GAME-THEORETIC DESIGN FOR ENERGY-EFFICIENT BEHAVIORS IN RESIDENTIAL COMMUNITIES
Technological advances and gaming have assisted users in becoming energy-efficient or raising awareness about energy efficiency. However, these games typically take place in schools and workplaces. Low-income households, which spend a larger percentage of income on utilities compared to average income households, exhibit greater sensitivity to energy disturbances. Despite this, there has been limited research on applying these technologies in low-income households.
The dissertation addresses the research gap concerning motivating low-income households to adopt new technologies focused on implementing energy-efficient HVAC behaviors. To achieve this objective, a gamification approach is employed, integrating a competitive social game into a cloud-based application named MySmartE. This application offers personalized eco-feedback and enables voice commands using Amazon Alexa. The game is deployed in two multi-residential low-income household communities located in Indiana. The collected data from field studies is analyzed to explore various aspects, including community interactions during the gaming seasons, technology adoption, and factors influencing participation in the social game. The findings reveal a positive correlation between increased gaming interac- tions and the adoption of MySmartE technology within these communities, underscoring the potential of gamification and technology to effectively engage low-income households in adopting energy-efficient practices.
Funding
National Science Foundation (No. 1737591)
Big Ideas Challenge program at Purdue University
History
Degree Type
- Doctor of Philosophy
Department
- Mechanical Engineering
Campus location
- West Lafayette