INVESTIGATING GERMINATING SEEDS AS OXYGEN SCAVENGERS IN HERMETIC STORAGE: IMPLICATIONS FOR INSECT MORTALITY
Hermetic storage systems have gained global popularity for their ability to minimize stored product losses by depleting oxygen. However, relying solely on insects to deplete oxygen in hermetic storage, when this process takes longer, can result in (further) damage to stored commodities. This study was conducted to investigate: (i) the potential of four different germinating seeds (soybean, rice, cowpea, and corn) in scavenging oxygen within hermetic storage systems; (ii) the impact of container volume and the number of germinating seeds on oxygen depletion; and (iii) the effects of germinating seeds on insect mortality and grain quality. Among the crops tested, cowpea, during their fourth, fifth, and sixth germination stages (T4, T5, and T6), depleted oxygen below 5% within 12 hours. The fourth stage of cowpea (T4) was identified as a potential oxygen scavenger due to its shorter germination time and ease of handling. Moreover, increasing the number of germinating seeds resulted in a faster initial rate of oxygen depletion in all-sized jars. Doubling both the volume of the jars and the number of germinating seeds had a similar rate of oxygen depletion. Additionally, an equation was derived to predict the required number of germinating seeds based on data from different numbers of seed and container volume combinations. Relative humidity levels increased to approximately 90% when empty jars were used but remained consistent at 40% when the jars were filled with grains. Furthermore, using 10, 20, and 30 germinating cowpea seeds with stored grains and insects, oxygen levels were reduced below 5% at different time intervals. Complete adult mortality of C. maculatus was achieved within 3-5 days of exposure, depending upon the number of germinating seeds. 20 and 30 seeds achieved complete mortality within 72 hours, while 10 seeds required 120 hours. As the number of germinating seeds increased, egg counts decreased, and moisture content significantly increased in the treatment involving 30 seeds. Furthermore, no adult emerged after 96 and 120 hours of exposure to normoxia for the 30 and 20 seed treatments, respectively. However, in the 10 seeds treatment, a small percentage of adults (0.29%) did emerge even after 120 hours of exposure.
History
Degree Type
- Master of Science
Department
- Entomology
Campus location
- West Lafayette