflection point 

is observed at a FR of approximately 10,000 Rayls/m. As the FR is increased beyond the inflection 

point, the cavity frequency increases, but the mode attenuation improves again, forming a second 

optimal range at around 100,000 Rayls/m. After the second optimal range, the cavity frequency 

continues to increase while the mode attenuation deteriorates as the FR is further increased. Note 

that the axial phase speed, 𝑐𝑝ℎ, reaches a local minimum in each of the optimal range.  

The theoretical analysis thus reveals that the presence of a porous lining results in the axial 

wavenumber, 𝑘𝑥, being a complex value. The real and imaginary parts of the axial wavenumber 

determine the behavior of the cavity frequency and attenuation of the TACR. Moreover, the study 

identified the existence of a second optimal range at a higher FR range, which has not previously 

been explored because of the limitations of the DBM model. This second optimal range exhibits 

superior performance compared to the first optimal range in terms of mode attenuation. 

 

Table 2.2. Theoretical results from the integration of the JCA model and acoustic modeling. 
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 FINITE ELEMENT ANALYSIS OF A LINED TIRE 

3.1 Introduction 

In the work described in this chapter, the frequency reduction and attenuation of the tire 

cavity resonance were analyzed using a finite element model. The results obtained from the finite 

element analysis were compared with those obtained from the theoretical analysis presented in 

Chapter 2 to validate the findings. The simulation involved numerically computing sixteen 

different cases with varying design parameters to analyze the impact of those parameters on the 

attenuation of sound pressure inside the tire model and the corresponding frequency reduction. 

Finally, dispersion diagrams were plotted to illustrate the mechanism of the frequency reduction 

and attenuation of the tire cavity. 

3.2 Verification of Finite Element Method 

To verify the finite element method for a porous material, a finite element model was created 

to emulate the standing wave tube experiment and to calculate the specific normal acoustic 

impedance of the porous material. Prior to the simulation, a theoretical model was constructed to 

calculate the specific normal acoustic impedance of the porous material, as shown in Figure 3.1. 

Based on the assumption of a plane wave excitation from the top of the tube, pressure distribution,  

𝑝(𝑥), and particle velocity, 𝑢̃(𝑥), in the standing wave tube were expressed as  

 

𝑝(𝑥) = 𝐴𝑒−𝑗𝑘𝑥 + 𝐵𝑒+𝑗𝑘𝑥 

𝑢̃(𝑥) =
𝐴

𝜌𝑜𝑐
𝑒−𝑗𝑘𝑥 −

𝐵

𝜌𝑜𝑐
𝑒+𝑗𝑘𝑥. 

 

(12) 

From Equation (12), the specific normal acoustic impedance, 𝑧̃𝑛(𝑥), was calculated as: 

 

𝑧̃𝑛(𝑥) =
𝑝(𝑥)

𝑢̃(𝑥)
= 𝜌𝑜𝑐⁡

𝐴𝑒−𝑗𝑘𝑥 + 𝐵𝑒+𝑗𝑘𝑥

𝐴𝑒−𝑗𝑘𝑥 − 𝐵𝑒+𝑗𝑘𝑥
⁡ 

 

(13) 
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where A and B are the complex amplitudes of plane waves propagating in the positive and negative 

going directions, respectively. For the case of a finite depth air layer backed by a rigid surface, A 

and B are equal based on the assumption of perfect reflection owing to the rigid backing boundary 

condition. Hence, the specific normal acoustic impedance of a layer of depth, d, can be simplified 

to  

𝑧̃𝑛(𝑑) = 𝜌𝑜𝑐⁡
𝑒−𝑗𝑘𝑑 + 𝑒+𝑗𝑘𝑑

𝑒−𝑗𝑘𝑑 − 𝑒+𝑗𝑘𝑑
= −𝑗𝜌𝑜𝑐 cot(𝑘𝑑) (14) 

in the case of an air layer. For a layer of porous material, the result becomes 

𝑧̃𝑛 = −𝑗𝜔
𝜌̃

𝑘̃
𝑐𝑜𝑡(𝑘̃𝑑) . (15) 

 

 

Figure 3.1. Schematic of the standing wave tube for finite element and theoretical model to 

describe measurement of acoustic properties of porous material. 

