Purdue University Graduate School
Browse

Martin_Schmeidler_MS_Thesis.pdf

Reason: Unpublished information is used for the work in this thesis.

2

year(s)

11

month(s)

14

day(s)

until file(s) become available

NUMERICAL MODELLING OF CRYOGENIC TANK CHILLDOWN USING CHARGE-HOLD-VENT AND TANK PRESSURE CONTROL IN NO-VENT FILL OPERATION

thesis
posted on 2023-03-29, 17:39 authored by Martin D SchmeidlerMartin D Schmeidler

 

Over the last few years, there has been a concerted effort to develop and validate models
aiding the development of cryogenic refueling technologies. This effort is focused on the goal
of one day being able to refuel and store cryogenic propellants in the low gravity environ-
ment of space. The purpose of this research is to leverage the capabilities of some of these
recently developed models to create new ones and model more phenomena related to the
space applications of cryogenics.
The modelling work presented here is focused in the areas of cryogenic tank chilldown
and tank pressure control during storage/transfer. These tools are meant to help inform
future experiments being performed at the Glenn Research Center and elsewhere.
The model focusing on cryogenic tank chilldown provides a transient approach using
the charge-hold-vent (CHV) methodology to calculate the mass and time required to chill
a tank down to a desired temperature. Building on the 1-g Universal No-Vent Fill model
developed by NASA, the model captures the flashing of pooling liquid during the rapid
de-pressurization caused during the vent stage of the chilldown process. The model is com-
pared against two different datasets and successfully predicts pressure response throughout
the process to within 22%.
The thermodynamic vent system (TVS) model has been designed to be seamlessly inte-
grated into the 1-g Universal No-Vent Fill model to predict condensation and heat transfer
provided by the TVS during a no-vent fill. The TVS coil is spatially discretized and the
axial temperature distribution solved for. The model is capable of adapting to a rapidly
lowering or rising fill level that can lower the overall heat removal provided by the TVS.
While the heat removal is of primary importance, by capturing secondary phenomena such
as two-phase pressure drop, the TVS model is also capable of informing design decisions for
future systems. The model is compared against three test cases and predicts heat removal
to within 2%.

 

History

Degree Type

  • Master of Science

Department

  • Aeronautics and Astronautics

Campus location

  • West Lafayette

Advisor/Supervisor/Committee Chair

Issam Mudawar

Advisor/Supervisor/Committee co-chair

Steven Collicott

Additional Committee Member 2

Tom Shih

Usage metrics

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC