File(s) under embargo

1

year(s)

7

month(s)

10

day(s)

until file(s) become available

INTERFACIAL TOUGHENING OF CARBON FIBER REINFORCED POLYMER (CFRP) MATRIX COMPOSITES USING MWCNTS/EPOXY NANOFIBER SCAFFOLDS

thesis
posted on 10.05.2021, 15:57 by Vidya Balu WableVidya Balu Wable
This study represents a cost-effective method to advance the physical and mechanical properties of carbon fiber-reinforced polymer (CFRP) prepreg composite materials, where electrospun multiwalled carbon nanotubes (CNTs)/epoxy nanofibers fabricated and deposited in between the layers of traditional CFRP prepreg composite. CNT-aligned epoxy nanofibers were uniformly formed by an optimized electrospinning method. Electrospinning is considered one of the most flexible, low-cost, and globally recognized methods for generating continuous filaments from submicron to tens of nanometer diameter. Nanofilaments were incorporated precisely on the layers of prepreg to accomplish increased adhesion and interfacial bonding, leading to increased strength and enhancements in more mechanical properties. As a result, the modulus of the epoxy and CNT/epoxy nanofibers were revealed to be 3.24 GPa and 4.84 GPa, leading to 49% enhancement. Furthermore, interlaminar shear strength (ILSS) and fatigue performance at high-stress regimes improved by 29% and 27%, respectively. Barely visible impact damage (BVID) energy improved considerably by up to 45%. The thermal and electrical conductivities were also increased considerably because of the highly conductive CNT networks present in between the CFRP layers. The newly introduced approach was able to deposit high content uniform CNTs at the ply interface of prepregs to enhance the CFRP properties, that has not been achieved in the past because of the randomly oriented high viscosity CNTs in epoxy resins.

History

Degree Type

Master of Science in Mechanical Engineering

Department

Mechanical Engineering

Campus location

Indianapolis

Advisor/Supervisor/Committee Chair

Hamid Dalir

Advisor/Supervisor/Committee co-chair

Mangilal Agarwal

Additional Committee Member 2

Andres Tovar