 

The finite element model emulates the standing wave tube and is filled with air. A one inch 

(25.3 mm) porous material is placed at the bottom of the tube, backed by the rigid termination 

boundary condition. The tube diameter is a 50 mm and the height is 900 mm, excluding the porous 
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material thickness. In addition, two microphones with a 50 mm spacing are placed 100 mm distant 

from the porous material. A plane acoustic wave of one Pascal is imposed at the top of the model, 

and the pressures at microphones 1 and 2 are measured to calculate the specific normal acoustic 

impedance. 

In terms of material properties, the bulk modulus of air is 138,710 Pa, measured at 24 deg.C 

of ambient temperature, which corresponds to the same conditions as the experimental 

measurement in Chapter 4.1. The density of air is 1.1615 kg/m3, measured at 99.25 kPa ambient 

pressure. The porous material properties are frequency-dependent complex density and bulk 

modulus, both of which are computed by the JCA model and then input to the simulation via the 

Abaqus input file. 

Regarding boundary conditions, the entire tube surface except for the excitation location is 

modeled as rigid. To ensure interaction between the air (acoustic) and porous material (acoustic), 

the "TIE" function is applied to create continuity boundary conditions. Figure 3.2 illustrates the 

comparison between theoretical results, calculated using Equation (15), and the FEA results. It 

shows good agreement in the frequency range of interest, which indicates the validity of the finite 

element method of porous material in Abaqus. 

 

 

Figure 3.2. Comparison of acoustic impedance between theoretical result and FEA result with 

3,500 Rayl/m of FR. 
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3.3 Finite Element Analysis of the Two-dimensional Torus-shaped Lined Tire 

3.3.1 Model Description 

To investigate the pressure distribution inside a porous material lined tire and the 

acceleration at the center of the rim, a tire model consisting of a rim, an air cavity, and a porous 

layer was constructed. For the component type, a 2D deformable solid was used to create the rim 

model based on the 18-inch outer diameter size. Similarly, the air cavity model was created as a 

2D deformable acoustic medium, with the circumferential length of the cavity matched to the first 

cavity frequency of the actual tire. Finally, a porous lining with a thickness of either 1 inch or 2 

inches was constructed using the 2D deformable acoustic medium. These components were then 

assembled to form a complete system, and the relationship between them will be explained in 

detail in the following section. 

 

 

Figure 3.3. Finite Element Model of a lined tire. 

 

The material properties of the rim, air, and porous material are summarized in the Table 

2.1. The bulk modulus of air was measured at 24◦C and 99.25 kPa, which corresponds to the same 

conditions as the experimental measurement. The speed of sound was also calculated to be 345.57 

m/s at this temperature. To prevent any interference from rim resonance, the rim's stiffness was set 

to an exceptionally high value, and its density was adjusted to match that of steel. In particular, the 

porous material properties are frequency-dependent complex values using the JCA model. 
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Table 3.1. Summary of material properties in the FEA. 

 

 

Regarding the boundary conditions, the rim was immobilized by constraining three degrees 

of freedom for displacement and three degrees of freedom for rotation. To ensure that all three 

components of the assembly worked together, continuity constraints were imposed to link each 

part. To be more specific, the "TIE" function was used to create a continuity boundary condition 

for two interfaces, namely the interface between air and the rim, and the interface between air and 

the porous layer. For the “TIE” function between air (acoustic) and rim (stress), the translations 

on the interface were tied as degrees of freedom. For the interface between air (acoustic) and 

porous layer (acoustic), the tied degrees of freedom were the acoustic pressure. In both cases, air 

was designated as the master surface, while the rim and porous layer were set as slaves. Finally, 

to replicate the impact of road conditions, an excitation solid element was created to function as 

the source, as illustrated in Figure 3.3. This element was linked to the airway instead of a porous 

layer to prevent any potential impact from the layer. A “TIE” function was also used to connect 

the excitation solid and airway. To create the source, a harmonic force of 1 N was applied to the 

solid component across the desired frequency range. 

3.3.2 Simulation Process 

There are a total of three steps involved in this simulation, as illustrated in Figure 3.4. In 

the first step, an input file is generated for the simulation. Based on the tire model described in 

Section 3.2.1, a steady-state dynamic direct method is set up to compute the complex response of 

pressure and acceleration in the frequency range of 100-500 Hz. In the second step, the input file 

is modified to include the properties of the porous material. These properties are calculated using 

the JCA model with respect to varying design variables and frequencies. Finally, the simulation is 

executed using the Abaqus Command and the results are visualized in the Abaqus CAE. The 

complex sound pressure along the tire air cavity, which is an output of the simulation, is then 
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extracted from Abaqus and imported to MATLAB to plot the sound pressure level and dispersion 

diagrams. Figure 3.5 shows the location of the microphone where the sound pressure level was 

computed from the simulation. The first cavity frequency and the peak value of sound pressure 

level at that frequency were obtained from the sixteen different cases of simulation for two 

different thickness of porous layers. These results will be compared with the theoretical results and 

will be discussed in further detail in Section 3.4. Additionally, to evaluate the effect of porous 

linings on the acceleration transmissibility, the inertance at the rim center, described in Figure 3.3, 

was also measured. The simulation was conducted with two thicknesses of porous layer with 3,500 

Rayls/m of FR. These results will be validated by comparison with the experimental results in 

Section 4.2.  

 

 

Figure 3.4. Finite Element Analysis process for a porous lined tire. 

 

 

Figure 3.5. Sound Pressure Level at microphone location from FEA with 3,500 Rayl/m of FR. 
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3.4 Results and discussion 

The finite element analysis of the lined tire involved extracting the tire cavity resonance 

frequency and sound pressure level at that frequency. These simulation results are compared with 

those obtained from the theoretical work in Figure 3.6 and Table 3.2. Overall, the simulation results 

showed a similar pattern to that observed in the theoretical work. The design cases that produced 

a larger negative imaginary part of the axial wavenumber were validated by the lower sound 

pressure level in the FE simulation, indicating improved mode attenuation. Furthermore, it was 

observed that the design cases within the second optimal range from the simulation matched those 

from the theoretical work. Regarding the cavity frequency prediction, the maximum errors were 

0.9% and 2.9% for the 1 and 2 inch thicknesses, respectively. 

 

 

Figure 3.6. Behavior of first cavity frequency and sound pressure level from theory and FEA. 

 

Additionally, smaller errors were observed for the low FR cases, while larger errors were 

observed for the high FR cases. In particular, at very high FR values, the frequency reached the 

original value or even became higher. This effect occurred because the porous material behaved 

as if it were a solid due to the very high FR. The “solid” porous layer caused the circumferential 

length of the air cavity to be shortened, resulting in a higher tire cavity frequency. This trend was 

more pronounced in the 2 inch cases. 

Figure 3.7 illustrates the relationship between mode attenuation and flow resistivity in the 

2 inch lined tire cases. As the flow resistivity increases from a low value and reaches its first 

optimal range of 2,000 Rayls/m, the sound pressure level decreases to 57.2 dB from its original 
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value of 107.6 dB in the non-lined case. However, as the flow resistivity continues to increase to 

10,000 Rayls/m, the attenuation deteriorates, and the sound pressure level increases to 62.5 dB. 

By further increasing the flow resistivity up to 200,000 Rayls/m, which is the second optimal range, 

the sound pressure level is reduced to 54.2 dB, which is the minimum level of attenuation observed 

in this study. Beyond the second optimal range, further increases in flow resistivity worsen the 

attenuation. Interestingly, at very high flow resistivities of around 5,000,000 Rayls/m, the first 

cavity frequency increases to 213 Hz, which is even higher than the original first cavity frequency. 

As previously explained, this is due to the porous layer becoming like a solid, resulting in a shorter 

circumferential length of the tire. 

 

Table 3.2. Comparison between the theoretical and the numerical results. 

