Purdue University Graduate School
Browse
Thapa_thesis.pdf (4.08 MB)

NUMERICAL STUDY OF FLUID FLOW AND SOLIDIFICATION IN THE PRIMARY COOLING ZONE OF A CONTINUOUS CASTER

Download (4.08 MB)
thesis
posted on 2022-09-07, 18:32 authored by Saswot ThapaSaswot Thapa

 Continuous Casting (CC) is an essential process in the steel industry to transform molten steel into solid product. This process begins with primary cooling (PC) where the molten steel is cooled, and the initial solidification begins. It is important to monitor the process of PC as defects such as thinning of the shell in the mold can lead to breakouts. Key parameters in PC are the mold design, casting condition, and steel composition. In the research conducted, key parameters for PC are investigated to analyze the impact on flow formation and solidification. To optimize mold design, angular taper to the narrow face can be employed to accommodate for any shell shrinkage. Utilizing computational fluid dynamics, a range of mold taper is simulated per the developed solidification model with defined temperature-dependent material properties. When simulated without a taper, significant air gap formation in the corners of the mold is visible due to thermal shrinkage of the shell. This air gap decreases the cooling rate due to the shell’s lack of contact with the cooling mold wall. A parametric study of mold taper ranging from no taper to 3° as well as change in casting conditions, superheat and casting speed, are conducted to analyze the impact of taper with respect to the casting conditions. Per the conditions applied, angular taper between 1° and 2° resulted into reduction of undercooling and overcooling in the corner of the mold which is subjected to cooling from the broad face and narrow face of the cool mold wall. The turbulent flow in the mold region was found to drastically influences the quality of steel produced during continuous casting. The flow itself can lead to surface defects or slag entrainment based on the formation. A high surface wave due to turbulence of the injected melt lead to fluctuations and the instability compromised the quality of the steel produced as well as entrained the slag. To regulate the flow, electromagnetic forces can be applied in the mold, dampening the local turbulent flow. As the electrically conductive molten steel interacts with the induced magnetic field, it reduced the velocity of the steel jet released from the ports of the submerged entry nozzle. Per the simulation-based study conducted increasing the EMBr strength from 2975G to 4350G reduced the peak surface wave height by 59.47% and volume of flux rate of decrease by 4.25%. Additionally, increasing the SEN depth from 110 mm to 350 mm increased the average wave height by 19% and volume of flux rate of decrease by 2.6%. Lastly, increasing the mold width from 1.067 m to 1.50m increased average wave height by 8.71% and volume of flux rate of decrease by 0.9%. 

History

Degree Type

  • Master of Science in Mechanical Engineering

Department

  • Mechanical Engineering

Campus location

  • Hammond

Advisor/Supervisor/Committee Chair

Chenn Q. Zhou

Additional Committee Member 2

Xiuling Wang

Additional Committee Member 3

Harvey Abramowitz

Usage metrics

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC