Purdue University Graduate School
SK-Dissertation-ExamEdit5.2.pdf (12.05 MB)

Interfacial Rheological Properties of Protein Emulsifiers, Development of Water Soluble b-Carotene Powder and Food Science Engagement (Emulsifier Exploration)

Download (12.05 MB)
posted on 2019-06-11, 14:47 authored by Simran KaurSimran Kaur

Interfacial rheology describes the functional relationship between the deformation of an interface, the stresses exerted in and on it, and the resulting flows in the adjacent fluid phases. These interfacial properties are purported to influence emulsion stability. Protein emulsifiers tend to adsorb to the interface of immiscible phases, reduce interfacial tension as well as generate repulsive interactions. A magnetic interfacial shear rheometer was used to characterize the surface pressure-area isotherms as well as interfacial rheological properties of two proteins- sodium caseinate and b-lactoglobulin. Then, sodium caseinate was used as a carrier for b-carotene encapsulation.

b-carotene is a carotenoid that exhibits pro-vitamin A activity, antioxidant capacity and is widely used as a food colorant. It is however, highly hydrophobic and sensitive to heat, oxygen and light exposure. Thus b-carotene as food ingredient is mainly available as purified crystals or as oil-in-water emulsions. In this study, b-carotene stability, and solubility in water for application as a natural colorant was improved by preparation of a sodium caseinate/ b-carotene powder using high pressure homogenization, solvent evaporation and spray drying. The powders thus prepared showed good solubility in water and yielded an orange coloration from b-carotene. The effect of medium chain triglyceride concentration (1%, 10%) and incorporation of a natural antioxidant (Duralox, Kalsec) on powder stability was studied as a function of storage time and temperature.b-carotene stability was reduced at higher storage temperature (4oC> 21oC> 50oC) over 60 days and followed first order degradation kinetics at all temperatures. Incorporation of natural antioxidant improved b-carotene stability and resulted in a second first order degradation period at 50oC. As b-carotene content decreased, Hunter Lab color values denoting lightness increased, while those for redness and yellowness of the powder decreased. This sodium caseinate based b-carotene powder could be used as a food ingredient to deliver natural b-carotene to primarily aqueous food formulations.

In the last part of this work, an engagement workshop was developed as a means to educate young consumers about the function of emulsifiers in foods. Food additives are important for food product development, however to consumers, a discord between their objective purpose and subjective quality has led to confusion. Food emulsifiers, in particular, are associated with lower healthiness perception due to their unfamiliar names. In collaboration with the 4H Academy at Purdue, a workshop high school student was conducted to develop an increased understanding of emulsions and emulsifiers. A survey was conducted with the participants who self-evaluated their gain in knowledge and tendency to perform certain behaviors with regards to food ingredient labels. The participants reported a gain in knowledge in response to four key questions on emulsions and emulsifiers, as well as an increased likelihood to read ingredients on a food label and look up information on unfamiliar ingredients.


Degree Type

  • Doctor of Philosophy


  • Food Science

Campus location

  • West Lafayette

Advisor/Supervisor/Committee Chair

Dr. M. Fernanda San Martin-Gonzalez

Additional Committee Member 2

Dr. Owen Jones

Additional Committee Member 3

Dr. Yuan Yao

Additional Committee Member 4

Dr. Ganesan Narsimhan

Additional Committee Member 5

Dr. Kendra Erk

Usage metrics



    Ref. manager