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ABSTRACT

Hearing loss hinders the communication ability of many individuals despite state-of-the-

art interventions. Animal models of different hearing-loss etiologies can help improve the

clinical outcomes of these interventions; however, several gaps exist. First, translational

aspects of animal models are currently limited because anatomically and physiologically

specific data obtained from animals are analyzed differently compared to noninvasive evoked

responses that can be recorded from humans. Second, we lack a comprehensive understand-

ing of the neural representation of everyday sounds (e.g., naturally spoken speech) in real-life

settings (e.g., in background noise). This is even true at the level of the auditory nerve, which

is the first bottleneck of auditory information flow to the brain and the first neural site to

exhibit crucial effects of hearing-loss.

To address these gaps, we developed a unifying framework that allows direct compari-

son of invasive spike-train data and noninvasive far-field data in response to stationary and

nonstationary sounds. We applied this framework to recordings from single auditory-nerve

fibers and frequency-following responses from the scalp of anesthetized chinchillas with ei-

ther normal hearing or noise-induced mild-moderate hearing loss in response to a speech

sentence in noise. Key results for speech coding following hearing loss include: (1) coding

deficits for voiced speech manifest as tonotopic distortions without a significant change in

driven rate or spike-time precision, (2) linear amplification aimed at countering audiometric

threshold shift is insufficient to restore neural activity for low-intensity consonants, (3) sus-

ceptibility to background noise increases as a direct result of distorted tonotopic mapping

following acoustic trauma, and (4) temporal-place representation of pitch is also degraded.

Finally, we developed a noninvasive metric to potentially diagnose distorted tonotopy in

humans. These findings help explain the neural origins of common perceptual difficulties

that listeners with hearing impairment experience, offer several insights to make hearing-

aids more individualized, and highlight the importance of better clinical diagnostics and

noise-reduction algorithms.
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1. INTRODUCTION

1.1 Hearing loss is a pervasive and complicated problem

Our auditory system possesses exquisite spectrotemporal processing abilities that facil-

itate seamless communication even in extremely adverse listening environments. Although

intricate neural circuitries are dedicated to achieving this feat, these abilities originate in

the inner ear, where specialized sensors are housed in a small structure called the cochlea,

embedded within the densest bone in the body. These sensors encode information that

allows the auditory system to encode sounds spanning a 120 dB intensity range and a 20

kHz frequency bandwidth at microsecond precision (Klumpp and Eady,  1956 ; Robles and

Ruggero,  2001 ). However, the inner ear, which is inarguably a bioengineering marvel, is a

delicate structure and susceptible to injury in numerous ways. Exposure to loud sounds (e.g.,

frequently attending loud concerts), aging, and ototoxic medications can cause significant

damage to the inner ear. The most common consequence of such damage is a reduced hear-

ing sensitivity, i.e., a reduced ability to hear soft sounds (i.e., hearing loss). For example,

compared to the sound amplitude threshold for normal-hearing listeners, a sound has to be

amplified by a factor of 30 (mild hearing loss), 100 (moderate hearing loss), or even 1000000

(profound hearing loss) for it to be audible by listeners with hearing impairment (Clark,

 1981 ). Hearing loss often accompanies a reduced audible-frequency range of hearing and a

narrower intensity dynamic range (Moore,  2007 ).

Hearing loss can affect family, social, and/or professional lives of those afflicted, with

disabling effects in 6% of the world’s population (WHO, 2019; estimated to be 10% by 2050).

In the US, hearing loss directly affects 23% of the population over the age of 12 (Goman and

Lin,  2016 ). Hearing loss substantially impairs the communication ability of many patients,

which can lead to social isolation, depression, and other neurological disorders (Arlinger,

 2003 ; Dawes et al.,  2015 ; Gopinath et al.,  2009 ; Mener et al.,  2013 ), and even increased

mortality risk (Karpa et al.,  2010 ). The recent trends paint a sobering picture in the aging

population of this ever-noisier planet, and therefore hearing loss has been identified as a

serious public health issue (Davis and Hoffman,  2019 ).
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The best help for hearing loss is using a hearing aid, which amplifies sounds to improve

audibility for listeners with hearing loss, although it does not restore hearing to normal.

Hearing aids or other hearing prostheses aim to restore sufficient communication ability so

that listeners can continue their daily life. However, only one out of six people who would

benefit from a hearing aid use one (World Health Organization, 2020). Part of the reason

is the limited benefit hearing aids provide at present (McCormack and Fortnum,  2013 ). In

particular, listeners with HI particularly struggle in noisy environments, where the target is

not clear and background noise can be distracting to the point it is annoying and stressful

(Hicks and Tharpe,  2002 ; McCormack and Fortnum,  2013 ; Pichora-Fuller et al.,  2016 ). All

this goes to show that hearing loss is a complicated problem; there is no “one glass fits all”

solution, and we have to improve our understanding of the various effects of hearing loss.

1.2 Audiograms do not predict everyday speech perception difficulties

A key factor contributing to the limited success of hearing aids is that they are largely fit

based on audiograms. Audiograms are clinically used to measure hearing sensitivity, where

listeners are asked to detect pure tones in a quiet sound booth. However, audiograms do

not predict speech perception of abilities of many individuals. In fact, listeners with similar

audiograms can demonstrate widely varying speech understanding ability (Middelweerd et

al.,  1990 ). Unsurprisingly, amplification strategies aimed at compensating for audiogram-

based hearing threshold loss for tones do not restore perception of complex signals, like

speech (Dubno et al.,  1982 ; Plomp,  1994 ). Therefore, we need to understand the effect of

hearing loss on how the auditory system processes suprathreshold sounds, especially in noisy

environments.

1.3 Animal models can be used to thoroughly characterize sensorineural hearing
loss anatomically, physiologically, and behaviorally

Animal models provide an excellent window into obtaining physiological and anatom-

ical data following hearing loss, which is not possible in humans. Anatomical studies can

identify the most vulnerable structures in the inner ear, which can ultimately help with phar-

macological interventions using precision medicine (Kujawa and Liberman,  2009 ; Liberman
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and Dodds,  1984b ). Physiological insight can guide the development of optimal hearing-aid

strategies to enhance the most informative speech features (Heinz,  2015 ; Sachs et al.,  2002 ).

Additionally, animal models of well-specified sensorineural hearing loss phenotypes can be

induced in the controlled settings of a laboratory; this helps with minimizing individual

variability that is often seen in human subjects as their exposure history is often unknown

(Wible et al.,  2005 ). Finally, we can study the peripheral representation as well as the cen-

tral neural circuitry that extract behaviorally crucial features in the same animals. In this

regard, chinchillas serve as an excellent model because their frequency hearing range and

behavioral thresholds are similar to humans and extensive literature exists on the properties

of nuclei along the auditory pathway (Martin,  2012 ; Trevino et al.,  2019 ).

A key benefit of using animal models pursued in this dissertation is to leverage them

to understand speech intelligibility variability in human listeners with sensorineural hear-

ing loss (Heinz,  2015 ). It is likely that peripheral differences contribute significantly to

this variability. For example, listeners with similar audiograms, based on their age and

noise-/drug-exposure history, may have different degrees of inner- versus outer-hair-cell loss,

accompanied with different degrees of endocochlear potential loss and synaptic degenera-

tion (Dubno et al.,  1982 ; Parthasarathy et al.,  2020 ; Wu et al.,  2019 ). The effects of these

different sources are evident at the level of the auditory nerve (AN), which is the bottleneck

of auditory information available to the brain. Therefore, studying the neural representa-

tion of speech in the AN in systems with normal and impaired functions will be crucial in

furthering our understanding of speech-perception deficits with hearing loss.

1.4 Overview of perceptually important speech features

Speech is a highly complex yet structured stimulus, which has information spread out

over multiple temporal and spectral scales. In linguistics, the smallest speech units are called

phonemes. For example, the word “put” consists of the phonemes /p/, /U/, and /t/). The

English language consists of 44 phonemes, which are categorized as either vowels (e.g., /U/)

or consonants (e.g., /p/ and /t/). Groups of phonemes form syllables, which in turn form

words, and words form sentences. This hierarchical division highlights the multiresolution

scales of temporal information in speech.
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Spectral properties of speech are readily understood using an articulatory treatment of

phonemes. Speech production can be modeled using the source-filter theory, which is a

two-stage process (Diehl,  2008 ; Fant,  1970 ). The first stage, the source, which includes the

larynx, controls the generation of sound. Based on whether the vocal folds in the larynx are

vibrating periodically, speech can be either periodic (voiced) or aperiodic (unvoiced). Voiced

speech (periodic) is marked by a spectrum that has harmonic structure as voiced speech

contains energy only at multiples of the fundamental frequency (inverse of the pitch period

or voicing period). In contrast, unvoiced speech uses noise as the source, which lacks any

discernible temporal structure and does not have spectral harmonicity. The second stage,

the filter, which includes the vocal tract, shapes the source spectrum to add resonances (i.e.,

formants) and anti-resonances. These resonances and anti-resonances carry critical cues for

speech perception (Diehl,  2008 ; Klatt,  1980 ). In speech, vowels are usually voiced (e.g., /a/),

except when whispered. In contrast, consonants can be either voiced (e.g., /p/ and /l/) or

unvoiced (e.g., /b/ and /s/).

Spectral and temporal information in a signal is usually divided into two distinct com-

ponents: (1) a slowly varying temporal envelope (ENV) and (2) a rapidly varying temporal

fine structure (TFS). ENV conveys information regarding the signal’s slow intensity fluctua-

tion, which usually reflects word and phonemic structures. TFS conveys information about

formants (for voiced speech), and in general reflects the harmonic structure of the stimu-

lus. While ENV is sufficient to facilitate robust speech perception in quiet environments

(Shannon et al.,  1995 ; Smith et al.,  2002 ), recent studies have emphasized the role of TFS

in adverse listening conditions (Ding et al.,  2014 ; Viswanathan et al.,  2019 ). Furthermore,

pitch cues, which convey prosodic information such as emotion and gender of the speaker

and help with source segregation, are encoded via TFS (Micheyl and Oxenham,  2010 ; Moore

and Carlyon,  2005 ). It should be highlighted that features like formant and intensity are

dynamic in nature, which means these features are not stationary and change over time (e.g.,

Fig  3.1 ). In fact, studies have shown that these dynamic properties aid in speech under-

standing (Hillenbrand and Nearey,  1999 ; Nearey and Assmann,  1986 ). Therefore, we should

study how these dynamic features are encoded by the normal auditory systems and how this

code is degraded with hearing loss.
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1.5 Existing literature on physiological changes in the AN following NIHL

The scope of this thesis is limited to the physiological consequences of noise-induced

hearing loss on natural speech coding. Therefore, we begin with a brief review of relevant

existing literature on the physiological effects of NIHL. The scope of this review is rather

selective. For a detailed review of physiological changes following NIHL, see Sayles and

Heinz,  2017 .

1.5.1 For tones

The cochlea in a normal-hearing system can be thought of as a bank of narrowband

filters that are tonotopically arranged. In other words, different places along the cochlea are

sensitive to a narrow range of frequencies. From base to apex, the cochlear locations are

progressively tuned from higher to lower frequencies. This tonotopicity is preserved in higher

auditory nuclei along the auditory pathway, starting with the auditory nerve. Frequency se-

lectivity of AN fibers is usually measured using frequency tuning curve (FTCs), where each

data point denotes the intensity required at that frequency to drive the AN fiber’s activity

above baseline. As previously mentioned, AN fibers are quite frequency selective (as reflected

by a sharp FTC) as well as remarkably sensitive (low threshold at characteristic frequency

or CF, the frequency at which the AN fiber is the most sensitive). As a result, information

in a broadband stimulus can be robustly encoded by a set of independent frequency chan-

nels. However, following NIHL, AN fibers become less sensitive (higher threshold) near CF,

FTCs become broader, and AN fibers often become more sensitive at frequencies below CF

(Liberman,  1984 ; Liberman and Dodds,  1984b ). These changes are hypothesized to reduce

the information capacity of the AN (as fewer independent frequency channels), which can

lead to degraded sound coding and perceptual deficits.

1.5.2 For stationary synthesized vowels

Speech coding at the AN level has been predominantly carried out using short stationary

synthesized vowels and with normal-hearing animals (Delgutte,  1980 ; Delgutte and Kiang,

 1984a ; Palmer,  1990 ; Sachs and Young,  1979 ; Sinex and Geisler,  1983 ; Young and Sachs,
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 1979 ). A consistent finding from these studies is that formants, which are important for

vowel perception, dominate the responses of AN fibers with CF near that formant frequency.

In particular, the temporal aspect of the response of AN fiber population conveys robust

tonotopic information regarding vowels. The handful of studies that have evaluated speech

coding in the AN following NIHL have found a degradation of highly informative high-

frequency formants due to broader tuning at the expense of overrepresented low-frequency

stimulus energy (Miller et al.,  1999 ; Miller et al.,  1997 ).

1.5.3 For White Gaussian noise

A number of studies have also investigated general physiological changes, such as the

coding of ENV and TFS, following NIHL using broadband White Gaussian noise as stimulus

(Henry and Heinz,  2013 ; Henry et al.,  2016 ). White Gaussian noise, because of its random

nature, serves as an excellent stimulus to characterize ENV and TFS coding in a systems-

identification framework. There is an enhanced representation of the ENV, although this

enhancement is deemed pathological as it is hypothesized to be detrimental for speech per-

ception (Füllgrabe et al.,  2003 ; Moore et al.,  1996 ). Similarly, overall TFS coding “strength”

in broadband responses is also enhanced following NIHL (Henry and Heinz,  2013 ; Henry

et al.,  2016 ). However, there is severe tonotopic distortion in the spectral profile of AN

fiber responses. This effect of distorted tonotopy is consistent with a decreased sensitivity

of FTCs near CF and increased sensitivity at lower (<CF) frequencies. Similar to enhanced

envelope, distorted tonotopy is also hypothesized to degrade the neural representation of

speech (Henry et al.,  2016 ; Sayles and Heinz,  2017 ).

1.6 General gaps

This thesis includes experimental results that address the following three broad gaps in

the literature regarding the effects of NIHL on the neural coding of speech.

• Our understanding of speech coding in the AN primarily comes from studies that

have used short-duration stationary synthesized vowels. However, as described ear-

lier, naturally spoken speech is nonstationary and is characterized by its time-varying
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amplitude fluctuations and spectral (both formant and fundamental frequency) trajec-

tories, including both vowels and consonants. In fact, these dynamics improve speech

perception (Hillenbrand and Nearey,  1999 ; Nearey and Assmann,  1986 ). The few rare

studies that have used natural speech sentences to record from AN fibers have yielded

limited datasets and only used normal-hearing animals (Delgutte et al.,  1998 ; Young,

 2008 ). No study has evaluated consonant coding deficits following NIHL. Therefore,

we lack a clear understanding of the neural representation of time-varying statistics

naturally present in spoken speech, including vowels and consonants.

• Another major limitation of the existing studies is that stimuli have primarily been

presented without background noise, particularly for studies involving impaired ani-

mals. While these studies have provided invaluable insight into neural representation of

speech for animals with normal and impaired hearing, these experimental settings are

not representative of our everyday environments. In fact, the number one complaint

in the clinic is regarding difficulties listening in noisy environments, rather than the

listening in quiet conditions most often studied (Chung,  2004 ; Souza,  2016 ). Therefore,

insights from studying the neural representation of speech mixed with noise will help

improve the perceptual outcomes in everyday noisy environments.

• Finally, studies have rarely demonstrated similar neural deficits using both invasive and

noninvasive data from the same animal cohort. Establishing relations between invasive

and noninvasive data is beneficial as we can only record noninvasive far-field evoked

data, such as electroencephalograms and frequency following responses, from humans.

These far-field responses can be used to infer anatomical and physiological changes

in the auditory system following NIHL. Ultimately, the ability to noninvasively assess

neural processes underlying human communication will enable pharmacological inter-

ventions as well as to objectively guide hearing aid fitting and optimizing stimulation

strategies.
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1.7 Overview of the dissertation document

In this study, both invasive and noninvasive data were collected from anesthetized chin-

chillas with either normal hearing or with mild-moderate noise-induced hearing loss, the

most common hearing-loss phenotype in the US (Goman and Lin,  2016 ). Invasive data com-

prise spike-train responses recorded from single AN fibers. Noninvasive data are based on

scalp-recorded frequency following responses. Both data types were collected from the same

cohort of animals. A naturally spoken speech sentence was used as the stimulus in most

experiments. The speech sentence was presented at conversational sound levels in varying

degrees of background noise, including in quiet. Noise was speech shaped; noise was either

stationary or was sinusoidally amplitude modulated at 8 Hz. General methods employed in

this dissertation are described in Chapter  2 ).

In Chapter  3 , a unifying quantitative framework is described where the same spectrotem-

poral analyses can be applied to both invasive and noninvasive data, and therefore direct

comparison between these data types can be possible. In addition, advanced signal processing

tools can be applied to neural spike-train data so that the neural coding of natural (non-

stationary) speech can be studied with the same spectral specificity as previously reported

studies on stationary speech coding.

In Chapter  4 , quantitative tools described in Chapter  3 were applied to spike-train

data and frequency following responses to investigate speech coding deficits following NIHL.

Specifically, coding changes for vowels and consonants were considered. Four physiological

changes following NIHL that potentially contribute to speech perception deficits were investi-

gated. These factors are distorted tonotopy, broader bandwidth, reduced temporal precision,

and auditory-nerve-fiber (ANF) threshold compression. Our results suggest that deficits in

neural coding primarily stem from distorted tonotopy and, surprisingly, from ANF thresh-

old expansion. Broader bandwidths likely contributed but this was a minor contribution

compared to distorted tonotopy. Temporal precision of spiking activity was intact following

NIHL contrary to common beliefs (Moore,  2008 ,  2014 ).

In Chapter  5 , the effect of hearing loss on envelope coding of speech and noise mixtures

is evaluated. It was hypothesized that, following NIHL, speech-related envelope would be
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degraded, and noise-related envelope would be enhanced. These hypotheses were tested for

stationary unmodulated noise and 8-Hz sinusoidally amplitude modulated noise. Modulation

in noise is known to help with speech perception for normal-hearing listeners but not for

listeners with hearing impairment. The results supported the hypotheses and provided the

neural bases for why adding modulation to noise does not improve speech understanding

following NIHL. Distorted tonotopy provided the best explanation for these results.

In Chapter  6 , degradation in voice-pitch coding following NIHL is investigated. In western

languages, pitch conveys non-semantic cues, such as gender, emotion, and intonation (Ladd,

 2008 ). In other languages, such as Mandarin Chinese, pitch can provide semantic cues

(Stagray et al.,  1992 ). While perceptual deficits in pitch processing following NIHL are

well documented (Moore and Carlyon,  2005 ), neural bases underlying these deficits are still

unknown (Kale et al.,  2013 ). Here, we quantified the neural representation of pitch using

two leading theories- temporal and spectral. Results suggested enhanced temporal and

degraded spectral representations of pitch. Furthermore, enhanced temporal representation

accompanied complex response patterns, which may adversely affect pitch perception. These

results offer new insight into pitch perception deficits that listeners with NIHL experience.

In Chapter  7 , a noninvasive measure is presented to diagnose distorted tonotopy using

frequency following responses. DT plays an important role in complex sound coding for

the NIHL population. Moreover, DT has been shown to vary across hearing-loss etiologies

(Henry et al.,  2019 ). Therefore, DT is hypothesized to contribute to individual variability

in human speech perception in the hearing-impaired population. The noninvasive diagnostic

DT metric will allow us to evaluate this hypothesis in humans.

Finally, Chapter  8 first summarizes the results from the preceding chapters with partic-

ular emphasis on how these results relate to common perceptual deficits. Next, implications

for precision clinical diagnostics, hearing aid stimulation strategies, and the importance of

noise reduction algorithms are described. The chapter ends with a discussion of the limita-

tions of the experiments presented, key unanswered questions, and future research directions

to mitigate these limitations and answer these questions.
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2. GENERAL METHODS

2.1 Animals preparation

Young chinchillas (6 to 12 months old) weighing between 400 and 650 g were used in all

experiments. Experiments were of two types: (1) recovery experiments (to collect screening

data or frequency-following responses or to induce noise-induced hearing loss) and (2) acute

auditory-nerve experiments. In both recovery and acute procedures, anesthesia was induced

with xylazine (2 to 3 mg/kg, subcutaneous), followed a few minutes later with ketamine (30

to 40 mg/kg, intraperitoneal). For recovery procedures, xylazine reversal agent atipamezole

(0.4 to 0.5 mg/kg, intraperitoneal) was used after procedures for faster recovery. For acute

procedures, anesthesia was maintained with sodium pentobarbital (∼ 15 mg/kg/2 h, in-

traperitoneal). Eyes were lubricated with eye ointment. Animals’ vital signs were monitored

throughout procedures with a pulse oximeter (Nonin 8600V, Plymouth, MN). An oxygen

tube was placed near animals’ nostrils. Animals were provided Lactated Ringer’s solution

both before and after recovery procedures (each 6 cc, subcutaneous) and throughout acute

procedures (∼1 cc/h, subcutaneous). Body temperature was maintained near 37 ◦C using a

closed-loop heating pad with a rectal probe (50-7220F, Harvard Apparatus). All procedures

were carried out in a double-walled, electrically shielded, sound-attenuating booth (Acoustic

Systems, Austin, TX, USA). All procedures were approved by Purdue Animal Care and Use

Committee (PACUC Protocol #: 1111000123).

2.2 Noise exposure

Animals were exposed to 116 dB SPL octave-wide noise centered at 500 Hz, for two

hours, using an enclosed woofer (Selenium 10PW3, Harman) facing downwards ∼ 25 cm

above the animal’s heads. Noise intensity was measured near the animal’s pinnae every 20

minutes using a sound level meter to confirm steady exposure levels (Simpson model 886-2,

Elgin, IL, USA). Animals were anesthetized during the exposure (as previously described).

Two weeks of recovery were allowed after noise exposure to minimize temporary hearing-loss

effects.
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2.3 Surgical preparation

Following anesthesia induction, tracheotomy was performed to facilitate low-resistance

airway and to minimize breathing artifacts. Skin and muscles were transected following a

dorsal midline incision, external ear canals and bullae were exposed. Hollow ear bars were

inserted into ear canals, which allowed sound delivery to the right ear from a dynamic loud-

speaker (DT48, Beyerdynamic). The right bulla was vented with a 30 cm long polyethylene

tubing (Guinan and Peake,  1967 ). A silver electrode was placed near the round window

through a small opening, later sealed with dental cement, in the right ventral bulla to mon-

itor compound action potential (CAP) during nerve experiments; single unit experiments

were terminated when CAP thresholds and single unit frequency tuning curve thresholds

elevated by more than 10 dB. Craniotomy was performed using posterior fossa approach;

cerebellum was partially aspirated until cochlear nucleus (CN) was visible. Small cotton

pellets were used to push the CN away from the lateral wall to expose the auditory nerve

bundle. Glass micropipettes (> 10MΩ) electrodes were placed close to the internal audi-

tory meatus for extra-axonal recording to avoid recordings from CN cells. Monopolar action

potential waveforms and spike latency confirmed recordings were made from auditory nerve

fibers.

2.4 Speech stimulus

One speech sentence from the Danish speech intelligibility test (CLUE, Nielsen and Dau,

 2009 ) material was used (practice list #1, sentence #3) in many acute and FFR experiments.

The sentence was shortened to 1.3 s duration by truncating it at silence intervals to allow

more stimulus repetitions (Fig  2.1 ). Experiment-specific stimuli are discussed in individual

chapters.

2.5 Data recordings for recovery procedures

A microphone-transducer pair (Etymotic ER-10B, Etymotic ER-2, Etymotic Research,

Elk Grove Village, IL, USA) was used for calibration and sound presentation, with a foam

ear-tip inserted into the ear canal. The transducer speaker was calibrated at the beginning
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Figure 2.1. A The spectrogram of a speech sentence used in this dissertation,
with warm (cool) colors representing regions of high (low) power, B time-
domain waveform (blue), with voiced segments in the stimulus marked in red.

of all experiments. Calibration data showed frequency response was flat (within ± 5 dB)

until 10 kHz. In later experiments, a 256-tap digital FIR filter (Tucker-Davis Technologies,

Alachua, FL) was used to ensure calibration was even flatter (within ± 2 dB until 10 kHz).

Auditory brainstem responses (ABR) and distortion product otoacoustic emissions (DPOAE)

were used as screening procedures. ABRs were recorded to short tone bursts at .5, 1, 2, 4,

and 8 kHz, at 0 dB SPL to 80 dB SPL in 10 dB steps. Another intensity near threshold (odd

multiple of 5 dB) was used to fine-tune threshold estimate. ABR threshold was estimated

as the intensity at which linear regression of waveform correlation of ABRs at intensities

below 60 dB SPL with a template ABR (response waveform at 60 dB SPL) was three

standard deviations above the correlation noise floor. Distribution of the correlation noise

floor was constructed from the spurious peaks in the cross-correlation function between the

template and physiological noise in no-response regions of the recordings (Henry et al.,  2011 ).
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DPOAEs were recorded in response to sets of two tones, ranging in frequency from .5 kHz

to 16 kHz, with a frequency ratio of 1.2, played at 75 (tone with lower frequency) and 65 dB

SPL.

ABRs and FFRs were recorded using subdermal needle electrodes in a vertical montage

(mastoid to vertex, differential mode, with the common ground placed near the nose). Both

ABR and FFR signals were filtered through ISO-80 (5 Hz-10 kHz, 100 gain; World Precision

Instruments, Sarasota, FL), Dagan (open filter, 200 gain; 2400A, Minneapolis, MN). ABRs

were further filtered in the band 0.3-3 kHz (Krohn-Hite, 3550, Brockton, MA). FFRs were

bandpass filtered offline between 70-500 Hz.

2.6 Data recordings for acute procedure

Sound was presented using dynamic loudspeaker (DT48, Beyerdynamic) for acute exper-

iments as mentioned above. CAP signal was bandpass filtered and amplified (0.1-10 kHz;

1000 gain; World Precision Instruments ISO-80, Sarasota, FL) before storing on PC. Glass

micropipettes were advanced using a hydraulic microdrive (640, Kopf Instruments). Neu-

ronal recordings were amplified (Dagan 2400A, Minneapolis, MN), and bandpass filtered

between 0.3-6 kHz (Krohn-Hite 3550, Brockton, MA)). Spike timings were identified using

a time-amplitude window discriminator (BAK Electronics) and counter boards (National

Instruments, Austin, TX, USA). Individual auditory nerve fibers were isolated using a wide-

band noise burst and listening for driven activity. An automated tuning curve algorithm

was used to characterize fibers’ frequency selectivity by estimating threshold at different

frequencies (Chintanpalli and Heinz,  2007 ; Kiang et al.,  1970 ). The criteria for threshold

at a frequency was the minimum tone intensity that elicits a difference of at least 1 spike

between 50 ms of the tone and 50 ms of silence. Spontaneous activity was recorded for 30

seconds, followed by a rate-level curve to tones at characteristic frequency at intensities of

0 dB till rate saturation in 1 dB steps. Then speech, noise, and noisy-speech mixtures were

played in an interleaved fashion.

In both recovery and acute procedures, stimulus presentation and data acquisition were

controlled using custom and commercial hardware (Tucker-Davis Technologies, Alachua, FL)

and custom-made GUI written in MATLAB (The MathWorks, Natick, MA).
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3. SPECTRALLY SPECIFIC TEMPORAL ANALYSES OF

SPIKE-TRAIN RESPONSES TO COMPLEX SOUNDS: A

UNIFYING FRAMEWORK

SUMMARY 

1
 

Significant scientific and translational questions remain in auditory neuroscience surround-

ing the neural correlates of perception. Relating perceptual and neural data collected from

humans can be useful; however, human-based neural data are typically limited to evoked far-

field responses, which lack anatomical and physiological specificity. Laboratory-controlled

preclinical animal models offer the advantage of comparing single-unit and evoked responses

from the same animals. This ability provides opportunities to develop invaluable insight

into proper interpretations of evoked responses, which benefits both basic-science studies of

neural mechanisms and translational applications, e.g., diagnostic development. However,

these comparisons have been limited by a disconnect between the types of spectrotemporal

analyses used with single-unit spike trains and evoked responses, which results because these

response types are fundamentally different (point-process versus continuous-valued signals)

even though the responses themselves are related. Here, we describe a unifying framework to

study temporal coding of complex sounds that allows spike-train and evoked-response data

to be analyzed and compared using the same advanced signal-processing techniques. The

framework uses alternating-polarity peristimulus-time histograms computed from single-unit

spike trains to allow advanced spectral analyses of both slow (envelope) and rapid (tempo-

ral fine structure) response components. Demonstrated benefits include: (1) generalization

beyond classic metrics of temporal coding, e.g., vector strength and correlograms, (2) novel

spectrally specific temporal-coding measures that are less corrupted by distortions due to

hair-cell transduction, synaptic rectification, and neural stochasticity compared to previ-

ous metrics, e.g., the correlogram peak-height, (3) spectrally specific analyses of spike-train

modulation coding that can be directly compared to perceptually based models of speech

intelligibility, and (4) superior spectral resolution in analyzing the neural representation

of nonstationary sounds, such as speech and music. This unifying framework significantly
1Manuscript in revision (PLOS Computational Biology)
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expands the potential of preclinical animal models to advance our understanding of the

physiological correlates of perceptual deficits in real-world listening following sensorineural

hearing loss.

3.1 Introduction

Normal-hearing listeners demonstrate excellent acuity while communicating in complex

environments. In contrast, hearing-impaired listeners often struggle in noisy situations, even

with state-of-the-art intervention strategies (e.g., digital hearing aids). In addition to im-

proving our understanding of the auditory system, the clinical outcomes of these strategies

can be improved by studying how the neural representation of complex sounds relates to

perception in normal and impaired hearing. Numerous electrophysiological studies have

explored the neural representation of perceptually relevant sounds in humans using evoked

far-field recordings, such as frequency following responses (FFRs) and electroencephalograms

(Clinard et al.,  2010 ; Kraus et al.,  2017 ; Tremblay et al.,  2006 ). Note that we use electrophys-

iology and neurophysiology to refer to evoked far-field responses and single-unit responses,

respectively (See Table  3.1 for glossary). While these evoked responses are attractive be-

cause of their clinical viability, they lack anatomical and physiological specificity. Moreover,

the underlying sensorineural hearing loss pathophysiology is typically uncertain in humans.

In contrast, laboratory-controlled animal models of various pathologies can provide specific

neural correlates of perceptual deficits that humans experience, and thus hold great scien-

tific and translational (e.g., pharmacological) potential. In order to synergize the benefits of

both these approaches to advance basic-science and translational applications to real-world

listening, two major limitations need to be addressed.

First, there exists a significant gap in relating spike-train data recorded invasively from

animals and evoked noninvasive far-field recordings feasible in humans (and animals) because

the two signals are fundamentally different in form (i.e., binary-valued point-process data

versus continuous-valued signals). While the continuous nature of the evoked-response am-

plitude allows for any of the advanced signal-processing techniques developed for continuous-

valued signals to be applied (e.g., multitaper approaches to robust spectral estimation

(Thomson,  1982 ), spike-train analyses have been much more limited (e.g., in their appli-
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cation to real-world signals as reviewed in the next section). This is a critical gap because

most perceptual deficits and limits in machine hearing occur for speech in noise rather than

for speech in quiet (Moore,  2007 ; Scharenborg,  2007 ). For example, classic neurophysio-

logical studies have quantified the temporal coding of stationary and periodic stimuli using

metrics such as vector strength (VS, (Goldberg and Brown,  1969 ; Joris and Yin,  1992 ; Rees

and Palmer,  1989 ), whereas more recent correlogram analyses have provided temporal-coding

metrics for nonperiodic stimuli, such as noise (Joris et al.,  2006 ; Louage et al.,  2004 ). How-

ever, these metrics can be influenced by distortions from nonlinear cochlear processes (Heinz

and Swaminathan,  2009 ; Young and Sachs,  1979 , and often ignore response phase informa-

tion that is likely to be perceptually relevant for simple tasks (Colburn et al.,  2003 as well

as for speech intelligibility (Paliwal and Alsteris,  2003 ; Relaño-Iborra et al.,  2016 ).

A second important gap exists because current spectrotemporal tools to evaluate tem-

poral coding in the auditory system are largely directed at processing of stationary signals

by linear and time-invariant systems. However, the auditory system exhibits an array of

nonlinear (e.g., two-tone suppression, compressive gain, and rectification) and time-varying

(e.g., adaptation and efferent feedback) mechanisms (Heil and Peterson,  2015 ; Sayles and

Heinz,  2017 ). These mechanisms interact with nonstationary stimulus features (e.g., fre-

quency transitions and time-varying intensity fluctuations, Figs  3.1 A and  3.1 B) to shape

the neural coding and perception of these signals (Delgutte,  1997 ; Hillenbrand and Nearey,

 1999 ; Nearey and Assmann,  1986 ). In fact, the response of an auditory-nerve (AN) fiber

to even a simple stationary tone shows nonstationary features, such as a sharp onset and

adaptation (Fig  3.1 C), illustrating the need for nonstationary analyses of temporal coding.

However, the extensive single-unit speech coding studies using classic spike-train metrics

have typically been limited to synthesized and stationary speech tokens, which has deferred

the study of the rich kinematics present in natural speech (Delgutte,  1980 ; Sinex and Geisler,

 1983 ; Young and Sachs,  1979 ). Some windowing-based approaches have been used to study

time-varying stimuli and responses (Cariani and Delgutte,  1996a ; Sayles and Winter,  2008 ),

but the approaches used have imposed a limit on the temporal and spectral resolution with

which dynamics of the auditory system can be studied.
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The present study focuses on developing spectrotemporal tools to characterize the neural

representation of kinematics naturally present in real-world signals, speech in particular,

that are appropriate for the nonlinear and time-varying auditory system. We describe a

unifying framework to study temporal coding in the auditory system, which allows direct

comparison of single-unit spike-train responses with evoked far-field recordings. In particular,

we demonstrate the unifying merit of using alternating-polarity peristimulus time histograms

(apPSTHs, Table  3.2 ), a collection of PSTHs obtained from responses to both positive and

negative polarities of the stimulus. By using both polarities, neural coding of natural sounds

can be studied using the common temporal dichotomy between the slowly varying envelope

(ENV) and rapidly varying temporal fine structure (TFS) (Figs  3.1 E and  3.1 F), which has

been especially relevant for speech-perception studies (Shannon et al.,  1995 ; Smith et al.,

 2002 ). Here, we first review some of the existing tools that have been used to quantify

temporal coding in auditory neurophysiology. We derive explicit relations between existing

metrics, namely VS and correlograms, and apPSTHs to show that no information is lost

by using apPSTHs. In fact, the use of apPSTHs is computationally more efficient, provides

more precise spectral estimators, and opens up new avenues for perceptually relevant analyses

that are otherwise not possible. Next, an apPSTH -based ENV/TFS taxonomy is presented,

including existing and new metrics. This taxonomy allows for spectrally specific analyses

that avoid distortions due to inner-hair-cell transduction and synaptic rectification processes,

resulting in more accurate characterizations of temporal coding than with previous metrics.

Finally, these methods are extended in novel ways to include the study of nonstationary

signals at superior spectrotemporal resolution compared to conventional windowing-based

approaches, like the spectrogram.

3.2 Materials and Methods

3.2.1 Experimental procedures and neuro/electrophysiological recordings

Spike trains were recorded from single AN fibers of anesthetized chinchillas using stan-

dard procedures in our laboratory (Henry et al.,  2019 ; Kale and Heinz,  2010 ). All pro-

cedures followed NIH-issued guidelines and were approved by Purdue Animal Care and
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Use Committee (Protocol No: 1111000123). Anesthesia was induced with xylazine (2 to 3

mg/kg, subcutaneous) and ketamine (30 to 40 mg/kg, intraperitoneal), and supplemented

with sodium pentobarbital (∼7.5 mg/kg/hour, intraperitoneal). FFRs were recorded using

subdermal electrodes in a vertical montage (mastoid to vertex with common ground near

the nose) under the same ketamine/xylazine anesthesia induction protocol described above

using standard procedures in our laboratory (Zhong et al.,  2014 ). Spike times were stored

with 10-µs resolution. FFRs were stored with 48-kHz sampling rate. Stimulus presentation

and data acquisition were controlled by custom MATLAB-based (The MathWorks, Natick,

MA) software that interfaced with hardware modules from Tucker-Davis Technologies (TDT,

Alachua, FL) and National Instruments (NI, Austin, TX).

3.2.2 Speech stimuli

The following four stimuli were used in these experiments. (s1) Stationary vowel, ∧ (as

in cup): F0 was 100 Hz. The first three formants were placed at F1 = 600, F2 = 1200, and

F3 = 2500 Hz. The vowel was 188 ms in duration. (s2) Nonstationary vowel, ∧: F0 increased

linearly from 100 to 120 Hz over its 188-ms duration. The first two formants moved as well

(F1: 630 → 570 Hz; F2: 1200 → 1500 Hz; see S2 Fig). F3 was fixed at 2500 Hz. The

formant frequencies for both s1 and s2 were chosen based on natural formant contours of the

vowel ∧ in American English (Hillenbrand et al.,  1995 ; Hillenbrand and Nearey,  1999 ). s1

and s2 were synthesized using a MATLAB instantiation of the Klatt synthesizer (courtesy

of Dr. Michael Kiefte, Dalhousie University, Canada). (s3) A naturally uttered Danish

sentence (list #1, sentence #3 in the CLUE Danish speech intelligibility test, Nielsen and

Dau,  2009 ). (s4) A naturally uttered English sentence (Sentence #2, List #1 in the Harvard

Corpus, (Rothauser,  1969 ). All speech and speech-like stimuli were played at an overall

intensity of 60 to 65 dB SPL.
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Table 3.1. List of terms and definitions.
Term Definition

Electrophysiology Studies that record and analyze far-field (gross) potentials, e.g., elec-
troencephalography

Neurophysiology Studies that record and analyze spike-train data from neurons, e.g.,
AN fiber spike trains

Stationarity

A signal is stationary when the signal parameters do not change over
time. For example, a stochastic signal like white Gaussian noise is
stationary if the amplitude probability density function is constant
across time. Similarly, a deterministic pure tone can be considered
an example of a stationary sinusoidal process with a particular am-
plitude, frequency, and initial phase.

Second-order
stationarity

A stochastic signal is second-order stationary if its mean and autocor-
relation function do not change over time. Second-order stationarity
is also referred to as wide-sense stationarity.

Linearity

A system is linear if it obeys the rules of superposition. For example,
consider a system for which inputs x1 and x2 evoke responses y1 and
y2, respectively. Then, the system is linear if the response to input
ax1 + bx2 is ay1 + by2. An auditory corollary of linearity is that a
linear system (e.g., the ear canal) processes sound in the same way
at soft and loud sound levels, which means that for every dB increase
in the input, the output is increased by the same dB.

