<p dir="ltr">Electric roadways (ERs) represent a new paradigm for electrified transportation that is</p><p dir="ltr">enabled by the emerging dynamic (in-motion) wireless power transfer technology. Large-scale</p><p dir="ltr">integration of DWPT systems into power grids can pose a problem due to its high-power</p><p dir="ltr">requirements, significant number of power electronic converters and spatial concentration.</p><p dir="ltr">Despite their potential magnitude, the operational impacts of DWPT on the power grid have</p><p dir="ltr">not been fully studied in the literature. This dissertation contributes to our understanding</p><p dir="ltr">of how ERs could be successfully integrated with the electric power system at a diverse range</p><p dir="ltr">of spatial and temporal levels.</p><p dir="ltr">On a macroscopic level, a framework for assessing the financial viability of ERs is proposed.</p><p dir="ltr">Annual ER load estimations from traffic flow models of electric vehicles are used to</p><p dir="ltr">generate energy forecasts and carry out a financial evaluation. These models are also used to</p><p dir="ltr">plan distribution system capacity expansion. On a mesoscopic level, a data-driven design of</p><p dir="ltr">ERs and their interconnection with the distribution grid is presented. A data-based stochastic</p><p dir="ltr">traffic flow model is developed and used for designing the interconnection of the DWPT</p><p dir="ltr">system with the distribution grid ensuring adequate power transmission to high penetration</p><p dir="ltr">levels of heavy-duty trucks. The model is also used for conducting a series of quasi-steady</p><p dir="ltr">state studies on the power distribution system. On a microscopic level, a methodology for</p><p dir="ltr">modeling ER systems for time-domain simulations is proposed. Dynamic component models</p><p dir="ltr">are developed for the DWPT system. Power electronics are modeled using average-value</p><p dir="ltr">representations and integrated with models of the distribution grid. The models are used for</p><p dir="ltr">time-domain system simulations, transient analysis, fault analysis and power quality studies.</p><p dir="ltr">Theoretical analysis as well as numerical case studies and simulations of the proposed</p><p dir="ltr">methodologies are presented.</p>
Funding
National Science Foundation Grant No. 1941524
Joint Transportation Research Program administered by the Indiana Department of Transportation (INDOT) and Purdue University.