Purdue University Graduate School
Browse

Low-Energy Lunar Transfers in the Bicircular Restricted Four-body Problem

Download (26.49 MB)
thesis
posted on 2024-04-26, 16:47 authored by Stephen Scheuerle Jr.Stephen Scheuerle Jr.

With NASA's Artemis program and international collaborations focused on building a sustainable infrastructure for human exploration of the Moon, there is a growing demand for lunar exploration and complex spaceflight operations in cislunar space. However, designing efficient transfer trajectories between the Earth and the Moon remains complex and challenging. This investigation focuses on developing a dynamically informed framework for constructing low-energy transfers in the Earth-Moon-Sun Bicircular Restricted Four-body Problem (BCR4BP). Techniques within dynamical systems theory and numerical methods are exploited to construct transfers to various cislunar orbits. The analysis aims to contribute to a deeper understanding of the dynamical structures governing spacecraft motion. It addresses the characteristics of dynamical structures that facilitate the construction of propellant-efficient pathways between the Earth and the Moon, exploring periodic structures and energy properties from the Circular Restricted Three-body Problem (CR3BP) and BCR4BP. The investigation also focuses on constructing families of low-energy transfers by incorporating electric propulsion, i.e., low thrust, in an effort to reduce the time of flight and offer alternative transfer geometries. Additionally, the investigation introduces a process to transition solutions to the higher fidelity ephemeris force model to accurately model spacecraft motion through the Earth-Moon-Sun system. This research provides insights into constructing families of ballistic lunar transfers (BLTs) and cislunar low-energy flight paths (CLEFs), offering a foundation for future mission design and exploration of the Earth-Moon system.

Funding

National Science Foundation Graduate Research Fellowship Grant No. 10001485

NASA JSC Grant 80NSSC19K1175

History

Degree Type

  • Doctor of Philosophy

Department

  • Aeronautics and Astronautics

Campus location

  • West Lafayette

Advisor/Supervisor/Committee Chair

Kathleen C. Howell

Additional Committee Member 2

Carolin E. Frueh

Additional Committee Member 3

Andrea Capannolo

Additional Committee Member 4

Diane C. Davis