Time invariance A system is time invariant if its parameters (e.g., gain at all frequen-
cies) do not change over time

Periodic signal A perfectly repeating signal, e.g., a tone, or a synthetic vowel with
constant pitch

Aperiodic signal A signal that does not repeat, e.g., white Gaussian noise

Polarity-tolerant
response

Response component that does not depend on stimulus polarity, e.g.,
the onset response

Polarity-sensitive
response

Response component that depends on stimulus polarity, e.g., phase-
locked spike trains in response to a low-frequency tone

Even sequence x[n] is even if x[n] = x[ − n]
Odd sequence x[n] is odd if x[n] = −x[ − n]
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3.2.3 Power along a spectrotemporal trajectory

Consider a known frequency trajectory, ftraj(t), along which we need to estimate power in

a signal, x(t). The phase trajectory, Φtraj(t), can be computed as the integration of ftraj(t)

Φtraj(t) =
∫ t

0
ftraj(τ)dτ. (3.1)

For discrete-time signals, the phase trajectory can be estimated as

Φtraj[n] = 1
fs

n∑
m=1

ftraj[m]. (3.2)

The phase trajectory can be demodulated from x(t) by multiplying a complex exponential

with phase = −Φtraj(t) (Olhede and Walden,  2005 )

xdemod(t) = x(t) e−2πΦtraj(t). (3.3)

The power along ftraj(t) in x(t) can be estimated as the power in xdemod(t) within the

spectral resolution bandwidth (W) near 0 Hz in the spectral estimate, Pxdemod
(f), of xdemod(t).

Ptraj = 2
∫ W/2

−W/2
Pxdemod

(f)df (3.4)

The scaling factor 2 is required because the integral in Eq  3.4 only represents the original

positive-frequency band of the real signal, x(t); the equal amount of power within the original

negative-frequency band, which is shifted further away from 0 Hz by Φtraj(t), should also be

included (see Fig  3.11 ).

3.2.4 The harmonicgram

Consider a harmonic complex, x(t), with a time-varying (instantaneous) fundamental

frequency, F0(t). For a well-behaved and smooth F0(t), energy in x(t) will be concentrated
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at multiples of the instantaneous fundamental frequency, i.e., kF0(t). Thus, x(t) can be

represented by the energy distributed across the harmonics of the fundamental. The time-

varying power along the k-th harmonic of F0(t) can be estimated by first demodulating x(t)

with the kF0(t) trajectory using Eq  3.3 , and then using an appropriate low-pass filter to

limit energy near 0 Hz (say within ±W/2). We define the harmonicgram as the matrix of

time-varying power along all harmonics of the F0. Thus, the harmonicgram is

harmonicgram(k, t) = LPF [−W/2,W/2]{x(t) e−2πkF0(t)}. (3.5)

3.3 Classic metrics for quantifying temporal coding in the auditory system

Various approaches and metrics have been developed to quantify auditory temporal cod-

ing in neurophysiological responses. In this section, we motivate the need for a unified

framework for auditory temporal coding by briefly reviewing these classic metrics and dis-

cussing their benefits and limitations.

3.3.1 Period-histogram based metrics

The ability of AN fibers to follow the temporal structure of an acoustic stimulus has

been known for a long time (Galambos and Davis,  1943 ). Using tones as stimuli, Kiang and

colleagues showed that AN fibers prefer to discharge spikes around a particular phase of the

stimulus cycle (Kiang et al.,  1965 ). Their analysis was qualitative and involved the period

histogram, which is constructed as the histogram of spike times modulo the period of one

stimulus cycle (e.g., Fig  3.1 D). Rose and colleagues used the period histogram to quantify

the preference of neurons to fire during one half-cycle of a periodic stimulus (Rose et al.,

 1967 ). They introduced a metric, called the coefficient of synchronization, which is defined

as the ratio of the spike count in the most effective half-cycle to the spike count during the

whole stimulus cycle. The coefficient of synchronization ranges from 0.5 (for a flat period

histogram) to 1.0 (for all spikes within one half-cycle). The coefficient of synchronization

does not truly quantify the strength of phase locking to the stimulus cycle as it does not
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Figure 3.1. Neural responses of AN fibers are invariably nonstation-
ary, even when the stimulus is not. (A, B) Spectrogram and waveform
of a speech segment (s4 described in Materials and Methods). Formant tra-
jectories (black lines in panel A) and short-term intensity (red line in panel
B, computed over 20-ms windows with 80% overlap) vary with time, high-
lighting two nonstationary aspects of speech stimuli. (C) PSTH constructed
using spike trains in response to a tone at the AN-fiber’s characteristic fre-
quency (CF, most-sensitive frequency; fiber had CF=730 Hz, and was high
spontaneous rate or SR, Liberman,  1978 ). Tone intensity = 40 dB SPL. Even
though the stimulus is stationary, the response is nonstationary (i.e., sharp
onset followed by adaptation). (D) Period histogram, constructed from the
data used in C, demonstrates the phase-locking ability of neurons to individ-
ual stimulus cycles. (E) PSTH constructed using spike trains in response to
a sinusoidally amplitude-modulated (SAM) CF-tone (50-Hz modulation fre-
quency, 0-dB modulation depth, 35 dB SPL) from an AN fiber (CF = 1.4
kHz, medium SR). (F) Period histogram (for one modulation period) con-
structed from the data used in E. The response to the SAM tone follows both
the modulator (envelope, red, panels E and F) as well as the carrier (temporal
fine structure), the rapid fluctuations in the signal (blue, panel F). Bin width
= 0.5 ms for histograms in C-F. Number of stimulus repetitions for C and E
were 300 and 16, respectively.

consider the spread of the period histogram. For example, two period histograms, one where

all spikes occur at the peak of the stimulus cycle (strong phase locking), and the other where
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all spikes are uniformly distributed across one stimulus half-cycle (weak phase locking), will

yield the same coefficient of synchronization of 1.0.

A more sensitive measure of phase locking derived from the period histogram is the vector

strength (VS, Goldberg and Brown,  1969 ; Greenwood and Durand,  1955 ), which is identical

to the synchronization index metric described by Johnson (Johnson,  1980 ). VS has been

used extensively to quantify phase-locking strength in spike-train recordings in response to

periodic stimuli (Joris et al.,  2004 ; Palmer and Russell,  1986 ), including stationary speech

(Young and Sachs,  1979 ). In this framework, each spike is treated as a complex vector that

has a magnitude of 1 and an angle that is defined by the spike phase relative to the stimulus

phase; VS is defined as the magnitude of the average of all such vectors for spikes pooled

across all stimulus repetitions (Sec  3.8.1 ). VS is a biased estimator of the “true” vector

strength (Mardia,  1972 ) and can reach spuriously high values at low spike counts (Yin et al.,

 2010 ). This problem is avoided by using a modification of the vector strength, called the

phase-projected vector strength (V Spp, Yin et al.,  2010 ). Similar approaches have been used

in electrophysiological studies (Vinck et al.,  2011 ). V Spp differs from V S in that trial-to-trial

phase consistency is also considered in computing V Spp (Sec  3.8.1 ).

Overall, the period histogram and metrics derived from it (V S and V Spp) work well

for applications involving stationary signals with periodic TFS (e.g., tones), ENV (e.g.,

sinusoidally amplitude-modulated noise), or both (e.g., sinusoidally amplitude-modulated

tones). However, the period histogram ignores nonstationary features in the response that

arise from the auditory system. For example, spikes in the first few stimulus cycles are

often ignored while constructing the period histogram to avoid the nonstationary onset

response. Similarly, since spikes corresponding to different stimulus cycles are wrapped onto

a single cycle, effects of adaptation are not captured in the period histogram. Moreover, its

application to nonstationary or aperiodic stimuli (e.g., natural speech) is not straightforward.

3.3.2 Peristimulus-time-histogram (PSTH) based metrics

The single-polarity PSTH, p(t), is constructed as the histogram of spike times pooled

across all stimulus repetitions at a certain bin width (e.g., Fig  3.1 C). As the PSTH shows

the rate variation along the course of the stimulus, it captures the onset as well as adaption
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effects in the response (Kiang et al.,  1965 ; Westerman and Smith,  1988 ). p(t) has been

applied to analyze spike trains recorded in response to periodic signals, both in the temporal

and spectral domains (Delgutte,  1980 ; Palmer et al.,  1986 ; Young and Sachs,  1979 ). A

limitation of the p(t)-spectrum is that it is corrupted by harmonic distortions due to the

rectified nature of the PSTH response (Young and Sachs,  1979 ). For example, the spectrum

of a PSTH constructed using spike trains recorded from an AN fiber in response to a tone

(Fc) can show energy at Fc as well as 2Fc even though the stimulus itself does not have

energy at 2Fc. These issues related to rectifier distortion can be minimized by using both

polarities of the stimulus as we describe in a later section. Similar to the period histogram,

the PSTH can also be used to derive phase-locking metrics, such as V S and V Spp. These

synchrony-based metrics have been recently overshadowed by correlogram-based metrics,

which are described next, since the synchrony-based metrics are limited to periodic signals.

In contrast, correlogram-based approaches offer more general metrics to evaluate temporal

coding of both periodic and aperiodic stimuli in the ENV/TFS dichotomy.

3.3.3 Interspike-interval (ISI) based approaches

Interspike interval histogram analyses were developed to quantify the correlation between

two spike trains, either from the same neuron or from different neurons (Hagiwara,  1954 ;

Perkel et al.,  1967a ,  1967b ; Rodieck et al.,  1962 ). Interspike intervals between adjacent

spikes (also called first-order intervals) within a stimulus trial are used to construct per-trial

estimates of the ISI histogram, which are then averaged across trials to form the final first-

order ISI histogram (Fig  3.2 C). An alternative to the first-order ISI histogram, called the

all-order ISI histogram (or the autocorrelogram), can be estimated in a similar way with

the only difference being the inclusion of intervals between all spikes within a trial (not

only adjacent spikes) to construct the histogram (Fig  3.2 E, Møller,  1970 ; Rodieck,  1967 ).

The autocorrelogram has been used to study the temporal representation of stationary as

well as nonstationary stimuli (Bourk,  1976 ; Cariani and Delgutte,  1996a ,  1996b ; Sinex and

Geisler,  1981 ). While the autocorrelogram is attractive for its simplicity, it is confounded by

refractory effects (Figs  3.2 E and  3.2 F). In particular, since successive spikes within a single

trial cannot occur within the refractory period, the autocorrelogram shows an artifactual
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absence of intervals for delays less than the refractory period (Fig  3.2 E). As a result, the

autocorrelogram spectrum is partly corrupted.

Joris and colleagues extended these ISI-based analyses to remove the confounds of the

refractory effects by including all-order interspike intervals across stimulus trials to compute

a shuffled correlogram (Louage et al.,  2004 ). A shuffled correlogram computed using spike

trains in response to multiple repetitions of a single stimulus from a single neuron is called

the shuffled autocorrelogram (or the SAC, Fig  3.2 G). Similarly, a shuffled correlogram com-

puted using spike trains from different neurons, or for different stimuli, is called the shuffled

cross-correlogram (or the SCC ). The use of across-trial all-order ISIs provides substantially

more smoothing than simple all-order ISIs because many more intervals are included in the

histogram (compare Fig  3.2 E with Fig  3.2 G, and Fig  3.2 F with Fig  3.2 H).

In addition, both polarities of the stimulus can be used to separate out ENV and TFS

components from the response. Stimuli with alternating polarities share the same envelope,

but their phases (TFS) differ by a half-cycle at all frequencies. By averaging shuffled autocor-

relograms for both stimulus polarities and shuffled cross-correlograms for opposite stimulus

polarities, the polarity-tolerant (ENV) correlogram (called the sumcor) is obtained (Louage

et al.,  2004 , Sec  3.8.4 ). Similarly, the polarity-sensitive (TFS) correlogram, the difcor, is

estimated as the difference between the average autocorrelogram for both stimulus polarities

and the cross-correlogram for opposite stimulus polarities (Sec  3.8.4 ). These functions have

been preferred over PSTH-based analyses for estimating correlation sequences and response

spectra (Cedolin and Delgutte,  2005 ; Joris et al.,  2006 ; Rallapalli and Heinz,  2016 ). Shuffled

autocorrelograms have also been used to derive temporal metrics, such as the correlogram

peak-height and half-width, to quantify the strength and precision of temporal coding in the

response, respectively (Louage et al.,  2004 , including for nonstationary stimuli (Paraouty

et al.,  2018 ; Sayles et al.,  2015 ; Sayles and Winter,  2008 ). In addition, cross-correlograms

have been used to develop metrics to quantify ENV/TFS similarity between responses to dif-

ferent stimuli recorded from the same neuron (e.g., speech stimuli (Heinz and Swaminathan,

 2009 ; Rallapalli and Heinz,  2016 ; Swaminathan and Heinz,  2012 ), or between responses from

different neurons (Heinz et al.,  2010 ; Joris et al.,  2006 ; Swaminathan and Heinz,  2011 ).
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Although correlogram-based analyses provide a rich set of temporal metrics, they suf-

fer from three major limitations. First, correlograms discard phase information in the re-

sponse. Response phase can convey important information, especially for complex stimuli,

like speech (Delgutte et al.,  1998 ; Greenberg and Arai,  2001 ; Paliwal and Alsteris,  2003 ).

Second, metrics derived from the shuffled autocorrelogram and the sumcor are corrupted

by rectifier distortions (e.g., Fig  3.2 H). Third, spectral estimates based on correlograms are

appropriate for second-order stationary signals. To accommodate for nonstationary signals,

usually a sliding-window-based approach is employed where in each temporal window the

spectrum and/or correlogram is computed (Sayles and Winter,  2008 ). This windowing-based

approach faces the familiar problem of the time-frequency resolution trade-off. In addition,

the smoothing benefit provided by the correlogram comes at large computational cost as its

computation requires all-order spike-time differences across all trials. This computation cost

scales quadratically (N2) with the number of spikes (N) and can be cumbersome for large

N .

3.4 A unified framework for quantifying temporal coding based on alternating-
polarity PSTHs (apPSTHs)

In this section, we first show that apPSTHs can be used to unify classic metrics, e.g.,

VS and correlograms, in a computationally efficient manner. Then, we show that apPSTHs

offer more precise spectral estimates compared to correlograms, and allow for perceptually

relevant analyses that are not possible with classic metrics.

3.4.1 Alternating-polarity PSTHs (apPSTHs)

Let us denote the PSTHs in response to the positive and negative polarities of a stimulus

as p(t) and n(t), respectively. Then, the sum PSTH, s(t), which represents the polarity-

tolerant component in the response, is estimated as

s(t) = p(t) + n(t)
2 . (3.6)

44



0 10 20
0

5

10

15
Stimulus

N
u
m

b
e
r 

o
f 
in

te
rv

a
ls

A

0 10 20
Delay (ms)

0

10

20

30
FO-ISIH

C

0 10 20
0

20

40

60
AO-ISIH

E

0 10 20
0

500

1000
SAC

G

0.05 1 4

-40

-20

0
F

m

F
c

2F
c

D
F

T
 m

a
g
n
it
u
d
e
 (

d
B

)

B

0.05 1 4
Frequency (kHz)

-60

-40

-20 F
m

F
c

D

0.05 1 4

-20

0

20
F

m

2F
m

F
c

2F
c

F

0.05 1 4

0

20

40
F

m

2F
m

F
c

2F
c

H

Figure 3.2. The shuffled autocorrelogram is better than the first-
order and all-order ISI histogram, both in the time and frequency
domains. Example correlograms (top) and associated spectra (bottom) con-
structed using spike trains recorded from an AN fiber (CF = 1.4 kHz, medium
SR) in response to a SAM-tone at Fc = CF (50-Hz modulation frequency or
Fm, 0-dB modulation depth, 700-ms duration, 27 repetitions, 50 dB SPL). (A)
Autocorrelation function of the half-wave rectified stimulus. (B) The discrete
Fourier transform (DFT) of A. (C) The first-order (FO) ISI histogram. (D)
DFT of C. The first-order ISI histogram poorly captures the carrier (TFS)
and fails to capture the modulator (ENV). (E) The all-order (AO) ISI his-
togram. (F) DFT of E. The all-order ISI histogram captures both the carrier
and modulator despite being noisy. Both the first-order (C) and the all-order
(E) ISI histograms show dips for intervals less than the refractory period (∼0.6
ms), with the corresponding spectra corrupted by these refractory effects. (G)
The shuffled autocorrelogram. (H) DFT of G. The shuffled autocorrelogram
is smoother compared to the other correlograms, which also leads to improved
SNR in the spectrum at both the carrier and modulator frequencies. All these
ISI histograms are corrupted by rectifier distortion at twice the carrier fre-
quency (2Fc). Bin width = 50 µs for histograms in C, E, and G.

The difference PSTH, d(t), which represents the polarity-sensitive component in the

response, is estimated as

d(t) = p(t) − n(t)
2 . (3.7)
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The difference PSTH has been previously described as the compound PSTH (Goblick

and Pfeiffer,  1969 ). Here we use the terms sum and difference for s(t) and d(t), respec-

tively, for simplicity. Compared to the spectra of the single-polarity PSTHs [i.e., of p(t) or

n(t)], the spectrum of the difference PSTH, D(f), is substantially less affected by rectifier

distortion artifacts (Sinex and Geisler,  1983 ). This improvement occurs because even-order

distortions, which strongly contribute to these artifacts, are effectively canceled out by sub-

tracting PSTHs for opposite polarities. The Fourier magnitude spectrum of the difference

PSTH has been referred to as the synchronized rate. We show that the synchronized rate

relates to V S by

V S(f) = |D(f)|
N

, (3.8)

where f is frequency in Hz, and N is the total number of spikes (Sec  3.8.2 ).

It can also be shown that the autocorrelogram and the autocorrelation function of the

PSTH are related (Sec  3.8.3 ). In particular the SAC for a set of M spike trains X =

{x1, x2, ..., xM} can be estimated as

SAC(X) = RX (PSTHX) −
M∑
i=1

RX (xi), (3.9)

where RX is the autocorrelation operator, and PSTHX is the PSTH constructed using X.

Similarly, the SCC for two sets of spike trains X = {x1, x2, ..., xL} and Y = {y1, y2, ..., yM}

can be estimated as

SCC(X, Y ) = RX Y(PSTHX , PSTHY ), (3.10)

where PSTHX and PSTHY are PSTHs constructed using X and Y , respectively, and RX Y

is the cross-correlation operator. Since SACs and SCCs can be computed using apPSTHs,

it follows that sumcor and difcor can also be computed using apPSTHs (S4 Appendix). As

apPSTHs can be used to compute correlograms, apPSTHs offer the same degree of smoothing

as correlograms.

The use of apPSTHs to compute correlograms is computationally more efficient compared

to the existing correlogram-estimation method, i.e., by tallying all interspike intervals. For
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a fixed stimulus duration and PSTH resolution, estimating the autocorrelation function of

the PSTH requires constant time complexity [O(1)]. Thus, for N spikes, the SAC and SCC

can be computed with O(N) complexity that is needed for constructing the PSTH using Eqs

 3.9 and  3.10 . This is substantially better than the O(N2) complexity needed to compute

the correlograms by tallying shuffled all-order interspike intervals. For example, consider a

spike-train dataset that consists of 50 repetitions of a stimulus with 100 spikes per repetition.

To compute the SAC using (all-order) ISIs, each spike time (5000 unique spikes) has to

be compared with spike times from all other repetitions (4900 spike times). This tallying

method requires 24.5 × 106 (i.e., 5000 × 4900) operations to compute the SAC, where one

operation consists of comparing two spike times and incrementing the corresponding SAC-

bin by 1. In contrast, only 5000 operations are needed to construct the PSTH for 5000

(50 × 100) total spikes. The PSTH can then be used to estimate the SAC with constant

time complexity. In addition to their computational efficiency, apPSTHs offer additional

benefits for relating single-unit responses to far-field responses, for spectral estimation, and

for speech-intelligibility modeling as discussed below.

3.4.2 apPSTHs unify single-unit and far-field analyses

The PSTH is particularly attractive because the PSTH from single neurons or a popula-

tion of neurons, by virtue of being a continuous signal, can be directly compared to evoked

potentials in response to the same stimulus (e.g., Fig  3.3 ). In this example, the speech sen-

tence s3 was used as the stimulus to record the frequency following response (FFR) from

one animal. The same stimulus was also used to record spike trains from AN fibers (N=246)

from 13 animals. The mean d(t) and mean s(t) were computed by pooling PSTHs across

all neurons. The difference and sum FFRs were estimated by subtracting and averaging the

FFRs to alternating polarities, respectively. This approach of estimating polarity-tolerant

and polarity-sensitive components from FFRs is well established (Aiken and Picton,  2008 ;

Ananthakrishnan et al.,  2016 ; Shinn-Cunningham et al.,  2013 ). Qualitatively, the periodicity

information in the mean d(t) and the difference FFR were similar (Fig  3.3 A); this is expected

because the difference FFR receives significant contributions from the auditory nerve (King

et al.,  2016 ). To compare the spectra for the two responses, a 100-ms segment was consid-
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ered. The first formant (F1) and the first few harmonics of the fundamental frequency (F0)

were well captured in both spectra. F2 was also well captured in the difference FFR, and to

a lesser extent, in the mean d(t).
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Figure 3.3. apPSTHs can be directly compared to evoked potentials
in response to the same stimulus. (A) Time-domain waveforms for the
difference FFR (blue) and the mean difference PSTH [d(t), red] in response
to the Danish speech stimulus, s3 (black). The mean d(t) was computed by
taking the grand average of the d(t)s from 246 AN fibers from the 13 animals
(CFs from 0.2 to 11 kHz). The difference FFR was estimated by subtracting
FFRs to alternating polarities of the stimulus. (B) Spectra for the signals in
A for a 100-ms segment (delimited by purple dashed lines in A). (C) Time-
domain waveforms for the sum FFR (blue) and the mean sum PSTH [s(t),
red] for the same stimulus, s3. Both responses show sharp onsets for plosive
(/d/ and /g/) and fricative (/s/) consonants. (D) Spectra for the responses in
C for the same segment considered in B. The mean s(t) was estimated as the
grand average of the s(t)s from the 246 neurons. Sum FFR was estimated by
halving the sum of the FFRs to both polarities. Stimulus intensity = 65 dB
SPL.

The mean s(t) and the sum FFR also show comparable temporal features in these nonsta-

tionary responses (Fig  3.3 C). For example, both responses show sharp onsets for plosive and
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fricative consonants. The segment considered in Fig  3.3 B was used to compare the spectra for

the two sum responses. Both spectra show similar spectral peaks near the first two harmon-

ics of F0 (Fig  3.3 D), which indicates that pitch-related periodicity is well captured in both

the sum FFR and the mean s(t). However, there are some discrepancies between the relative

heights of the first two F0-harmonics. These discrepancies could arise because the average

FFR primarily reflects activity of high-frequency neurons from rostral generators (e.g., the

inferior colliculus, King et al.,  2016 ), which show stronger polarity-tolerant responses com-

pared to the auditory nerve (Joris,  2003 ). In contrast, the mean s(t) is based on responses of

AN fibers, which show strong polarity-sensitive responses to F0 due to tuning-curve tail re-

sponses at high sound levels like that used here. These tail responses contribute to power at

2F0 as rectifier distortion. Overall, using apPSTHs for invasive spike-train recordings allows

direct comparison of invasive single-unit data with noninvasive continuous-valued evoked

potentials.

3.4.3 Variance of apPSTH -based spectral estimates can be reduced relative to
the correlogram-based spectral estimates

Temporal information in a signal can be studied not only in the time domain (e.g.,

using correlograms) but also in the frequency domain (e.g., using the power spectral density,

PSD). The frequency-domain representation often provides a compact alternative compared

to the time-domain counterpart. In the framework of spectral estimation, the source (“true”)

spectrum, which is unknown, is regarded as a parameter of a random process that is to be

estimated from the available data (i.e., from examples of the random process). Spectral

estimation is complicated by two factors: (1) finite response length, and (2) stochasticity of

the system. The former introduces bias to the estimate, i.e., the PSD at a given frequency can

differ from the true value. This bias reflects the leakage due to power at nearby (narrowband

bias) and far-away (broadband bias) frequencies (due to the inherent temporal windowing

from the finite-duration response). Stochasticity of the system adds randomness to the

sampled data, which creates variance in the estimate. Desirable properties of PSD estimators

are minimized bias and variance. Bias can be reduced by multiplying the data (prior to

spectral estimation) with a taper that has a strong energy concentration near 0 Hz. Variance
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can be reduced by using a greater number of tapers to estimate multiple (independent) PSD

estimates, which can be averaged to compute the final estimate. The multitaper approach

optimally reduces the bias and variance of the PSD estimate (Babadi and Brown,  2014 ;

Thomson,  1982 ). In this approach, for a given data length, a frequency resolution is chosen,

based on which a set of orthogonal tapers are computed. These tapers include both even

and odd tapers, which can be used to obtain the independent PSD estimates to be averaged.

In contrast, only even tapers can be used with correlograms as they are even sequences

(Oppenheim,  1999 ; Rangayyan,  2015 ). Therefore, variance in the PSD estimate can be

reduced by a factor of up to 2 by using apPSTHs instead of correlograms.

For example, the benefit (in terms of spectral-estimation variance) of using the multitaper

spectrum of d(t), as opposed to the discrete Fourier transform (DFT) of the difcor, can be

quantified by comparing the two spectra at a single frequency (Fig  3.4 ). In this example, a

100-ms segment of the s3 speech stimulus was used as the analysis window. The segment had

an F0 of 98 Hz and F1 of 630 Hz (Fig  3.4 A). Fig  3.4 B shows example spectra estimated using

spike trains recorded from a low-frequency AN fiber [CF = 900 Hz, SR = 81 spikes/s]. To

compare the variances in the two estimated spectra, fractional power at the 6th harmonic was

considered, as this harmonic was the closest to F1. This analysis was restricted to neurons

(N=10) for which data was available for at least 75 repetitions per polarity of the stimulus

and that had a CF between 0.3 and 2 kHz. For each neuron, 25 spike trains per polarity

were chosen randomly 12 times to estimate fractional power at the 6th harmonic. The same

set of spike trains were used to estimate distributions for both the difcor-spectrum and D(f).

The ratio of difcor-based fractional power variance to the apPSTH -based fractional power

variance at 6F0 was >1 for all 10 neurons considered (Fig  3.4 D), demonstrating the benefit

of being able to compute a multitaper spectrum from d(t) compared to the difcor-spectrum

in reducing variance. Overall, these results indicate that less data are required to achieve the

same level of precision in a spectral metric based on the multitaper spectrum of an apPSTH

compared to the same metric derived from the DFT of the correlogram.
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Figure 3.4. Lower spectral-estimation variance can be achieved us-
ing apPSTHs (with multiple tapers) compared with difcor correl-
ograms. (A) Spectrum for the 100-ms segment in the speech sentence s3
(F0 ∼ 98 Hz, F1 ∼ 630 Hz) used for analysis. (B) Example spectra for an AN
fiber (CF=900 Hz, high SR) with spikes from 25 randomly chosen repetitions
per polarity. The first two discrete-prolate spheroidal sequences were used as
tapers corresponding to a time-bandwidth product of 3 to estimate D(f), the
spectrum of d(t). No taper (i.e., rectangular window) was used to estimate
the difcor spectrum. The AN fiber responded to the 6th, 7th and 8th har-
monic of the fundamental frequency. (C) Error-bar plots for fractional power
(PowerF rac) at the frequency (green triangle) closest to the 6th harmonic. Er-
ror bars were computed for 12 randomly and independently drawn sets of 25
repetitions per polarity. The same spikes were used to compute the spectra for
d(t) (blue) and difcor (red). (D) Diamonds denote the ratio of variances for
the difcor-based estimate to the d(t)-based estimate. This ratio was greater
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width = 0.1 ms for PSTHs. Sampling frequency = 10 kHz for FFRs. Stimulus
intensity = 65 dB SPL.
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3.4.4 Benefits of apPSTHs for speech-intelligibility modeling

Speech-intelligibility (SI) models aim to predict the effects of acoustic manipulations of

speech on perception. Thus, SI models allow for quantitative evaluation of the perceptually

relevant features in speech. More importantly, SI models can guide the development of

optimal hearing-aid strategies for hearing-impaired listeners. However, state-of-the-art SI

models are largely based on the acoustic signal, where there is no physiological basis to

capture the various effects of sensorineural hearing loss (SNHL, Cooke,  2006 ; Houtgast and

Steeneken,  1973 ; Kryter,  1962 ; Relaño-Iborra et al.,  2016 ; Taal et al.,  2011 ). In contrast,

neurophysiological SI models (i.e., SI models based on neural data) are particularly important

in this regard since spike-train data from preclinical animal models of various forms of

SNHL provide a direct way to evaluate the effects of SNHL on speech-intelligibility modeling

outcomes (Heinz,  2015 ; Rallapalli and Heinz,  2016 ).

A major advantage of PSTH-based approaches over correlogram-based approaches is that

they can be used to extend a wider variety of acoustic SI models to include neurophysiological

data. In particular, correlograms can be used to extend power-spectrum-based SI models

(Cooke,  2006 ; Houtgast and Steeneken,  1973 ; Jørgensen and Dau,  2011 ; Kryter,  1962 ; Taal et

al.,  2011 ) but not for the more recent SI models that require phase information of the response

(Relaño-Iborra et al.,  2016 ; Scheidiger et al.,  2018 ). For example, the speech envelope-power-

spectrum model (sEPSM) has been evaluated using simulated spike trains since sEPSM only

requires power in the response envelope, which can be estimated from the sumcor spectrum

(Rallapalli and Heinz,  2016 ). However, sumcor cannot be used to evaluate envelope-phase-

based SI models since it discards phase information. Studies have shown that the response

phase can be important for speech intelligibility (Delgutte et al.,  1998 ; Paliwal and Alsteris,

 2003 ). In contrast to the sumcor, the time-varying PSTH contains both phase and magnitude

information, and thus, can be used to evaluate both power-spectrum- and phase-spectrum-

based SI models. For example, because the PSTH p(t) [or n(t)] is already rectified, it

can be filtered through a modulation filter bank to estimate “internal representations” in

the modulation domain (Fig  3.5 ). These spike-train-derived “internal representations” are

analogous to those used in phase-spectrum-based SI models (Relaño-Iborra et al.,  2016 ;
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Scheidiger et al.,  2018 ) and can be further processed by existing SI back-ends to estimate

SI values. In summary, apPSTHs can be used to estimate complete (amplitude and phase)

spectrally specific modulation-domain representations using modulation filter banks. These

analyses allow for the evaluation of a wider variety of acoustic-based SI models in the neural

domain, where translationally relevant data can be obtained from preclinical animal models

of various forms of SNHL.
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Figure 3.5. Modulation-domain internal representations for speech
coding can be obtained from PSTH-based envelopes. PSTH response
[p(t)] from one AN fiber (CF=290 Hz, SR= 12 spikes/s) is shown. (A) Time-
domain waveforms for the stimulus (gray) and p(t) (blue). (B) Output of a
modulation filter bank after the processing of p(t). Modulation filters were
zero-phase, fourth-order, and octave-wide IIR filters. Center frequencies (Fm)
for these filters ranged from 2 to 128 Hz (octave spacing), similar to those used
in recent psychophysically based SI models (e.g., (Relaño-Iborra et al.,  2016 ).
PSTH bin width = 0.5 ms. 15 stimulus repetitions. Stimulus intensity = 60
dB SPL.

3.5 Quantifying ENV and TFS using apPSTHs for stationary signals

In this section, we first describe existing and novel ENV and TFS components that can

be derived from apPSTHs. Next, we compare the relative merits of the novel components

53



over existing ENV and TFS components using simulated AN fiber data. Finally, we apply

these apPSTHs to analyze spike-train data recorded in response to speech and speech-like

stimuli.

3.5.1 Several ENV and TFS components can be derived from apPSTHs

The neural response envelope can be obtained from apPSTHs in two orthogonal ways:

(1) the low-frequency signal, s(t), and (2) the Hilbert envelope of the high-frequency carrier-

related energy in d(t). s(t) is thought to represent the polarity-tolerant response component,

which has been defined as the envelope response (Joris,  2003 ; Louage et al.,  2004 ). For a

stimulus with harmonic spectrum, s(t) captures the envelope related to the beating between

harmonics. In addition, onset and offset responses (e.g., in response to high-frequency frica-

tives, Fig  3.3 C) are also well captured in s(t). Although sumcor and s(t) are related, dynamic

features like onset and offset responses are captured in s(t), but not in the sumcor since the

sumcor discards phase information by essentially averaging ENV coding across the whole

stimulus duration. The use of sum envelope is popular in far-field responses (Aiken and Pic-

ton,  2008 ; Ananthakrishnan et al.,  2016 ; Shinn-Cunningham et al.,  2013 ) but not directly

in auditory neurophysiology studies. A major disadvantage of s(t) is that it is affected by

rectifier distortions if a neuron phase locks to low-frequency energy in the stimulus (e.g.,

Fig  3.6 A). We discuss this issue of rectifier distortion in more detail later in the following

section.

A second way envelope information in the neural response can be quantified is by com-

puting the envelope of the difference PSTH, d(t). This envelope, e(t), can be estimated as

the magnitude of the analytic signal, a(t), of the difference PSTH

e(t) = |a(t)|√
2

, (3.11)

where a(t) = d(t) + H{d(t)}, and H{·} is the Hilbert transform operator. The factor
√

2

normalizes for the power difference after applying the Hilbert transform. d(t) is substantially

less affected by rectifier distortion (Sinex and Geisler,  1983 ), and thus, so is e(t). The use of

e(t) parallels the procedure followed by many computational models that extract envelopes
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from the output of cochlear filter banks (Dubbelboer and Houtgast,  2008 ; Jørgensen and

Dau,  2011 ; Sadjadi and Hansen,  2011 ). The relative merits of e(t) and s(t) to represent the

response envelope is discussed in the following section.

The TFS component can also be estimated in two ways: (1) d(t), and (2) the cosine of

the Hilbert phase of d(t). The difference PSTH has been traditionally referred to as the TFS

response because it is the polarity-sensitive component. difcor and metrics derived from

it relate to d(t) as the difcor is related to the autocorrelation function of d(t) (see Section

 3.8.4 ). However, d(t) does not represent the response to only the carrier (phase) since it

also contains envelope information in e(t). We propose a novel representation of the TFS

component in the response, φ(t), estimated as the cosine phase of the analytic signal

φ(t) =
√

2 × rms[d(t)] × cos[∠a(t)], (3.12)

where normalization by
√

2 × rms[d(t)] is used to match the power in φ(t) with the power

in d(t) since cos[∠a(t)] is a constant-rms (rms = 1/
√

2) signal.

3.5.2 Relative merits of sum and Hilbert-envelope PSTHs in representing spike-
train envelope responses

The relative merits of the two envelope PSTHs, s(t) and e(t), were evaluated based on

simulated spike-train data generated using a computational model of AN responses (Bruce

et al.,  2018 ). The model includes both cochlear-tuning and hair-cell transduction nonlinear-

ities in the auditory system. Responses were generated for 24 AN fibers whose CFs were

logarithmically spaced between 250 Hz and 8 kHz. Model parameters are listed in S1 Table.

For each simulated fiber, a SAM tone was used as the stimulus. The SAM tone carrier (Fc)

was placed at CF for each fiber and was modulated by a 20-Hz modulator (Fm) at 100% (i.e.,

0-dB) modulation depth. The intensity was ∼65 dB SPL for all CFs, with slight adjustments

to maintain a consistent discharge rate of 130 spikes/s (e.g., to account for the middle-ear

transfer function that is included in the model). The number of repetitions per stimulus

polarity was set to 25, which is typical of auditory-neurophysiology experiments.
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Modulation spectra were estimated for s(t) and e(t) [denoted by S(f) and E(f), respec-

tively] for individual-fiber responses (Figs  3.6 A- 3.6 C). d(t) was band-pass filtered near CF

(200-Hz bandwidth, 2nd order filter) before applying the Hilbert transform. This filtering

minimized the spectral energy in d(t) that was not stimulus related. The two envelopes were

evaluated based on their representations of the modulator and rectifier distortion. Rectifier

distortions are expected to occur at even multiples of the carrier frequency and nearby side-

bands (i.e., 2nFc, 2nFc − Fm, and 2nFc + Fm for integers n, Fig  3.6 A). It is desirable for

an envelope metric to consistently represent envelope coding across CFs and be less affected

by rectifier-distortion artifacts. Modulation coding for the simulated responses was quanti-

fied as the power in 10-Hz bands centered at the first three harmonics of Fm (i.e., 15 to 25

Hz, 35 to 45 Hz, and 55 to 65 Hz) for both s(t) and e(t) (Fig  3.6 D). The need to include

multiple harmonics of Fm arises because the response during a stimulus cycle departs from

sinusoidal shape due to the saturating nonlinearity associated with the inner-hair-cell trans-

duction process (S1 Fig). While Fm-related power was nearly constant across CF for s(t),

it was nearly constant for e(t) only up to 1.2 kHz, after which it rolled off. This roll-off for

e(t) is not surprising since e(t) relies on phase-locking near the carrier and the sidebands, as

confirmed by the strong correspondence between tonal phase-locking at the carrier frequency

and Fm-related power in e(t) (Fig  3.6 D).

The analysis of rectifier distortion was limited to only the distortion components near

the second harmonic of the carrier (i.e., 2Fc, 2Fc − Fm, and 2Fc + Fm) since this harmonic

is substantially stronger than higher harmonics (e.g., Fig  3.6 A). Rectifier distortion was

quantified as the sum of power in 10-Hz bands centered at the three distortion frequency

components. Because e(t) was estimated from spectrally specific d(t), which was band-

limited to 200 Hz near the carrier frequency, e(t) was virtually free from rectifier distortion.

In contrast, s(t) was substantially affected by rectifier distortion for simulated fibers with

CFs below ∼2 kHz (Fig  3.6 E). Rectifier distortion in S(f) dropped for fibers with CF above

∼0.8 kHz because phase locking at distortion frequencies (i.e., twice the carrier frequencies)

was attenuated by the roll-off in tonal phase locking. For example, the simulated AN fiber in

Fig  3.6 B (CF = 1.7 kHz) maintained comparable Fm-related power for both envelopes, but

rectifier distortion for s(t) was substantially diminished because the distortion frequency (3.4
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kHz) is well above the phase-locking roll-off. These results indicate that s(t) is substantially

corrupted by rectifier distortion (at twice the stimulus frequency) when the neuron responds

to stimulus energy that is below half the phase-locking cutoff.

Next, these spectral power metrics were compared with the correlogram-based metric,

sumcor peak-height (Figs  3.6 F- 3.6 H). The sumcor peak-height metric is defined as the max-

imum value of the normalized time-domain sumcor function (Louage et al.,  2004 ). Prior

to estimating the peak-height, the sumcor is sometimes adjusted by adding an inverted tri-

angular window to compensate for its triangular shape (Heinz and Swaminathan,  2009 ).