 

 

 

Figure 3.7. Behavior of mode attenuation with respect to change in flow resistivity. 
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To highlight the impact of the second optimal range, cases with varying thicknesses but 

the same level of frequency reduction and mode attenuation are compared in Figure 3.8. The results 

indicate that a design with a 1.5 inch thickness within the first optimal range and the design with 

a 1 inch thickness within the second optimal range both achieved a comparable level of sound 

pressure level to that of the non-optimized acoustic foam with a 2 inch thickness. The results of 

this case study suggest that by optimizing the design of the porous lining material, it is possible to 

achieve equivalent levels of attenuation with a thinner thickness of lining material compared to a 

thicker one. 

 

 

Figure 3.8. Case study of the equivalent level of attenuation with different design. 

 

The dispersion diagram is a graphical representation of a wavenumber decomposition of a 

propagating wave [30]. In terms of interpretation, the magnitude of the dispersion curve represents 

the sound pressure level at a particular wavenumber and frequency, while the slope of the curve 

joining the origin and a point on the dispersion curve indicates the phase speed. To visualize the 

effect of a porous lining, the dispersion diagram was plotted by extracting sound pressure from the 

FE results at 170 nodes along the circumference of the tire’s air cavity and Fourier transforming 

that data via MATLAB code.  
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Figure 3.9. Pressure distribution and dispersion diagram from FEA with 3,500 Rayl/m of FR. 

 

Figure 3.9 displays the pressure distributions along the tire circumference and the dispersion 

diagrams with respect to wavenumber for both the 1 inch and 2 inch lining cases. The lined cases 

were simulated based on the FR of 3,500 Rayls/m. The pressure distribution effectively captured 

the frequency reduction and mode attenuation, while the dispersion diagram showed that the phase 

speed of the lined tire was slower than that of the non-lined tire. Additionally, it was observed that 

the phase speed varied depending on the frequency, indicating that the wave type inside the lined 

tire was dispersive, meaning that different frequency components travel at different speeds. 
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 EXPERIMENTAL ANALYSIS: VALIDATION AND APPLICATION 

4.1 Measurement of Acoustic Impedance and Design Parameter Estimation 

As the first step in experimental validation, the acoustic impedance of an actual sample of 

acoustic polyurethane foam, a porous material, was measured. A curve-fitting optimization was 

then conducted using MATLAB software to estimate its design parameters. Figure 4.1 illustrates 

the entire process of the measurement and curve-fitting optimization. 

 

 

Figure 4.1. Measurement and curve-fitting process of acoustic impedance [31]. 

 

A standard Brüel and Kjaer standing wave tube (4206) was used in the measurement process 

to determine the reflection coefficient and normal acoustic impedance of the porous material 

sample via the two-microphone method [31]. To conduct the curve-fitting, it was necessary to 

determine both control and fixed variables. In this study, the control variables were selected to be 

flow resistivity, VCL, and TCL, while porosity and tortuosity were considered to be fixed variables. 

Regarding the process, the complex density, 𝜌̃, and complex bulk modulus, 𝐵̃, extracted from the 

JCA model were used to determine the characteristic impedance, 𝑧̃𝑐,⁡and complex wavenumber, 

𝑘̃𝑝: i.e., 
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𝑧̃𝑐 = 𝜌⁡̃𝑐⁡̃ = √𝜌⁡̃𝐵⁡̃ 

𝑘̃𝑝 =
𝜔

𝑐⁡̃
= 𝜔√

𝜌⁡̃

𝐵⁡̃
 

(15) 

where 𝑐⁡̃ is the complex speed of sound within the porous material. These values were then input 

to the transfer matrix for modeling the porous layer, which is based on the assumption that the 

porous material is rigid and is backed by a rigid termination.  

 

 

Figure 4.2. The Transfer Matrix Method for a rigid porous layer. 

 

The transfer matrix for modeling the porous layer is 

[
𝑝1
𝑢1
]
𝑥=0

= [
𝑇11 𝑇12
𝑇21 𝑇22

] [
𝑝2
𝑢2
]
𝑥=𝑑

 

where [
𝑇11 𝑇12
𝑇21 𝑇22

] = [
cos⁡(𝑘̃𝑝𝑑) 𝑗𝑧̃𝑐sin⁡(𝑘̃𝑝𝑑)

𝑗
1

𝑍̃𝑐
sin⁡(𝑘̃𝑝𝑑) cos⁡(𝑘̃𝑝𝑑)

]. 
(16) 

The pressure and particle velocity at 𝑥 = 0 and 𝑥 = 𝑑  are represented as 𝑝1, 𝑢1  ⁡and 𝑝2, 𝑢2 , 

respectively. For the rigid backing boundary condition, 𝑇12 and 𝑇22 are neglected in calculating 

the reflection coefficient because the particle velocity, 𝑢2 , is zero at 𝑥 = 𝑑 . The reflection 

coefficient at normal incidence, R, can be written as  

 𝑅 =
𝑇11/(𝑇21𝜌𝑜𝑐) − 1

𝑇11/(𝑇21𝜌𝑜𝑐) + 1
. (17) 

Finally, Equation (13) can be used to estimate the specific normal acoustic impedance of porous 

material: i.e., 

 𝑧̃𝑛 = 𝜌𝑜𝑐
1 + 𝑅

1 − 𝑅
. (18) 
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The estimated acoustic impedance was curve-fitted based on the measured acoustic impedance 

using a MATLAB optimization function “particleswarm” to identify the optimal value of design 

variables. Figure 4.5 illustrates the result of the curve-fitting, and the optimized design variables 

were obtained over the frequency range up to 1.6 kHz. The values obtained are summarized in 

Table 4.1. 

 

 

Figure 4.3. Measurement set-up for acoustic impedance of porous material. 

 

 

Figure 4.4. Sample of porous material provided by Soundcoat for research purposes. 
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Figure 4.5. Comparison between the measurement and estimation of the acoustic impedance. 

 

Table 4.1. Estimated design parameters of the acoustic polyurethane foam. 

 

4.2 Measurement of Acceleration of a Tire under Free Boundary Condition 

As the second step in experimental validation, the acceleration of a lined tire under free 

boundary conditions was measured. The results were then compared with the result obtained in 

finite element analysis in Chapter 3.3.2 to validate the frequency reduction and mode attenuation 

achieved through the use of a porous lining. A tire lined with the porous material with a flow 

resistivity of 3,500 Rayls/m was suspended in the air with a flexible cord while a tri-axial 

accelerometer was positioned at the wheel center, as depicted in Figure 4.6(b). The tire tread was 

subjected to vertical excitation using an impact hammer, and the acceleration was measured. The 

inertance frequency response at the wheel hub center is shown in Figure 4.6(a). The first cavity 

frequency at 207 Hz was reduced to 198 Hz and 182 Hz, and the peak inertance was also decreased 

by 16.1 dB and 19 dB in the 1 inch and 2 inch foam lining cases, respectively. These results are in 

good agreement with that from simulation as summarized in Table 4.2.  
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Figure 4.6. Inertance frequency response of non-lined and lined cases under free boundary 

conditions. 

 

Table 4.2. Comparison between the measurement and the simulation. 

 

4.3 Measurement of Transmitted Acceleration of a Static and Loaded Tire 

The experimental validation of the effect of porous lining was also conducted under the static 

and loaded boundary condition. The same lined tire from Chapter 4.2 was fixed at its hub on a 

static test rig [32] and loaded to 1,000 lbs. A tri-axial accelerometer was positioned at the inner 

rim, as depicted in Figure 4.7. The center of the tire tread was subjected to an excitation using an 

impact hammer, and the acceleration was measured.  
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The results of three cases, non-lined, 1 inch lined, and 2 inch lined, are compared in Figure 4.7 

under the loaded boundary condition. Two cavity peaks at 207 Hz and 198 Hz were observed in 

the non-lined case. The addition of the 1 inch and 2 inch linings decreased the cavity frequency to 

196 Hz and 189 Hz, respectively. The inertance peak was also reduced from 104 dB and 113 dB 

for the two peaks of non-lined cases to 98 dB and 93 dB for the 1 inch and 2 inch lined cases, 

respectively. These findings indicate that the porous lining has an impact on the frequency 

reduction and attenuation of tire air cavity resonance. 

 

 

Figure 4.7. Inertance frequency response of non-lined and lined cases under static and loaded 

boundary condition.  

