Purdue University Graduate School
Defense_Thesis.pdf (11.84 MB)


Download (11.84 MB)
posted on 2023-12-09, 06:53 authored by Su WangSu Wang

The parallel growth of contemporary machine learning (ML) technologies alongside edge/-fog networking has necessitated the development of novel paradigms to effectively manage their intersection. Specifically, the proliferation of edge devices equipped with data generation and ML model training capabilities has given rise to an alternative paradigm called federated learning (FL), moving away from traditional centralized ML common in cloud-based networks. FL involves training ML models directly on edge devices where data are generated.

A fundamental challenge of FL lies in the extensive heterogeneity inherent to edge/fog networks, which manifests in various forms such as (i) statistical heterogeneity: edge devices have distinct underlying data distributions, (ii) structural heterogeneity: edge devices have diverse physical hardware, (iii) data quality heterogeneity: edge devices have varying ratios of labeled and unlabeled data, and (iv) adversarial compromise: some edge devices may be compromised by adversarial attacks. This dissertation endeavors to capture and model these intricate relationships at the intersection of FL and highly heterogeneous edge/fog networks. To do so, this dissertation will initially develop closed-form expressions for the trade-offs between ML performance and resource cost considerations within edge/fog networks. Subsequently, it optimizes the fundamental processes of FL, encompassing aspects such as batch size control for stochastic gradient descent (SGD) and sampling for global aggregations. This optimization is jointly formulated with networking considerations, which include communication resource consumption and device-to-device (D2D) cooperation.

In the former half of the dissertation, the emphasis is first on optimizing device sampling for global aggregations in FL, and then on developing a self-sufficient hierarchical meta-learning approach for FL. These methodologies maximize expected ML model performance while addressing common challenges associated with statistical and system heterogeneity. Novel techniques, such as management of D2D data offloading, adaptive CPU clock cycle control, integration of meta-learning, and much more, enable these methodologies. In particular, the proposed hierarchical meta-learning approach enables rapid integration of new devices in large-scale edge/fog networks.

The latter half of the dissertation directs its ocus towards emerging forms of heterogeneity in FL scenarios, namely (i) heterogeneity in quantity and quality of local labeled and unlabeled data at edge devices and (ii) heterogeneity in terms of adversarially comprised edge devices. To deal with heterogeneous labeled/unlabeled data across edge networks, this dissertation proposes a novel methodology that enables multi-source to multi-target federated domain adaptation. This proposed methodology views edge devices as sources – devices with mostly labeled data that perform ML model training, or targets - devices with mostly unlabeled data that rely on sources’ ML models, and subsequently optimizes the network relationships. In the final chapter, a novel methodology to improve FL robustness is developed in part by viewing adversarial attacks on FL as a form of heterogeneity.


Degree Type

  • Doctor of Philosophy


  • Electrical and Computer Engineering

Campus location

  • West Lafayette

Advisor/Supervisor/Committee Chair

Christopher G. Brinton

Additional Committee Member 2

Shreyas Sundaram

Additional Committee Member 3

Chih-Chun Wang

Additional Committee Member 4

Abolfazl Hashemi