Here, sumcors were compensated by subtracting a triangular window from it so that the

baseline sumcor is a flat function with a value of 0 (instead of 1) in the absence of ENV

coding. This baseline value of 0 for the sumcor is the same as the baseline value for the

difcor in the absence of TFS coding. In Sec  3.8.5 , we show that the sumcor peak-height is a
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Figure 3.6 (continued from previous page.) Envelope-coding metrics
should be spectrally specific to avoid artifacts due to rectifier dis-
tortion and neural stochasticity. Simulated responses for 24 AN fibers
(log-spaced between 250 Hz and 8 kHz) were obtained using a computational
model (see text) using SAM tones at CF (modulation frequency, Fm=20 Hz;
0-dB modulation depth) as stimuli. Stimulus intensity ∼ 65 dB SPL. S(f)
(blue) and E(f) (red) for three example model fibers with CFs = 1.0, 1.7,
and 4 kHz (panels A-C) illustrate the relative merits of s(t) and e(t), and the
potential for rectifier distortion to corrupt envelope coding metrics. d(t) was
band-limited to a 200-Hz band near Fc for each AN fiber prior to estimating
e(t) from the Hilbert transform of d(t). (A) For the 1-kHz fiber, S(f) and
E(f) are nearly identical in the Fm band. S(f) is substantially affected by
rectifier distortion at 2×CF, which can be ignored using spectrally specific
analyses. (B) The two envelope spectra are largely similar near the Fm bands
since phase-locking near the carrier (1.7 kHz) is still strong (panel D). Rectifier
distortion in S(f) is greatly reduced since phase-locking at twice the carrier
frequency (3.4 kHz = 2×1.7 kHz) is weak. (C) Fm-related power in E(f) and
rectifier distortion in S(f) are greatly reduced as the frequencies for the car-
rier and twice the carrier are both above the phase-locking roll-off. (D) The
strength of modulation coding was evaluated as the sum of the power near the
first three harmonics of Fm (gray boxes in panels A-C) for S(f) (blue squares)
and E(f) (red circles). V Spp was also quantified to CF-tones for each AN fiber
(black dashed line, right Y axis). (E) Rectifier distortion (RD) analysis was
limited to the second harmonic of the carrier (brown boxes in panels A-C). RD
was quantified as the sum of power in 10-Hz bands around twice the carrier
frequency (2 × CF ) and the adjacent sidebands (2 × CF ± Fm). RD for E(f)
is not shown because E(f) was virtually free from RD. (F) Raw and adjusted
sumcor peak-heights across CFs. sumcors were adjusted by band-pass filter-
ing them in the three Fm-related bands. Large differences between the two
metrics at low frequencies indicate that the raw sumcor peak-heights are cor-
rupted by rectifier distortion at these frequencies. (G) Relation between raw
and adjusted sumcor peak-heights with Fm-related power (from panel D) in
S(f). Good correspondence between Fm-related power in S(f) and adjusted
sumcor peak-height supports the use of spectrally specific envelope analyses.
(H) The difference between raw and adjusted sumcor peak-heights was largely
accounted for by RD power. However, this difference was always greater than
zero, suggesting broadband metrics can also be biased because of noise related
to neural stochasticity.

broadband metric and it is related to the total power in s(t), including rectifier distortions.

When the sumcor is used to analyze responses of low-frequency AN fibers to broadband noise

stimuli, the sumcor-spectrum, and thus, the sumcor peak-height, are corrupted by rectifier
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distortions (Heinz and Swaminathan,  2009 ). Similar to S(f) for low-frequency SAM tones

(Fig  3.6 A), these distortions show up at 2×CF in the sumcor-spectrum, whereas the difcor-

spectrum has energy only near CF (Heinz and Swaminathan,  2009 ). Heinz and colleagues

accounted for these distortions by low-pass filtering the sumcor below CF to remove the ef-

fects of rectifier distortion at 2×CF. Here, we generalize this issue by comparing the sumcor

and spectrally specific ENV metrics for narrowband SAM-tone stimuli to demonstrate the

limitations of any broadband ENV metric. sumcors were adjusted by band-limiting them

to 10-Hz bands near the first three harmonics of Fm. As expected, the difference between

the raw and adjusted sumcor peak-heights was large at low CFs (Fig  3.6 F), where rectifier

distortion corrupts the broadband sumcor peak-height metric. At high CFs (above 1.5 kHz),

the difference between raw and adjusted sumcor peak-heights was small but nonzero. These

differences correspond to power in S(f) at frequencies other than the modulation-related

bands and reflect the artifacts of neural stochasticity due to finite number of stimulus tri-

als. As power is always nonnegative, including power at frequencies unrelated to the target

frequencies adds bias and variance to any broadband metric. The adjusted sumcor peak-

height, unlike the raw sumcor peak-height, showed good agreement with spectrally specific

Fm-related power in S(f) (Fig  3.6 G).

Overall, these results support the use of spectrally specific analyses to quantify ENV

coding in order to minimize artifacts due to rectifier distortion as well as the effects of neural

stochasticity. Of the two candidate apPSTHs to quantify response envelope, e(t) had the

benefit of minimizing rectifier distortion. However, e(t)’s reliance on carrier-related phase

locking limits the use of e(t) as a unifying ENV metric across the whole range of CFs.

Instead, spectrally specific s(t) is more attractive because of its robustness in representing

the response envelope across CFs (Fig  3.6 D).

3.5.3 Relative merits of difference and Hilbert-phase PSTHs in representing
spike-train TFS responses

In order to evaluate the relative merits of d(t) and φ(t) in representing the neural re-

sponse TFS, the same set of simulated AN spike-train responses were used as in Fig  3.6 .

The stimulus, a CF-centered SAM-tone, has energy at the carrier frequency (Fc) and the
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sidebands (Fc ± Fm). The sidebands are 6 dB lower in amplitude compared to the carrier

amplitude for the 100% modulated stimulus. Although the stimulus has power at the carrier

and the sidebands, only the carrier representation should be considered towards quantifying

the response TFS because the energy at the sidebands arises due to the modulation of the

carrier by the modulator (ENV). As the carrier has energy at a single frequency (Fc) for a

SAM tone, the desirable TFS response should have maximum energy concentrated at the

carrier frequency and not at the sidebands. Therefore, the merits of d(t) and φ(t) were

evaluated based on how well they capture the carrier and suppress the sidebands (Fig  3.7 ).

As mentioned previously, d(t) was band-limited to a 200-Hz bandwidth near the carrier

frequency before estimating φ(t). D(f) at low CFs contained substantial energy at both

the carrier and the sidebands (Figs  3.7 A and  3.7 B). This indicates that d(t) represents the

complete neural coding of the SAM tone (both the envelope and the carrier) and not just the

carrier. Furthermore, D(f) has additional sidebands (Fc±2Fm) around the carrier frequency.

These sidebands arise as a result of the saturating nonlinearity associated with inner-hair-cell

transduction (S1 Fig), and thus, should not be considered towards TFS response. In contrast,

Φ(f), the spectrum of φ(t) had most of its power concentrated at the carrier frequency, with

substantially less power in the sidebands (Figs  3.7 A and  3.7 B). These results were consistent

across a wide range of CFs and for both sidebands (Figs  3.7 D and  3.7 E). Overall, these

results show that φ(t) is a better PSTH compared to d(t) in quantifying the response TFS

since φ(t) emphasizes power at the carrier frequency and not at the sidebands.

In the following, we apply apPSTH -based analyses on spike-train data recorded from

chinchilla AN fibers in response to speech and speech-like stimuli. In these examples, we

particularly focus on certain ENV features, such as pitch coding for vowels and response

onset for consonants, and TFS features, such as formant coding for vowels.

3.5.4 Neural characterization of ENV and TFS using apPSTHs for a synthe-
sized stationary vowel

Fig  3.8 shows the response spectra obtained using various apPSTHs [p(t), s(t), d(t), and

φ(t)] for a low-frequency AN fiber. The stationary vowel, s1, was used as the stimulus. The

neuron’s CF was close to the first stimulus formant (Fig  3.8 B). P (f) shows a strong response
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Figure 3.7. Compared to the d(t), the apPSTH φ(t) provides a
better TFS representation. (A-C) Spectra of d(t) and φ(t) for the same
three simulated AN fiber responses for which ENV spectra were shown in Fig
 3.6 . D(f) has substantial power at CF (black triangle), as well as at lower
(purple circle) and upper (purple square) sidebands. Φ(f), the spectrum of
φ(t), shows maximum power concentration at CF (carrier frequency), with
greatly reduced sidebands. (D) Ratio of power at CF (carrier, black triangle
in panels A-C) to power at lower sideband (LSB, Fc − Fm, purple circles in
panels A-C). (E) Ratio of power at CF (carrier) to power at upper sideband
(USB, Fc + Fm, purple squares in panels A-C). φ(t) highlights the carrier and
not the sidebands, and thus, compared to d(t), φ(t) is a better representation
of the true TFS response.

to the 6th harmonic (first formant). In addition, there is substantial energy near 1200 Hz,

the frequency corresponding to the second formant. However, this peak near 1200 Hz results

from rectifier distortion from the first formant and not in response to the second formant

itself; this is confirmed by D(f) (Fig  3.8 D), which shows a clear peak at the 6th harmonic

and little energy near the 12th harmonic. Similar to P (f), S(f) shows substantial energy
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Figure 3.8. Spectral-domain application of various apPSTHs to
spike trains recorded in response to a stationary vowel. Example
of spectral analyses of spike trains recorded from an AN fiber (CF= 530 Hz,
SR=90 spikes/s) in response to a synthesized stationary vowel (s1 described
in Materials and Methods, fundamental frequency: F0 = 100 Hz, first formant:
F1 = 600 Hz). (A) Time-domain representation of p(t), n(t), and the stimulus
(Stim). n(t) is flipped along the y-axis for display. Signals outside the analysis
window are shown in gray. PSTH bin width = 0.1 ms. Number of stimulus
repetitions per polarity = 30. Stimulus intensity = 65 dB SPL. (B) Stimulus
spectrum (blue, left yaxis). (C) P (f). (D) Spectra for difference [D(f), green]
and sum [S(f), purple] PSTHs. (E) Spectra of Hilbert-based TFS PSTH
[Φ(f), green]. In panels B-E, the frequency-threshold tuning curve (TC θ,
black) of the neuron is plotted on the right y-axis. P (f) and S(f) are cor-
rupted by rectifier distortion at 2F1 frequency. The response primarily reflects
TFS-based F1 coding (E) and little envelope coding (D), which is consistent
with the “synchrony capture” phenomenon for stationary vowel coding.

at 2F1 due to rectifier distortion at twice the TFS (F1) frequency. Except for this rectifier

distortion, there is little energy at other frequencies, including at the fundamental frequency,

in S(f) demonstrating weak envelope coding in the response. The response of this neuron

primarily reflects TFS coding of F1 [Φ(f) in Fig  3.8 E] where the spectrum shows substantial
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energy only at the 6th harmonic of the fundamental frequency. These results are consistent

with the previously reported phenomenon of “synchrony-capture” in the neural coding of

stationary vowels (Delgutte and Kiang,  1984a ; Young and Sachs,  1979 ). In “synchrony-

capture”, the response of a neuron with CF near a formant is dominated by the harmonic

of the fundamental frequency closest to the formant. As the response primarily follows a

single sinusoid, the Hilbert-envelope PSTH, e(t), is essentially flat across the vowel duration

and has little energy other than at 0 Hz [not shown for ease of visualization of Φ(f)]. As a

result, there is little difference between φ(t) and d(t) for this stationary vowel.

3.5.5 Neural characterization of ENV and TFS using apPSTHs for a natural
speech segment

Most previous studies have used the period histogram to study speech coding in the

spectral domain (Delgutte and Kiang,  1984a ; Young and Sachs,  1979 ). The period his-

togram is limited to stationary periodic stimuli, which were employed in those studies. In

contrast, the use of apPSTHs facilitates the spectral analysis of neural responses to natural

speech stimuli, which need not be stationary (Fig  3.9 ). In this example, the response of a

low-frequency AN fiber to a 100-ms vowel segment of the s3 natural speech sentence was

considered. The CF (1.1 kHz) of this neuron is close to the second formant (F2) of this

segment (Fig  3.9 B). P (f) shows peaks corresponding to F2 (∼1.2 kHz) and F0 (∼130 Hz,

Fig  3.9 C). Similar to Fig  3.8 , both D(f) and Φ(f) show substantial energy near the formant

closest to the neuron’s CF. In contrast to Fig  3.8 , S(f) [and E(f)] shows substantial energy

near the fundamental frequency (inconsistent with synchrony capture). A detailed discussion

of this discrepancy is beyond the scope of the present report, except to say that this lack of

synchrony capture for natural vowels is a consistent finding that will be reported in a future

study. The presence of substantial energy near F0 in E(f) indicates that d(t) is corrupted by

pitch-related modulation in e(t). This is because, mathematically, D(f) is the convolution

of the true TFS spectrum [Φ(f)] and the Hilbert-envelope spectrum [E(f)]. Overall, these

results demonstrate the application of various apPSTHs to study the neural representation

of natural nonstationary speech stimuli in the spectral domain.
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Figure 3.9. Spectral-domain application of various apPSTHs to
spike trains recorded in response to natural speech. Example of spec-
tral analyses of spike trains recorded from an AN fiber (CF= 1.1 kHz, SR=64
spikes/s) in response to a vowel snippet of a speech stimulus (s3). Same format
as Fig  3.8 . PSTH bin width = 0.1 ms. Number of stimulus repetitions per po-
larity = 50. Stimulus intensity = 65 dB SPL. P (f) shows comparable energy
at F0 (130 Hz) and F2 (1.2 kHz). Both S(f) and E(f) show peaks near F0.
Similarly, both D(f) and Φ(f) show good F2 representations, although D(f) is
corrupted by the strong F0-related modulation in e(t) as d(t) = e(t)×φ(t). The
significant representation of F0 in this near-F2 AN fiber response to a natural
vowel is inconsistent with the synchrony-capture phenomenon for synthetic
stationary vowels.

3.5.6 Onset envelope is well represented in the sum PSTH but not in the
Hilbert-envelope PSTH

In addition to analyzing spectral features, apPSTHs can also be used to analyze temporal

features in the neural response. An example temporal feature is the onset envelope, which

has been shown to be important for the neural coding of consonants (Delgutte,  1980 ; Heil,

 2003 ), in particular fricatives (Delgutte and Kiang,  1984b ). A diminished onset envelope
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in the peripheral representation of consonants has been hypothesized to be a contributing

factor for perceptual deficits experienced by hearing-impaired listeners (Allen and Li,  2009 ),

and thus is an important feature to quantify. Fig  3.10 shows example onset responses for

a high-frequency AN fiber (CF= 5.8 kHz, SR= 70 spikes/s) for a fricative (/s/) portion of

the speech stimulus s3. The onset is well captured in single-polarity PSTHs [p(t) and n(t),

Fig  3.10 A] and in the sum envelope [s(t), Fig  3.10 B]. Since the onset is a polarity-tolerant

feature, it is greatly reduced by subtracting the PSTHs to opposite polarities. As a result,

the response onset is poorly captured in d(t) (Fig  3.10 C) and its Hilbert envelope, e(t) (Fig

 3.10 D).
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Figure 3.10. p(t), n(t), and s(t) have robust representations of the
onset response, whereas e(t) and d(t) do not. Response of a high-
frequency fiber (CF= 5.8 kHz, SR= 70 spikes/s) to a fricative portion (/s/) of
the speech stimulus, s3. Stimulus intensity = 65 dB SPL. (A) Stimulus (black,
labeled Stim), p(t) (blue) and n(t) (red, flipped along the y-axis for display).
PSTH bin width = 0.5 ms. Number of stimulus repetitions per polarity =
50. (B) The sum envelope, s(t) (C) The difference PSTH, d(t), and (D) the
Hilbert-envelope PSTH, e(t). Since the onset envelope is a polarity-tolerant
response, all PSTHs capture the response onset except for d(t) and e(t).
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Overall, these examples show that apPSTHs can be used to study various spectral and

temporal features in the neural response for natural and synthesized stimuli in the ENV/TFS

dichotomy. These apPSTHs are summarized in Table  3.2 .

Table 3.2. apPSTH -taxonomy for ENV & TFS. We define apPSTHs
as the collection of PSTHs derived using both polarities of the stimulus. The
pair of PSTHs, p(t) and n(t), is a sufficient statistic for apPSTHs since all
other PSTHs in the group can be derived from the two. Alternatively, the
pair, d(t) and s(t), is also a sufficient statistic for apPSTHs. Each PSTH (e.g.,
the positive polarity PSTH) can be expressed in the time domain [p(t)] or
in the frequency domain [P (f)]. RD = Rectifier distortion. (T,F) = (Time,
Frequency).

PSTH
name

Notation:
(T,F)

Definition ENV and/or
TFS
representation

RD Comments

Positive p(t), P (f) +ve polarity TFS & ENV Large
Negative n(t), N(f) -ve polarity TFS & ENV Large
Difference d(t), D(f) p(t)−n(t)

2 TFS & ENV Small Includes both the
carrier and
sideband
components (thus
not a clean
representation of
TFS)

Sum s(t), S(f) p(t)+n(t)
2 ENV Large Consistent rep-

resentation of
spectrally spe-
cific modulation
strength, but cor-
rupted by rectifier
distortion at 2×CF

Analytic a(t), A(f) d(t) +
H{d(t)}

TFS & ENV Small H{·} is the Hilbert
transform operator

Hilbert
envelope

e(t), E(f) |a(t)|/
√

2 ENV Small Polarity-sensitive
ENV (subject to
TFS phase locking)

Hilbert
phase

φ(t), Φ(f)
√

2 ×
rms[d(t)]
×cos[∠a(t)]

TFS Small Carrier TFS
(subject to TFS
phase locking)
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3.6 Quantifying ENV and TFS using apPSTHs for nonstationary signals

In the discussion so far, we have argued for using spectrally specific metrics to analyze

neural responses to stationary stimuli. Another example where spectral specificity is needed

is in evaluating the neural coding of nonstationary speech features (e.g., formant transitions).

Speech is a nonstationary signal and conveys substantial information in its dynamic spectral

trajectories (e.g., Fig  3.1 A). A number of studies have investigated the robustness of the

neural representation of dynamic spectral trajectories using frequency glides and frequency-

modulated tones as the stimulus (Billings et al.,  2019 ; Clinard and Cotter,  2015 ; Krishnan

and Parkinson,  2000 ; Skoe and Kraus,  2010 ). These studies have usually employed a spec-

trogram analysis. While a spectrogram is effective for analyzing responses to nonstationary

signals with unknown parameters, it does not explicitly incorporate information about the

stimulus, which is often designed by the experimenter. Since the spectrogram relies on a nar-

row moving temporal window, it offers poor spectral resolution due to the time-frequency

uncertainty principle. Instead of using conventional spectrogram analyses, frequency de-

modulation and filtering can be used together to estimate power along a spectrotemporal

trajectory more accurately as we describe below. These spectrally specific analyses will fa-

cilitate more sensitive metrics to investigate the coding differences between nonstationary

features in natural speech and extensively studied stationary features in synthetic stationary

speech.

3.6.1 Frequency-demodulation-based spectrotemporal filtering

First, we describe the spectrotemporal filtering technique using an example stimulus with

dynamic spectral components (Fig  3.11 ). The 2-second-long stimulus consists of three spec-

trotemporal trajectories: (1) a stationary tone at 1.4 kHz, (2) a stationary tone at 2 kHz,

and (3) a dynamic linear chirp that moves from 400 to 800 Hz over the stimulus duration.

We are interested in estimating the power of the nonstationary component, the linear chirp.

In order to estimate the power of this chirp, conventional spectrograms will employ one

of the following two approaches. First, one can use a long window (e.g., 2 seconds) and

compute power over the 400-Hz bandwidth from 400 to 800 Hz. In the second approach,
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Figure 3.11. More accurate estimates of power along a spectrotem-
poral trajectory can be obtained using frequency demodulation. (A)
The spectrogram of a synthesized example signal that mimics a single speech-
formant transition. The 2-s long signal consists of two stationary tones (1.4
and 2 kHz) and a linear frequency sweep (400 to 800 Hz). Red dashed lines
outline the spectrotemporal trajectory along which we want to compute the
power. Both positive and negative frequencies are shown for completeness. (B)
The Fourier-magnitude spectrum of the original signal. The energy related to
the target spectrotemporal trajectory is spread over a wide frequency range
(400 to 800 Hz, red line). (C) The spectrogram of the frequency-demodulated
signal, where the target trajectory was used for demodulation (i.e., shifted
down to 0 Hz). (D) The magnitude-DFT of the frequency-demodulated sig-
nal. The desired trajectory is now centered at 0 Hz, with its (spectral) energy
spread limited only by the signal duration (i.e., equal to the inverse of the
signal duration), and hence, is much narrower.

one can use moving windows that are shorter in duration (e.g., 50 ms) and compute power

with a resolution of 30 Hz (20-Hz imposed by inverse of the window duration and 10-Hz

imposed by change in chirp frequency over 50 ms). As an alternative to these conventional

approaches, one can demodulate the spectral trajectory of the linear chirp so that the chirp
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is demodulated to near 0 Hz (Fig  3.11 C and  3.11 D, see Materials and Methods). Then, a

low-pass filter with 0.5-Hz bandwidth (as determined by the reciprocal of the 2-s stimulus

duration) can be employed to estimate the time-varying power along the chirp trajectory.

This time-varying power is estimated at the stimulus sampling rate, similar to the temporal

sampling of the output of a band-pass filter applied on stationary signals. While the same

temporal sampling can be achieved using the spectrogram by sliding the window by one sam-

ple and estimating the chirp-related power for each window, it will be computationally much

more expensive compared to the frequency-demodulation-based approach. Furthermore, the

spectral resolution of 0.5 Hz is the same as that for a stationary signal, which demonstrates

a 60-fold improvement compared to the 50-ms window-based spectrogram approach.

3.6.2 The harmonicgram for synthesized nonstationary speech

As shown in Fig  3.11 , the combined use of frequency demodulation and low-pass filtering

can provide an alternative to the spectrogram for analyzing signals that have time-varying

frequency components. Such an approach can also be used to study the coding of dynamic

stimuli that have harmonic spectrum with time-varying F0, such as music and voiced speech.

At any given time, a stimulus with a harmonic spectrum has substantial energy only at mul-

tiples of the fundamental frequency, F0, which itself can vary with time [i.e., F0(t)]. We take

advantage of this spectral sparsity of the signal to introduce a new compact representation,

the harmonicgram. Consider the k-th harmonic of the time-varying F0(t); power along this

trajectory [kF0(t)] can be estimated using the frequency-demodulation-based spectrotempo-

ral filtering technique. One could estimate the time-varying power along all integer multiples

(k) of F0(t). This combined representation of the time-varying power across all harmonics

of F0 is the harmonicgram (see Materials and Methods). This name derives from the fact

that this representation uses harmonic number instead of frequency (or spectrum) as in the

conventional spectrogram.

Fig  3.12 shows harmonicgrams derived from apPSTHs in response to the nonstationary

synthesized vowel, s2. The first two formants are represented by their harmonic numbers,

F1(t)/F0(t) and F2(t)/F0(t), which are known a priori in this case. Two harmonicgrams were

constructed using responses from two AN fiber pools: (1) AN fibers that had a low CF (CF

69



50 100 150
Time (ms)

2

4

6

8

10

12

14

H
a
rm

o
n
ic

 n
u
m

b
e
r

A. Pooled low CFs

50 100 150

2

4

6

8

10

12

14

B. Pooled medium CFs

Figure 3.12. The harmonicgram can be used to visualize formant
tracking in synthesized nonstationary speech. Neural harmonicgrams
for fibers with a CF below 1 kHz (A, N=16) and for fibers with a CF between 1
and 2.5 kHz (B, N=29) in response to the dynamic vowel, s2. Stimulus inten-
sity = 65 dB SPL. The formant frequencies mimic formant trajectories of a nat-
ural vowel (Hillenbrand and Nearey,  1999 ). A 20-Hz bandwidth was employed
to low-pass filter the demodulated signal for each harmonic. The harmonic-
gram for each AN-fiber pool was constructed by averaging the Hilbert-phase
PSTHs of all AN fibers within the pool. PSTH bin width = 50 µs. Data are
from one chinchilla. The black, purple and, red lines represent the fundamental
frequency (F0/F0), the first formant (F1/F0) and the second formant (F2/F0)
contours, respectively. The time-varying formant frequencies were normalized
by the time-varying F0 to convert the spectrotemporal representation into a
harmonicgram.

< 1 kHz), and (2) AN fibers that had a medium CF (1 kHz < CF < 2.5 kHz). Previous neu-

rophysiological studies have shown that AN fibers with CF near and slightly above a formant

strongly synchronize to that formant, especially at moderate to high intensities (Delgutte

and Kiang,  1984a ; Young and Sachs,  1979 ). Therefore, the low-CF pool was expected to cap-

ture F1, which changed from 630 Hz to 570 Hz. Similarly, the medium-CF pool was expected

to capture F2, which changed from 1200 Hz to 1500 Hz. The harmonicgram for each pool

was constructed by using the average Hilbert-phase PSTH, φ(t), of all AN fibers in the pool.

The harmonicgram is shown from 38 ms to 188 ms to optimize the dynamic range to visually

highlight the formant transitions by ignoring the onset response. The dominant component
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in the neural response for F1 was expected at the harmonic number closest to F1/F0. For

this stimulus, F1/F0 started at a value of 6.3 (630/100) and reached 4.75 (570/120) at 188

ms crossing 5.5 at 88.5 ms (Fig  3.12 A). This transition of F1/F0 was faithfully represented in

the harmonicgram where the dominant response switched from the 6th to the 5th harmonic

near 90 ms. Similarly, F2/F0 started at 12, consistent with the dominant response at the

12th harmonic before 100 ms (Fig  3.12 B). Towards the end of the stimulus, F2/F0 reached

12.5, which is consistent with the near-equal power in the 12th and the 13th harmonic in

the harmonicgram. In contrast to findings from previous studies, the harmonicgram for the

medium-CF pool indicates that these fibers respond to both the first and second formants.

Such a complex response with components corresponding to multiple formants is likely due

to the steep slope of the vowel spectrum (S2 Fig).

3.6.3 The harmonicgram for natural speech

The harmonicgram analysis is not limited to synthesized vowels, but it can also be applied

to natural speech (Fig  3.13 ). These harmonicgrams were constructed for the natural speech

stimulus, s3, using average φ(t) for the same low-CF and medium-CF AN fiber pools that

were used in Fig  3.12 . Here, we consider a 500-ms segment of the stimulus, which contains

multiple phonemes. Qualitatively, similar to Fig  3.12 , these harmonicgrams capture the

formant contours across phonemes. The harmonicgram for the low-CF pool emphasizes the

F1 contour, whereas the harmonicgram for the medium-CF pool primarily emphasizes the

F2 contour, and to a lesser extent, the F1 contour. Compared to the spectrogram, the

harmonicgram representation for these responses are more compact and spectrally specific.

Furthermore, from a neural-coding perspective, quantifying how individual harmonics of F0

are represented in the response is more appealing than the spectrogram since response energy

is concentrated only at these F0 harmonics.

The harmonicgram not only provides a compact representation for nonstationary signals

with harmonic spectra, it can also be used to quantify the coding strength of time-varying

features, such as formants for speech (Figs  3.13 E and  3.13 F). In these examples, the strength

of formant coding at each time point, t, was quantified as the sum of power in the three har-

monics closest to the F0-normalized formant frequency at that time [e.g., F1(t)/F0(t) for the
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first formant]. As expected, power for the harmonics near the first formant was substan-

tially greater than that for the second formant for the low-CF pool (Fig  3.13 E). For the

medium-CF pool, F2 representation was robust over the whole stimulus duration, although

F1 representation was largely comparable (Fig  3.13 F). These examples demonstrate novel

analyses using the apPSTH -based harmonicgram to quantify time-varying stimulus features

in single-unit neural responses at high spectrotemporal resolution that are not possible with

conventional windowing-based approaches.

Figure 3.13. See next page
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Figure 3.13 (continued from previous page.) The harmonicgram can be
used to quantify the coding of time-varying stimulus features at
superior spectrotemporal resolution compared to the spectrogram.
Harmonicgrams were constructed using φ(t) for the same two AN-fiber pools
described in Fig  3.12 . PSTH bin width = 50 µs. A 9-Hz bandwidth was
employed to low-pass filter the demodulated signal for each harmonic. The
data were collected from one chinchilla in response to the speech stimulus, s3.
Stimulus intensity = 65 dB SPL. A 500-ms segment corresponding to the voiced
phrase “amle” was considered. (A, B) Spectrograms constructed from the
average φ(t) for the low-CF pool (A) and from the medium-CF pool (B). (C, D)
Average harmonicgrams for the same set of fibers as in A and B, respectively.
Warm (cool) colors represent regions of high (low) power. The first-formant
contour (F1 in A and B, F1/F0 in C and D) is highlighted in purple. The
second-formant contour (F2 in A and B, F2/F0 in C and D) is highlighted in
red. Trajectories of the fundamental frequency (black in A and B, right Y
axis) and the formants were obtained using Praat (Boersma,  2001 ). (E, F)
Harmonicgram power near the first formant (purple) and the second formant
(red) for the low-CF pool (E) and the medium-CF pool (F). Harmonicgram
power for each formant at any given time (t) was computed by summing the
power in the three closest F0 harmonics adjacent to the normalized formant
contour [e.g., F1(t)/F0(t)] at that time. The noise floor (NF) for power was
estimated as the sum of power for the 29th, 30th, and 31st harmonics of F0
because the frequencies corresponding to these harmonics were well above the
CFs of both fiber pools. These time-varying harmonicgram power metrics
are spectrally specific to F0 harmonics and are computed with high temporal
sampling rate (same as the original signal). This spectrotemporal resolution is
much better than the spectrotemporal resolution that can be obtained using
spectrograms.

3.6.4 The harmonicgram can also be used to analyze FFRs in response to nat-
ural speech

As mentioned earlier, a major benefit of using apPSTHs to analyze spike trains is that

the same analyses can also be applied to evoked far-field potentials. In Fig  3.14 , the harmon-

icgram analysis was applied to the difference FFR recorded in response to the same speech

sentence (s3) that was used in Fig  3.13 . In fact, these FFR data and spike-train data used

in Fig  3.13 were collected from the same chinchilla. The difference FFR was computed as

the difference between FFRs to opposite polarities of the stimulus. The spectrogram and

harmonicgram can also be constructed using the Hilbert-phase FFR to highlight the TFS
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component of the response (S3 Fig). Unlike the apPSTHs for AN fibers, the FFR cannot

be used to construct two sets of harmonicgrams corresponding to different populations of

neurons because the FFR lacks tonotopic specificity. Nevertheless, this FFR-harmonicgram

is strikingly similar to the medium-CF pool harmonicgram in Fig  3.13 D. The dynamic repre-

sentations of the first two formants are robust in both the representations. In fact, the FFR

representations seem more robust in formant tracking compared to PSTH-derived represen-

tations, qualitatively, especially for the harmonicgram. A more uniform sample of neurons

contribute to evoked responses compared to the AN fiber sample corresponding to Fig  3.13 ,

which could be a factor for the robustness of the FFR representations. Overall, these results

reinforce the idea that using apPSTHs to analyze spike trains offers the same spectrally spe-

cific analyses that can be applied to evoked far-field potentials, e.g., the FFR, thus allowing a

unifying framework to study temporal coding for both stationary and nonstationary signals

in the auditory system.

3.7 Discussion

3.7.1 Use of apPSTHs underlies a unifying framework to study temporal coding
in the auditory system

A better understanding of the neural correlates of perception requires the integration

of electrophysiological, psychophysical, and neurophysiological analyses in the same frame-

work. Although extensive literature exists in both electrophysiology and neurophysiology

on the neural correlates of perception, the analyses employed in these studies have diverged.

This disconnect is largely because the forms of the neural data are different (i.e., continuous-

valued waveforms versus point-process spike trains). The present report provides a unifying

framework for analyzing spike trains using apPSTHs, which offers numerous benefits over

previous neurophysiological analyses. Specifically, the use of apPSTHs incorporates many

of the previous ad-hoc approaches, such as VS and correlograms (Eqs  3.8 to  3.10 ). In

fact, correlograms and metrics derived from them can be estimated using apPSTHs in a

computationally efficient way. The apPSTHs essentially convert the naturally rectified neu-

rophysiological point-process data into a continuous-valued signal, which allows advanced

signal processing tools designed for continuous-valued signals to be applied to spike-train
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Figure 3.14. The harmonicgram of the FFR to natural speech shows
robust dynamic tracking of formant trajectories, similar to the AN-
fiber harmonicgram. Comparison of the spectrogram (A) and the harmon-
icgram (B) for the FFR recorded in response to the same stimulus, s3 that was
used to analyze apPSTHs in Fig  3.13 . Stimulus intensity = 65 dB SPL. Lines
and colormap are the same as in Fig  3.13 . These plots were constructed using
the difference FFR, which reflects the neural coding of both stimulus TFS and
ENV. To highlight the coding of stimulus TFS, Hilbert-phase [φ(t)] FFR can
be used instead of the difference FFR (S3 Fig). The FFR harmonicgram (A)
is strikingly similar to the AN-fiber harmonicgrams in Figs  3.13 C and  3.13 D
in that the representations of the first two formants are robust. The FFR
data here and spike-train data used in Fig  3.13 were obtained from the same
animal.

data. For example, apPSTHs can be used to derive spectrally specific TFS components [e.g.,

φ(t), Fig  3.7 ], multitaper spectra (Fig  3.4 ), modulation-domain representations (Fig  3.5 ),
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and harmonicgrams (Figs  3.12 and  3.13 ). apPSTHs can also be directly compared to evoked

far-field responses for both stationary and nonstationary stimuli (e.g., Figs  3.13 and  3.14 ).

3.7.2 Temporal coding metrics should be spectrally specific

The various analyses explored in this report advocate for spectral specificity of tempo-

ral coding metrics in a variety of ways. The need for spectrally specific analyses arises for

two reasons: (1) neural data is finite and inherently stochastic, and (2) spike-train data are

rectified. Neural stochasticity exacerbates the spectral-estimate variance at all frequencies;

therefore, time-domain (equivalently broadband) metrics will be noisier compared to nar-

rowband metrics. Similarly, the rectified nature of spike-train data can introduce harmonic

distortions in the response spectrum, which can corrupt broadband metrics (e.g., TFS dis-

tortion at two times the carrier frequency corrupting estimates of ENV coding, Figs  3.6 A

and  3.6 B).

These issues requiring spectral specificity are not unique to the apPSTH analyses but also

apply to classic metrics, e.g., correlograms. For example, the broadband correlation index

(CI) metric is appropriate to analyze responses of neurons with high CFs, but the CI metric

is corrupted by rectifier distortions for neurons with low CFs (Heinz and Swaminathan,  2009 ;

Joris et al.,  2006 ). Studies have previously tried to avoid these distortions in the sumcor by

restricting the response bandwidth to below the CF because, for a given filter, the envelope

bandwidth cannot be greater than the filter bandwidth (Heinz and Swaminathan,  2009 ; Kale

and Heinz,  2010 ).

Here, we have extended and generalized the analysis of these issues using narrowband

stimuli. In particular, when a neuron responds to low-frequency stimulus energy that is

below half the phase-locking cutoff, responses that contain any polarity-tolerant component

[e.g., p(t), n(t), s(t), SAC, and sumcor ] will be corrupted by rectifier distortion of the

polarity-sensitive component (Fig  3.6 E). Any broadband metric of temporal coding should

exclude these distortions at twice the carrier frequency. Beyond avoiding rectifier distortion,

limiting the bandwidth of a metric to only the desired bands will lead to more precise

analyses by minimizing the effects of neural stochasticity (Fig  3.6 H). For example, envelope

coding metrics for SAM-tone stimuli should consider the spectrum power only at Fm and its
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harmonics (Vasilkov and Verhulst,  2019 ), rather than the simple approach of always low-pass

filtering at CF (Heinz and Swaminathan,  2009 ).

Similar to envelope-based metrics, metrics that quantify TFS coding should also be

spectrally specific to the carrier frequency. Previous metrics of TFS coding, such as d(t)

and difcor, are not specific to the carrier frequency but rather include modulation sidebands

as well as additional sidebands due to transduction nonlinearities (Fig  3.7 ). In contrast, φ(t)

introduced here emphasizes the carrier and suppresses the sidebands (Fig  3.7 ). Thus, the

spectrally specific φ(t) is a better TFS response, which relates to the zero-crossing signal

used in the signal processing literature (Logan,  1977 ; Voelcker,  1966b ; Wiley,  1981 ).

3.7.3 Spectral-estimation benefits of using apPSTHs

Neurophysiological studies have usually favored the DFT to estimate the response spec-

trum. For example, the DFT has been applied to the period histogram (Delgutte and Kiang,

 1984a ; Young and Sachs,  1979 ), the single-polarity PSTH (Carney and Geisler,  1986 ; Miller

and Sachs,  1983 ), the difference PSTH (Sinex and Geisler,  1983 ), and correlograms (Louage

et al.,  2004 ). Since spike-train data are stochastic and usually sparse and finite, there is

great scope for spectral estimates, including the DFT spectrum, to suffer from bias and vari-

ance issues. The multitaper approach optimally uses the available data to minimize the bias

and variance of the spectral estimate (Babadi and Brown,  2014 ; Percival and Walden,  1993 ;

Thomson,  1982 ). The multitaper approach can be used with both apPSTHs and correlo-

grams, but using apPSTHs offers additional variance improvement up to a factor of 2 (Fig

 3.4 ). This improvement is because twice as many tapers (both odd and even) can be used

with an apPSTH compared to a correlogram, which is an even sequence and limits analyses

to only using even tapers.

3.7.4 Benefits of spectrotemporal filtering

Analysis of neural responses to nonstationary signals has been traditionally carried out

using windowing-based approaches, such as the spectrogram. Shorter windows help with

tracking rapid temporal structures, but they offer poorer spectral resolution. On the other
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hand, larger windows allow better spectral resolution at the cost of smearing rapid dynamic

features. As an alternative to windowing-based approaches, spectrotemporal filtering can

improve the spectral resolution of analyses by taking advantage of stimulus parameters that

are known a priori (Fig  3.11 ). This approach is particularly efficient to analyze spectrally

sparse signals (i.e., signals with instantaneous line spectra, such as voiced speech). In par-

ticular, the spectral resolution is substantially improved compared to the spectrogram. In

addition, while the same temporal sampling can be obtained using the spectrogram, it will be

much more computationally expensive compared to the spectrotemporal filtering approach

as discussed in the following example.

