Purdue University Graduate School
PurdueThesis2023.pdf (4.36 MB)

Improving The Robustness of Artificial Neural Networks via Bayesian Approaches

Download (4.36 MB)
posted on 2023-08-30, 20:32 authored by Jun ZhuangJun Zhuang

Artificial neural networks (ANNs) have achieved extraordinary performance in various domains in recent years. However, some studies reveal that ANNs may be vulnerable in three aspects: label scarcity, perturbations, and open-set emerging classes. Noisy labeling and self-supervised learning approaches address the label scarcity issues, but most of the work couldn't handle the perturbations. Adversarial training methods, topological denoising methods, and mechanism designing methods aim to mitigate the negative effects caused by perturbations. However, adversarial training methods can barely train a robust model under the circumstance of extensive label scarcity; topological denoising methods are not efficient on dynamic data structures; and mechanism designing methods often depend on heuristic explorations. Detection-based methods devote to identifying novel or anomaly instances for further downstream tasks. Nonetheless, such instances may belong to open-set new emerging classes. To embrace the aforementioned challenges, we address the robustness issues of ANNs from two aspects. First, we propose a series of Bayesian label transition models to improve the robustness of Graph Neural Networks (GNNs) in the presence of label scarcity and perturbations in the graph domain. Second, we propose a new non-exhaustive learning model, named NE-GM-GAN, to handle both open-set problems and class-imbalance issues in network intrusion datasets. Extensive experiments with several datasets demonstrate that our proposed models can effectively improve the robustness of ANNs.




Degree Type

  • Doctor of Philosophy


  • Computer Science

Campus location

  • Indianapolis

Advisor/Supervisor/Committee Chair

Mohammad Al Hasan

Additional Committee Member 2

Snehasis Mukhopadhyay

Additional Committee Member 3

George Mohler

Additional Committee Member 4

Mihran Tuceryan