4.4 Measurement of Transmitted Force and Internal Sound Pressure of a Rolling Tire  

The effect of the porous lining on TACR was validated under tire rolling conditions by 

measuring the transmitted force and sound pressure inside the tire. This involved placing a force 

transducer at the hub center and a wireless microphone on the rim while a 235/50R18 Michelin 

tire was loaded to 1,000 lbs. For the force and sound pressure measurement under rolling 

conditions, the tire was rolled over the pavement at 30 mph and 10 mph, respectively. To be more 

specific, as depicted in Figure 4.8, the tire rolling test was conducted using the Tire Pavement Test 
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Apparatus (TPTA) at the Herrick Laboratories, Purdue University. The main beam can be moved 

in the radial direction of the rotating disc to load and unload the test tire up to 1,000 lbs, and the 

rotating disc is operated by an electric motor inside the apparatus to run the tire up to 30 mph along 

the pavement. 

 

 

Figure 4.8. Tire Pavement Test Apparatus in Herrick Labs at Purdue University. 

 

The experimental set-up involved mounting a test tire on a specified rim connected to a 

wheel force transducer, as shown in Figure 4.9. The wheel-tire assembly was then installed on the 

test rig, and a tri-axial accelerometer was placed on the center of the hub to measure the transmitted 

acceleration to the suspension. In addition, Figure 4.10 depicts a wireless microphone fixed on the 

rim (inside the test tire) to measure the internal sound pressure inside the rolling tire. This device 

was wirelessly controlled, and sound pressure inside the rolling tire was recorded at 10 mph. 

 

 

Figure 4.9. Accelerometer and wheel force transducer. 
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Figure 4.10. Wireless microphone installed on the rim inside a tire. 

 

Figure 4.11 shows the measurement and analysis process for the experiments conducted 

under rolling boundary conditions. The force, moment, and acceleration data collected in the 

experiments were sent to the Brüel and Kjaer (B&K) Pulse software on a laptop via a wifi router. 

The time domain signals were recorded for processing in B&K Pulse and were analyzed later using 

MATLAB code. Additionally, the internal pressure measured by the wireless microphone on the 

rolling rim was provided to the B&K Connect software, and spectrogram analysis was conducted 

using that software. 

 

 

Figure 4.11. Measurement and analysis procedure in the rolling tire experiment. 

 

The acceleration, force, and moment measured at the wheel center location are compared between 

the non-lined tire case and the lined tire case, as shown in Figure 4.12. These results confirmed the 

effectiveness of the porous lining, with approximately a minimum of 10 dB and a maximum of 15 
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dB reduction in the six different directions of measurement. The explanation of each direction can 

be found in the Appendix. Regarding the frequency reduction, although it was not very clear in all 

measurements, a frequency reduction of 10 Hz was captured in Figure 4.12 (a), (c), (d), and (f), as 

expected in the theoretical and finite element analysis. One possible explanation for the unclear 

frequency reduction in all directions is due to the skewed angle of cavity resonance under rolling 

boundary condition, where the tire's acoustic mode is deflected about 30-60° depending on the 

speed. 

 

 

Figure 4.12. Transmitted Acceleration, Force, and Moment of a Tire during Rolling at 30 mph. 
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In the sound pressure measurement though, the frequency reduction was well captured. As 

shown in Figure 4.13, the 1 inch and 2 inch porous linings significantly reduced the sound pressure 

level inside the tire and shifted the first cavity frequency from 207 Hz to 198 Hz and 182 Hz, 

respectively. These measurements confirm that our finite element analysis (FEA) model accurately 

predicts experimental results. 

 

 

Figure 4.13. Spectrogram of sound pressure inside of a rolling tire at 10 mph. 
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 CONCLUSIONS AND FUTURE WORKS 

5.1 Conclusions 

In the present work, the frequency reduction and attenuation of the tire cavity resonance due 

to a porous lining has been investigated. The JCA model was adopted in the theoretical analysis to 

describe the sound propagation in the porous lining, thus allowing for a broader working boundary 

of design parameters and consideration of visco-inertial and thermal effects. The acoustic 

modeling was conducted based on a two-dimensional unfolded tire geometry and a transcendental 

equation was derived to compute the axial wavenumber in the tire. Integration of the JCA model 

and acoustic modeling predicted the frequency reduction and mode attenuation with respect to 

changes in design parameters. An important finding was the existence of not only the first optimal 

range previously identified by other researchers, but also a second optimal range that performed 

better in terms of attenuation. This new finding is further discussed next.  

The investigation of the frequency reduction and mode attenuation of the tire cavity 

resonance was extended to a finite element analysis using a two-dimensional tire model with a 

porous lining. The simulation was conducted using the steady-state-dynamic mode of Abaqus 

software, and the first cavity frequency and sound pressure level were extracted and compared 

with the theoretical result. Interestingly, the second optimal range discovered in the theoretical 

analysis was also observed in the simulation. Furthermore, the case study demonstrated that a thin, 

but precisely engineered porous material with a second optimal FR could achieve comparable 

levels of attenuation to a thicker porous lining that was chosen without meticulous optimization. 

This finding has important implications for both porous material and tire manufacturers as it allows 

them to maximize performance while addressing issues such as cost, weight, and space limitations. 

As another output of the simulation, dispersion diagrams were generated by plotting the spatial 

Fourier transformed sound pressure inside the tire model. The diagrams revealed that the frequency 

reduction was a result of the slowed phase speed, and the mode attenuation was caused by the 

complex wavenumber due to the presence of the porous lining. The diagrams also indicate that the 

wave propagation within the lined tire was dispersive, with different frequency components 

traveling at different speeds while the wave type of the non-lined tire is non-dispersive.  
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In the experimental analysis, a porous material sample, an acoustic polyurethane foam, was 

selected and studied in the initial step. To estimate the design parameters, acoustic impedance was 

measured, and curve-fitting optimization was conducted. The resulting estimated design 

parameters fell approximately within the first optimal range. Measurements of the acceleration and 

force at the wheel center and the sound pressure inside a tire were taken and compared for both 

non-lined and lined tire cases. The results showed that the results from the finite element analysis 

aligned well with those from the experiments.  

5.2 Future works 

To further support the conclusions of this article, it is recommended that future research be 

conducted to create a sample in the second optimal region and have its performance validated. 

Additionally, the manufacturability and mass production feasibility of the sample should be 

investigated. The benefits and drawbacks of the second optimal sample should also be studied to 

ascertain if it can be considered as an effective countermeasure for tire air cavity resonance in the 

automotive market. Further, the use of a poro-elastic model of the foam would make it possible to 

predict the structural damping of tire vibration in addition to the sound attenuation.  
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APPENDIX.  TIRE FORCE AND MOMENTS  

1. Tractive (Longitudinal) force, 𝐹𝑋  : The force of the road on the tire along the X-axis. The 

longitudinal force causes the acceleration/deceleration of the vehicle, depending on whether 

the tire is driven or braked. Positive longitudinal force (driving/driven force) is an indication 

that the tire is driven. Negative longitudinal force (braking force), is an indication that the tire 

is stopped. 

 

2. Lateral force, 𝐹𝑌: The force of the road on the tire along the Y-axis. Lateral force will cause a 

vehicle to move to the left or right depending on whether the tire is steered/cambered to either 

side. 

 

3. Normal force, 𝐹𝑍: The force of the road on the tire along the Z-axis. It is the contact force 

between the road and tire and will be on the contact patch. Normal force is always negative 

due to the direction of the force. 

 

4. Overturning moment, 𝑀𝑋: The moment about the X-axis. Overturning moment is the effect of 

left-to-right displacement of the point of action of the normal force with respect to the contact 

center. Overturning moment will affect camber behavior and will often be used for finalizing 

camber adjustments, especially on race cars. 

 

5. Rolling resistance moment, 𝑀𝑌: The moment about the Y-axis. Rolling resistance moment 

represents the fore-aft displacement of the point of action of normal force with respect to the 

contact center. 

 

6. Aligning moment, 𝑀𝑍: The moment about the Z-axis. It represents the point of action of the 

shear forces (longitudinal and lateral force) within the road plane. 
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Figure A.1. Tire force and moments.
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