Consider the signal in Fig  3.11 ). The neural response for this signal will have noise over

the whole response bandwidth due to neural stochasticity, in addition to the representation

of the signal components. Let us assume that we are interested in comparing the coding of

the 1400-Hz stationary tone and the linear chirp (400 to 800 Hz sweep over 2 seconds). The

coding of these signals can be quantified by estimating the power of these components in

the response. For the stationary tone, power can be estimated over a 0.5-Hz band around

1400 Hz. For the chirp, one of the following approaches can be employed. Power can be

estimated in a long temporal window, which improves the spectral resolution of the analy-

sis. However, estimating power for the chirp will require a 400 Hz spectral window, which

is determined by the chirp bandwidth. Since at any given time the signal has power only

at three frequencies, use of such a large spectral window will allow the response noise to

introduce significant bias to the estimated chirp-related power in the response since power is

a nonnegative random variable. On the other extreme, one could use a shorter window, say

2 ms, such that the chirp frequency is nearly constant over this window. However, a 500-Hz

bandwidth limitation is posed due to time-frequency uncertainty. In contrast to the spectro-

gram, the spectrotemporal filtering approach demodulates the chirp trajectory onto a single

frequency, and thus, has a spectral resolution of 0.5 Hz (inverse of signal duration). This

spectral resolution is the same as the one used for the 1400-Hz stationary tone, permitting

an equivalent comparison. Moreover, the filtered signal has the same temporal sampling rate

as the original response. Achieving the same temporal sampling using spectrograms will be

computationally extremely expensive because one has to slide the window by one sample
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and compute the PSD for each window. Thus, by combining apPSTHs with advanced signal

processing approaches, the response to the 1400-Hz tone can be compared with the response

to the chirp, at the narrowest spectral resolution possible (inverse of the signal duration)

and at the original temporal sampling rate.

The benefits of spectrotemporal filtering extend to other spectrally sparse signals, like

harmonic complexes. A priori knowledge of the fundamental frequency can be used to con-

struct the harmonicgram, which takes advantage of power concentration at harmonics of F0.

Such an approach contrasts with the spectrogram, which computes power at all frequencies

uniformly. The harmonicgram can be used to analyze both kinematic synthesized vowels

(Fig  3.12 ) as well as natural speech (Fig  3.13 ). The harmonicgram is particularly useful in

quantifying dominant harmonics in the response at high temporal sampling, and is thus ap-

plicable to nonstationary signals. The harmonicgram can also be applied to evoked far-field

potentials (e.g., the FFR in Fig  3.14 ). While alternatives exist to analyze spike-train data

in response to time-varying stimuli (Brown et al.,  2002 ), the present spectrotemporal tech-

nique is simpler and can be directly applied to both spike-train data and far-field responses.

Overall, these results support the idea that using apPSTHs to analyze spike trains provides a

unifying framework to study temporal coding in the auditory system across modalities. Fur-

thermore, this framework facilitates the study of dynamic-stimulus coding by the nonlinear

and time-varying auditory system.

3.7.5 apPSTHs allow animal models of sensorineural hearing loss to be linked
to psychophysical speech-intelligibility models

Speech-intelligibility models not only improve our understanding of perceptually relevant

speech features, they can also be used to optimize hearing-aid and cochlear-implant strate-

gies. However, existing SI models work well for normal-hearing listeners but have not been

widely extended for hearing-impaired listeners. This gap is largely because of the fact that

most SI models are based on signal-processing algorithms in the acoustic domain, where in-

dividual differences in the physiological effects of various forms of sensorineural hearing loss

on speech coding are difficult to evaluate. This gap can be addressed by extending acoustic

SI models to the neural spike-train domain. In particular, spike-train data obtained from
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preclinical animal models of sensorineural hearing loss can be used to explore the neural cor-

relates of perceptual deficits faced by hearing-impaired listeners (Trevino et al.,  2019 ). These

insights will be crucial for developing accurate SI models for hearing-impaired listeners.

apPSTHs offer a straightforward means to study various speech features in the neural

spike-train domain. As apPSTHs are in the same discrete-time continuous-valued form as

acoustic signals, acoustic SI models can be directly translated to the neural domain. Many

successful SI models are based on the representation of the temporal envelope (Jørgensen

and Dau,  2011 ; Relaño-Iborra et al.,  2016 ), although the role of TFS remains a matter of

controversy (Lorenzi et al.,  2006 ). In fact, recent studies have suggested that the periph-

eral representation of TFS can shape the central envelope representation, and thereby alter

speech perception outcomes (Ding et al.,  2014 ; Viswanathan et al.,  2019 ). apPSTHs can be

used to derive modulation-domain representations so that envelope-based SI models can be

evaluated in the neural domain (Fig  3.5 ). Similarly, the Hilbert-phase PSTH, φ(t), can be

used to evaluate the neural representation of TFS features. These TFS results will be par-

ticularly insightful for cochlear-implant stimulation strategies that rely on the zero-crossing

component of the stimulus, which closely relates to φ(t) (Chen and Zhang,  2011 ; Grayden

et al.,  2004 ).

Translational benefits of animal models

A key motivation of this paper was to develop a framework so that insights and findings

from animal models can ultimately improve our understanding of how the human audi-

tory system processes real-life sounds, like speech. Experiments involving human subjects

are typically limited to far-field responses, such as compound action potential, frequency-

following responses, and auditory brainstem responses. However, these evoked responses

include contributions from multiple sources such as the cochlear microphonic, electrical in-

terferences, and responses from several neural substrates (King et al.,  2016 ; Verschooten and

Joris,  2014 ); these contributions are not clearly understood. The apPSTH -based framework

offers a straightforward way to study these contributions by comparing anatomically specific

spike-train responses with clinically viable noninvasive responses.
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This framework is also beneficial to develop and validate noninvasive metrics using animal

models and apply these metrics to humans. For example, we demonstrated the applicability

of the new spectrally compact harmonicgram approach on both spike-train data and FFR

data recorded from chinchillas to evaluate speech coding. This harmonicgram analysis can

also be applied to FFR data recorded from humans to study natural speech coding in both

normal and impaired auditory systems. Similarly, the representation of other important

response features such as the onset and adaptation can also be linked between invasive and

noninvasive data using animal models of different SNHL. Overall, these insights will be

informative regarding the anatomical and physiological state of humans using noninvasive

measures.

3.7.6 Limitations

Biological feasibility

The analyses proposed here aim to rigorously quantify the dichotomous ENV/TFS in-

formation in the neural response and bridge the definitions between the audio and neural

spike-train domains. Methods discussed here may not all be biologically feasible. For ex-

ample, the brain does not have access to both polarities of the stimulus. Thus, the PSTHs

that require two polarities to be estimated, e.g., s(t), d(t), and φ(t), may not have an “in-

ternal representation” in the brain. This limitations also applies to correlogram metrics

based on sumcor and difcor, which require two polarities of the stimulus. Thus, the use

of the single-polarity PSTH [p(t)] to derive the central “internal representations” is more

appropriate from a biological feasibility perspective (e.g., Fig  3.5 ). However, these various

ENV/TFS components allow a thorough characterization of the processing of spectrotem-

porally complex signals by the nonlinear auditory system and can guide the development of

more accurate speech-intelligibility models and help improve signal processing strategies for

hearing-impaired listeners.
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Alternating-polarity stimuli

Use of two polarities may not be sufficient to separate out all the components underlying

the neural response when more than two components contribute to the neural response at

a given frequency. In particular, it may be intractable to separate out rectifier distortion

when the bandwidths of ENV and TFS in the response overlap. For example, consider

the response of a broadly tuned AN fiber in response to a vowel, which has a fundamental

frequency of F0. The energy at 2F0 in S(f) may reflect one or more of the following sources:

(1) rectifier distortion to carrier energy at F0, (2) beating between (carrier) harmonics that

are separated by 2F0, and (3) effects of transduction nonlinearities on the beating between

(carrier) harmonics that are separated by F0. In these special cases, additional stimulus

phase variations can be used to separate out these components (Billings and Zhang,  1994 ;

Lucchetti et al.,  2018 ).

The harmonicgram

A key drawback of applying the harmonicgram to natural speech is the requirement

of knowing the F0 trajectory. F0 estimation is a difficult problem, especially in degraded

speech. Thus, the harmonicgram could be inaccurate unless the F0 trajectory is known, or

at least the original stimulus is known so that F0 can be estimated. A second confound

is the unknown stimulus to response latency for different systems. Latencies for different

neurons vary with their characteristic frequency, stimulus frequency, as well as stimulus

intensity. Thus, even if the acoustic spectrotemporal trajectory is precisely known, errors

may accumulate if latencies are not properly accounted for. This issue will likely be minor for

spectrotemporal trajectories with slow dynamics. For stimuli with faster dynamics, latency

confounds can be easily minimized by estimating stimulus-to-response latency by cross-

correlation and using a larger cutoff frequency for low-pass filtering.
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3.8 Appendix

3.8.1 Vector strength metric definitions

Vector Strength. The vector strength (VS) metric is used to quantify how well spikes

in a spike train are synchronized to a frequency, f (Goldberg and Brown,  1969 ; Johnson,

 1980 ). Let us denote a spike train with N spikes as ζ such that ζ = {t1, t2, ..., tN} and the

{ti}s are individual spike times. To compute the vector strength, these spike times are first

transformed onto the unit circle such that ti maps to zi as

zi = e2πfti .

The mean of the set of complex vectors corresponding to all N spikes is

ρ(f) = 1
N

N∑
i=1

zi = 1
N

N∑
i=1

e2πfti . (3.13)

Then, VS at frequency f is defined as the magnitude of ρ(f).

V S(f) = |ρ(f)|

=
∣∣∣∣∣ 1
N

N∑
i=1

zi

∣∣∣∣∣
=

∣∣∣∣∣ 1
N

N∑
i=1

[cos(2πfti) +  sin(2πfti)]
∣∣∣∣∣

=


[

1
N

N∑
i=1

cos(2πfti)
]2

+
[

1
N

N∑
i=1

sin(2πfti)
]2

1
2

(3.14)

Phase-projected Vector Strength. The phase-projected vector strength (V Spp) is

identical to the VS for a single spike train (i.e., for a single stimulus repetition), but these

metrics differ when multiple (R) stimulus repetitions are used. V Spp is advantageous relative

to V S when there are relatively fewer spikes per repetition (Yin et al.,  2010 ). To estimate

V Spp at frequency f , the magnitude (i.e., V S) and phase [φr(f)] of the mean complex vector

are first calculated for individual repetitions using Eqs  3.13 and  3.14 (instead of pooling

spike times across all R repetitions). The per-repetition VS estimates, called V Sr(f), are
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weighted by the cosine of the phase difference between φr(f) of the repetition and the mean

phase based on all spikes from all repetitions, φref (f), to estimate the phase-projected vector

strength, V Sr
pp(f), for the repetition.

V Sr
pp(f) = V Sr(f) cos

[
φr(f) − φref (f)

]
,

where φr(f) for repetition r with Nr spikes {tr
1, tr

2, ..., tr
Nr

} is computed as

φr(f) = tan−1
∑Nr

i=1 sin(2πftr
i )∑Nr

i=1 cos(2πftr
i )

,

and φref (f) is computed using all spikes across all R repetitions as

φref (f) = tan−1
∑R

r=1
∑Nr

i=1 sin(2πftr
i )∑R

r=1
∑Nr

i=1 cos(2πftr
i )

.

V Spp(f) for R repetitions is computed as the mean V Sr
pp(f) across all repetitions,

V Spp(f) = 1
R

R∑
i=1

V Sr
pp(f).

3.8.2 Relation between the vector strength metric and the difference PSTH

Let us assume that we have R sets of spike trains {ζ i} : i ∈ [1, .., R] for a tone stimulus

with duration D and frequency f0. Let the corresponding PSTH be p(t), and the total

number of spikes be N .

In Eq  3.13 , ∑N
i=1 e2πfti can be written as (van Hemmen,  2013 )

N∑
i=1

e2πfti =
∫ D

t=0
p(t)e2πftdt. (3.15)

Using Eq  3.15 in Eq  3.13 , we get

ρ(f) = 1
N

∫ D

t=0
p(t)e2πftdt

=⇒ρ(f0) = 1
N

∫ D

t=0
p(t)e2πf0tdt. (3.16)

84



If we assume response phase locking to positive and negative polarity of a sinusoid (f0)

differ by a phase of π [i.e., a time difference of T0/2(= 1/2f0) such that p(t) ' n(t)e2πfT0/2],

we can write

ρ(f) = 1
N

∫ D

t=0
p(t)e2πftdt

= 1
N

∫ D

t=0
n(t)e2πfT0/2e2πftdt. (3.17)

For f 6= f0, the integral in Eq  3.17 will be zero. For f = f0,

ρ(f0) = 1
N

∫ D

t=0
n(t)e2πf0

1
f0

1
2 e2πf0tdt

= 1
N

∫ D

t=0
n(t)eπe2πf0tdt

=⇒ρ(f0) = 1
N

∫ D

t=0
−n(t)e2πf0tdt. (3.18)

Adding Eqs.  3.16 and  3.18 , we get

2ρ(f0) = 1
N

∫ D

t=0
[p(t) − n(t)] e2πf0tdt

= 1
N

∫ D

t=0
2d(t)e2πf0tdt

=⇒ρ(f0) = 1
N

∫ D

t=0
d(t)e2πf0tdt

= D(−f0)
N

,

where D(f) =
∫ D

t=0 d(t)e−2πftdt is the Fourier transform of d(t). Since d(t) is a real signal,

|D(f)| = |D(−f)|. Thus, the relation between VS and the difference PSTH becomes,

V S(f) = |ρ(f)| = |D(f)|
N

. (3.19)

3.8.3 Relation between shuffled correlograms and apPSTHs

Consider X: a set of TX spike trains {ζ1, ζ2, ..., ζTX
} in response to a stimulus of duration

D. For each spike train ζi, we can construct a PSTH, xi, with PSTH bin width ∆ so that the

length of the single-trial PSTH xi is M = D/∆. The single-trial PSTH is a binary-valued
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vector because each element in the vector is either 0 or 1. Let us denote the PSTH for X

by PSTHX such that PSTHX = ∑TX
i=1 xi. Consider Y: another set of TY spike trains, with

yi and PSTHY defined similarly to xi and PSTHX , respectively. Let us assume that the

stimulus duration and bin width for yi are the same as that for xi. Let the average discharge

rates (in spikes/s) for X and Y be rX and rY , respectively. The shuffled cross-correlogram

(SCC ) for two spike trains ζi and ζj computed using tallying (Louage et al.,  2004 ) is identical

to the cross-correlation function (denoted by RX Y) between their respective PSTHs, (xi and

xj). Thus, the raw (not normalized) shuffled cross-correlogram (SCCraw) at τ delay can be

computed as

SCCraw
X,Y (τ) = RX Y(x1, {y1, y2, ..., yTY

}) + ... + RX Y(xTX
, {y1, y2, ..., yTY

})

= RX Y(x1, [y1 + y2 + ... + yTY
]) + ...+ (3.20)

RX Y(xTX
, [y1 + y2 + ... + yTY

])

=
TX∑
i=1

TY∑
j=1

RX Y(xi, yj)

= RX Y(PSTHX , PSTHY )

=⇒SCCnorm
X,Y (τ) = RX Y(PSTHX , PSTHY )

TXTY rXrY D∆ , (3.21)

where SCCnorm is the normalized SCC (Heinz and Swaminathan,  2009 ; Louage et al.,  2004 ).
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Similarly, the raw shuffled autocorrelogram (SACraw) at τ delay can be computed as,

SACraw
X (τ) = RX Y(x1, {x2, x3, ..., xTX

}) + RX Y(x2, {x1, x3, ..., xTX
}) + ...

+ RX Y(xTX
, {x1, x2, ... + xTX−1})

= RX Y(x1, [x2 + x3 + ... + xTX
]) + RX Y(x2, [x1 + x3 + ... + xTX

])

+ ... + RX Y(xTX
, [x1 + x2 + ... + xTX−1])

=
TX∑
i=1

TX∑
j=1,j 6=i

RX Y(xi, xj)

=
TX∑
i=1

TX∑
j=1

RX Y(xi, xj) −
TX∑
i=1

RX Y(xi, xi)

= RX (PSTHX) −
TX∑
i=1

RX (xi)

=⇒SACnorm
X (τ) = RX (PSTHX) − ∑TX

i=1 RX (xi)
TX(TX − 1)r2

XD∆ , (3.22)

where RX denotes the autocorrelation function. Similar to autocorrelation functions, the

SACnorm has its maximum at zero delay.

In the numerator of Eq  3.22 , the term ∑TX
i=1 RX (xi) is negligible compared to RX (PSTHX)

for τ 6= 0. For τ = 0, ∑TX
i=1 RX (xi) is equal to the total number of spikes (N) in X. Thus,

Eq  3.22 can be further approximated by,

SACnorm
X (τ) ' RX (PSTHX) − Nδ(τ)

TX(TX − 1)r2
XD∆ (3.23)

= RX (PSTHX)
TX(TX − 1)r2

XD∆ − δ(τ)
(TX − 1)rX∆

' RX (PSTHX)
T 2

Xr2
XD∆ − δ(τ)

TXrX∆ , (3.24)

where N = rXDTX , and δ is the Dirac delta function. The simplifying approximation in

Eq  3.24 is valid for typically used TX values in neurophysiological experiments, and equates

the normalization factors between SACs and SCCs when working with difcor and sumcor

(e.g., Sec  3.8.4 ). Eqs  3.21 to  3.24 indicate that correlograms can be computed much more

efficiently using apPSTHs instead of by tallying spike times [O(N) instead of O(N2), see

main text].
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3.8.4 Relation between difcor/sumcor and difference/sum PSTHs

Consider X+: spike trains in response to the positive polarity of a stimulus, and X−:

spike trains in response to the negative polarity of the stimulus. Then, the difcor at τ delay

can be computed as

difcorX(τ) = 1
2

[
SACnorm

X+ + SACnorm
X−

2 −
SCCnorm

X+,X− + SCCnorm
X−,X+

2

]

= 1
4

[
SACnorm

X+ + SACnorm
X− − SCCnorm

X+,X− − SCCnorm
X−,X+

]

For analytic simplicity, we use Eq  3.24 for SACnorm instead of Eq  3.22 . Let us assume

that the number of repetitions and average rates for both polarities are the same. Thus,

difcorX(τ) = 1
4K

[RX (PSTHX+) − Nδ(τ) + RX (PSTHX−) − Nδ(τ)

− RX Y(PSTHX+ , PSTHX−) − RX Y(PSTHX− , PSTHX+)],

where K = T 2
Xr2

XD∆ is a constant. Now, PSTHX+ = p(t), PSTHX− = n(t), and the

difference PSTH d(t) = [p(t) − n(t)] /2. Then, the difcor for X at delay τ is

difcorX(τ) = 1
4K

{RX [p(t)] + RX [n(t)] − RX Y [p(t), n(t)] − RX Y [n(t), p(t)]}

− Nδ(τ)
2K

Now,

RX [p(t)] + RX [n(t)] − RX Y [p(t), n(t)] − RX Y [n(t), p(t)]

=
∫ D

t=0
p(t)p(t − τ)dt +

∫ D

t=0
n(t)n(t − τ)dt −

∫ D

t=0
p(t)n(t − τ)dt −

∫ D

t=0
n(t)p(t − τ)dt

=
∫ D

t=0
p(t) [p(t − τ) − n(t − τ)] dt −

∫ D

t=0
n(t) [p(t − τ) − n(t − τ)] dt

=
∫ D

t=0
2p(t)d(t − τ)dt −

∫ D

t=0
2n(t)d(t − τ)dt
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=
∫ D

t=0
2 [p(t) − n(t)] d(t − τ)dt

=
∫ D

t=0
4d(t)d(t − τ)dt

= 4RX [d(t)]

Thus,

difcorX(τ) = 1
4K

{RX [p(t)] + RX [n(t)] − RX Y [p(t), n(t)] − RX Y [n(t), p(t)]}

− Nδ(τ)
2K

= 1
4K

× 4RX [d(t)] − Nδ(τ)
2K

= RX [d(t)]
K

− Nδ(τ)
2K

= RX [d(t)]
T 2

Xr2
XD∆ − rXDTXδ(τ)

2T 2
Xr2

XD∆

=⇒difcorX(τ) = RX [d(t)]
T 2

Xr2
XD∆ − δ(τ)

2TXrX∆ (3.25)

Similarly, it can be shown that

sumcorX(τ) = 1
2

[
SACnorm

X + SCCnorm
X+,X−

]
= 1

2

[
SACnorm

X+ + SACnorm
X−

2 +
SCCnorm

X+,X− + SCCnorm
X−,X+

2

]

= 1
4K

× 4RX [s(t)] − Nδ(τ)
2K

= RX [s(t)]
K

− Nδ(τ)
2K

=⇒sumcorX(τ) = RX [s(t)]
T 2

Xr2
XD∆ − δ(τ)

2TXrX∆ (3.26)

where s(t) is the sum PSTH, i.e., s(t) = [p(t) + n(t)]/2.

Eqs  3.25 and  3.26 indicate that sumcor and difcor are related to the autocorrelation

function of the sum and difference PSTHs, respectively, and thus can be computed much

more efficiently [O(N) rather than O(N2)].
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3.8.5 Relation between shuffled-correlogram peak-height and apPSTHs

Consider a difference PSTH, d(t), based on a set of spike trains X in response to a

stimulus of duration D. Let us denote the Fourier transform of d(t) by D(f). Then, from

Eq  3.25 , the difcor peak-height, i.e., difcor value at zero delay (τ), can be computed as

difcorX(τ = 0) = RX {d(t)}
K

∣∣∣∣∣
τ=0

− Nδ(τ)
2K

∣∣∣∣∣
τ=0

= 1
K

∫ D

t=0
d2(t)dt − N

2K

= 1
K

∫ ∞

f=−∞
|D(f)|2 df − N

2K
, (by Parseval’s theorem) (3.27)

Following similar steps from Eq  3.26 , it can also be shown that the sumcor peak-height

can be computed as

sumcorX(τ = 0) = 1
K

∫ ∞

f=−∞
|S(f)|2 df − N

2K
(3.28)

where S(f) is the Fourier transform of the sum PSTH, s(t).

Comparing Eq  3.19 with Eqs.  3.27 and  3.28 , we see that vector strength is a frequency-

specific metric, whereas correlogram peak-heights are broadband measures, which are thus

susceptible to rectifier distortion (see Fig  3.6 ).
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3.8.6 Parameters for the AN model

Table 3.3. AN model parameters. List of parameters used in the AN
model to generate simulated spike-train data.

Parameter Value
Sampling Frequency 100 kHz
Number of Repetitions (per polarity) 25
Spontaneous firing rate (SR) 70 spikes/s
Absolute refractory period 0.6 ms
Baseline mean relative refractory period 0.6 ms
OHC health value 1.0 (normal)
IHC health value 1.0 (normal)
Species 1 (cat)
Fractional Gaussian noise type 0 (fixed)
Implementation type of the power-law functions in the Synapse 0 (approximate)
Spike time resolution 10 µs
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3.8.7 Nonlinear inner-hair-cell transduction function introduces additional side-
bands in the spectrum for a SAM tone.
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Figure 3.15. Nonlinear inner-hair-cell transduction function intro-
duces additional sidebands in the spectrum for a SAM tone. (A)
Waveform for a SAM tone (Fc=1 kHz, Fm=100 Hz, 0-dB modulation depth).
(B) D(f) and S(f) for the SAM tone in A. (C) Waveform of the output after
processing the SAM tone through a sigmoid function. The sigmoid function
was used as a simple proxy for the inner-hair-cell transduction function. This
output (vIHC) was further low-pass filtered at 2 kHz to mimic the membrane
properties of inner hair cells. (D) D(f) and S(f) for the signal in C. In ad-
dition to having power at Fc and Fc ± Fm, D(f) for vIHC has substantial
energy at Fc ± 2Fm (plus reduced energy at higher multiple Fm-offsets from
Fc). Similarly, S(f) for vIHC has substantial energy at Fm as well as at the
first few harmonics of Fm. S(f) is also corrupted by rectifier distortion at 2Fc

(and multiple Fm-offsets from 2Fc) as expected.

92



3.8.8 DFT-magnitude for the nonstationary vowel, s2
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Figure 3.16. DFT-magnitude for the nonstationary vowel, s2. The
stimulus duration was 188 ms. The movements of F0 (100 to 120 Hz), F1 (630
to 570 Hz), and F2 (1200 to 1500 Hz) are indicated by arrows. F3 was fixed
at 2500 Hz.
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3.8.9 FFR harmonicgram constructed using the Hilbert-phase FFR.

Figure 3.17. FFR harmonicgram can be constructed using the
Hilbert-phase response. Same format as Fig  3.14 . The spectrogram (A)
and the harmonicgram (B) were constructed using φ(t).
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4. DISTORTED TONOTOPY SEVERELY DEGRADES

NEURAL REPRESENTATIONS OF NATURAL SPEECH IN

NOISE FOLLOWING ACOUSTIC TRAUMA

SUMMARY 

1
 

Listeners with noise-induced hearing loss demonstrate speech-perception deficits, espe-

cially in noisy environments, which still remain despite audibility compensation. These

suprathreshold deficits are thought to arise from increased auditory bandwidth and reduced

temporal-coding precision. To test these hypotheses, we measured single auditory-nerve-

fiber and evoked frequency-following responses to natural speech in noise from anesthetized

chinchillas with normal hearing and mild-to-moderate hearing loss. Our results show several

coding deficits for vowels and consonants, but temporal coding precision is unaffected. Al-

though increased bandwidth contributes to these deficits, it is not the primary effect. Rather,

two key factors explain these deficits: (1) distorted tonotopy, which reflects oversensitivity

of neurons to low-frequency energy, disrupts the coding of informative high-frequency speech

features and increases susceptibility to masking noise, and (2) audiometric threshold, which

relies on the most sensitive group of neurons, underestimates average audibility deficits at

the population level. These findings help explain the neural origins of common perceptual

difficulties that hearing-impaired listeners experience; furthermore, they offer insight into

individualized strategies for hearing rehabilitation.

4.1 Introduction

Individuals with sensorineural hearing loss (SNHL) demonstrate speech perception deficits

that are not resolved despite compensating for audibility, even in quiet environments (Dubno

et al.,  1982 ). More importantly, these patients particularly struggle in noisy environments

despite state-of-the-art hearing aid strategies and noise-reduction algorithms (Lesica,  2018 ;

McCormack and Fortnum,  2013 ). In fact, difficulty understanding speech in noise is the num-

ber one complaint in the audiology clinic (Chung,  2004 ; Souza,  2016 ). Clinical outcomes of
1Manuscript in prep
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hearing aids can be improved by studying the neural representation of speech-in-noise in the

peripheral nervous system (i.e., the auditory nerve or AN) because the AN serves as the bot-

tleneck of auditory information that is accessible to the brain. Furthermore, key physiological

and anatomical effects of SNHL that contribute to perceptual deficits of hearing-impaired

listeners are evident at this peripheral level (Trevino et al.,  2019 ). Understanding the neural

representation of natural speech-in-noise in normal and impaired auditory systems can pro-

vide invaluable insight to enhance perceptually informative cues in hearing aids as well as

to improve algorithms used by machine listening devices, particularly in adverse situations.

To achieve these feats, several gaps in our understanding of impaired auditory processing

need to be addressed. First, the study of speech coding in the AN, in quiet and in noise, has

been predominantly carried out using short-duration synthesized stationary stimuli, primar-

ily with normal-hearing animals (Delgutte and Kiang,  1984a ; Sinex and Geisler,  1983 ; Young

and Sachs,  1979 ) and rarely with hearing-impaired animals (Miller et al.,  1997 ; Schilling et

al.,  1998 ). Only a handful of studies have employed longer natural phrases or sentences

(Delgutte et al.,  1998 ; Kiang and Moxon,  1974 ; Young,  2008 ), but none of these examined

hearing loss. Real-world speech differs from stationary speech in that it is highly dynamic in

nature and most of the information is present in its time varying properties like formant tran-

sitions and spectrotemporal modulations (Elliott and Theunissen,  2009 ; Greenberg et al.,

 2003 ; Jakobson and Fant,  1963 ; Stilp et al.,  2010 ; Zeng et al.,  2005 ). Therefore, understand-

ing the neural representation of natural speech is important. Second, the handful of studies

that have investigated speech-in-noise coding have been limited to normal-hearing animals

and have used positive-SNR conditions. However, studies have shown that negative SNRs

are particularly important because these are where perceptual results differ substantially

between normal-hearing and hearing-impaired listeners (Festen and Plomp,  1990 ).

In this work, we used a natural speech sentence as a stimulus and collected spike trains

from AN fibers of anesthetized chinchillas that either had normal hearing or noise-induced

hearing loss (NIHL). The stimulus was also presented after mixing with speech shaped noise

at several perceptually relevant SNRs. Previous psychoacoustic (Fant,  1973 ; Klatt,  1982 )

and neurophysiological (May,  2003 ; Young,  2008 ) studies have shown that the first three

formants are important for perception and neural coding of voiced segments, e.g., vowels.
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Therefore, the coding of voiced segments was evaluated based on the robustness of the

first three formants (F1 to F3) and their transitions. The sentence also contained a high-

frequency fricative (/s/) and two plosive consonants (/d/ and /g/), whose representations

were compared between the normal and the hearing-impaired neurons. /s/ is one of the most

frequent phonemes in English (Denes,  1963 ; Tobias,  1959 ), and is commonly misperceived

by listeners with hearing impairment (Bilger and Wang,  1976 ; Owens et al.,  1972 ; Turner

and Robb,  1987 ). Difficulties in /d/ and /g/ perception by hearing-impaired listeners are

also well documented (Bilger and Wang,  1976 ; Owens et al.,  1972 ; Turner and Robb,  1987 ).

While consonants are softer (less intense) than vowels, their perception is robust due to a

number of features like formant transition, spectral content, and better neural rate represen-

tations that occur at lower intensities (Blumstein and Stevens,  1979 ; Diehl,  2008 ; Pickett,

 1999 ; Smits et al.,  1996 ; Young,  2008 ). Studies have shown that onset responses of AN fibers

carry sufficient information for fricative discrimination (Delgutte,  1980 ; Delgutte and Kiang,

 1984b ). Auditory nerve fibers can also track spectral changes like consonant-vowel sylla-

ble coarticulation in addition to encoding consonant-related information in their sustained

response (Bandyopadhyay and Young,  2004 ; Carney and Geisler,  1986 ; Deng and Geisler,

 1987 ; Miller and Sachs,  1983 ; Shamma,  1985 ; Sinex and Geisler,  1983 ). Therefore, consonant

coding was directly evaluated by quantifying onset and sustained rate profiles, and indirectly

evaluated by quantifying the representation of dynamic formants.

Our results demonstrate a number of significant degradations in natural speech coding,

which provide new insights into the challenges faced by listeners with SNHL. A disruption

in tonotopic speech coding at the AN level following acoustic trauma resulted in a degrada-

tion of highly informative features such as second and third formants at the expense of an

overrepresented first formant. These hearing-loss effects were exacerbated in noise. Driven

rate was restored for voiced segments but not for unvoiced consonants, demonstrating that

amplifying to restore audibility does not restore suprathreshold coding. The distorted tono-

topic mapping substantially diminished the noise-resistant coding ability of high-threshold

low and medium spontaneous rate fibers, which are usually less affected by noise compared

to high spontaneous rate fibers (Geisler and Silkes,  1991 ; Silkes and Geisler,  1991 ). Finally,

temporal coding precision in AN fibers was not diminished following acoustic trauma, incon-
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sistent with suggestions from perceptual studies (e.g., Halliday et al.,  2019 ; Lorenzi et al.,

 2006 ). Overall, these results establish neural correlates of several suprathreshold deficits in

speech-in-noise perception with SNHL.

4.2 Methods

All procedures described below followed PHS-issued guidelines and were approved by

Purdue University Animal Care and Use Committee (Protocol No: 1111000123).

4.2.1 Noise exposure and electrophysiological recordings

For detailed descriptions of noise exposure and electrophysiological recordings, see JARO

paper. Briefly, male chinchillas (<1-year old, weight between 400 and 700 gm) were used in

all experiments. ABRs and FFRs were recorded using needle electrodes in a vertical montage

(vertex to mastoid, differential mode, common ground near animals’ nose). A single discrete

noise exposure (116 dB SPL, 2-hour duration, octave-band noise centered at 500 Hz) was

used to induce NIHL. Animals were anesthetized using xylazine (2 to 3 mg/kg, subcutaneous)

and ketamine (30 to 40 mg/kg, intraperitoneal) during data recordings and noise exposure.

DPOAE was measure using an in-ear mic.

4.2.2 Surgical preparation and neurophysiological recordings

For detailed surgical preparation and neurophysiological recordings, see (Henry et al.,

 2016 ). Briefly, spike trains were recorded from single AN fibers of anesthetized chinchillas

using glass micropipettes (impedance > 10 MΩ). Anesthesia was induced with previously

mentioned dose of xylazine/ketamine and maintained with sodium pentobarbital. A poste-

rior fossa approach was employed for craniotomy. Identified spikes were stored digitally with

10-µs resolution.
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4.2.3 Stimuli

Screening experiments

For ABRs, tone pips (5-ms duration, 1-ms on and off ramp) ranging from 0.5 to 8 kHz

(octave spaced) were played at 0 dB SPL to 80 dB SPL in 10-dB steps. 500 repetitions

of both positive and negative polarities were played for each intensity condition. ABR

threshold was calculated based on a cross-correlation analysis (Henry et al.,  2011 ). Another

intermediate (odd multiple of 5 dB) step was used near preliminary ABR threshold estimate

to fine-tune the final estimate. DPOAEs were measured for pairs of tones (f1, f2) presented

simultaneously with f2/f1 =1.2 at 75 (f1) and 65 (f2) dB SPL.

FFR experiments

A naturally spoken speech sentence (list #3, sentence #1) from the Danish speech intel-

ligibility test (CLUE, Nielsen and Dau,  2009 ) was used for FFR experiments. Intensity was

set to 70 dB SPL for both groups. Both positive and negative polarities (500 repetitions/po-

larity) of the stimulus were used to allow estimation of envelope and temporal fine structure

components from the FFR. Both envelope (sum of FFRs to opposite polarities) and temporal

fine structure (difference between FFRs to opposite polarities) components in response to the

voiced portions of speech had near-normal amplitude for the hearing-impaired chinchillas at

this intensity (JARO). This restoration in amplitude likely reflects convergence in audibility

at moderate intensities for mild-moderate hearing loss as well as central-gain related changes

in the midbrain, which substantially contributes to FFR responses.

4.2.4 AN experiment

For AN experiments, the same speech sentence was used. Intensity was set to 65 dB

SPL for normal-hearing chinchillas and 80 dB SPL for hearing-impaired chinchillas. The

spectrally flat gain of 15 dB was roughly based on half-gain rule (Lybarger,  1978 ), which has

been used in AN studies of NIHL (Schilling et al.,  1998 ). Speech was also presented after

mixing with frozen steady-state noise at three different (-10, -5, and 0 dB) SNRs. Noise
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was spectrally matched to 10 sentences spoken by the same speaker using autoregressive

modelling. Both polarities of stimuli were presented (25 trials per polarity for most AN

fibers). Prior to collecting spike-train data in response to speech or noise, FTC (Chintanpalli

and Heinz,  2007 ) and SR (over 30-s duration) were estimated for individual AN fibers.

4.2.5 Analysis

4.2.6 Quantifying formant coding strength using the harmonicgram

The harmonicgram (HG) provides superior spectrotemporal resolution for analyzing non-

stationary signals, like speech, compared to the spectrogram (Parida et al.,  2020 ). Briefly,

the harmonicgram was constructed as follows. Difference PSTH (d[n]) was constructed by

halving the difference between PSTHs to opposite stimulus polarities. The fundamental fre-

quency contour (F0[n]) was estimated using Praat (Boersma,  2001 ). Response components

(HG[k, n]) along kth-harmonic of were estimated using frequency demodulation and low-

pass filtering (LPF). Low-pass filter was 6th order zero-phase IIR filter with 10-Hz cut-off

frequency.

φk
traj[n] = 1

fs

n∑
m=1

kF0[n] (4.1)

ddemod[n] = d[n]e−2πφk
traj[n] (4.2)

HG[k, n] = LPF (ddemod[n]) (4.3)

To evaluate the coding strength of a formant, FX , in the response d[n], the fractional

power (FracPower) of three harmonics near F0-normalizedFX was calculated as:

FracPower(FX) =
∑N

n=1
∑α[n]+1

k=α[n]−1(HG[k, n])2∑N
n=1

∑K
k=1(HG[k, n])2 , (4.4)

where α[n] = round(FX [n]/F0[n]), N is the length of d[n], round is the nearest-integer

operator, and K is the number of F0 harmonics considered. Because the lowest value for
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F0[n] was ∼100 Hz and phase-locking for chinchillas is substantially degraded beyond 3500

Hz, K was set to 35.

For a given SNR conditions, fractional power metrics were computed for responses to

noisy-speech [FracPowerSN(FX)] and noise-alone [FracPowerN(FX)] for individual AN

fibers. The difference in these two power metrics [i.e., FracPowerSN(FX)−FracPowerSN(FX)]

was used as the strength of FX coding for the fibers for that SNR condition. For the quiet

condition, FracPowerN(FX) was set to 0.

4.2.7 Correlation analysis for fricative coding in noise

Response envelopes were obtained from single-polarity PSTHs using a low-pass filter

(fourth-order, cut-off = 32 Hz). Let the response envelope to speech-alone, noisy-speech, and

noise-alone be denoted by RS, RSN , and RN , respectively. Then, the corrected correlation

between RS and RSN was quantified as:

corrnorm(RS, RSN) = corr(RS, RSN) − corr(RS, RN), (4.5)

where corr(X, Y ) = E(XY ) and E is the expectation operator.

4.2.8 Spike-train precision analysis

Precision of spike trains was measured using the Victor-Purpura (VP) distance metric

(Victor and Purpura,  1996 ), which quantifies the dissimilarity between two sets of spike

trains. If a neuron responds precisely and consistently across different trials of a stimulus,

the VP distance between the two spike trains will be small. VP distance between two spike

trains, X and Y , is defined as the total cost involved in transforming X so that it matches

Y . This transformation allows three operations: (1) addition of spikes, (2) deletion of spikes,

and (3) shifting of spikes. Cost of adding or deleting a spike is set to 1. Cost of shifting a

spike by ∆t is proportional to a free shifting parameter (cv), which controls the temporal

resolution of analysis. For a given , the most optimal (involving smallest total cost) set

of operations to transform X to Y are determined based on dynamic programming; VP
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distance between X and Y is computed as the total cost of all the operations involved in

this optimal transformation.

For a given neuron, first a window length (ω) and a shifting cost (cv) were chosen.

Spike trains were divided into windows of ω (without overlap). For each window, average

VP distance was computed across all combinations of spike trains (i.e., corresponding to

different trials) using the shifting cost cv. The average VP distance across all windows was

the final VP distance estimate for the neuron considered.

4.2.9 Statistical analysis

FFR onset responses were compared between normal-hearing and hearing-impaired groups

unpaired t-test. To test whether spike-train precision was different between the two groups,

a linear regression model was used with VP distance as the dependent variable. Driven rate,

characteristic frequency, and hearing status (categorical) were independent variables.

4.3 Results

4.3.1 Acoustic exposure yielded a mild-moderate hearing loss

Mild-to-moderate hearing loss is the most prevalent degree among patients with hearing

loss (Goman and Lin,  2016 ). To investigate the neural coding deficits that these patients

experience, we used a noise-exposure protocol (two-hour-long 116 dB SPL octave-band noise

centered at 500 Hz) that has been previously used in our laboratory to induce mild-to-

moderate hearing loss (Kale and Heinz,  2010 ). Thresholds for auditory brainstem responses

(ABRs) to tone bursts increased by 20 dB following noise exposure (Fig  4.1 A). Similarly, the

level of distortion product otoacoustic emissions decreased by ∼15 dB SPL following noise

exposure (Fig  4.1 B), indicating the presence of substantial outer hair cell damage. These

electrophysiological changes are consistent with a mild-to-moderate, permanent hearing loss

model as per ASHA guidelines (Clark,  1981 ).

Thresholds were also elevated at a single neuron level in the AN by ∼35 dB SPL on

average (Fig  4.1 C). This threshold shift was accompanied by a substantial loss of tuning

as quantified by a reduction in Q10 value for frequency tuning curves (FTCs) of individual

102



0.5 1 2 4 8
10

20

30

40

50

60
A

B
R

 T
h
re

s
h
. 
(d

B
 S

P
L
)

A

0.5 1 2 4 8
0

10

20

30

40

50

Frequency (kHz)

D
P

O
A

E
 A

m
p
 (

d
B

 S
P

L
)

B

0.5 1 2 4 8

0

20

40

60

80

A
N

F
 T

h
re

s
h
. 
(d

B
 S

P
L
)

C

NH

HI

0.5 1 2 4 8
0.5

1

5

10

Characteristic Frequency (kHz)

A
N

F
 Q

1
0

D

0.5 1 2 4 8
0

10

20

30

40

50

60 ChinchillaE

50%

10%

0.5 1 2 4 8
0

10

20

30

40

50

60 Cat

Band Center Frequency (kHz)

S
h
if
t 
in

 i
m

p
a
ir
e
d
 r

e
. 
n
o
rm

a
l 
(d

B
)

F

Figure 4.1. Acoustic overexposure yielded a flat mild-moderate hearing loss
model with substantial outer hair cell damage. (A) ABR thresholds for the
hearing-impaired (HI) chinchillas were elevated by 20 dB on average. (B)
DPOAE amplitude was also reduced by 15 dB on average. In A and B,
thin lines are for individual animals; thick lines represent group averages. (C)
Compared to the normal-hearing (NH) AN fiber population, average threshold
for impaired AN fibers was elevated by 40 dB, twice the threshold shift based
on ABRs. (D) Q10 values were consistently reduced for impaired AN fibers. In
C and D, markers represent data from individual AN fibers. Thick lines in C
and D represent two-third octave averages along CF. (E) Shift in 10 (triangles)
and 50 (squares) percentile point of band-specific ANF threshold distributions
data following NIHL. Band-specific threshold distributions for each group were
estimated as follows. First, threshold data were grouped into five octave-wide
CF bands centered at 0.5, 1, 2, 4, and 8 kHz. Next, threshold distributions
were estimated for each band, which were used to estimate 10 and 50 percentile
points. (F) Same format as E but for extensive cat threshold data from (Heinz
et al.,  2005 ). For both chinchilla and cat data, shift in the 10-percentile point
(which likely drives ABR/audiogram threshold) was smaller than shift in the
50-percentile point.
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AN fibers (Fig  4.1 D). These results were consistent across a wide range of characteristic fre-

quencies (CFs). These physiological properties were similar to results from previous studies

from our laboratory (Henry et al.,  2016 ; Sayles et al.,  2016 ). Single-unit data are from 13

normal-hearing (250 AN fibers) and 6 hearing-impaired (124 AN fibers) chinchillas.

4.3.2 ABR threshold may underestimate average AN population audiometric
deficits

ABR thresholds at a frequency correlate with the most sensitive AN fibers near that

frequency (Ngan and May,  2001 ). Thus, ABR thresholds reflect the activity of the most

sensitive fibers. However, speech perception at suprathreshold levels, especially in complex

environments, likely requires response averaging across many neurons and not just the most

sensitive AN fibers (Bharadwaj et al.,  2014 ). Therefore, linear gain aimed at restoring ABR

threshold may not be sufficient to restore suprathreshold audibility if a large portion of the

AN-fiber population has threshold shift that is greater than ABR threshold shift.

Table 4.1. Standard deviation (std) of ANF threshold distributions
was greater for the impaired population compared to the normal
population in each frequency band. ANF threshold data were divided
into five groups based on octave-wide bands centered at .5 to 8 kHz. For each
band, ANF threshold distributions were calculate for each group.

Band center
frequency (kHz)

std (Chinchilla data) std (Cat data)
NH HI HI-NH NH HI HI-NH

0.5 10 15.1 5.1 9.2 13.1 3.9
1 10 18.5 8.4 8.4 16 7.6
2 10.9 12.3 1.4 7.5 17.2 9.6
4 14 19.4 5.5 10.7 16.1 5.3
8 16.9 23.9 7 9.9 17.4 7.5

In order to evaluate this hypothesis, we estimated AN-fiber threshold distribution for NH

and HI groups in five octave-wide CF bands centered at .5 to 8 kHz (octave spaced). For

each CF band, 10- and 50-percentile points were estimated. Our results showed greater shift

for 50-percentile point compared to 10-percentile point following NIHL for all five bands.
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We also reanalyzed previously published extensive cat data (N=738) from (Heinz et al.,

 2005 ). Similar to chinchilla data, cat data also showed a larger shift in 50-percentile points

compared to the shift in 10-percentile points for all five bands (Fig  4.1 F). These results

support the hypothesis that any audiometric indicator that relies on a few sensitive AN

fibers may underestimate audibility deficits at the population level.

4.3.3 Trial-to-trial precision was unaffected following NIHL

While one study has found degradation in spike-train precision following SNHL (Woolf

et al.,  1981 ), other studies have found no such degradation (Harrison and Evans,  1979 ; Kale

and Heinz,  2010 ). To test whether there was any degradation in the ability of AN fibers

to precisely encode temporal information in response to speech, trial-to-trial precision was

quantified using Victor-Purpura (VP, Victor and Purpura,  1996 ) distance metric (Fig  4.2 ).

VP distance inversely relates to precision. A linear regression model was used to test the

effect of hearing status on VP distance(see Experimental Procedures).There was no effect of

hearing loss on VP distance estimates for a range of conditions (Fig  4.2 , results are shown

for two conditions). Thus, there was no degradation in the ability of a neuron to precisely

phase-lock to temporal features in the stimulus following NIHL.

4.3.4 Distorted tonotopy diminished near-CF cues at the expense of enhanced
low-frequency cues following NIHL

Normal AN fibers are characterized by their high sensitivity (low threshold) and spectral

specificity (sharp tuning), which allow these fibers to selectively respond to stimulus energy

near their CF (e.g., Fig  4.3 ). To minimize rectifier-distortion effects on response spectral

estimates, difference PSTH (d[n]) was used (Parida et al.,  2020 ). d[n] was computed as half

the difference between PSTHs for opposite stimulus polarities. In this example, response

of the normal AN fiber was dominated by the first formant or F1, the spectral feature

closest to the fiber’s CF for the segment considered (Fig  4.3 B). This effect can be seen

in the fast-spiking activity in the peristimulus time histogram (PSTH, Fig  4.3 A) and the

corresponding d[n] spectrum (Fig  4.3 C), which shows a clear peak near F1 (blue arrow).

In contrast, following NIHL, AN fibers often show elevated thresholds, hypersensitive tails,
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Figure 4.2. Precision of temporal coding was not affected following
acoustic trauma. Average across-trial Victor-Purpura (VP) distance for
normal (blue) and impaired (red) neurons for two window (ω) and cost (cv)
combinations. For each combination (ω/cv), average across-trial VP distance
for a given AN fiber was computed by first computing the average across-trial
VP distance in windows of duration � (without overlap), and then, taking the
average distance for all windows. VP distance estimates, which inversely relate
to precision, were similar between the two groups.

and broader tuning putatively associated with downward shifts in functional characteristic

frequency (i.e., best frequency, Liberman,  1984 ; Liberman and Dodds,  1984b ). As a result,

responses of impaired neurons were often dominated by low-frequency stimulus energy that is

far-below the neuron’s CF, even though the neuron’s CF is near a resonance (i.e., a formant)

in the stimulus spectrum (Fig  4.3 B). This is evident from the PSTH of the impaired neuron,

which shows strong phase-locked activity to the fundamental frequency or F0 (Figs  4.3 A and

 4.3 C).

To confirm that audibility was not a primary contributing factor to these results, driven

rates during voiced portions of the stimulus were compared between the two groups. Despite

the expected reduction in spontaneous rate (Liberman and Dodds,  1984a ), driven rates

were largely compensated by the “half-gain amplification strategy” employed in this study
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Figure 4.3. Example data demonstrate that tonotopic distortion
leads to severely degraded near-CF representation and enhanced
low-frequency representation in the response of an impaired AN
fiber. (A) Alternating-polarity PSTHs in response to a “quasi-stationary”
stimulus segment (dark gray) from a normal (blue) and impaired (red) AN
fiber. Darker (lighter) shade represents PSTH in response to positive (neg-
ative) stimulus polarity. Negative polarity PSTH is flipped along the Y-axis
for display. Stimulus is scaled arbitrarily. PSTH bin width = 200 µs. (B)
Spectrum of the stimulus segment (dark-gray, left Y-axis) and tuning curves
(right Y-axis) of the two AN fibers considered in A. (C) Spectrum of differ-
ence PSTHs (d[n], n=bin index) based on PSTHs in A. d[n] was computed by
subtracting PSTHs to opposite polarities. As expected, d[n]-spectrum for the
normal AN fiber peaks near the first formant (blue arrow), which is near its
CF. In contrast, d[n]-spectrum for the impaired fiber peaks at the fundamental
frequency (red arrow), as a direct result of distorted tonotopy.

107



(Fig  4.4 A; p>.05, unpaired t-test). Next, to quantify the effects of distorted tonotopy at

a population level, multitaper spectrum of the difference PSTH (d[n]) was considered for

individual neurons (Parida et al.,  2020 ). As a metric for tonotopic coding, fractional power

was quantified in a band-pass spectral window near CF (Fig  4.4 B). The spectral window

was fourth order, was centered at CF for each fiber, and its 3-dB bandwidth was set to

50 percentile fit for AN-FTC bandwidth (Q3-dB) for normal-hearing chinchillas (Kale and

Heinz,  2010 ). Use of fractional power with d[n] was to minimize the effects of overall power

and rate differences, if any. Near-CF power estimates were significantly lower for impaired

neurons for frequencies below 3 kHz (p<.0001; unpaired t-test). Above 3 kHz, the difference

vanished (p>.05; unpaired t-test) likely because phase-locking is significantly reduced for

chinchilla AN fibers beyond this frequency (Temchin et al.,  2005 ).

To quantify the susceptibility of neurons with higher CFs (>0.6 kHz) to very low-

frequency (<400 Hz) stimulus, power in d[n]-spectrum was computed in a low-pass spec-

tral window (3-dB cutoff = 400 Hz, fourth order). As expected, these low-frequency power

estimates were significantly (p<0.01; unpaired t-test) higher for impaired neurons than for

normal neurons (Fig  4.4 C). The ratio of fractional power near CF to fractional power at

low frequencies, which indicates the strength of tonotopic coding (relative to low-frequency

coding), was � 0 dB on average for normal neurons with CF below 2.5 kHz. In contrast, this

relative power metric was � 0 dB on average neurons in the same CF region. Overall, these

results demonstrate a disruption of near-CF stimulus energy coding at the expense of very

low-frequency stimulus energy coding at a single AN fiber level.

4.3.5 Temporal representation of dynamic F1 contour was enhanced, whereas
representation of F2 and F3 contours were degraded following NIHL

The effects of distorted tonotopy on formant coding were evaluated for speech in quiet or

in noise. Formant coding is traditionally quantified using the Fourier spectrum of the period

histogram or the difference PSTH (Sinex and Geisler,  1983 ; Young and Sachs,  1979 ); these

analyses provide sufficient spectrotemporal resolution for analyzing responses to stationary

speech tokens like those used in the mentioned studies. To quantify power along the formant
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Figure 4.4. For voiced segments, effects of distorted tonotopy pri-
marily manifest as spectral changes in the response and not as a
change in driven rate. (A) Driven rates for normal and impaired AN fibers
were comparable during voiced portions of the speech stimulus. Cross and
plus markers represent driven rates for normal (blue) and impaired (red) AN
fibers. Dots represent spontaneous rate. Solid and dashed lines are two-third
octave averages for driven rate and spontaneous rate, respectively. (B) Frac-
tional power near CF (based on d[n]) for individual AN fibers. For a given
fiber (CF), fractional power was quantified as the power in a rectangular win-
dow (centered at CF, bandwidth based on 50th percentile Q10 fit for normal-
hearing chinchillas, (Kale and Heinz,  2010 ) normalized by the total power of
d[n]-spectrum. (C) Fractional power in a low-frequency band (< 400 Hz) for
AN fibers. (D) Ratio of fractional power near CF to fractional power in the
low-frequency band for AN fibers. While this fractional power ratio for normal
AN fibers with CF below 2.5 kHz was �0 dB in general, it was substantially
reduced (<-4 dB) for the impaired population in the same CF range.
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trajectories in a nonstationary speech stimulus, the harmonicgram can be used as it offers

superior spectrotemporal resolution compared to the spectrogram (Parida et al.,  2020 ).

Formant coding strength was quantified as the power estimate along the trajectories of

the first three formants for different SNR conditions (Fig  4.5 ). Results for -10 dB SNR

are not shown as response to speech was virtually absent in most fibers. For speech in

quiet, fractional power for individual formant trajectories peaked at CFs near or slightly

above their mean frequencies (Figs  4.4 A- 4.4 C), a consistent result that has previously been

reported (Delgutte and Kiang,  1984a ; Young and Sachs,  1979 ). Lower limit of CF has been

set to 500 Hz because of a scarcity of AN fibers below this frequency range in our fiber pool.

As expected, representation of F1 was enhanced for the impaired group, and was extended

to CFs substantially above the F1 trajectory range, (i.e., CFs in the F2 and F3 ranges).

Coding of F2 and F3 was diminished for the impaired group, and the corresponding peaks

were shifted to a higher frequency than the expected CF ranges based on mean formant

trajectories. This is likely a result of the best frequency lowering, a classic physiological

change that accompanies distorted tonotopy (Henry et al.,  2016 ; Liberman,  1984 ).

Noise had a much more detrimental impact on already degraded representations of F2

and F3 for the impaired population (Figs  4.4 D- 4.4 H). At 0 dB SNR, peaks for all formants

were still discernible for the normal-hearing pool (Figs  4.4 D- 4.4 F). For impaired neurons,

while F2 was somewhat represented (at a CF location much higher than the expected mean

F2 frequency), F3 coding was almost nonexistent. Similarly, at -5 dB SNR, the normal-

hearing pool showed a discernible peak near F2, whereas the impaired pool did not show

any F2 coding. Although F1 was overrepresented in the temporal representation by impaired

neurons at all these SNRs, a temporal-place code scheme is likely to show a deficit based on

the tonotopically nonspecific F1 representation in the same pool.

Overall, these results show a degradation of higher-formant (F2 and F3) coding, which

are known to be important for perception of vowels as well as consonants, in responses of

impaired neurons following acoustic insult. Moreover, these degradations are more severe in

the presence of noise, which potentially contributes to the perceptual deficits that hearing-

impaired listeners experience in noisy environments.
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Figure 4.5. Noise affected the temporal-place formant representa-
tion for the hearing-impaired population much more than that for
the normal-hearing population. The nine panels represent the strength
of the first three formants (F1, F2, and F3) for several SNR (quiet, 0 dB,
and -5 dB) conditions for normal (blue) and impaired (red) AN fibers. In
each panel, markers (left Y-axis) represent the fractional power estimate along
the corresponding formant trajectory for noisy-speech response relative to the
fractional power for the noise-alone response. d[n] was considered to quantify
fractional power. Thick lines indicate two-third octave averages per group.
Formant trajectories (thin black) are denoted on the right Y-axis. X-axis is
limited to CFs above 0.5 kHz due to sparsity of AN fibers with CF < 0.5 kHz
in either group. For the normal-hearing population, average lines peak near
formants, as expected, even in noise (e.g., E, F and H). In contrast, average
lines for the quiet condition for the impaired population peaked at frequencies
well above formants’ trajectory. This already degraded formant representation
was further diminished in the presence of noise, much more severely compared
to the normal population (e.g., E, F, and H).
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4.3.6 Unlike voiced segments, driven rate for a fricative consonant was not
restored despite compensating for audibility loss

Fricatives constitute a substantially large portion of phoneme confusions among hearing-

impaired listeners (Bilger and Wang,  1976 ; Dubno et al.,  1982 ; Van de Grift Turek et al.,

 1980 ). To explore the potential neural bases underlying these deficits, neural responses to a

fricative (/s/) and two stop consonants (/d/ and /g/) were analyzed.

Previous studies have reported robust fricative coding by normal AN fibers in terms of

onset and sustained rate responses (Delgutte and Kiang,  1984b ). Normal fibers with CF near

“high” frequencies (i.e., near frequencies where fricative has strong energy, e.g., Fig  4.6 A)

show a sharp onset, followed by a sustained discharge rate that is well above spontaneous

activity (Fig  4.6 B). In contrast, impaired neurons showed a substantial reduction in onset

response (e.g., Fig  4.6 B), although sustained rate remained above spontaneous activity.

Onset and sustained rates were estimated for individual AN fibers by windowing their

responses at the onset and steady-state part of the fricative (Fig  4.6 B). These windows were

based on a previous neurophysiological study on fricatives (Delgutte and Kiang,  1984b ).

In 3 to 8 kHz CF range, i.e., where the fricative had substantial energy, onset rates were

significantly lower for the impaired population (Fig  4.6 C; p<.0001, unpaired t-test). These

results starkly contrast with results for voiced portion of the stimulus, where the driven rate

was comparable between the two groups (Fig  4.4 A). Sustained rate was also reduced for the

impaired population compared to the normal population, albeit to a lesser extent (Fig  4.6 D);

p<.05, unpaired t-test.

To evaluate the noninvasive correlates of these single-neuron level changes in consonant

coding, frequency following responses (FFRs) were recorded in response to the speech stimu-

lus from the same animal pool. These FFR data have been described previously in Chapter

 7 . Only the onset response was considered to evaluate consonant coding because evoked

responses like the FFR require synchronous activity (e.g., the onset) across populations of

neurons. As sustained responses to fricatives lack a clear temporal pattern, they are rather

weakly represented in the FFR, if at all (Skoe and Kraus,  2010 ).

Two representative FFR responses, one from each group, demonstrate the effects of NIHL

on consonant coding (Fig  4.6 E). Responses during voiced speech (e.g., before 650 ms) were
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Figure 4.6. The flat amplification strategy did not restore the driven
rate in response to fricative /s/ for the impaired group. (A) Spectrum
of /s/ (gray, right Y-axis) and tuning curves of example normal (blue) and
impaired (red) AN fibers. (B) Time-domain waveforms of /s/ (gray), and
alternating-polarity PSTHs of normal (blue) and impaired (red) AN fibers
considered in A. PSTH bin width = 200 µs. Same format as Fig 2A. While
both example AN fibers had comparable sustained response, onset response
for the impaired neuron was substantially degraded compared to the normal
AN fiber. Cyan and magenta windows (right Y-axis) denote the masks used
to compute onset and sustained rates, respectively, for individual AN fibers.
(C-D) Same format as Fig 4A. Onset rate for the impaired population was
substantially reduced compared to the normal population for all CFs (C).
Sustained rate was slightly reduced for impaired AN fibers in the high CF (>
3 kHz) region where /s/ had substantial energy (D). (E) Example FFRENV

data from a normal-hearing (blue) and a hearing-impaired (red) chinchilla
demonstrate reduction in onset response for /s/. FFRENV was estimated by
averaging the responses to opposite polarities of the stimulus. Cyan window
(right Y-axis) indicates the onset mask. (F) Distributions of peak-to-peak
amplitude data (in the onset window in E) show a significant reduction in
FFR onset in response to /s/ for hearing-impaired chinchillas.
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comparable between the two FFRs (also see Chapter  7 ). In contrast, the two responses

strongly diverged during the onset window. While FFR from the normal-hearing animal had

a sharp onset, the FFR from the hearing-impaired animal lacked any clear onset.

To quantify the strength of onset in the FFR of the normal and impaired populations,

peak-to-peak amplitude in the onset window was quantified. Results showed a significant re-

duction in the onset amplitude for the impaired population (p<.05; unpaired t-test). Overall,

these results indicate that audibility profiles for low-intensity fricatives are fundamentally

different from those of high-intensity voiced speech.

4.3.7 Driven rates for stop consonants were also not restored following NIHL
despite compensating for audibility loss

Similar to fricatives, stop consonants are also among the most confused phonemes for

hearing-impaired listeners (Bilger and Wang,  1976 ; Van de Grift Turek et al.,  1980 ). The

neural representation of the two stop consonants (/d/ and /g/) that were present in the

speech stimulus used here were evaluated based on onset and sustained rates. While /g/

is characterized by more low-frequency (< 2 kHz) energy, /d/ is characterized by a flatter

spectrum with more energy at slightly higher frequencies (up to 4 kHz, e.g., Fig  4.7 A).

Responses of the two example neurons in Fig  4.7 A are representative of the two groups. In

response to /d/ and /g/, the normal AN fiber showed a strong onset response (Figs  4.7 B and

 4.7 C), followed by sustained activity that was well-above spontaneous activity. In contrast,

for the impaired AN fiber, onset was nonexistent and sustained activity was indistinguishable

from spontaneous activity. Population results also suggested that onset and sustained rates

for /d/ and /g/ were significantly degraded for the impaired population relative to the normal

population, particularly in the appropriate CF region for the consonants (Figs  4.7 D- 4.7 G).

For example, although onset rate to /g/ was slightly reduced (p=0.06; unpaired t-test) for

AN fibers with CF > 2 kHz, it was significantly reduced (p<.0001; unpaired t-test) for fibers

with CF < 2 kHz, frequency region where /g/ has substantial energy (Fig  4.7 F).

Next, response onsets were compared in FFRs recorded from animals in the two groups.

Onset strength was quantified as the peak-to-peak FFR amplitude in an onset window.

FFR onset was significantly reduced for /d/ following NIHL (Fig  4.7 H), consistent with the
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Figure 4.7. Driven rate for low-intensity stop consonants (/d/ and
/g/) was also diminished despite compensating for ABR-based au-
dibility loss. (A) Right Y-axis: spectra for /d/ (dark gray) and /g/ (light
gray). Left Y-axis: FTCs for a normal (blue) and an impaired (red) AN fiber.
Responses of these AN fibers are representative of their groups. (B and C)
Responses of the two fibers considered in A to /d/ (B) and /g/ (C). Same for-
mat as Fig 3A. PSTH bin width = 200 µs. (D-G) For both stop consonants,
onset and sustained rates for impaired AN fibers were significantly reduced
compared to rates for normal-hearing AN fibers. Same format as Fig 4A. (H
and I) Distributions of FFR peak-to-peak onset amplitudes for chinchillas in
both groups for /d/ (H) and /g/ (I). Onset amplitude was significantly reduced
for the impaired group in response to /d/, and to a lesser extent, in response
to /g/.
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universal reduction in onset rate across the whole CF range for impaired neurons (Fig  4.7 D).

Onset response to /g/, however, was only slightly reduced (not significant) for the hearing-

impaired chinchillas compared to the normal-hearing chinchillas (Fig  4.7 I). This reduction

in effect size in the FFR is likely due the following two reasons: (1) high-frequency neurons

contribute more to FFRs (Shinn-Cunningham et al.,  2013 ), and (2) the onset rate to /g/

was only slightly reduced in high-frequency (>2 kHz) neurons following NIHL (Fig  4.7 F).

These results, taken together with results from previous sections, show that a flat ampli-

fication targeted at compensating for loss of audibility (based on thresholds) restored driven

rate for voiced sections. However, this amplification strategy was inadequate at restoring

driven onset and sustained rates for low-intensity consonants, like fricatives and plosives, for

majority of AN fibers.

4.3.8 Background noise exacerbates degraded fricative coding following NIHL,
particularly for AN fibers with lower spontaneous rate

As previously described, listeners with hearing loss often struggle in noisy environments.

Confusions are substantially more common for consonants than for vowels. Consonant per-

ception, particularly in noise, is mediated by a number of acoustic cues, such as spectral

peaks, spectral edges, formant transitions, voice onset time, and more. Here, we investi-

gated how the fricative /s/ was represented in the presence of background noise for both

groups. It was assumed that all spectral cues were captured by response envelope (i.e., fluc-

tuation in driven rate). Plosive coding in noise was not considered for this envelope-based

analysis because plosives were completely masked by noise, even at the highest SNR (i.e., 0

dB) used here. Instead, inferences about plosive coding in noise based on formant transitions

is considered in the Discussion.

When signal is mixed with noise to achieve a particular SNR, including negative SNRs,

the resultant signal often has scattered spectrotemporal regions that have a favorable SNR.

The regions with favorable SNRs likely mediate robust speech perception in noise (Cooke,

 2006 ). For example, after mixing speech and speech-shaped-noise to achieve an overall SNR

of 0 dB, the fricative portion of the speech sentence has a positive SNR above 3 kHz (Fig

 4.8 A). Normal AN fibers, which are narrowly tuned to frequencies near this high SNR region,
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Figure 4.8. Effects of distorted tonotopy severely disrupted re-
sponses to fricative in noise, particularly for AN fibers with low and
medium SR. (A) Right Y-axis: spectra for /s/ (green) and the concurrent
noise segment (purple, for 0 dB overall SNR condition). Even though overall
SNR was 0 dB, SNR in the high frequency region (>3 kHz) was greater than
0 dB. Same was the case for -5 dB and -10 dB SNR conditions (not shown).
Left Y-axis: FTCs of two example AN fibers that demonstrate the increased
deleterious effect of noise following NIHL. (B and C) PSTHs in response to
speech-alone, noisy-speech, and noise-alone for the normal (B, SR=0.2/s) and
impaired (C, SR=1.1/s) fibers considered in A. PSTH bin width = 200 µs.
Thick black lines represent response envelopes, which were obtained by low-
pass filtering PSTHs at 32 Hz (fourth-order zero-phase IIR filter). (D-F)
Corrected correlation (see Experimental Design) between responses to speech-
alone and noisy-speech for the /s/ portion. Squares and asterisks correspond
to AN fibers with low/medium SR (<20 /s) and high SR (>20 /s), respec-
tively. Normal AN fibers, particularly those with low/medium SR that are
known to robustly encode speech features in noise, maintained good fricative
coding even in the -10 dB SNR condition. In contrast, impaired AN fibers
showed lower correlation values, particularly those with low/medium SR.
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responded selectively to the fricative energy (e.g., Fig  4.8 B). In contrast, impaired neurons

show reduced tip sensitivity relative to FTC tails (e.g., Fig  4.8 A). As a result, these neurons

tuned to higher frequencies were found to respond poorly to fricative energy and strongly to

low-frequency energy in either speech or noise (e.g., Fig  4.8 C).

To evaluate the neural representation of /s/ in noise, correlation [corr(S,SN)] of the

slowly varying envelope was quantified between responses in speech-alone and noisy-speech

conditions during the fricative segment. To confirm that these correlation values were not

spurious correlations between speech and noise, corr(S,SN) was corrected by subtracting the

correlation [corr(S,N)] between response envelopes of speech-alone and noise-alone conditions

for the same fricative window. For the normal-hearing population, these correlation values

were robust for AN fibers with CF > 3 kHz at SNRs down to -5 dB, and to a lesser extent

at -10 dB (Figs  4.8 D- 4.8 F). Responses of AN fibers with low or medium spontaneous rate

were particularly resistant to noise, a finding that has been reported previously (Silkes and

Geisler,  1991 ). On the other hand, corrected correlation values for low and medium SR fibers

were significantly lower for the impaired population. This degradation in consonant coding

in noise following NIHL is an expected outcome based on the effects of distorted tonotopy

as shown in the two example AN fibers (Figs  4.8 A- 4.8 C).

4.4 Discussion

The present study elucidates numerous ways in which distorted tonotopy, in addition to

classical indicators of SNHL such as broader tuning and threshold elevation, potentially con-

tributes to the clinically prevalent phenomenon of “I can hear you, but I cannot understand

you”, particularly in noise. These results suggest that perceptual deficits experience by lis-

teners with NIHL primarily stem from the physiological alterations at the level of the inner

ear following acoustic trauma. In particular, threshold elevation in ABRs (and audiograms)

may underestimate threshold changes at a population level (Fig  4.1 ). At suprathreshold lev-

els, neuronal responses maintain near-normal rate responses (Fig  4.4 A) and precision (Fig

 4.2 ) but suffer from changes in spectral profiles (Figs  4.3 and  4.4 ). As a result, informa-

tive near-CF features are diminished at a single-neuron level. Instead, low-frequency energy

of speech (leads to overrepresentation of minimally informative features) and/or noise (in-
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creased noise susceptibility) are enhanced in the response (Figs  4.3 and  4.4 ). Unlike driven

rate to voiced segments, driven rate in response to a fricative and two stop consonants was

not restored despite compensating for audibility loss (Figs  4.6 and  4.7 ). Finally, responses

of AN fibers with low and medium SR, which exhibited more noise-resistant responses, were

more adversely affected by noise following NIHL.

4.4.1 Distorted tonotopic changes in the periphery lead to substantial speech
coding degradation following NIHL

Early evidence of distorted tonotopy comes from neurophysiological studies that showed

abnormal changes in FTC following NIHL such as a reduced tip and a hypersensitive tail

(Liberman and Dodds,  1984b ), and confirmed a modest lowering of best frequency using

anatomical labeling methods (Liberman,  1984 ; Liberman and Dodds,  1984b ). These dis-

tortions in tonotopic mapping hold important implications for complex sound processing.

For example, recordings from AN fibers show a lowering of effective best frequencies when

white Gaussian noise is used as stimulus (Henry et al.,  2016 ). Similar effects have been

reported using stationary synthesized vowels, where the first formant was overrepresented in

the responses of AN fibers across a wide CF range (Miller et al.,  1997 ). In contrast, second

and third formants were severely degraded. We recently showed that the degree of distorted

tonotopy is even more deleterious for signals with negatively sloping spectra (Chapter  7 ).

Very low-frequency energy (<250 Hz) in the same speech stimulus used here was overrepre-

sented in the central nervous system based on frequency following responses. Present results

confirm that those FFR-based findings were a direct manifestation of tonotopic changes

happening at the most peripheral level (i.e., the inner ear).

4.4.2 Audiograms shifts with NIHL obscure more significant shifts in sensitivity
of suprathreshold AN fibers

Overwhelming evidence suggests that audiograms are insensitive in capturing suprathresh-

old perceptual deficits of HI listeners, especially in complex environments. Similarly, ABR

thresholds, which serve as proxy for audiograms, can also be insensitive. These near-

threshold metrics reflect the activity of only a few sensitive neurons, and thus, can obscure
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the changes in threshold at a population level. For example, the difference in 10th-percentile

threshold for normal and impaired neurons was 26 dB, which is similar to the average ABR

threshold shift (Fig  4.1 A). In contrast, the median threshold shift for the impaired popula-

tion was elevated by 36 dB SPL. The shift in 10 and 50 percentile points of the threshold

distribution following NIHL was further rigorously quantified in a CF-specific manner for

chinchilla data in the present study as well as cat data from Heinz et al.,  2005 (Figs  4.1 E and

 4.1 F, respectively). The shift in 10 percentile point was lower than the shift in 50 percentile

point for both chinchillas and cats for all CF bands. This alteration in threshold distribution

of AN fiber following NIHL holds important implication for hearing-aid algorithms. In par-

ticular, linear gain aimed at mapping the output intensity range from audiogram threshold

to pain threshold may skew the distribution of sensation levels of neurons, and thus, not be

optimal. Instead, an optimal strategy may include mapping intensities such that distribution

of sensation levels of neurons closely matches the threshold distribution of normal neurons.

Future studies exploring the exact nature of such dynamic range alterations following NIHL

will provide additional insight.

4.4.3 Changes in neural coding of voiced segments were primarily in the spectral
profile and not the driven rate

Driven rates in response to voiced speech, which could be treated as markers for au-

dibility, were comparable between the two groups. However, the spectral content in the

responses differed substantially between the two groups. These results highlight the need to

develop novel metrics that quantify “tonotopic audibility”, which are not only affected by

driven rate along the tonotopic axis but also consider the tonotopic appropriateness of such

neural activity. Such tonotopic audibility metrics could be useful in devising gain profiles

for individual patients to enhance perceptually informative audio features and suppressing

deleterious spectral regions.
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4.4.4 Unlike voiced segments, audibility for (low intensity) consonants was not
restored

Of the many features that influence consonant perception, two key features (driven rate

and formant transitions) were considered here. Representation of formant transitions for

higher formants (F2 and F3) were substantially degraded for the impaired population, espe-

cially in noise. As formant transitions are important for speech-in-noise perception, especially

for low-intensity stop consonants that can be easily masked by noise, degradation of these

transitions likely contributes to the perceptual deficits of hearing-impaired listeners and is

consistent with the results from psychoacoustic studies that report a reduced ability to use

formant transitions following NIHL (Zeng and Turner,  1990 ).

Unlike for voiced segments, driven rates for several low-intensity consonants were not

restored. Such divergent audiometric effects are consistent with psychoacoustic studies that

report a similar difference in audibility for consonants and vowels even after compensating

for audibility (Phatak and Grant,  2014 ). For the fricative /s/, while the normal population

encoded information via both onset and sustained rates, the representation for the impaired

population was limited to sustained rates. This reduced redundancy following NIHL likely

underlies fricative confusions, which are notoriously common for hearing-impaired listeners

(Bilger and Wang,  1976 ; Owens et al.,  1972 ; Turner and Robb,  1987 ). Similarly, stop conso-

nant confusions for hearing-impaired listeners, also extremely prevalent, are likely mediated

by reduced neural activity as a result of insufficient audibility compensation (Bilger and

Wang,  1976 ; Owens et al.,  1972 ; Turner and Robb,  1987 ). These results highlight the im-

portance of adaptive amplification strategies for hearing aids that boost the audibility of

low-intensity consonants without making the intensity of voiced segments too loud.

4.4.5 Noise-resistant ability of low and medium SR fibers was substantially
degraded following NIHL

Hearing-impaired listeners particularly struggle in noisy environments, which may result

from their inability to take advantage of spectrotemporal glimpses with high SNR, either

in the audio domain (Cooke,  2006 ) or in the modulation domain (Jørgensen et al.,  2013 ).

To test this hypothesis, a temporal segment (/s/) was identified that had favorable SNR
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(>0 dB) in a limited spectral band (above 3 kHz) even though the overall (across the whole

duration) SNR was 0 dB or lower. Normal neurons with low and medium SR maintained

robust noise-resistant representation, some even at -10 dB SNR. In contrast, counterpart

impaired neurons were highly susceptible to noise (Fig  4.8 ). Overall, these results highlight

the importance of noise-reduction algorithms, particularly for hearing aids to mitigate the

effects of increased noise-susceptibility.

4.4.6 Precision clinical diagnostics will improve clinical outcomes

As mentioned earlier, there is strong consensus among researchers regarding the inade-

quacies of the audiogram to account for real-life perceptual deficits. Individual variability

in speech perception likely stems from a variety of suprathreshold deficits, which are hidden

from audiograms and vary across patients. For example, two subjects with similar degree

but different etiologies of hearing loss may show widely varying neural coding profiles (Henry

et al.,  2019 ). Development of sensitive and specific diagnostics to identify underlying patho-

physiology, such as synaptopathy or distorted tonotopy, and implementing individualized

intervention strategies are hypothesized to improve clinical outcomes of hearing aids based

on the variety of suprathreshold deficits elucidated here.
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5. DEGRADED SPEECH-IN-NOISE ENVELOPE CODING IN

THE AUDITORY NERVE FOLLOWING NOISE-INDUCED

HEARING LOSS

Summary 

1
 

Speech-intelligibility (SI) models aim to predict human perceptual performance when

speech is subjected to a range of acoustic manipulations. SI models not only test our un-

derstanding of how the brain processes speech but can also assess hearing-aid and cochlear-

implant signal-processing strategies. To date, a single SI model that can predict all of the

normal-hearing effects of the wide range of tested manipulations remains elusive. Further-

more, listeners with hearing loss continue to struggle in noisy environments despite state-

of-the-art hearing-aid strategies. These problems highlight two key gaps. Firstly, most SI

models are implemented in the audio domain (i.e., by processing the audio signal) and rely on

numerous assumptions. Unfortunately, there is a scarcity of published neural data to evalu-

ate these model assumptions. Secondly, it is not straightforward for audio-domain SI models

to predict the effects of hearing impairment (beyond audibility). This gap is primarily due to

our limited understanding of the variety of effects of cochlear hearing impairment on speech

(especially speech-in-noise) coding. For example, two subjects with similar audiograms can

have very different speech-understanding ability. Animal models of cochlear hearing im-

pairment provide a useful opportunity to collect data to directly address these SI-model

gaps. Here, we collected spike trains from auditory-nerve fibers in anesthetized chinchillas

in response to speech, spectrally matched stationary noise, and noisy-speech mixtures at

perceptually relevant SNRs (-10, -5 and 0 dB). Overall speech intensity was fixed at 65 dB

SPL for normal-hearing and 80 dB SPL for hearing-impaired animals. Alternating-polarity

peristimulus-time histograms constructed from spike trains were filtered to extract response

envelopes in different modulation bands. Our data reveal that the correlation between AN-

fiber response envelopes of noisy-speech and noise-alone is increased for hearing-impaired

fibers, suggesting a greater potential degree of distraction from inherent envelope fluctua-

tions following cochlear hearing loss. Interestingly, our data predict a stronger detrimental
1Manuscript in prep
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effect of fluctuating noise compared to stationary noise, as has been reported in psychoa-

coustic studies. This novel neural finding is significant given the emphasis recent SI models

have placed on the importance of inherent envelope fluctuations in predicting noisy-speech

perception. These results highlight significant effects of cochlear hearing loss on the strength

of inherent noise fluctuations in noisy speech, which are likely to be important in addition

to speech-coding fidelity when predicting hearing-impaired SI.

5.1 Introduction

While normal-hearing (NH) listeners demonstrate robust speech-perception ability even

in adverse listening conditions, listeners with hearing impairment (HI) often struggle to

understand speech, even in moderately challenging backgrounds. In fact, listening difficulty

in noisy environments is the number one complaint in audiology clinics, despite the use

of state-of-the-art hearing aids (Souza,  2016 ). Clinical outcomes of hearing aids can be

improved by selectively enhancing the most informative speech features. However, what

these features are, is a matter of active debate. It is common to use envelope and temporal

fine structure as a dichotomy of information present in a signal and has been quite popular

in auditory research (Heinz and Swaminathan,  2009 ; Saberi and Haftert,  1995 ; Shamma and

Lorenzi,  2013 ; Smith et al.,  2002 ; Voelcker,  1966a ; Xu and Pfingst,  2003 ). Psychoacoustic

studies have highlighted the importance of envelope for speech perception (Crouzet and

Ainsworth,  2001 ; Drullman et al.,  1994a ,  1994b ; Houtgast and Steeneken,  1985 ; Shannon

et al.,  1995 ; Smith et al.,  2002 ). What is not clear is the relative importance of envelope and

fine structure on speech perception in the presence of noise.

Psychoacoustic studies hypothesize that speech-in-noise envelope representation in the

hearing-impaired population is degraded more than the normal-hearing population, which

contributes to perceptual speech-in-noise deficits that listeners with hearing loss experience

(Moore and Glasberg,  1993 ; Moore et al.,  1999 ). The importance of envelope is further

supported by the success of envelope-based SI models (Goldsworthy and Greenberg,  2004 ;

Houtgast et al.,  1980 ; Jørgensen et al.,  2013 ; Relaño-Iborra et al.,  2016 ; Scheidiger et al.,

 2018 ). Recently, one study showed a modest contribution of enhanced masker envelope

coding to degraded speech intelligibility in noise (Millman et al.,  2017 ). While these electro-
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physiological results are promising, the place specificity of these far-field responses is not well

understood (Bones and Plack,  2015 ; Dau,  2003 ; Gardi and Merzenich,  1979 ). Spike trains

recorded from auditory-nerve (AN) fibers in response to speech provide an alternate way to

quantify the relative degradation of envelope versus fine structure. The AN fiber response

conveys the internal representation of speech. As there is general consensus that speech is

faithfully represented in a tonotopic coding framework and because single-unit recordings are

place specific (Delgutte and Kiang,  1984c ; Palmer et al.,  1986 ; Sachs and Young,  1980 ; Young

and Sachs,  1979 ), SI models based on single neuron spike trains offer an unique advantage

over SI models based on scalp recordings. While many studies have looked at speech coding

in the AN, these studies have usually been limited to short and synthesized speech tokens (see

Young,  2008 for review). These synthesized signals lack the rich dynamic spectrotemporal

information that natural speech carries (Greenberg et al.,  2003 ). In addition, there has

been limited focus on the neural characterization of speech-in-noise, even for normal-hearing

animal models; no study has looked at speech coding in noise for hearing-impaired animals.

In order to address these gaps, we collected spike-train data from individual AN fibers

in response to natural speech at different SNRs for both normal and hearing-impaired chin-

chillas. A particularly important SI model is the speech envelope power spectrum model,

which hypothesizes that the signal to noise ratio in the envelope domain (SNRENV ) is the

primary determinant of SI (Jørgensen and Dau,  2011 ). This hypothesis is important be-

cause both animal studies as well as psychoacoustic studies have shown that envelope coding

is generally enhanced following hearing loss (Anderson et al.,  2013 ; Goossens et al.,  2018 ;

Henry et al.,  2014 ; Kale and Heinz,  2010 ; Lai and Bartlett,  2018 ; Millman et al.,  2017 ;

Presacco et al.,  2016 ; Wilding et al.,  2012 ; Zhong et al.,  2014 ), although exceptions exist

(Ananthakrishnan et al.,  2016 ; Schoof and Rosen,  2016 ). It is hypothesized that stronger en-

velope coding is not necessarily advantageous for speech perception since broadband maskers

can be over-represented in the envelope domain compared to speech, causing a reduction in

SNRENV for the hearing-impaired population (Kale and Heinz,  2010 ; Moore and Glasberg,

 1993 ). However, this hypothesis has not been tested neurophysiologically.

In this work, we use the multi-resolution envelope correlation metric proposed by Relaño-

Iborra et al.,  2016 to directly quantify the strength of speech coding and noise coding in AN
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fiber responses to noisy-speech mixtures for both normal and hearing-impaired chinchillas.

We evaluated the enhanced envelope hypothesis in the framework of fluctuating masking

release (FMR). FMR refers to the phenomenon that normal-hearing listeners show better

speech-recognition ability in fluctuating backgrounds compared to stationary backgrounds.

In contrast, hearing-impaired listeners do not show this benefit (Festen and Plomp,  1990 ).

We hypothesized that the response to noisy-speech will be more correlated with the response

to noise-alone for the impaired fibers compared to normal fibers, and that this effect will be

more severe for a fluctuating masker compared to a stationary masker.

5.2 Methods

Surgical preparation, noise exposure, neurophysiological recording procedure are de-

scribed in Secs  2.1 ,  2.2 , and  2.3 .

5.2.1 Stimuli

A speech sentence, described in Sec  2.4 , was presented in two types of noises: (1) station-

ary speech-shaped noise (SSN) and (2) 8-Hz sinusoidally amplitude modulated fluctuating

noise (FLN). Both SSN and FLN were spectrally matched to ten sentences spoken by the

same talker as the speech sentence. Spike trains were collected in response to speech-alone,

noise-alone, and noisy-speech mixtures at three different SNRs (-10, -5, and 0 dB). Inten-

sity of the speech-alone stimulus was fixed at 65 dB SPL for normal-hearing animals and

80 dB SPL for hearing impaired animals to play speech at similar sensation levels. Driven

rates to speech-alone stimulus were similar between the two groups at these intensities (Fig

 4.4 A). To create a noisy-speech mixture at a desired SNR, noise was scaled and added to

the speech-alone stimulus. Both positive and negative onset polarities were presented for all

stimuli.

5.2.2 Data Analysis

Peristimulus time histograms (PSTH, see Fig  5.1 ) were constructed using recorded spike

trains (bin width = 0.5 ms). PSTHs were filtered using a modulation filter bank to extract
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Figure 5.1. The framework used to estimate noisy-speech correlation
with speech and with noise for NH and HI. The framework consists
of three stages. The first stage represents processing by AN fibers with an
audio signal (speech-alone [S], noise-alone [N], or noisy-speech mixture [SN])
as the input and spike-train data as the output. The second stage represents
envelope extraction by a modulation filter bank that mimics properties of
midbrain neurons. Peristimulus time histograms constructed using the AN
spike trains are used as input to this modulation filter bank. The output is
the extracted response envelope. In the third stage, these extracted envelopes
are divided into segments in a multi-resolution framework (segments of 3/fm

duration for a modulation filter with fm center frequency). For each segment,
the correlation coefficient between S and SN as well as between N and SN
are computed. Correlation values are averaged across segments to compute a
single correlation value for a given neuron. These correlation values are used
to construct probability density functions for corr(SN, S) and corr(SN, N).

response envelopes in different frequency bands (Parida et al.,  2020 ). The center frequency

of the modulation filters (octave-wide, zero-phase, 8-th order, IIR) spanned from 4 to 128 Hz

(octave spaced). The output of each modulation filter was segmented in a multi-resolution

framework using a segment length of 3/fmod for a modulation filter with center frequency of

fmod.

For a given AN fiber in a single condition (based on noise type, SNR, and modulation

filter), cross-correlation coefficient [corr(SN, S)] was computed between response envelopes

for speech-alone (S) and noisy-speech (SN) for each segment. For that AN fiber, these cor-

relation values were averaged across segments to generate a single correlation value. This
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corr(SN, S) metric served to quantify speech-coding fidelity for a single AN fiber. Distribu-

tion of corr(SN, S) was estimated for both NH and HI groups by pooling corr(SN, S) values

across all AN fibers in a group (Fig  5.1 ). This procedure was repeated for all conditions (i.e.,

both noise types, all modulation filters, and all SNRs). Distributions were also obtained

for correlation between response envelopes for noisy-speech (SN) and noise-alone (N) in the

same multi-resolution framework [corr(SN, N) in Fig  5.1 ]. This corr(SN, N) metric was

used to quantify the distracting nature of noise in noisy-speech representations.

Next, for a correlation metric [e.g., corr(SN, S)], the distance between group distributions

was computed using a sensitivity metric (d′) as follows.

d′ = µHI − µNH
1
2 (σ2

HI + σ2
NH) , (5.1)

where µNH is the distribution mean for the normal group and µHI is the distribution mean for

the impaired group. σNH and σHI denote the standard deviations for normal and impaired

groups, respectively. d′ was computed for both corr(SN, S) and corr(SN, N).

Neural speech-intelligibility (SIneural) metrics were constructed by averaging corr(SN, S)

values across four modulation bands for each group:

SIneural = 1
4

∑
fmod

[
1
K

K∑
k=1

corrk(SN, S)
]2

, (5.2)

where K denotes the number of AN fibers in a group, corrk(SN, S) denotes corr(SN, S) for

k-th fiber in that group. fmod, which denotes the center frequency for modulation filters, was

limited to 8, 16, 32, and 64 Hz to evaluate slow speech-related envelopes in speech. The 128-

Hz modulation filter was excluded from neural SI estimation because this frequency band

largely represented temporal-fine-structure-based pitch coding, particularly for impaired AN

fibers.
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Similarly, noise-related distraction (NDneural) was quantified by averaging corr(SN, N)

values across modulation bands for each group:

NDneural = 1
4

∑
fmod

[
1
K

K∑
k=1

corrk(SN, N)
]2

, (5.3)

where K denotes the number of AN fibers in a group, corrk(SN, N) denotes corr(SN, N) for

k-th fiber in that group. fmod was limited to the same four (8, 16, 32, and 64 Hz) frequency

bands that were used to compute SIneural.

5.3 Results

Fig  5.2 shows an example of PSTHs constructed using spike trains from one normal

AN fiber (CF = 5.1 kHz, high SR) in response to speech-alone (S), noise-alone (N), and

noisy-speech (SN). In this example, the noise type was SSN. SNR for noisy-speech was 0 dB.
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Figure 5.2. Exemplar PSTH (colored) and modulation filter output
(black) for a normal fiber. PSTHs for a normal AN fiber (CF = 5.1 kHz,
high SR) in response to speech-alone (purple), noisy-speech (green), and noise-
alone (red) are plotted on the left Y-axis. Black traces (right Y-axis) represent
output of processing PSTHs through a modulation filter (center frequency =
8 Hz, octave-wide).
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Thick black lines overlaying PSTHs are the output of the modulation filter centered at 8

Hz. Qualitatively, noisy-speech output was well correlated with speech-alone output during

certain segments of the stimulus. For example, response to a high-frequency fricative /s/

(near 0.8 sec) was still robust in this case for this high-frequency AN fiber.

Fig  5.3 shows data from two exemplar AN fibers (left, normal; right, impaired) for the

SSN masker at 0 dB SNR. PSTHs are shown as colored lines. The response envelopes

based on one modulation filter (center frequency = 8 Hz) are shown in black. Qualitatively,

response envelopes were similar between S and SN for the normal AN fiber (e.g., near the

fricative at 0.8 s). In contrast, response envelopes for N and SN were similar for the impaired

AN fiber.

In order to quantify similarities between response envelopes, distributions of corr(SN, S)

and corr(SN, N) were obtained for both groups in a multi-resolution framework as described

in Methods (Sec  5.2.2 ). For each modulation filter (say center frequency = fm), response

envelopes were divided into segments of 3/fm duration. For example, consider responses of a
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Figure 5.3. Example responses show more noise-resistant speech
coding for a normal AN fiber compared to a HI AN fiber. Left and
right panels show responses for a normal (CF = 6.4 kHz) AN fiber and an
impaired (CF = 6.1 kHz) AN fiber, respectively. While the NH AN fiber
primarily responds to the fricative portion (near 0.8s) of the speech stimulus,
the HI AN fiber responds rather non-selectively to all portions of the stimuli.
Qualitatively, SN response is more like N response for the impaired AN fiber.
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single AN fiber. For a 8-Hz modulation filter, response envelopes were divided into segments

of 375 ms. Correlation values were estimated for each segment, and then averaged across all

segments. This procedure was repeated for all AN fibers to construct correlation distributions

for each group. Fig  5.4 represents an exemplar scatter plot of these correlation values for

the 8-Hz modulation filter at -5 dB SNR SSN condition for both groups. Distributions of

correlation values for normal (blue) and impaired (red) AN fibers indicate a decrease in

corr(SN, S) and an increase in corr(SN, N) for the HI group compared to NH group.

Fig  5.5 shows population statistics of d′ for SSN for all SNR and modulation-filter con-

ditions. Positive values on the y-axis indicate higher correlation for impaired AN fibers

compared to normal AN fiber. d′ for corr(SN, S) (purple) was negative at lower (≤ 32

Hz) modulation frequencies, which indicates degraded speech-coding fidelity in noisy-speech

representations for the impaired fibers at those frequency bands. At 128 Hz (and to a lesser

degree, at 64 Hz), the effect was opposite likely due to over-representation of the fundamental

frequency as the impaired AN fibers responded to pitch energy via frequency-tuning-curve

tail responses (Sec  4.3.4 ). More importantly, d′ for corr(SN, N) (green) was positive at all

SNR and modulation-frequency conditions, suggesting a greater representation of noise in

noisy-speech representations for impaired AN fibers.

Fig  5.6 shows responses from two exemplar AN fibers (left, normal; right, impaired)

for speech-alone, noise-alone and noisy-speech at 0 dB SNR for FLN. Both fibers had high

SR and similar CF. Qualitatively, envelope representation of the 8-Hz modulated noise was

enhanced for the impaired AN fiber compared to the normal fiber in the response envelope

for both N and SN. Moreover, there was substantial cycle-to-cycle variation in the response

envelope of the normal AN fiber, likely due to its sharp frequency tuning. In contrast, the

response envelope from cycle to cycle was less variable for the impaired AN fiber, likely due

to its broader bandwidth (which makes response envelope similar to the broadband FLN

envelope). These results were typical of normal and impaired AN fibers.

Fig  5.7 shows d′ values for corr(SN, S) and corr(SN, N) for FLN. Similar to Fig  5.5 ,

corr(SN, S) was substantially affected at lower (≤ 32 Hz) modulation frequencies for the

impaired population (negative numbers indicate lower correlation values for impaired AN

fibers). corr(SN, N) was positive for all SNRs and all modulation frequencies. One striking
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difference between Fig  5.5 and Fig  5.7 is that the deleterious effect of FLN as quantified by

d′ for corr(SN, N) was much stronger (worse) compared to SSN.

Finally, these neural correlation values were combined across modulation frequencies to

estimate speech intelligibility (Figs  5.8 A and  5.8 B) and noise distractions (Figs  5.8 C and

Figure 5.4. Example response-correlation distributions show that
degradation in speech-coding fidelity and enhancement of noise rep-
resentation in SN responses was more severe for impaired AN fibers
compared to normal AN fibers. Distribution of corr(SN, S) on Y-axis
and corr(SN, N) on X-axis for the 8-Hz modulation filter at -5 dB SNR for
the SSN condition. Histograms show marginal Probability Density Functions
for the NH (blue) and HI (red) groups. Unity slope line is shown in black.
For impaired AN fibers, the distribution of corr(SN, S) was shifted towards
0, indicating poorer speech representation in SN responses. In contrast, the
distribution of corr(SN, N) is shifted towards 1, which suggests noise-related
distractions were enhanced in the peripheral representation following hearing
loss.
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Figure 5.5. Background stationary noise was more detrimental for
the impaired population compared to the normal population. d′

plots for the stationary noise for all SNRs and modulation filters. Black line
indicates d′=0. Note that positive values denote higher correlation for HI
fibers.

 5.8 D) for each masker at different SNRs as described in Sec  5.2.2 . Not surprisingly, neural

speech intelligibility, as quantified by SIneural, monotonically increased with SNR for both

maskers for both groups (Figs  5.8 A and  5.8 B). While SIneural was slightly greater for FLN

than SSN for the HI population, it was substantially greater for the NH population. These

neurophysiological results mirror psychoacoustic results from fluctuating masking release

studies (e.g., Festen and Plomp,  1990 ). Furthermore, noise-related distractions, as quantified

by NDneural, decreased with increasing SNR for all but one conditions (except for the HI

group in the presence of the stationary masker). The reasons for this anomaly remain

unknown. NDneural was greater for FLN than SSN for both groups. This increase was

substantially greater for the HI population compared to the NH group, which highlights the

potentially severe distracting nature of fluctuating background maskers. Note that SIneural

was an order of magnitude lower than NDneural, which is expected because of the SNRs (≤ 0

dB) employed in this study. Overall, these results demonstrate the importance of considering

both speech-coding fidelity as well as noise-related distractions to thoroughly characterize

the effects of background maskers on speech coding, especially for hearing-impaired listeners.
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Figure 5.6. Example responses show that fluctuating masker
severely affects HI SN responses. Same as Fig  5.3 but for a fluctuat-
ing noise condition. Notice similarity between envelopes of N and SN for the
impaired AN fiber.

5.4 Discussion

5.4.1 The effect of background noise on speech-envelope-coding fidelity was
more severe for the HI group

One of the main objectives of this study was to quantify the effects of background noise

on speech-coding fidelity on the peripheral representation of natural speech. Speech-coding

fidelity was quantified using the correlation between response envelopes for speech-alone and

noisy-speech. As expected, speech-coding fidelity was degraded in noisy backgrounds (Fig

 5.8 ). This degradation was more severe for the HI group compared to the NH group for

both stationary (Fig  5.5 ) and fluctuating (Fig  5.7 ) maskers for most (≤ 32 Hz) modulation

bands. At higher (128 Hz) modulation bands, pitch frequency was overrepresented in the

hearing-impaired population due to distorted tonotopy (e.g., Sec  4.3.4 ). Therefore, envelope-

representation was enhanced for the HI group compared to the NH group for both maskers

at this modulation frequency. However, this enhancement is minimally informative because

of a lack of tonotopic coding. In fact, the degradation in speech-envelope coding in noise for

the HI group reported here is likely an underestimate of the deficits underlying HI speech

perception because the representation of speech-alone is already degraded to begin with
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Figure 5.7. Compared to the stationary masker, the fluctuating
masker had a more severe effect on SN responses for the im-
paired population. Same format as Fig  5.5 but for the fluctuating masker.
d′ for corr(S,SN) was reduced for these fluctuating-masker conditions than
stationary-masker conditions. More importantly, d′ corr(N,SN) was substan-
tially enhanced. These results suggest greater speech-coding degradation and
enhanced noise-related distraction for the HI population in the presence of
fluctuating maskers.

because of distorted tonotopy. Overall, these results demonstrate the detrimental effects of

background noise on speech envelope coding for the HI population.

5.4.2 Intrinsic fluctuations in noise had a greater detrimental effect on the HI
representation

Noise-coding strength in the peripheral representation of noisy-speech was also evaluated

to assess the potentially distracting nature of noise. In particular, noise-related distraction

was quantified using the correlation between response envelopes for noise-alone and noisy-

speech. Similar to degradation in speech coding, noise-related distraction worsened with

decreasing SNR for all but one conditions tested (Fig  5.8 ). Interestingly, this noise overrep-

resentation was greater for the HI group compared to NH group for both stationary (Fig

 5.5 ) and fluctuating (Fig  5.7 ) maskers. Overall, these results suggest that noise-related dis-

traction, in addition to speech-coding degradation, contribute to perceptual difficulties that

listeners with hearing impairment experience.
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Figure 5.8. Neural estimates for speech intelligibility and noise-
related distractions highlight the detrimental effects of noise for the
HI population, especially for fluctuating maskers. (A-B) Speech-coding
fidelity as quantified by corr(S,SN) (based on 4 to 64 Hz modulation frequen-
cies) for the stationary (A) and fluctuating (B) maskers. (C-D) Similarly,
noise-related distractions as quantified by corr(N,SN) (based on 4 to 64 Hz
modulation frequencies) for the stationary (C) and fluctuating (D) maskers.
Panels A and B are consistent with psychoacoustic results of why listeners with
HI do not show fluctuating masking release (Festen and Plomp,  1990 ). Simi-
larly, panels C and D highlight the enhanced masking effect of noise (especially
of the fluctuating masker) for the HI population.

Distorted tonotopy and broader bandwidth likely contribute to the enhanced noise repre-

sentation for the HI group. Normal AN fibers, due to their sharp frequency tuning, primarily

respond to near-CF energy in the masker. Therefore, their response envelope reflects the

spurious energy distribution in noise in a narrow frequency band. On the other hand, im-

paired AN fibers have a broader bandwidth due to distorted tonotopy. Therefore, responses

of impaired AN fibers are dominated by noise energy over a broader (low-pass) band. As a

result, normal AN fibers likely benefit from advantageous SNRs in the short-term due to the

spectrotemporal sparsity of speech compared to noise (Cooke,  2006 ). In contrast, impaired

AN fibers are potentially unable to make use of this sparsity due to broader filters. Note

that a masker with speech-shaped spectrum is potentially more detrimental compared to a

masker with white spectrum because of distorted tonotopy.
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5.4.3 FLN had a more detrimental effect than SSN on the envelope represen-
tation of noisy-speech for the hearing-impaired group

Psychoacoustic studies have shown that normal-hearing listeners perform better when

maskers with fluctuating envelope are used compared to when maskers with stationary en-

velope are used (Festen and Plomp,  1990 ). In contrast, listeners with hearing impairment

do not show this benefit. Our neural data are consistent with these psychoacoustic results.

Specifically, speech-coding strength, quantified by SIneural, was greater in FLN conditions

than in SSN conditions for the normal-hearing population (Figs  5.8 A and  5.8 B). In contrast,

SIneural values in the two masker conditions were similar for the HI group. The agreement

between neural envelope-based speech representation and psychoacoustic studies support

the importance of neural envelope for speech intelligibility, particularly for broadband noise

maskers (Swaminathan,  2010 ).

In addition to considering speech-coding fidelity, it is also important to consider the effect

of background noise as intrinsic fluctuations in the background noise can distract listeners

from focusing on the target speech (Brungart,  2001 ; Takahashi and Bacon,  1992 ). In order

to quantify noise-related distractions in the neural representation, response envelope correla-

tion between noise-alone and noisy-speech was used to construct the final metric, NDneural.

NDneural was greater in FLN conditions than for SSN conditions for both groups, suggesting

that fluctuating noise can be more distracting than stationary noise (Figs  5.8 C and  5.8 D).

More importantly, this increased noise representation in FLN conditions was substantially

greater for the HI group. This enhancement of intrinsic noise modulations, particularly

for fluctuating maskers, likely underlies perceptual difficulties in adverse environments that

listeners with HI experience.

5.4.4 Implications for speech intelligibility modeling

A key motivation behind the present study was to understand how existing SI models can

be extended to incorporate hearing-impaired data. While SI models based on data recorded

from preclinical animal models of hearing loss is invaluable, it is not a convenient alternative

to audio-domain SI models, which are easy to implement. To this end, results present in
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this study provide crucial insights to improve SI models for the HI population. First, our

results support the inclusion of both speech-coding fidelity as well as noise-related distraction

in SI models, as proposed by several modeling studies (Dubbelboer and Houtgast,  2008 ;

Jørgensen and Dau,  2011 ). These are complementary factors that affect speech intelligibility.

In particular, speech-coding fidelity relates to the available speech-related information in

the neural representation. However, how well the central brain can use this information

depends on the representation of intrinsic fluctuations in noise. These noise fluctuations are

substantially enhanced in the HI representation, and therefore likely contribute to individual

variability in SI in the HI population.

As mentioned earlier, correlation between response envelopes for speech-alone and noisy-

speech for the HI group likely underestimates the actual deficits listeners with HI experience.

That is because the neural representation of speech-alone is already degraded to begin with

due to distorted tonotopic coding. As a result, the correlation between S and SN responses for

the HI group is likely determined by low-frequency (<300 Hz) components in both responses,

even for AN fibers with a high (up to 3 kHz) CF (Fig  4.4 ). Moreover, responses of HI neurons

become significantly correlated across the cochlear axis (Heinz et al.,  2010 ; Swaminathan and

Heinz,  2011 ). Therefore, a metric like corr(S, SN) does not account for this increased across-

fiber dependence. These factors can be included in an SI model by modifying how response

envelope correlations are computed. Specifically, for a given peripheral channel (e.g., an

AN fiber) in the SI model, instead of using the response envelope for speech-alone as the

template envelope (which is cross-correlated with the response envelope for noisy-speech),

the bandlimited envelope of the speech stimulus can be used as the template. Speech can be

bandlimited by band-pass filtering the stimulus in a band centered at the center frequency

of the peripheral channel, and the filter’s bandwidth can be the mean Q10 value for the

NH population. This filtering approach restricts the contribution of low-frequency response

components, which could otherwise contribute to misleadingly large corr(S, SN) for the HI

population.
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6. REPRESENTATION OF VOICE PITCH IN DISCHARGE

PATTERNS OF AUDITORY-NERVE FIBERS FOLLOWING

NOISE-INDUCED HEARING LOSS

SUMMARY 

1
 

Pitch plays an important role in everyday communication, including speech and music per-

ception. Broadly speaking, pitch is encoded in two neural mechanisms: (1) temporal and

(2) temporal-place. The temporal mechanism is mediated by unresolved harmonics of the

fundamental frequency (F0) in a stimulus. The temporal-place mechanism is primarily me-

diated by resolved F0 harmonics. Psychoacoustic studies have suggested that listeners with

hearing impairment rely more on the temporal mechanism and less on the temporal-place

mechanism to perceive pitch; however, these hypotheses have not been simultaneously tested

neurophysiologically in animals with sensorineural hearing loss. To test these hypotheses,

we recorded spike trains from single auditory-nerve fibers of anesthetized male chinchillas

with either normal hearing or mild-moderate hearing loss due to acoustic trauma. A nat-

ural speech sentence was used as the stimulus. Temporal pitch coding was evaluated using

correlograms and alternative-polarity peristimulus time histograms. Temporal-place pitch

coding was evaluated using average-localized synchronized rate and cepstral analysis. Re-

sults showed an enhanced temporal representation for pitch for the hearing-impaired group,

although this enhancement may be pathological because the representation was generally

more complex (i.e., contained more frequency components). In contrast, temporal-place rep-

resentation of pitch was degraded for the hearing-impaired group. Overall, these findings

help to explain the neural basis underlying pitch perception deficits by listeners with hearing

impairment for natural speech.

6.1 Introduction

Pitch plays an important role in speech and music perception in everyday life (Plack

and Oxenham,  2005 ). For example, in most languages, pitch conveys prosodic informa-
1Manuscript in prep
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tion as well as other non-linguistic information such as age, gender, and emotional state

of the speaker (Moore and Carlyon,  2005 ). These cues are helpful in resolving individual

sound sources in complex acoustic scenes (Bregman,  1994 ). While normal-hearing listeners

perform seamlessly in extracting and using pitch cues, listeners with hearing impairment

demonstrate poorer ability to use pitch information, even in quiet environments (Moore

and Carlyon,  2005 ). The hypothesized neural correlates underlying poorer pitch perception

following noise-induced hearing loss (NIHL) include poorer temporal coding, broader band-

width, and reduced traveling-wave delay. However, these hypotheses have not been tested

neurophysiologically. That is because, with the exception of one study (Kale et al.,  2013 ),

most neurophysiological pitch-coding studies have been carried out with normal-hearing an-

imals and not with hearing-impaired animals (Cariani and Delgutte,  1996a ,  1996b ; Cedolin

and Delgutte,  2005 ,  2010 ; Larsen et al.,  2008 ; Miller and Sachs,  1984 ).

Broadly speaking, there are two leading theories of pitch coding: (1) temporal and (2)

temporal-place (also called spectral) (De Cheveigne,  2005 ). The waveform of a stimulus with

harmonic spectrum (Fig  6.1 B), e.g., speech, is periodic in the time domain (Fig  6.1 A). This

periodicity is also preserved after peripheral filtering (Fig  6.1 C) and shows up at the first

few harmonics of the fundamental frequency, F0 (Fig  6.1 D). The temporal theory of pitch

coding relies on this temporal periodicity for estimating pitch (green arrow). In contrast, the

temporal-place theory assumes that individual F0 harmonics are encoded by auditory nerve

(AN) fibers with CF near that harmonic (purple arrow). The central processor is assumed

to estimate pitch by integrating this temporal-place information across AN fibers with dif-

ferent characteristic frequencies (CFs). While one neurophysiological study has looked at

the temporal representation of pitch following NIHL (Kale et al.,  2013 ), no published study

has investigated the temporal-place representation of pitch following NIHL. Moreover, pitch

coding of natural speech following NIHL has not been explored.

Here, we recorded spike trains in response to a natural speech sentence from single AN

fibers of anesthetized chinchillas with either normal hearing or NIHL. Alternative-polarity

PSTHs and correlograms were used to evaluate temporal or temporal-place pitch-coding

theories (Miller and Sachs,  1984 ; Parida et al.,  2020 ). Temporal-place coding representation

was evaluated using average-localized synchronized rate (ALSR) and cepstral analysis (Miller
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Figure 6.1. Illustration of temporal and temporal-place theories of pitch
coding. (A) Time-domain waveform of a vowel (2 as in gut). The waveform is
periodic with pitch period (1/F0). (B) DFT of the vowel used in A. The DFT
has energy at multiples of F0. (C) Time-domain response of a toy AN-fiber
model. This toy model consists of a band-pass filter (dashed red line in panel
B), half-wave rectification, and low-pass (fourth order, zero phase, IIR, cut-off
= 1.5 kHz) filter. (D) Response spectrum for the toy model. The output
of the toy model shows pitch periodicity (panel C), which also shows up as
energy at F0 in the spectral estimate (panel D, green arrow). This temporal
periodicity is the basis underlying temporal pitch coding. In contrast, the
output also shows F0 harmonics that are within the bandwidth of the filter (in
panel C). These spectral harmonics (purple arrow) in the response contribute
to the temporal-place representation of pitch.

and Sachs,  1984 ). Our results show an enhanced temporal representation for the hearing-

impaired group. However, this enhancement could be detrimental for pitch perception as

this enhancement often led to more complex response waveforms (i.e., containing more fre-

quency components), as hypothesized by previous studies (Rosen and Fourcin,  1986 ; Rosen,

 1986 ). In contrast, the temporal-place representation was significantly degraded following

NIHL. This degradation resulted primarily due to distorted tonotopic coding of individual

F0 harmonics so that fewer (low-frequency) harmonics were encoded in the hearing-impaired
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representation. These results provide new neural insights into pitch perception difficulties

that listeners with hearing-impairment experience.

6.2 Materials and methods

The same speech stimulus and data were used as described in Chapter  2 . Shuffled auto-

correlograms were estimated and normalized using standard methods (Louage et al.,  2004 ).

SAC bin width was 100 µs.

Average-localized synchronized rate and cepstral analysis

ALSR was constructed using standard methods that are previously published (Miller

and Sachs,  1984 ; Young and Sachs,  1979 ) except one difference. Instead of using the single-

polarity PSTH, the difference PSTH (d[n]) was used to estimate ALSR because d[n] mini-

mizes rectifier-distortion artifacts (Parida et al.,  2020 ). Briefly, Discrete Fourier Transform

(Dx[f ]) of dx[n] was estimated for each AN fiber (x).

Dx(f) = DFT (dx[n]). (6.1)

Next, a width (w) parameter was chosen to construct the ALSR. ALSR value at frequency

f was estimated as the average DFT magnitude at frequency f for AN fibers with CF within

w distance (log-scale) from f . ALSR bandwidth was limited to frequencies below 5 kHz.

ALSR[f ] =
∑

dist.[CF (x),f ]<w |Dx(f)|
N [f ]

, (6.2)

where dist.[ ∗ ] denotes distance operator (in log-scale), N [f ] denotes the number of AN

fibers that satisfy dist.[CF (x), f ] < w, and | ∗ | denotes the magnitude operator.

The ALSR cepstrum was estimated as the inverse DFT (IDFT) of the logarithm of

ALSR. As the ALSR only keeps the amplitude and disregards phase information, the ALSR

cepstrum is real.

Cepstrum[q] = IDFT (ALSR[f ]), (6.3)
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where q is the independent variable quefrency (in second). The cepstrum deconvolves the

fast pitch-related harmonic component of a spectrum from the slow spectral envelope so

that pitch-related information maps on to quefrencies at the pitch period and its harmonics.

These methods have previously been applied to spike-train data from AN fibers for pitch

estimation (Miller and Sachs,  1984 ).

6.3 Results

6.3.1 Temporal representation of voice pitch is enhanced following NIHL

First, the temporal representation of voice pitch in the responses of individual AN fibers

was evaluated. For a stimulus with harmonic structure (fundamental frequency = F0), AN-

fiber responses can show energy at the first few harmonics of F0. Two key sources contribute

to energy at these low F0 harmonics. First, responses of AN fibers are rectified; therefore,

when a neuron responds to multiple F0 harmonics, the PSTH is periodic with 1/F0 period

(Young and Sachs,  1979 ). Second, AN fibers can respond to F0 and its first few harmonics

directly via frequency-tuning-curve tail responses (Kiang and Moxon,  1974 ).

Fig  6.2 A shows responses from a normal and an impaired AN fiber for a 80-ms stimulus

segment. The impaired AN fiber clearly followed the voice pitch. In contrast, the normal

AN fibers showed fast spiking activity, which suggests that it primarily responded to high-

frequency energy in the stimulus, and to a lesser extent, to F0. These observations are

also supported by PSTH spectra (Fig  6.2 C). To quantify the total F0-related power in the

response, multitaper (two tapers) spectrum was estimated for both positive-polarity and

negative-polarity PSTHs (i.e., PSTHs constructed using spike trains in response to positive

and negative polarities of the stimulus, respectively). For each AN fiber, fractional power

(i.e., band power normalized by total power) in 30-Hz bands centered at the first three F0

harmonics was computed using the multitaper spectrum. For each AN fiber, the average

of F0 power estimates for both polarities was used as the final estimate. Results showed a

significant increase in F0 power for the impaired population (p<.001; unpaired t-test) for

this example segment (Fig  6.2 D). Repeating this analysis with the first two harmonics did

not affect these results in any significant way.

143



570 580 590 600 610 620 630 640 650 660 670 680

Time (ms)

0

0.1

0

0.1
R

a
te

 (
s
p

ik
e

s
/b

in
)

A

NH

HI

Stim.

0.1 0.5 1 5
-80

-60

-40

25

50

75

100
F

0
2F

0

Frequency (kHz)

P
S

D
 (

d
B

/H
z
)

B

0.1 0.5 1 5

-45

-40

-35

-30

-25

25

50

75

100

T
C

 T
h

re
s
h

. 
(d

B
 S

P
L

)

F
0

2F
0

C

0.5 1 5 10

Characteristic Frequency (kHz)

-20

-15

-10

F
0

 p
o

w
e

r 
(d

B
)

D NH

HI

Figure 6.2. Temporal representation of F0 was enhanced following NIHL for
an example segment. (A) Positive-polarity PSTHs for a normal (blue) and
an impaired (red) AN fiber in response to a quasi-stationary voiced segment
(black). (B) Spectral estimate of the stimulus segment. Frequency tuning
curves are also shown (right y-axis) for normal (blue) and impaired (red) AN
fibers. (C) Multitaper (two tapers) spectral estimate for the PSTHs in A.
While the normal fiber substantially responds primarily to near-CF energy,
the impaired fiber responds to first few F0 harmonics. (D) Fractional power
metric used to quantify pitch coding strength for the segment in A for normal
(blue) and impaired (red) AN fibers. Fractional power in three 30-Hz bands
centered at the first three F0 harmonics was used to quantify pitch-coding
strength. Markers represent individual AN fiber data. Thick lines indicate
two-third octave averages along CF. F0 coding was significantly enhanced in
the CF range 0.4 to 5 kHz (p < .0001; unpaired t-test) for the impaired group.

To quantify the strength of F0 coding over the whole stimulus duration, fractional power

was estimated in a 20-Hz band along the first three harmonics of the time-varying F0 tra-

jectory using frequency demodulation (Parida et al.,  2020 ). This approach improves the

spectral resolution of analysis. The fractional F0 power was significantly (p<0.001; 0.4 kHz
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< CF < 5 kHz; unpaired t-test) enhanced for the hearing-impaired population relative to

the normal-hearing population (Fig  6.3 ).

Figure 6.3. Temporal F0 representation was significantly enhanced follow-
ing NIHL (p<0.001; 0.4 kHz < CF < 5 kHz; unpaired t-test). Fractional
power (used to quantify temporal coding strength of pitch) was estimated
along 20-Hz bands centered at the first three time-varying F0 harmonics using
the harmonicgram (see Section  6.2 ). Same format as Fig  6.2 D.

Although spectral analysis can provide power estimates in the desired bands, the spectral

resolution of analysis becomes poorer at shorter duration (e.g., 40 ms). However, F0 can

significantly change over such a short duration, which the auditory system can follow (Miller

and Sachs,  1984 ). Therefore, to estimate time-varying pitch and the strength of pitch coding

in the temporal representation of AN-fiber responses, we used the pooled shuffled autocorrel-

ogram approach (SAC, see Materials and Methods). Briefly, response was divided into 40-ms

windows with 50% overlap. In each window, SAC was calculated for individual AN fibers.

Finally, SACs were pooled across all fibers for each group to estimate the pooled SAC for

that group (Figs  6.4 A and  6.4 B). For each window, delay corresponding to the maximum of

the pooled SAC was used as the pitch period estimate. The value of the maximum was used

as the strength of pitch coding. Search of SAC maximum was restricted to between 6 and 11

ms, which covers the dynamic range of the pitch period of the speech stimulus used. Ground

truth F0 trajectory was estimated using Praat (Boersma,  2001 ). Neural pitch estimation was

robust for both normal (mean absolute deviation or MAD = 3.3 Hz) and impaired (MAD =
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Figure 6.4. Temporal coding of F0 was enhanced following NIHL. (A-B)
Pooled SAC for normal (A) and impaired (B) groups. Ground truth pitch
period, estimated using Praat, is highlighted within red boundaries. (C) Delay
corresponding to SAC maximum was used as the F0 estimate (inverse of the
delay) for both groups. Both normal (blue crosses) and impaired (red pluses)
groups showed robust pitch tracking. (D) Temporal pitch-coding strength,
quantified using SAC-peak amplitude near 1/F0, was significantly enhanced
(p<.001, unpaired t-test) for the impaired group.

2.5 Hz) groups (Fig  6.4 A). In fact, pitch coding strength was significantly (p<.001; paired

t-test) enhanced for the impaired group relative to the normal group (Fig  6.4 D). Overall,

these results show an enhanced temporal representation of voice pitch following NIHL.

An enhanced temporal representation of F0 may result from broader filters as well as

from distorted tonotopy. This enhancement may be detrimental to pitch perception because

the output of auditory filters may result in complex patterns (Rosen and Fourcin,  1986 ). To

test this hypothesis, we evaluated temporal coding for two 100-ms segments with different

spectral properties (Figs  6.5 A and  6.5 B). The windows were divided into 40-ms segments with

50% overlap. To construct a single SAC for the 100-ms segment, SAC delay was normalized

by pitch period and resulting SACs were averaged across windows (Figs  6.5 C and  6.5 D).
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Figure 6.5. Distorted tonotopy can lead to increased SAC complexity. (A-
B) Two exemplar segments with relatively flat (A) and severely sloping (B)
spectrum. Both segments were 100-ms long. (C) Delay-normalized average
SACs for the segment in A for both groups (see text). SAC complexity was
increased, and pitch strength was enhanced for the impaired group for this
segment due to distorted tonotopy. (D) Delay-normalized average SACs for
the segment in B. F0 coding strength was enhanced for the impaired group.

Qualitatively, for the segment with relatively flat spectrum (Fig  6.5 A), normalized-SAC

complexity for the impaired group was higher than that for the normal group. These results

suggest distorted tonotopy plays a major role because impaired AN fibers tuned to higher

(>1 kHz) CFs respond to multiple low-frequency (<1 kHz) harmonics. In contrast, for a

segment with severely sloping spectrum, energy at F0 drives tail responses of AN fibers in

both groups, and as such, SAC for both groups showed a clear peak at F0. However, the

peak for the impaired group was larger likely because of distorted tonotopic effects.

6.3.2 Temporal-place (spectral) representation of voice pitch is degraded fol-
lowing NIHL

In order to evaluate the place-temporal representation of voice pitch, ALSR was con-

structed for both normal and impaired groups. For a given stimulus frequency, the ALSR
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representation only includes responses of AN fibers with CF near that frequency; thus, the

ALSR considers both the place of AN fibers as well as their temporal response. Fig  6.6 

shows the ALSR for an example stationary vowel (2). The ALSR was constructed using

spike-train data from 44 AN fibers from one chinchilla. To estimate the synchronized rate

at a frequency, AN fibers with CF within one octave of that frequency were included. Indi-

vidual F0 harmonics, including the first two formants (F1 and F2), were clearly encoded in

the ALSR (Fig  6.6 B). The cepstrum of the ALSR shows a clear peak near the pitch period,

i.e., at 10 ms (Fig  6.6 C), as well as its second harmonic.

Although natural speech is nonstationary, it can be considered quasi-stationary at short

(<50 ms) duration. Fig  6.7 A shows the spectral estimate of one such 40-ms segment. ALSR

Figure 6.6. ALSR and cepstral analysis can be used to estimate F0 from
apPSTH data. (A) The DFT of the stationary vowel that was used as stimulus.
(B) ALSR was constructed based on spike-train data recorded from AN fibers
(N = 44). (C) Cepstrum of the ALSR in B shows a peak at the pitch period
(10 ms). Cepstrum for quefrency below 7 ms is set to zero to highlight pitch-
related components.
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for the normal-hearing group shows robust representation of multiple F0 harmonics, even up

to 2 kHz (Fig  6.7 B). In contrast, ALSR for the hearing-impaired group only captures the

first few F0 harmonics. As a result, cepstrum for the hearing-impaired group shows a weaker

F0 representation compared to the cepstrum for the normal-hearing group (Fig  6.7 C).

Next, we validated whether ALSR and cepstral analysis can be employed to track the

time-varying F0 trajectory of the speech stimulus. ALSR was computed for 40-ms windows

(with 50% overlap) for both normal and impaired groups. This analysis was restricted to

only voiced portions of the stimulus. Three sets of ALSRs were constructed by varying

the averaging CF width. For each ALSR, F0 was estimated as the inverse of the quefrency

corresponding to the maximum of the cepstrum. Quefrency range was restricted to above 6
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Figure 6.7. Temporal-place representation of pitch was degraded following
NIHL for an example segment. (A) The DFT of an exemplar 40-ms long
stimulus segment. (B) ALSR constructed using data from normal (blue) and
impaired (red) AN fibers. ALSR for normal AN fibers showed response to
multiple F0 harmonics, whereas the ALSR for the impaired group responded
to fewer F0 harmonics. (C) Cepstrum for the normal group showed a peak
at the expected pitch period (green triangle). In contrast, cepstrum for the
impaired group showed a weak peak.
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Table 6.1. The normal-hearing group had fewer errors and more ro-
bust pitch tracking compared to the hearing-impaired group. #Er-
rors denotes the number of segments where the neural F0 estimate deviated
from the ground truth F0 by more than 1 Hz (out of 42 total segments) for
each group. MAD represents the mean absolute deviation of error across all
segments.

ALSR Width
(in octave)

# Errors MAD (in Hz)
NH HI NH HI

0.33 2 3 1.6 2.4
0.67 4 10 5.9 7.2
1.0 4 16 3.6 18

ms and below 11 ms to limit F0 estimates within the dynamic range of the F0 of the speech

stimulus. As described previously, ground truth F0 trajectory was estimated using Praat.

For all averaging widths and most stimulus segments, neural F0 estimates for the normal-

hearing group robustly followed the ground truth F0 trajectory (Fig  6.8 ). F0 estimates for

the impaired group also followed the ground truth F0 trajectory, although there were more

frequent errors compared to the normal-hearing group (Table  6.1 ). Similarly, the mean

absolute deviation of the estimates (relative to ground truth) was higher for the hearing-

impaired group relative to the normal-hearing group (Table  6.1 ).

Finally, we compared the strength of pitch coding between the two groups. Strength

was quantified as the cepstrum amplitude of the local maximum near (within 0.5 quefrency)

ground truth pitch period for individual segments. Cepstrum amplitude was significantly

(p<0.001 for all widths; paired t-test) reduced in impaired fibers for all ALSR-averaging

widths (Fig  6.9 ). Overall, these results show that temporal-place representation of voice

pitch is substantially degraded following NIHL.

6.4 Discussion

The present study evaluated how neural coding of voice pitch for a natural speech sentence

changes following NIHL. Two leading pitch-coding theories were considered, temporal and

temporal-place (spectral). Temporal representation of F0 carried sufficient information for
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Figure 6.8. Cepstral analysis on ALSR was robust in predicting the time-
varying F0 trajectory. (A-C) Neural F0 estimates using cepstrum of the ALSR
constructed using spike-train from normal (blue crosses) and impaired (red
pluses) AN fibers. ALSRs were constructed for 40-ms moving windows (50%
overlap). Panels correspond to different CF widths for constructing ALSR.
For each cepstrum, quefrency corresponding to the maximum below 11 ms
was used as the pitch period estimate. Black squares in all panels represent F0
(ground truth) of the audio signal estimated using Praat. F0 estimates were
robust for most segments for all CF widths. However, estimates deviated from
the ground truth for a few segments. These deviations were more frequent for
the hearing-impaired group compared to the normal-hearing group.

accurate F0 tracking for both groups (Fig  6.4 ). However, F0-coding strength was enhanced

following NIHL as quantified by both harmonicgram (Fig  6.3 ) and shuffled autocorrelogram

(Fig  6.4 ) analyses. This enhancement was often accompanied by increased SAC complexity

(Fig  6.5 ).

Temporal-place pitch-coding theory was evaluated using ALSR and cepstral analysis.

Temporal-place F0 representation also conveyed sufficient information to track time-varying
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Figure 6.9. Temporal-place representation of pitch was degraded following
NIHL. Panels correspond to different CF widths used to construct ALSR. For
most CF-widths and segments, cepstrum amplitude was smaller for impaired
(red pluses) compared to the normal (blue crosses) group. These differences
were significant (p<.001) for CF-width conditions.

F0 for both groups, although there were more frequent errors for the impaired group (Table

 6.1 ). The strength of temporal-place F0 coding was significantly reduced for the impaired

group (Fig  6.9 ).

6.4.1 Temporal pitch representation was enhanced following NIHL

Enhancement in the temporal representation of pitch found in this study is consistent

with earlier reports of enhanced temporal envelope in animal models following NIHL (Henry

et al.,  2016 ; Kale and Heinz,  2010 ). Although broader bandwidth is likely to contribute,

distorted tonotopy offers a better account of these pathological enhancements. For example,

low-frequency stimulus energy can dominate the response of basal AN fibers. As a result,

response complexity of these AN fibers increases. These neural findings are consistent with
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results from psychoacoustic studies. For example, adding lower harmonics to a narrow-

band harmonic complex can lead to poorer pitch discrimination ability for hearing-impaired

listeners (Moore and Peters,  1992 ). Distorted tonotopic coding also leads to more complex

responses; this increased complexity may lead to poorer F0 estimates by the central processor

(Rosen and Fourcin,  1986 ).

6.4.2 Temporal-place pitch representation was degraded following NIHL

Unlike the temporal representation, the temporal-place representation of voice pitch was

severely degraded following NIHL. These results can be directly attributed to distorted

tonotopy (Chapter  4 ). While normal AN fibers primarily respond to near-CF F0 harmonics,

impaired AN fibers over-respond to low-frequency F0 harmonics. As a result, higher F0 har-

monics are not well captured at the peripheral level (Chapter  4 , also see Fig  6.7 ). Therefore,

pitch amplitude in the ALSR-cepstrum is significantly reduced for the impaired group.

These divergent neural effects regarding temporal and temporal-place pitch represen-

tations provide insights into pitch perception deficits experienced by listeners with NIHL.

Temporal-place pitch representation requires phase locking to individual F0 harmonics. In

fact, lower resolved harmonics (better temporal-place representation) produce more salient

pitch percept for normal-hearing listeners compared to higher unresolved harmonics (better

temporal representation) (Carlyon and Shackleton,  1994 ; Plack and Oxenham,  2005 ). In

contrast, listeners with hearing-impairment rely more on high-frequency unresolved harmon-

ics (Moore and Carlyon,  2005 ). Results presented in this report provide several neural bases

underlying these psychoacoustic results. Future studies exploring the role of across-fiber

phase information and the effect of background noise on these pitch-coding theories will be

informative to advance our understanding of pitch coding following NIHL.
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7. NON-INVASIVE MEASURES OF DISTORTED

TONOTOPIC SPEECH CODING FOLLOWING

NOISE-INDUCED HEARING LOSS

SUMMARY 

1
 

Animal models of noise-induced hearing loss (NIHL) show a dramatic mismatch between

cochlear characteristic frequency (CF, based on place of innervation) and the dominant re-

sponse frequency in single auditory-nerve-fiber responses to broadband sounds (i.e., distorted

tonotopy, DT). This noise-trauma effect is associated with decreased frequency-tuning-curve

(FTC) tip-to-tail ratio, which results from decreased tip sensitivity and enhanced tail sen-

sitivity. Notably, DT is more severe for noise-trauma than for metabolic (e.g., age-related)

losses of comparable degree, suggesting individual differences in DT may contribute to

speech-intelligibility differences in patients with similar audiograms. Although DT has impli-

cations for many neural-coding theories for real-world sounds, it has primarily been explored

in single-neuron studies that are not viable with humans. Thus, there are no noninvasive

measures to detect DT. Here, frequency following responses (FFRs) to a conversational

speech sentence were recorded in anesthetized male chinchillas with either normal hearing or

NIHL. Tonotopic sources of FFR envelope and temporal fine structure (TFS) were evaluated

in normal-hearing chinchillas. Results suggest FFR-envelope primarily reflects activity from

high-frequency neurons, whereas FFR-TFS receives broad tonotopic contributions. Repre-

sentation of low- and high-frequency speech power in FFRs was also assessed. FFRs in

hearing-impaired animals were dominated by low-frequency stimulus power, consistent with

oversensitivity of high-frequency neurons to low-frequency power. These results suggest that

DT can be diagnosed noninvasively. A normalized DT metric computed from speech FFRs

provides a potential diagnostic tool to test for DT in humans. A sensitive noninvasive DT

metric could be used to evaluate perceptual consequences of DT and to optimize hearing-aid

amplification strategies to improve tonotopic coding for hearing-impaired listeners.
1This chapter has been published in JARO as Parida and Heinz,  2020 
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7.1 Introduction

Hearing-impaired listeners often have widely varying speech-perception abilities that can-

not be explained by audiograms. Peripheral differences, such as hair-cell specific dysfunction

due to mechanical and/or metabolic insults, may contribute to individual variability in speech

intelligibility. One peripheral factor that has not received much attention, but is likely to

be important for complex-sound perception, is distorted tonotopy (DT). Distorted tonotopy

is the over-representation of low-frequency power by basal auditory-nerve fibers tuned to

higher frequencies, which effectively reduces the number of independent cochlear information

channels. DT accompanies desensitized tip and hypersensitive tail responses in the FTC of

auditory-nerve fibers (Liberman and Dodds,  1984b ). Effects of DT on suprathreshold coding

have been studied with a synthesized vowel (Miller et al.,  1997 ), and were recently general-

ized using broadband noise and system-identification approaches (Henry et al.,  2016 ). These

degradations are much more severe for NIHL than for metabolic-based (e.g., age-related)

loss (Henry et al.,  2019 ) of similar degree. These findings suggest that the degree of DT dif-

fers across hearing-loss etiologies, which likely contributes to individual variability in speech

perception. Currently, there are no measures to assess DT and its consequences on speech

coding in humans. Here, the viability of frequency following responses (FFRs) was explored

as a diagnostic tool to detect DT noninvasively.

Scalp-recorded FFRs have been used frequently to quantify the strength of phase-locking,

modulation coding, and vowel-formant coding in normal and hearing-impaired subjects to

explore the neural bases for psychoacoustic results (Aiken and Picton,  2008 ; Krishnan et al.,

 2005 ; Shinn-Cunningham et al.,  2013 ). Studies have also used FFRs in animal models of

sensorineural hearing loss to understand subsequent coding deficits, as well as the proper in-

terpretation of these far-field scalp recordings (Dolphin and Mountain,  1993 ; Parthasarathy

et al.,  2010 ; Zhong et al.,  2014 ). Histological assessments in animals provide direct anatomi-

cal correlates for physiological and perceptual deficits of hearing impairment (Liberman and

Dodds,  1984a ,  1984b ). Numerous studies have looked at human speech FFRs, but only a

handful of studies have looked at speech FFRs in animals (Wible et al.,  2005 ), where the
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large individual variability often seen in humans can be reduced by controlling the type and

degree of cochlear insult and environmental factors.

FFRs to complex stimuli are often studied by decomposing responses into slow envelope

(ENV) and rapid temporal-fine-structure (TFS) components via polarity inversion (Aiken

and Picton,  2008 ; Ananthakrishnan et al.,  2016 ). Although quantification of envelope- and

TFS-based FFR coding is informative, caution should be exercised regarding the place speci-

ficity of these FFR components while interpreting results from narrowband and broadband

stimuli (Gockel et al.,  2015 ; Shinn-Cunningham et al.,  2013 ). Usually envelope responses re-

lated to fundamental frequency come from high-frequency cochlear regions and their afferents

in the brainstem and midbrain since unresolved harmonics contribute to the polarity-tolerant

part of the response (Wang et al.,  2019 ; Zhu et al.,  2013 ). Moreover, the cochlear traveling

wave enters the cochlear base and travels rapidly, resulting in good synchrony (and thus large

evoked responses) across basal locations. More-apical activity is less synchronized because

the traveling wave slows down near the place of cochlear resonance. These synchrony profiles

across cochlear frequency locations are preserved in central nuclei, e.g., the inferior colliculus

(Langner et al.,  1987 ), which is presumably the dominant generator of the FFR; however,

place specificity of low-frequency power in the FFR-TFS remains a matter of controversy

(Shinn-Cunningham et al.,  2013 ). While some studies suggest that FFR-TFS is place spe-

cific (e.g., Dolphin and Mountain,  1993 ; Shinn-Cunningham et al.,  2013 ), others argue that

FFR-TFS arises from summed activity of high-frequency neurons even at moderate sound

levels due to upward spread of excitation (e.g., Bones and Plack,  2015 ; Dau,  2003 ; Gockel

et al.,  2015 ).

Here, in experiment I, the relative contribution from low- and high-frequency neurons to

envelope and TFS of speech-driven FFRs recorded from normal-hearing chinchillas was inves-

tigated using a high-pass masking paradigm. Results showed that low-frequency (<500 Hz)

power in FFR-envelope comes primarily from high-frequency (>600 Hz) neurons, whereas

FFR-TFS receives contributions from both low- and high-frequency neurons. In experiment

II, the relative contributions of low- and high-frequency power in speech to FFR envelope and

TFS power were explored for normal and noise-exposed chinchillas. Data showed increased

susceptibility of FFR-TFS to low-frequency stimulus power in noise-exposed animals. These
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results suggest that high-frequency neurons over-respond to low-frequency speech power fol-

lowing NIHL, consistent with distorted tonotopy.

7.2 Materials and methods

7.2.1 Animals

See Chapter  2.1 .

7.2.2 Noise exposure

See Chapter  2.2 .

7.2.3 Stimuli

One speech sentence (practice list #1, sentence #3) from the Danish speech intelligibility

test material (CLUE, Nielsen and Dau,  2009 ) was used as the stimulus in both experiments.

The sentence was shortened to 1.3 s duration by truncating it at silence intervals to allow

more stimulus repetitions (Fig  2.1 ). In Experiment I, the speech sentence was presented at

∼70 dB SPL in the presence of high-pass filtered (600-Hz cut-off frequency) pink masking

noise at five signal-to-noise ratios (SNRs: -20, -10, 0, 10 dB and without noise). In Exper-

iment II, the speech sentence was presented at ∼70 dB SPL for both normal-hearing (NH)

and hearing-impaired (HI) animals. The number of repetitions per polarity of the speech

stimulus were 300 in Experiment I, and 500 in Experiment II.

7.2.4 Data recordings

A microphone-transducer pair (Etymotic ER-10B, Etymotic ER-2, Etymotic Research,

Elk Grove Village, IL, USA) was used for calibration and sound presentation, with a foam

ear tip inserted into the external ear canal. The transducer speaker was calibrated in-

ear at the beginning of all experiments. Sound was delivered monaurally to the right ear.

Calibration data showed that frequency responses were flat (within ± 7 dB) up to 10 kHz,

and were similar across animals. Results are reported without accounting for calibration;
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however, accounting for calibration did not affect the conclusions drawn here. Auditory

brainstem responses (ABR) and distortion product otoacoustic emissions (DPOAE) were

used as screening measures both before and after noise exposure (i.e., following the two-week

wait period). ABRs were recorded to short tone bursts (5 ms with 0.5 ms rise/fall time) at .5,

1, 2, 4, and 8 kHz, from 0 to 80 dB SPL in 10-dB steps. Another intensity (odd multiple of 5

dB) near preliminary threshold estimate was used to fine-tune the threshold estimate. ABR

threshold was estimated as the intensity at which linear regression of waveform correlation

of ABRs at intensities below 60 dB SPL with a template ABR (response waveform at 60

dB SPL) was three standard deviations above the correlation noise floor. Distribution of

the correlation noise floor was constructed from the spurious peaks in the cross-correlation

function between the template and physiological noise in no-response regions of the recordings

(Henry et al.,  2011 ). DPOAE amplitudes (at 2f1 − f2) were recorded in response to sets of

two tones (f1 and f2), ranging in frequency from f2 = .5 kHz to 12 kHz, with a frequency

ratio of f2/f1 = 1.2, played at 75 (f1) and 65 (f2) dB SPL.

ABRs and FFRs were recorded using subdermal needle electrodes in a vertical montage

(mastoid to vertex, differential mode, with common ground placed near the nose, Henry

et al., 2011). Both ABR and FFR signals were analog filtered through ISO-80 (.005 to 10

kHz, x100 gain; World Precision Instruments, Sarasota, FL), and Dagan (open filter, x200

gain; 2400A, Minneapolis, MN) amplifiers. ABRs were further analog filtered in the band

0.3 to 3 kHz (Krohn-Hite, 3550, Brockton, MA). FFRs were digitally band-pass filtered

offline between .03 and 1 kHz with a 4th-order zero phase IIR filter. Recordings with and

without coupling between speaker and ear canal confirmed that FFRs were not corrupted

by electrical artifact (see Fig  7.1 ).

7.2.5 Experimental design and statistical analysis

Envelope [ENVF F R(t)] and TFS [TFSF F R(t)] temporal responses were extracted from

the FFR as follows. Consider two signals: (1) FFR+ve(t), response to positive polarity of

the stimulus, and (2) FFR−ve(t), response to negative polarity of the stimulus. Then,
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Figure 7.1. Speech-driven FFRs were well above the physiological noise floor
for the frequency range of interest (60 to 500 Hz). FFRs with speaker ear
tip inserted into the ear canal (blue, labeled +eartip, shifted up by 2µV for
display), and when ear tip was not coupled to the ear but was inserted into
a closed syringe in close proximity to the ear (red, labeled -eartip). FFRs
are shown in response to positive onset polarity of the speech stimulus (black,
labeled stim, downscaled and shifted down by 2µV for display). Results were
similar for negative onset polarity of the stimulus (not shown). Data are
shown for one normal-hearing animal, Q371. A Time-domain waveforms, and
B FFR spectra. Spectral region of interest (60 to 500 Hz) is marked with
a thick green horizontal line. Shading represents 95th percentile confidence
interval. Spectrum and time-waveform examples of FFR envelope and TFS
are shown in Figs.  7.3 and  7.6 , respectively.

ENVF F R(t) = FFR+ve(t) + FFR−ve(t)
2

and

TFSF F R(t) = FFR+ve(t) − FFR−ve(t)
2

Prior to analysis, recorded FFRs were preprocessed to remove line harmonic components

(Mitra and Pesaran,  1999 ). Signal spectrum was estimated using a multitaper approach

(Thomson,  1982 ; Babadi and Brown,  2014 ). The spectra for ENVF F R(t) and TFSF F R(t)
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are referred to as ENVF F R(f) and TFSF F R(f), respectively. Data were analyzed using

custom MATLAB (The MathWorks, Natick, MA) programs.

Linear regressions in Figs.  7.6 to  7.9 were performed in MATLAB. The hypotheses in Eqs.

 7.2 to  7.4 were evaluated using a linear mixed-effect model in JMP14 (SAS Institute, Cary,

NC). Either envelope (Eq.  7.2 ) or TFS (Eqs.  7.3 to  7.4 ) power in the FFR was the dependent

variable. Both high- (0.5 to 5 kHz) and low-frequency (60 to 500 Hz) band stimulus power,

hearing status, and their interactions were considered as fixed effects. Animal identifier was

included in the mixed-model as a random effect. A p-value of 0.01 was used as the criterion

for significance throughout.

7.3 Results

7.3.1 Mild-moderate noise-induced hearing loss model

Figure  7.2 A shows pre- and post-noise exposure ABR thresholds for individual animals

for the five frequencies tested. Post-exposure thresholds were elevated by 10 to 30 dB,

consistent with mild-moderate hearing loss as per ASHA guidelines (Clark,  1981 ). DPOAE

amplitude, plotted in Fig  7.2 B, was similarly affected. Of the six hearing-impaired animals,

one animal (Q369, light blue and orange in Fig  7.2 ) was not included in the group analysis

(for hearing-impaired group), but was treated as a special case, because of its small threshold

shift and abnormal changes in DPOAE amplitude profile following noise exposure.

7.3.2 Experiment I: Tonotopic sources of speech FFR in normal animals

Hypotheses. In order to evaluate the relative contributions of low-frequency (< 500 Hz)

and high-frequency (> 600 Hz) neurons to speech-driven FFRs, running high-pass filtered

pink noise was used as a masker at different SNRs. FFRs were collected from four normal-

hearing chinchillas. As the FFR-passband was restricted to below 500 Hz, a cut-off frequency

of 600 Hz was chosen for the pink masker. The reasoning was that if TFSF F R(t) is frequency

specific, then power in TFSF F R(t) in the band below 500 Hz should be fairly resistant to

masking by high-passed pink noise. Similarly, power in ENVF F R(t) in the band below 500

Hz was expected to be severely affected by the high-passed pink masker. The reasoning
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Figure 7.2. Screening confirmed mild-moderate hearing loss with outer-hair-
cell dysfunction following noise exposure. A Auditory brainstem response
(ABR) threshold to tone pips, and B distortion product (DP) otoacoustic
emissions amplitude for two simultaneous tones, for normal-hearing (blue) and
noise-exposed (red) chinchillas. Thin lines indicate individual animal data and
thick lines show group averages. ABR thresholds for the noise-exposed group
were elevated by up to 30 dB relative to the normal-hearing group. Post-
exposure DP amplitudes were reduced by up to 20 dB, suggesting significant
outer hair cell dysfunction. Animal Q369 (light blue/orange) is highlighted
(and discussed in the text) as a special case for which post-exposure thresholds
were still largely within the pre-exposure range.

was as follows. The phase-tolerant envelope component arises due to interaction between

spectral components within the bandwidth of a filter (e.g., receptive field of a neuron). Since

high-frequency neurons have larger bandwidths and show weak phase-locking to the carrier

(i.e., weak phase-sensitive response component), they allow better envelope coding in their

responses (Kale and Heinz,  2010 ). Thus energy in the response envelope is limited to fre-

quencies less than the bandwidth of the filter even though the signal may not have physical

energy in this frequency region. Furthermore, high-frequency neurons are better synchro-

nized due to the compressed traveling-wave delay that boosts the envelope representation of

these neurons in evoked responses, like the FFR.

Examples. Figure  7.3 shows example FFR spectra for 0 and -20 dB SNR conditions for

one normal-hearing animal. Comparing the in-quiet response spectra to the speech (stimulus)

spectrum confirms that the first few harmonics of the fundamental frequency were well pre-
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served in both ENVF F R(f) and TFSF F R(f). For 0-dB SNR, ENVF F R(f) was significantly

degraded, whereas TFSF F R(f) was largely unaffected. Results for +10 and -10 dB SNR

conditions were similar to the 0 dB SNR condition. At -20 dB SNR, ENVF F R(f) showed

little resemblance to the clean-speech response; TFSF F R(f) was significantly degraded, but

with peaks near the first two harmonics remained discernible.

Figure 7.3. The high-pass filtered pink masker was much more detrimental to
ENVF F R(f) than TFSF F R(f). Pink masker was high-pass filtered at 600 Hz.
A Spectrum of stimulus (gray trace, labeled Stim, left y-axis) and ENVF F R(f)
(right y-axis in panel B for speech in quiet (labeled Quiet, red), 0 dB SNR
(green) and -20 dB SNR (blue) conditions. Noise floor (labeled NF, magenta)
was estimated by first subtracting the even-indexed trials from odd-indexed
trials for both polarities in response to speech-in-quiet and then averaging
them. B Same as panel A, but for TFSF F R(f). Data are shown for a single
normal-hearing animal, Q371. Spectra were computed over the whole duration
of the stimulus. Note that for the 0 dB SNR condition (green), TFSF F R(f) was
affected very little whereas ENVF F R(f) was affected significantly. Similarly,
while ENVF F R(f) was almost entirely masked at -20 dB SNR, TFSF F R(f)
still had discernible peaks, albeit weaker.

Population results. The effect of masking noise as a function of SNR on envelope and TFS

coding was quantified by estimating the change in power in the FFR relative to the speech-in-

quiet condition. Any temporal structure due to running pink noise was not expected in the

FFR due to the stochastic nature of the noise. Figure  7.4 A shows the total power in 60 to 500
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Hz band for ENVF F R(t) and TFSF F R(t) at various SNRs. Figure  7.4 B shows the reduction

in power in ENVF F R(t) and TFSF F R(t) with decreasing SNR. Power in ENVF F R(f) was

reduced by ∼15 dB at 10 dB SNR, and by ∼22 dB at -10 dB SNR, suggesting ENVF F R(t)

primarily receives contributions from high-frequency neurons masked by the high-pass noise.

Power in TFSF F R(t) was relatively resistant (less change in power) to masking compared

to ENVF F R(t), suggesting higher contribution from place-specific (low-frequency) neurons.

However, the fact that reduction in power did not saturate at the lowest two SNRs, but

rather dropped linearly supports partial contributions to TFSF F R(t) from high-frequency

neurons. In conclusion, TFSF F R(t) likely has contributions from both place-specific as well

as high-frequency (> 600 Hz) neurons at conversational sound levels. It is noteworthy that

power in ENVF F R(t) was ∼ 12 dB higher than power in TFSF F R(t) for all animals in the

speech-in-quiet condition despite the fact that speech has more power at low frequencies.

This superiority of envelope coding is consistent with the idea that the FFR has a high-

frequency bias (better synchrony across high-frequency neurons due to less dispersion at the

cochlear base).

7.3.3 Experiment II: Effects of NIHL on the relative strengths of envelope and
TFS representations in speech FFRs

Definitions. In this experiment, how power in ENVF F R(t) and TFSF F R(t) is related to

power in the low- and high-frequency speech bands was evaluated, for both normal-hearing

and hearing-impaired chinchillas (five animals per group). Two audio frequency bands were

defined: (1) low-frequency band (LF; 60 to 500 Hz) and (2) high-frequency band (HF; .5 to

5 kHz). The low-frequency band contains power related to fundamental frequency and its

first few harmonics, in addition to the first formant for some vowels. The high-frequency

band contains most of the information related to vowel identity such as formants and their

transitions (Lindblom and Studdert‐Kennedy,  1967 ). The cut-off frequencies were chosen to

capture the severity of DT effects (i.e., the masking by low-frequency energy that contains

less information) on the neural coding of speech. Based on these definitions, the following

notations are used hereafter.
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Figure 7.4. ENVF F R(t) reflects activity from neurons tuned to CFs >
600 Hz, while TFSF F R(t) receives contributions from both place-specific
(low-frequency) and high-frequency neurons for speech stimuli. A Power in
TFSF F R(t) (green) and ENVF F R(t) (blue) at the five SNRs tested. Noise
floor (magenta) was estimated as described in Fig  7.3 . B Change in power in
TFSF F R(t) and ENVF F R(t) relative to the speech-in-quiet condition. Data
are shown for four normal-hearing animals (indicated by different symbols).
FFRs were band-pass filtered between 60 and 500 Hz.

TFSpower
F F R

∆= Power in TFSF F R(t) [60 to 500 Hz]

ENV power
F F R

∆= Power in ENVF F R(t) [60 to 500 Hz]

LF power
stimulus

∆= Stimulus power in LF band [60 to 500 Hz]

HF power
stimulus

∆= Stimulus power in HF band [0.5 to 5 kHz]

Using these definitions, four specific hypotheses capturing the relations between the two

stimulus powers and the two FFR powers are described first. Next, these hypotheses are used

to derive normalized metrics to quantify relative TFS-to-envelope coding for both normal-
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hearing and hearing-impaired groups. Figure  7.5 depicts a schematic to illustrate the main

DT hypotheses (#2 and #3).
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Figure 7.5. Schematic illustrating hypotheses(Eqs.  7.2 to  7.4 ) for relative
TFS to envelope enhancement in the FFR following NIHL. Speech-like stim-
ulus processing for normal (A) and impaired (B) auditory systems. Normal-
hearing neurons will primarily respond to power near their CF (gray harmonics
in panel A). Thus, as FFRs have a high-frequency bias, envelope coding in
high-frequency neurons will be more saliently represented compared to TFS
coding in FFRs recorded from normal-hearing animals. In contrast, hearing-
impaired neurons will respond more to low-frequency stimulus power due to
hypersensitive tuning-curve tails (gray harmonics in panel B), and less to near-
CF stimulus power due to desensitized tuning-curve tips. Thus, FFRs recorded
from hearing-impaired animals will be dominated by low-frequency stimulus
power.

Hypothesis #1: ENV power
F F R and LF power

stimulus. Studies have shown that neural responses to

low-frequency (< 500 Hz) stimuli are dominated by the phase-sensitive (i.e., TFS) component
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and do not contain a large phase-tolerant (i.e., envelope) component (e.g., Kale and Heinz,

 2010 ). Thus, ENV power
F F R and LF power

stimulus were hypothesized to be uncorrelated (Eq.  7.1 ).

ENV power
F F R 6∝ LF power

stimulus, for NH and HI. (7.1)

Hypothesis #2: ENV power
F F R and HF power

stimulus. At the playback intensity (∼70 dB SPL)

used in this study, it is reasonable to assume that most auditory-nerve fibers in normal-

hearing animals will be largely saturated (Sachs and Young,  1979 ), resulting in roughly level-

independent envelope coding (Kale and Heinz,  2010 ). Although suprathreshold modulation

coding is stronger at more central levels of the auditory system (e.g., inferior colliculus),

there is not a significant level dependence well above threshold, except a slight reduction for

low modulation frequencies (Joris et al.,  2004 ). Finally, with a complex broadband stimulus

like speech, spread of excitation effects that could increase evoked envelope responses are

not expected. Thus, a level-dependence in envelope coding for normal-hearing animals is not

expected. On the other hand, it is likely that neurons in hearing-impaired animals will not

be saturated due to elevated thresholds (compare panels A and B in Fig  7.5 ), which allows

envelope coding strength to rise with increasing stimulus intensity (Joris et al.,  2004 ; Kale

and Heinz,  2010 ). Thus, ENV power
F F R was hypothesized to be correlated with HF power

stimulus for

HI animals, but not for NH animals (Eq.  7.2 ).

ENV power
F F R


6∝ HF power

stimulus, for NH,

∝ HF power
stimulus, for HI.

(7.2a)

(7.2b)

Hypothesis #3: TFSpower
F F R and LF power

stimulus. Central to the main focus of this study (i.e.,

DT), it was hypothesized that TFSpower
F F R will be correlated with LF power

stimulus for HI animals,

more so than for NH animals. The reasoning was as follows. In Experiment I, power in

TFSF F R(t) was found to be at least an order of magnitude lower compared to power in

ENVF F R(t) for speech-in-quiet (Fig  7.4 A), which in addition to the high-pass masking re-

sults (Fig  7.4 B) suggests a modest contribution to TFSF F R(t) that comes from both the

high-frequency and place-specific neurons. Since central neurons in the brainstem and mid-

brain will inherit degraded tuning properties from auditory-nerve fibers, following acoustic

166



overexposure, high-frequency neurons will have DT (due to hypersensitive tails, desensitized

tips, and lowered best frequencies), and thus will contribute disproportionately more to

TFSF F R(t) (see Fig  7.5 B). Thus, a stronger correlation between power in TFSF F R(t) and

low-frequency stimulus power was hypothesized for the hearing-impaired chinchillas (Eq.

 7.3 ),

TFSpower
F F R


6∝ LF power

stimulus, for NH (weak corr),

∝ LF power
stimulus, for HI (strong corr),

(7.3a)

(7.3b)

in addition to an overall enhancement of TFS coding (Eq.  7.4 ).

TFSpower
F F R for HI > TFSpower

F F R for NH. (7.4)

Hypothesis #4: TFSpower
F F R and HF power

stimulus. Since TFSF F R(t) is filtered below 500 Hz,

it should be affected by stimulus power below 500 Hz (i.e., LF power
stimulus) and not by stimulus

power above 500 Hz (i.e., HF power
stimulus). Thus, TFSpower

F F R and HF power
stimulus were hypothesized to

be uncorrelated (Eq.  7.5 ).

TFSpower
F F R 6∝ HF power

stimulus, for NH and HI. (7.5)

Hypothesis for TFS coding relative to envelope. Hypotheses  7.2 and  7.3 can be combined

by defining the following two normalized power metrics.

FFR TFS-to-ENV power ratio ∆= TFSpower
F F R

ENV power
F F R

Stimulus LF-to-HF power ratio ∆= LF power
stimulus

HF power
stimulus

Normalized metrics, like those described above, help to minimize individual variability

unrelated to neural coding of speech (e.g., overall FFR magnitude, differences in head size).

Combining the hypotheses represented by Eqs.  7.2 and  7.3 , we predict
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T F Spower
F F R

ENV power
F F R



6∝ LF power
stimulus

HF power
stimulus

, for NH,

∝ LF power
stimulus

HF power
stimulus

, for HI.

(7.6a)

(7.6b)

In general, across-pair ratios of correlated random-variable pairs are not correlated. How-

ever, in the special case of nonnegative correlated random-variable pairs passing through the

origin (e.g., the power metrics used here), across-pair ratios of correlated pairs are corre-

lated (e.g., Eq.  7.6b ). Distributions of powers (Eqs.  7.1 to  7.5 ) and power ratios (Eq.  7.6 )

were obtained by computing these metrics from the speech stimulus and FFR responses in

sliding windows of 64 ms without overlap. Since the hypotheses rely on harmonic structure

in the signal spectrum, the analysis window was restricted to voiced portions of the speech

stimulus. Voiced segments were identified by low-pass filtering the stimulus at 250 Hz with

zero phase, half-wave rectifying, low-pass filtering again at 32 Hz and then using a threshold

criterion (see Fig  2.1 B).

Normal-hearing example. Figures  7.6 A and  7.6 D show example data from one normal-

hearing chinchilla. One example stimulus segment is highlighted within the red boundaries

near 1050 ms of the speech sentence. The power spectral density (PSD) was estimated for

ENVF F R(t), TFSF F R(t), and the audio signal in that window (Fig  7.6 C shows the stimulus-

segment PSD); these spectra were used to compute the metrics in Eqs.  7.1 to  7.6 . In this

example, the power ratios computed for this one segment correspond to the red circle in the

scatter plot in Fig  7.6 D. Note that ENVF F R(t) has higher power than TFSF F R(t) as reflected

by a negative (∼-7 dB) TFS-to-envelope FFR power ratio; this was typical for NH animals.

The scatter plot was populated by sliding the window as described previously. A linear

regression model was fit to the data to test the main hypothesis represented in Eq.  7.6 A.

For this normal-hearing animal, T F Spower
F F R /ENV power

F F R was not correlated with LF power
stimulus/HF power

stimulus,

as hypothesized.

Hearing-impaired example. Figures  7.6 B and  7.6 E show a comparable example for one

hearing-impaired animal. One difference that stands out between Figs.  7.6 A and  7.6 B is

the enhanced TFSF F R(t) for the hearing-impaired animal. For the same segment considered
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Figure 7.6. Examples support the main hypothesis by illustrating the effect of
hearing loss on the dependence of relative (TFS to envelope) FFR responses on
relative (low to high frequency) stimulus power. (A and B) Time waveforms:
stimulus (black, downscaled and shifted down by 2µV for display), ENVF F R(t)
(purple), and TFSF F R(t) (green) for a normal-hearing and hearing-impaired
animal, respectively. ENVF F R(t) is shifted up by 2µV for display. C Spec-
trum of the 64-ms voiced stimulus segment shown in panel A within the red
vertical lines. (D and E) Scatter plots between metrics in Eq.  7.6 for the
normal-hearing and hearing-impaired animals, respectively. Lines show lin-
ear regression fits, with statistical parameters shown as in-panel text. The
red circles correspond to the example stimulus segment within the red verti-
cal boundaries in panels A and B. Notice that for the normal-hearing animal
T F Spower

F F R /ENV power
F F R is negative (∼ −7 dB) for this segment, indicating higher en-

velope power in the FFR relative to TFS. In contrast, for the hearing-impaired
animal, T F Spower

F F R /ENV power
F F R is positive (∼ +13 dB) for the same segment, indicat-

ing higher TFS power in the FFR relative to envelope. Across all voiced stimu-
lus segments, the ratio of low-frequency to high-frequency stimulus power was
uncorrelated with FFR TFS-to-envelope power ratio for the normal-hearing
animal D, but was correlated for the hearing-impaired animal E.

in Fig  7.6 A (red lines), the TFS to envelope power ratio for this animal was ∼+13 dB (in

contrast to ∼-7 dB for the normal-hearing animal). This enhancement in TFSF F R(t) was
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typical for all hearing-impaired animals. Note that this TFS “enhancement” is detrimental

to speech coding as it represents a dramatic increase in the severity of upward spread of

masking by low-frequency energy in speech for the hearing-impaired population.
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Figure 7.7. Pooled scatter plots of the four FFR-to-stimulus relations under-
lying the hypotheses in Experiment II (Eqs.  7.1 to  7.5 ). Panels A and B show
the dependence of ENV power

F F R on stimulus power; C and D show the TFSpower
F F R

dependence. Panels A and C show the relation of low-frequency stimulus
power to FFR responses; B and D show the relations with high-frequency
stimulus power. Data are shown for five normal-hearing (NH, blue) and five
hearing-impaired (HI, red) animals. Statistics for linear-regression models are
shown on the right of each panel. Equations  7.1 to  7.5 were generally supported
by these data.

Population results for envelope and TFS coding. Figure  7.7 shows the empirical data

used to test the hypotheses represented by Eqs.  7.1 to  7.5 , i.e., the relations between power

in the FFR (both envelope and TFS) and power in the stimulus bands (both LF and HF).

ENV power
F F R and LF power

stimulus were not correlated for either group (Fig  7.7 A; Eq.  7.1 ). ENV power
F F R
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was correlated with HF power
stimulus for HI animals, but not for NH animals (Fig  7.7 B; Eq.  7.2 ).

Similarly, TFSpower
F F R was strongly correlated with LF power

stimulus for HI animals, but moderately

correlated for NH animals (lower R2 value for the linear-regression model), consistent with

DT (Fig  7.7 C; Eq.  7.3 ). Importantly, the data in Fig  7.7 C show that TFSpower
F F R is larger

for HI than for NH, consistent with the hypothesis represented by Eq.  7.4 . The correlation

between TFSpower
F F R and HF power

stimulus was not significant for normal-hearing chinchillas, but it

was significant (p=.005) for hearing-impaired chinchillas (Fig  7.7 D; Eq.  7.5 ). However,

residual plots of TFSpower
F F R versus HF power

stimulus were not normally distributed for either group

(Fig  7.7 D). In fact, the plot of LF power
stimulus versus HF power

stimulus followed a similar inverted-U

shape. Thus, the unexpected significant negative correlation for HI in Fig  7.7 D may arise

due to the interaction between stimulus statistics (e.g., an inverse relation between high-

and low-frequency stimulus power) and the more consistent relation of TFSpower
F F R with low-

frequency stimulus power for HI animals (Fig  7.7 C). The idea that this unexpected result

does not actually represent an inverse linear relationship between TFSpower
F F R and HF power

stimulus

is also supported by the linear mixed-model for TFSpower
F F R described next. Overall, these

results are in good agreement with the hypotheses described in Eqs.  7.1 to  7.5 .

To test statistically the hypotheses represented in Eqs.  7.1 to  7.5 , two separate linear

mixed-effect models were constructed with ENV power
F F R and TFSpower

F F R as dependent variables.

Fixed effects for both the models included LF power
stimulus, HF power

stimulus, hearing status, and their

interaction terms. Animal identifier was used as a random effect. As described earlier,

a p-value of .01 was used as the criterion for significance. For ENV power
F F R , the effect of

HF power
stimulus (F(1,134.0) = 16.9, p < .0001) was significant, whereas LF power

stimulus (F(1,134.0) = 3.2,

p = .08) was not; these results support the idea that FFR envelope is influenced directly by

HF power
stimulus at conversational speech sound levels. Other significant effects included hearing

status (F(1,122.7) = 8.3, p = .0046) and HF power
stimulus× hearing status (F(1,134.0) = 37.1, p <

.0001); these significant effects support the hypothesis in Eq.  7.2 that ENV power
F F R is correlated

with HF power
stimulus for hearing-impaired chinchillas and not for normal-hearing chinchillas. All

other effects were not significant for ENV power
F F R . For TFSpower

F F R , the main effect of LF power
stimulus

(F(1,135.2) = 121.4, p < .0001) was significant, whereas HF power
stimulus (F(1,135.2) = 0.25, p =

.62) was not significant. These results confirmed that TFSpower
F F R was specifically dependent
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Figure 7.8. Normalized FFR-TFS power was correlated with normalized
low-frequency stimulus power for HI animals, but not for NH animals. Pooled
scatter plots show a consistent lack of correlation for NH (A) and consistent
correlations for HI animals (B). Each group had five animals. Thin colored
lines are regression lines for individual animals. Thick black lines are popu-
lation regression lines per group (i.e., linear model fit to data pooled across
all animals for each group). Statistics are reported in figure panels. The
hypothesis represented by Eq.  7.6 was strongly supported by these data.

on LF power
stimulus, and not on HF power

stimulus. The main effect of hearing status (F(1,127.8) = 38.5,

p < .0001) was also significant for TFSpower
F F R , confirming that TFS coding was significantly

enhanced in the hearing-impaired group. Overall, these results reinforce the idea that the

effects seen in these data are not merely a reflection of audibility-driven FFR responses,

but rather specific effects regarding the relative strength of envelope and TFS coding, as

hypothesized in Eqs.  7.1 to  7.5 .

Population results for TFS coding relative to envelope. In order to reduce the variability

related to signal strength (due to electrode placement, animal differences, etc.), power in

TFSF F R(t) was normalized by power in ENVF F R(t) in Eq.  7.6 . The relation between

this normalized FFR power ratio and the stimulus power ratio in Eq.  7.6 was evaluated.

Figure  7.8 shows pooled regression plots for all normal-hearing and hearing-impaired animals.
T F Spower

F F R /ENV power
F F R and LF power

stimulus/HF power
stimulus were correlated for all hearing-impaired animals, but

not for any normal-hearing animal, consistent with the hypothesis represented by Eq.  7.6 .
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The consistency of these results suggest that the slope of this relation between normalized

FFR-TFS responses and normalized low-frequency stimulus power may be a useful metric

for the non-invasive diagnosis of DT.
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Figure 7.9. Normalized DT slopes from Fig  7.8 are correlated with the degree
of noise-induced hearing loss, as reflected by ABR and DPOAE measures.
Slope in Fig  7.8 as a function of A mean ABR threshold (Thr.) and B mean
DPOAE amplitude (Amp.) between 1 and 8 kHz for all animals irrespective of
hearing status (N=11). Lines represent linear-regression fits, with statistical
parameters reported in each panel. Notice Q369 (shown in orange), which was
considered a special case because of its near-normal ABR threshold following
noise-exposure, had near-normal DTslope, despite being noise exposed.

Relation between the normalized DT metric and auditory screening measures. The de-

gree of disruption in speech FFR coding due to distorted tonotopy was quantified by the

normalized metric DTslope, which was defined as the slope between the power ratios in Eq.

 7.6 (also see Fig  7.8 ). To evaluate the relation between noise-induced hearing loss and the

degree of distorted tonotopy, a linear model was fit with auditory screening measures (i.e.,

ABR threshold and DPOAE amplitude) as independent variables and DTslope as the depen-

dent variable. As seen in Fig  7.9 , DTslope was significantly correlated with both mean ABR

threshold and DPOAE amplitude. All animals were included in this analysis irrespective

of hearing status. Chinchilla Q369 (shown in orange), the animal that was excluded from

the hearing-impaired group (due to minimal hearing loss after noise exposure, i.e., a tough

ear), was included here. DTslope for Q369 was largely within normal limits, consistent with
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its near-normal ABR thresholds following noise exposure. However, Q369’s DPOAE ampli-

tudes were reduced, which is not consistent with its ABR thresholds or DTslope for unknown

reasons. Overall, the FFR-based DTslope metric is significantly correlated with the degree

of noise-induced hearing loss from ABRs. This finding is consistent with single-unit results

showing that the degree of distorted tonotopy (i.e., elevated TFS coding in basal fibers)

is correlated with auditory-nerve-fiber threshold shifts following noise exposure (Fig 7B in

Henry et al.,  2016 ).
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Figure 7.10. Effects of DT are more severe for speech segments with a
negative-sloping spectrum than for those with a flatter spectrum. A The
green trace represents the spectrum of the stimulus segment for which the
FFR TFS-to-envelope (T2E) ratio, TFSpower

F F R /ENV power
F F R , is largest for the HI

group relative to the NH group (higher stimulus-power ratios in Fig  7.8 ). Note
the negative spectral tilt and high power concentration in the low-frequency
region. The purple trace represents the spectrum of the stimulus segment for
which the difference in TFSpower

F F R /ENV power
F F R is maximally negative between

the HI and NH groups (lower stimulus-power ratios in Fig  7.8 ). Note that
this stimulus spectrum is relatively flat up to 1500 Hz, with significant energy
between 600 and 1500 Hz. B Scatter plot for TFSpower

F F R and ENV power
F F R for

the two segments in panel A for all the NH animals. Green circles correspond
to the high TFS-to-ENV segment. Purple diamonds correspond to the low
TFS-to-ENV segment. Gray dashed line shows equality between TFSpower

F F R

and ENV power
F F R . Note that for the NH chinchillas, all points lie in the lower

diagonal, where TFSpower
F F R < ENV power

F F R . C Same as panel B, but for HI
animals. Note the differential effects of enhanced TFS for the green segment
and enhanced envelope for the purple segment (relative to NH). Symbols in B
and C represent the five animals in each group.
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Separating DT (enhanced TFS) from enhanced envelope. It can be seen from Fig  7.8 that

the consistent differences in the DTslope metric between NH and HI groups arise because the

FFR TFS-to-envelope ratio for the HI group is differentially affected at low and high stimulus-

power ratios. For the segment with the lowest stimulus-power ratio, LF power
stimulus/HF power

stimulus, the

HI group has a lower FFR ratio, T F Spower
F F R /ENV power

F F R , than the NH group. In contrast, for

segments with higher stimulus-power ratios (> 20 dB), the FFR TFS-to-envelope ratios for

the HI group are significantly higher than for the NH group.

To develop insight into the factors underlying the sensitivity of the DTslope metric, stim-

ulus spectra were compared between these two extremes of the data in Fig  7.8 . The green

spectrum in Fig  7.10 A represents the stimulus segment for which the HI group showed the

largest FFR TFS-to-envelope ratio relative to the NH group, whereas the purple spectrum

represents the smallest FFR ratio relative to NH. Note that the green spectrum has a nega-

tive spectral tilt and a high concentration of energy at very low frequencies. For the segment

with this negative-sloping spectrum (green circles in Figs.  7.10 B and  7.10 C), neurons from

HI animals have small tip-to-tail ratios and are likely to suffer from severe upward spread of

masking by the very low-frequency energy in the stimulus. Note that no values of TFSpower
F F R

are greater than -20 dB for NH (Fig  7.10 B), in contrast to HI for which all values are greater

than -20 dB (Fig  7.10 C). The enhanced TFS in the hearing-impaired FFRs seen in this study

likely reflects this drastic spread of upward excitation from low-frequency stimulus energy

(i.e., DT).

A separate factor contributing to the sensitivity of the DTslope metric for HI is highlighted

by the spectrum of the segment for which the FFR TFS-to-envelope ratio is most reduced

in the HI group (Fig  7.10 A). The purple spectrum is markedly different from the green

spectrum in that it has significant energy from 600 to 1500 Hz in addition to the strong

low-frequency energy from 70 to 200 Hz (i.e., the spectrum is almost flat up to 1500 Hz).

For such spectra, the high-frequency energy prevents a dramatic upward spread of low-

frequency energy such that TFS responses are not significantly over-represented in the FFR

(see comparable TFSpower
F F R values for purple diamonds in Figs.  7.10 B and  7.10 C). Without

over-represented TFS responses, the effects of enhanced envelope responses following HI that

have been previously reported (e.g., Henry et al.,  2016 ; Kale and Heinz,  2010 ; Zhong et al.,
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 2014 ) are emphasized (see higher HI ENV power
F F R values for purple diamonds, Figs.  7.10 B and

 7.10 C). Note that ENV power
F F R for the NH animals is higher for the green segment relative to

the purple segment, even though the purple segment has more high-frequency energy. This

reduction in ENV power
F F R could be partly due to reduced envelope coding at high stimulus

intensities (Joris and Yin,  1992 ; Kale and Heinz,  2010 ) and destructive interference between

responses from different spectral bands (Wang et al.,  2019 ).

Overall, the present results demonstrate that noise-induced hearing loss creates a much

larger variation in the FFR TFS-to-envelope ratio across a sentence (Fig  7.8 B), compared

to the relatively constant value observed for NH (Fig  7.8 A). Figure  7.10 illustrates that

this greater variation across a sentence arises from both enhanced TFS responses (due to

DT in speech segments for which low-frequency stimulus power is prominent) and enhanced

envelope responses (in segments for which significant high-frequency energy prevents the

dramatic upward spread of excitation associated with DT). The perceptual consequences of

this abnormally large variation in relative TFS-to-envelope coding in responses to natural

speech following HI remains to be determined, but non-invasive metrics such at DTslope

provide the potential to explore these issues in humans.

7.4 Discussion

7.4.1 Profiles of tonotopic sources for the FFR change following NIHL

The tonotopic origin of the FFR, especially that of TFSF F R(t), has been a topic of

debate for years (Dolphin and Mountain,  1993 ; Wang et al.,  2019 ). Understanding the

sources of the FFR is critical for drawing appropriate scientific conclusions and advancing

the use of FFRs as a diagnostic tool for issues like hidden hearing loss (Bharadwaj et al.,

 2014 ; Shaheen et al.,  2015 ; Verhulst et al.,  2018 ), cochlear hearing-loss (Kuwada et al.,

 1986 ), learning disabilities (Wible et al.,  2004 ), and more. The focus of Experiment I was

to evaluate the tonotopic origins of ENVF F R(t) and TFSF F R(t) in normal-hearing animals

in response to speech at a conversational sound level. Consistent with previous studies,

results from Experiment I suggest that ENVF F R(t) primarily reflects activity from high-

frequency (> 600 Hz) neurons (Fig.  7.4 ) (Wang et al.,  2019 ; Zhu et al.,  2013 ). On the other
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hand, TFSF F R(t) received partial contributions from place-specific (< 600 Hz) as well as

high-frequency (> 600 Hz) neurons (Fig.  7.4 ). More importantly, power in TFSF F R(t) was

significantly lower than power in ENVF F R(t) in responses to speech-in-quiet (Fig.  7.4 A),

supporting the high-frequency bias of FFRs, as neurons with higher CF are better encoders

of envelope than TFS (Joris and Yin,  1992 ; Kale and Heinz,  2010 ). Thus, in normal-hearing

animals, envelope representation is stronger than TFS in FFRs to speech stimuli in quiet.

The primary objective of this study was to diagnose distorted tonotopic mapping in ani-

mals with noise-induced hearing loss. In order to characterize DT noninvasively, Experiment

II took advantage of speech spectrum statistics, auditory-nerve-fiber physiological proper-

ties, and the high-frequency bias of FFRs to form hypotheses (Eqs.  7.1 to  7.6 ). Studies have

shown that the strength of single-fiber envelope coding positively correlates with stimulus

intensity near threshold and drops off at suprathreshold intensities (Joris and Yin,  1992 ; Kale

and Heinz,  2010 ). As high-frequency neurons in hearing-impaired animals are not as sensi-

tive as normal-hearing animals (Fig.  7.5 ), it was hypothesized that high-frequency stimulus

power should be correlated with ENVF F R(t) power for hearing-impaired animals and not for

normal-hearing animals in this equal-SPL paradigm (Eq.  7.2 ); this hypothesis was supported

by the data (Fig.  7.7 B). More importantly, power in TFSF F R(t) was hypothesized to be

higher for hearing-impaired animals, in addition to having a stronger correlation with low-

frequency stimulus power (Eq.  7.3 and  7.4 ). The reasoning was that high-frequency neurons

will respond to low-frequency stimulus power due to the effects of DT in hearing-impaired

animals, allowing a stronger FFR due to better synchronization at the cochlear base. These

hypotheses were also supported by the data (Fig.  7.7 C). The linear model for predicting

TFSpower
F F R from LF power

stimulus accounted for only 18% of the variance in normal-hearing animals,

whereas this model explained 45% of the variance for hearing-impaired animals. Overall,

Eqs.  7.1 to  7.5 represent the predicted relations between the pairs (LF power
stimulus, TFSpower

F F R )

and (HF power
stimulus, ENV power

F F R ), and the predicted independence between the pairs (LF power
stimulus,

ENV power
F F R ) and (HF power

stimulus, TFSpower
F F R ), which were largely supported by the data (Fig.  7.7 ).

Figure  7.5 depicts a schematic illustrating the underlying mechanisms for normal-hearing

and hearing-impaired animals that underlie these predictions. Normal-hearing neurons (Fig.

 7.5 A) primarily respond to near-tip power that facilitates strong envelope coding in the FFR.
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In contrast, desensitization of tips for hearing-impaired neurons (Fig.  7.5 B) results in di-

minished envelope coding in the FFR, with an over-representation of low-frequency stimulus

power due to increased tail sensitivity of high-frequency neurons (also see Fig. 7 in Henry

et al.,  2019 ). When the analyses in Fig.  7.7 and  7.8 were repeated using 250 Hz or 700 Hz as

the boundary between low-frequency and high-frequency bands (instead of 500 Hz), results

were largely unaltered (not shown) suggesting the first two harmonics of the fundamental

were driving the hearing-impaired TFSF F R(t) (consistent with Fig.  7.10 ). The importance

of the first two harmonics reflects the high occurrence of very low-frequency (< 300 Hz) first

formant energy in the speech sentence used here. Overall, these results show the increased

susceptibility of the hearing-impaired FFR to upward spread of masking by low-frequency

energy at the expense of near-tip envelope coding, suggesting that the key effects of DT are

captured in the FFR.

7.4.2 Benefits of using normalized metrics

Noninvasive scalp recordings like the FFR can be affected by various extraneous fac-

tors, such as electrode placement, speaker positioning, and head-size differences, which are

unrelated to the issues under investigation (Bharadwaj et al.,  2019 ). Variability related to

these extraneous sources can be reduced by using normalized metrics. The benefit of nor-

malization in Eq.  7.6 over Eq.  7.3 can be quantified by looking at the standard deviation of

model slopes for both groups in Figs.  7.7 C and  7.8 . Following normalization, the standard

deviation reduced from 0.21 to 0.13 (40%) for normal-hearing animals, and from 0.11 to 0.08

(29%) for hearing-impaired animals.

A potential confound that can contribute to normal-hearing and hearing-impaired coding

differences is the so-called “central-gain hypothesis” (Chambers et al.,  2016 ; Salvi et al.,

 2000 ). Studies have shown that evoked responses in the inferior colliculus, presumably a

major contributor to the FFR, are enhanced following acoustic trauma (Salvi et al.,  1990 ).

The use of a normalized TFS-to-envelope metric in the same spectral band (Eq.  7.6 ) attempts

to reduce the effect of an increase in central gain following noise exposure, which is expected

to increase the absolute power in both TFS and envelope. It is possible that the effect

of central gain could enhance ENVF F R(t) slightly more than TFSF F R(t) because central
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gain enhances responses of the caudal generators that contribute more to ENVF F R(t) than

TFSF F R(t) (King et al.,  2016 ); however, this relative effect is expected to be much smaller

than the absolute effect on both TFS and envelope. Nonetheless, results in this study show

the opposite trend, i.e., TFSF F R(t) was enhanced over ENVF F R(t), providing strong support

for the idea that FFRs are systematically influenced by a disruption in tonotopic mapping

and thus have diagnostic potential.

7.4.3 Diagnostic potential of the speech-based DTslope metric

Effects of DT on complex-sound coding are considerably under-explored and likely to be

affected by an array of physiological changes. It is possible that neural metrics based on

simple tones such as FTC threshold and tip-to-tail ratio are inadequate to capture the full

range of DT-related deficits for complex sounds. For example, degradation in suppressive

nonlinearities is more severe for noise-exposed animals than for aged animals with similar

threshold shifts (Schmiedt et al.,  1990 ). Similarly, rate-level functions to broadband stimuli

and tonal stimuli show systematic differences between normal-hearing and noise-exposed

animals (Heinz and Young,  2004 ). The list of other nonlinear factors that may be important

for speech coding, but that are not captured in FTCs, includes cochlear compression and

efferent feedback systems like the middle-ear muscle reflex and the medial olivocochlear reflex.

Thus, it is clear that a thorough characterization of DT and its consequences warrants the

use of natural complex stimuli.

Significant individual variability in speech intelligibility remains across hearing-impaired

listeners even after compensating for audibility loss. A recent study found clear differences

in the neural coding of suprathreshold complex stimuli at the level of the auditory nerve

between animal models of noise-induced and age-related hearing loss, the two most common

hearing-loss etiologies (Henry et al.,  2019 ). Even when the two groups had a similar degree of

hearing loss, the effects of DT were more severe for the noise-exposed group. Thus, variations

in DT may play a role in individual variability in speech perception.

The DTslope metric (Fig.  7.8 ; Eq.  7.6 ) provides a noninvasive means to assess the

degradation of cochlear tonotopic mapping. DTslope was both highly sensitive and specific

to hearing status in the group of animals studied here (Fig.  7.8 ). Moreover, DTslope was
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highly correlated with ABR threshold and DPOAE amplitude (Fig.  7.9 ), demonstrating

the potential merit of DTslope in predicting the degree of noise-induced hearing loss. Based

on data from Henry et al.,  2019 , it is reasonable to speculate that DTslope for age-related

hearing loss would fall in between the normal-hearing and noise-exposed groups included in

the current study.

While understanding changes in neural coding of speech following hearing loss is impor-

tant, it may not be an optimal stimulus for diagnosing distorted tonotopy. To this end,

spectral properties of segments that maximally separated the normal-hearing and hearing-

impaired groups were identified (Fig.  7.10 ), which can guide the development of more optimal

diagnostic stimuli (e.g., multi-band harmonic complexes). Interestingly, two distinct neu-

ral coding profiles emerged separating the mechanisms underlying enhanced envelope and

enhanced TFS following acoustic trauma. For segments with more high-frequency energy

concentration (e.g., purple spectrum in Fig.  7.10 ), neural envelope was significantly en-

hanced relative to TFS for the hearing-impaired data. On the other hand, for stimuli with

low-frequency energy concentration (e.g., green spectrum in Fig.  7.10 ), neural TFS was

significantly enhanced relative to envelope for the hearing-impaired group. These results

supplement the results of Henry et al.,  2019 in that the effects of distorted tonotopy on neu-

ral coding of complex signals not only depend on the system (e.g., normal, noise-exposed,

or metabolic) but also on the spectral properties of the stimulus used (e.g., pink or white

spectrum).

This study was motivated by tonotopic changes known to occur in the auditory nerve

following noise-induced hearing loss, and the assumption that neurons in the brainstem and

midbrain, which contribute significantly to the FFR, inherit their tuning from auditory-nerve

fibers. Future studies investigating neural coding following noise-induced hearing loss at the

level of the inferior colliculus (both at the single-neuron and gross-potential levels) will be

helpful in directly understanding the effects of distorted tonotopy in the midbrain. Similarly,

it should also be noted that evidence to date for DT is based on anesthetized-animal data

following single discrete noise exposures (e.g., chinchillas here; cats in Miller et al.,  1997 ),

and has not been studied directly in awake humans with a variety of sensorineural hearing

loss (SNHL) etiologies. If DT were to be validated in humans with SNHL, metrics such
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as the DTslope would provide new avenues for characterizing the perceptual consequences of

DT, as well as for developing and evaluating hearing-aid approaches to optimally reduce the

deleterious effects of DT. Results from the current study predict that enhancing perceptually

informative envelope cues and minimizing low-frequency TFS features would improve speech-

intelligibility outcomes; however, these predictions remain to be tested.
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8. SUMMARY AND PERSPECTIVES

Hearing loss still affects the daily life of many individuals despite state-of-the-art interven-

tions. A key factor contributing to the limited benefit of these interventions is their primary

dependence on the audiogram. The audiogram, which indicates hearing sensitivity in noise-

attenuating sound booths, reflects the activity of only the most sensitive group of neurons.

Perception of complex loud sounds in noisy environments is likely mediated by information

integration across many more neurons compared to those needed to detect tones in quiet

environments at near-threshold intensities. Therefore, we need a better understanding of the

suprathreshold effects of hearing loss on complex sound coding.

Here, we used a chinchilla model of mild-moderate hearing loss to study neural-coding

changes of speech in noise following NIHL. First, a quantitative framework was developed

in Chapter  3 that permits direct comparison of invasive spike-train data with noninvasive

evoked data. Thus, this framework boosts the translational aspects of animal models. In

addition, several spectrally specific analyses were developed in this framework to charac-

terize responses to nonstationary signals. For example, unlike spectrogram-based analyses,

frequency-demodulation-based analyses, such as the harmonicgram, facilitate the same spec-

tral resolution to analyze stationary and nonstationary signals. In Chapter  4 , this framework

was applied to study the effects of hearing loss on the coding of natural speech in noise. In

particular, the coding of vowels and consonants were evaluated in terms of TFS and envelope

responses, respectively. Our data contradicted several existing hypotheses (e.g., our data did

not show any compression of ANF thresholds or reduction in spike-timing precision). In-

stead, our results showed that vowel coding deficits primarily stem from distorted tonotopic

mapping following acoustic trauma without a significant change in driven rate or spike-timing

precision. In contrast, neural coding deficits for low-intensity consonants reflected uncom-

pensated audibility for most neurons despite the linear gain of 15 dB, which was based on

ABR thresholds. These effects on vowel and consonant coding were also robustly captured

in the FFR responses. Adding background maskers had a more deleterious effect on envelope

and TFS coding of speech for the hearing-impaired group compared to the normal group,

for both stationary and fluctuating maskers; this neural overrepresentation of broadband
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masking noise likely contributes to the increased noise-distractibility that many listeners

with hearing loss experience. In Chapter  6 , the temporal and temporal-place representation

of pitch were evaluated based on AN data from both groups. The temporal representation

for impaired neurons showed more complex patterns. The temporal-place representation was

significantly degraded for the impaired group. Overall, these findings show that increased

susceptibility to masking noise on top of these severe degradations of envelope, TFS, and

pitch coding for speech following NIHL result primarily from distorted tonotopy and, to a

lesser extent, from broader auditory filters. These deficits potentially underlie perceptual

deficits that many listeners with hearing impairment frequently experience. In the following,

these issues are discussed in more detail.

8.1 Benefits of using apPSTHs

The effects of SNHL has been extensively studied using invasive anatomical and phys-

iological data collected from animal models of SNHL (Henry et al.,  2016 ; Kale and Heinz,

 2010 ; Liberman,  1984 ; Liberman and Dodds,  1984a ,  1984b ; Liberman and Klang,  1984 ;

Miller et al.,  1997 ). In contrast, only a handful of studies have investigated the effects of

SNHL on noninvasive data collected from these animals (Salvi et al.,  1990 ; Trautwein et al.,

 1996 ; Zhong et al.,  2014 ). Although these studies have provided great insights into the

physiological changes following SNHL, the relation between invasive and noninvasive data is

not always clear as these data are often collected from different animal cohorts. Establish-

ing this relation will allow us to draw inferences regarding the anatomical and physiological

state of human subjects based on noninvasive data. However, as the binary-valued invasive

spike-train data and discrete-valued discrete-time noninvasive far-field data are essentially

of different data types (even though the responses themselves are related), there is a major

disconnect between the temporal-coding analyses employed for these different responses.

To address this gap, we proposed a unifying quantifying framework that allows the same

spectrotemporal analyses to be applied to spike-train data and evoked far-field data (Chapter

 3 ). The framework was extensively applied to spike-train data from auditory-nerve fibers

and evoked frequency following responses in Chapters  4 to  7 . In this framework, spike trains

are analyzed using PSTHs, which are essentially discrete-valued and discrete-time signals,
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similar to evoked data. By using both positive and negative polarities of the stimulus, a set

of PSTHs can be derived (collectively called alternative-polarity PSTHs or apPSTHs). These

PSTHs analytically relate to popular temporal-coding metrics, such as the vector strength

and the correlogram. In fact, correlograms can be more efficiently computed using apPSTHs

instead of using the conventional spike-time tallying method. Furthermore, apPSTHs can

be used to derive multitaper spectral estimates, which yield optimal (in terms of reducing

bias and variance) estimates of the power spectral density. This approach is particularly

important for spike-train data, which are finite and inherently stochastic.

The use of apPSTHs opens up the possibility for major advancement in speech-intelligibility

modeling, particularly for listeners with hearing-impairment. Existing speech-intelligibility

models, which are largely based on audio-domain signal processing, work well for normal-

hearing listeners and can predict speech intelligibility for a wide variety of speech manipula-

tions. However, it is not clear how to extend these models to account for speech perception

of listeners with hearing loss, as we lack a clear understanding of the various effects of sen-

sorineural hearing loss on speech coding. Preclinical animal models of well-defined patho-

physiology can be used to collect spike-train data in response to manipulated speech. This

approach can be used to validate existing speech-intelligibility models as well as to identify

neural correlates underlying speech perception following SNHL. In this regard, apPSTHs

outperform correlograms and PSTHs as a wider range of audio-domain speech-intelligibility

models can be realized using apPSTHs, as apPSTHs retain response-phase information as

well. The apPSTH -based framework can also be used with computational models of AN

fibers that have the option to include different etiologies of sensorineural hearing loss.

Temporal coding metrics in the neural domain should be spectrally specific as there is

great scope for these metrics to be corrupted, biased, and be variable. Key factors that

contribute to these issues include the finite nature of the data, stochasticity of neural sys-

tems, and rectifier distortions involved in the inner-hair-cell transduction process. Bias and

variance can be optimally reduced by using a multitaper approach as described previously.

However, the multitaper spectrum (and correlogram spectrum) are corrupted by rectifier dis-

tortions, which is likely an artifact of analysis and does not have any perceptual relevance.

Therefore, any broadband metric, like correlogram peak-height, will be biased. Instead, these
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temporal metrics should be band-limited to include only the desired frequency bands and

should exclude rectifier distortions. Restricting the bandwidth of these temporal metrics also

helps minimize the effects of neural stochasticity. For example, to compare envelope-coding

strength of two harmonic complexes with different fundamental frequencies, power in narrow

frequency bands centered at the first few harmonics of the fundamental frequency should be

considered (as opposed to total power in the response spectral estimate).

Another benefit of apPSTHs is that the (true) phase response can be estimated using

the Hilbert-phase PSTH, φ(t). The difference PSTH, d(t), has been traditionally used as

the TFS response. However, as shown in Chapter  3 , d(t) contains modulation (envelope)

information as it represents the coding of the whole signal (both envelope and TFS, and not

just TFS). In contrast, φ(t) represents a better account of the response TFS in isolation. As

the role of envelope and TFS in noisy-speech perception is an active topic of debate (Ding

et al.,  2014 ; Shamma and Lorenzi,  2013 ; Swaminathan and Heinz,  2012 ), φ(t) can be used

to study the role of TFS in the proposed framework. φ(t) also holds important implications

for cochlear-implant research involving stimulation strategies, as φ(t) closely relates to the

stimulus zero-crossing component (Logan,  1977 ; Voelcker,  1966b ; Wiley,  1981 ), which is the

signal cochlear implants often rely on to provide TFS information (Chen and Zhang,  2011 ;

Grayden et al.,  2004 ).

A major benefit of using apPSTHs is the application of frequency demodulation to im-

prove the spectral resolution of temporal analysis. As discussed in section  3.6.1 , power along

any desired spectrotemporal trajectory can be computed by using frequency demodulation,

followed by low-pass filtering. This approach can be used to derive the harmonicgram (HG),

a spectrally compact representation for signals with harmonic spectrum. For nonstationary

signals, the HG consists of power along harmonics of the fundamental frequency (F0), which

can vary over time. An example application of the HG was to derive formant power in spike-

train responses in Fig  4.5 . This method of only including the harmonics of F0 to evaluate

natural voiced-speech coding is similar to the previously used methods for evaluating for-

mant coding for stationary synthesized vowels (Miller et al.,  1997 ; Young and Sachs,  1979 ).

Overall, HG-based metrics have better spectral specificity, and therefore these metrics are

less affected by neural stochasticity.
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8.2 Distorted tonotopy significantly affects the coding of several speech features

The key effects of hearing loss have been traditionally thought to include threshold eleva-

tion, broader tuning, and reduced ability to phase lock (Salvi et al.,  1983 ; Young,  2012 ). It

is clear that threshold is elevated, and tuning gets broader following NIHL; these effects are

also evident in the data presented in this dissertation. However, the majority of neural data

do not support the hypothesis that phase locking is reduced following NIHL (Harrison and

Evans,  1979 ; Kale and Heinz,  2010 ). When spike-timing precision in speech responses was

quantified using the across-trial Victor-Purpura distance, which inversely relates to precision,

there was no degradation in spike-time precision for the impaired population (Fig  4.2 ). Thus,

the fundamental ability of AN fibers to precisely encode stimulus envelope and TFS features

was not degraded following NIHL. Similarly, to ensure that speech-coding deficits for voiced

speech are not due to uncompensated audibility, a linear gain of 15 dB (flat across frequency)

was used for the hearing-impaired group. Comparison of voiced-speech-driven spike count

across both groups confirmed that this linear gain was sufficient to restore driven rate for

the impaired population.

The major physiological change that accounts for most of the neural-coding degrada-

tions for speech was distorted tonotopy. The effects of distorted tonotopy include reduced

sensitivity to near-CF energy, oversensitivity to low-frequency energy (via FTC tail) and

lowering of the effective best frequency relative to the characteristic frequency appropriate

for cochlear place. These effects have been previously characterized using White Gaussian

Noise, which has a flat spectrum across frequency (Henry et al.,  2016 ). Similar effects were

also found using a stationary synthesized vowel as the stimulus that had comparable energy

at the first three formants (i.e., flat spectrum up to 3 kHz) (Miller et al.,  1997 ). However,

natural speech has a negatively sloping spectrum, which could potentially make the effects of

distorted tonotopy even more severe. In fact, our results show dramatic changes in the spec-

tral profile of responses, where very low-frequency (< 300 Hz) speech energy dominates the

responses of AN fibers with much higher frequency (> 1 kHz). This shift in best frequency is

much higher than the one octave shifts reported previously for white Gaussian noise (Henry

et al.,  2016 ). Similarly, although broadening of auditory filters likely plays a role in these
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results, this broadening does not account for the overrepresentation of very low-frequency

stimulus energy by impaired neurons (Fig  4.4 ). Therefore, these spectral distortions in neural

responses primarily stem from distorted tonotopy.

From a feature-coding perspective, distorted tonotopy reduces the weight of high-frequency

features (e.g., F2 and F3) at the expense of overrepresented low-frequency features (e.g., F1

and the first few F0 harmonics). However, psychoacoustic studies have shown that speech

content within 1 to 4 kHz frequency band is highly informative for speech perception (French

and Steinberg,  1947 ; Pavlovic,  1987 ). In fact, recent studies have shown that extended high-

frequency (up to 10 kHz) information significantly improves speech intelligibility (Levy et al.,

 2015 ; Monson et al.,  2019 ; Moore,  2016 ). However, as a direct result of distorted tonotopy,

information above 1 kHz is underrepresented at the peripheral auditory system, which leads

to a significant reduction in the channel (information) capacity of the auditory nerve.

8.3 Acoustic overexposure causes ANF threshold distribution expansion, not
compression, which leads to coding deficits for low-intensity consonants

Psychoacoustic studies have hypothesized that ANF threshold distributions get com-

pressed following acoustic trauma (Moore et al.,  1985 ; Zeng and Turner,  1990 ). This com-

pression has been thought to contribute to abnormal growth of masking functions (loudness

recruitment) for patients with hearing loss. However, auditory-nerve data are inconsistent

with this hypothesis (Heinz et al.,  2005 ). In fact, current and previous published data show

an expansion of the ANF threshold distribution as reflected by an increase in standard devia-

tion for these distributions for the impaired group (see Table  4.1 ). This threshold distribution

expansion has important consequences for speech coding as described below.

Even though speech was played at a fixed overall intensity for each group, short-term

intensity for speech can vary over a wide (up to ∼30 dB) range. Therefore, the effects of

hearing loss may differ across speech tokens that have different intensities. For example,

applying a flat 15-dB gain for the impaired population equalized the driven rate across both

groups in response to voiced speech, which typically has higher intensity. In contrast, the

driven rate for low-intensity unvoiced speech was significantly lower for the noise-exposed

population. These differential effects for voiced and unvoiced speech likely reflect threshold
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distribution changes following noise exposure. In particular, ABR threshold likely reflects the

neural activity of the most sensitive group of neurons and may not capture population-level

threshold changes. For example, when post-exposure shifts in the 10th and 50th percentiles

were quantified based on ANF threshold distribution, the shift in the 50th percentile point

was always greater than the shift in the 10th percentile point for all frequency bands tested,

for both chinchilla data and cat data. Therefore, any audiometric assay that is based on

the lower tail of ANF threshold distributions is likely to underestimate population level

audiometric deficits.

8.4 Susceptibility to masking noise increases following NIHL

The number one complaint in the audiology clinic is regarding difficulty understanding

speech in noisy environments (Chung,  2004 ; Souza,  2016 ). To understand the neural basis

underlying these perceptual difficulties in noise, we recorded spike-train data in response to

speech in the presence of stationary or fluctuating masking noise at several SNRs. Voiced-

speech coding was evaluated by quantifying the strength of the trajectory of the first three

formants in the response. The first three formants carry sufficient information to support

robust vowel identification (Fant,  1973 ; Klatt,  1982 ). Furthermore, formant trajectories

of F2 and F3 are informative to understand preceding and following speech tokens due to

coarticulation effects (Lindblom and Studdert‐Kennedy,  1967 ; Mann,  1980 ). In the hearing-

impaired population, the representation of F2 and F3 was already degraded for speech alone

(i.e., without noise). Adding stationary noise at 0 dB SNR significantly affected F3 coding

for the hearing-impaired population, but not for the normal-hearing population. Similarly,

stationary noise at -5 dB SNR significantly affected F2 coding for the hearing-impaired

population. Both distorted tonotopy and broader tuning likely contribute to this increased

susceptibility to noise for the impaired population. However, distorted tonotopy is likely the

dominant factor because the noise, which was speech-shaped, had substantial energy at low

frequency.

The effect of noise on neural coding was also quantified for the fricative /s/. This fricative

had a favorable SNR even when the stationary masker was mixed with speech to generate an

overall SNR of -10 dB. For the normal-hearing population, low and medium SR AN fibers
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demonstrated robust noise-resistant responses at all SNR conditions. This is consistent with

results from previous studies that show low and medium SR fibers selectively respond to

high-frequency speech energy without responding to speech-shaped noise in any significant

way (Geisler and Silkes,  1991 ; Silkes and Geisler,  1991 ). These previous studies used only

nonnegative SNRs. Our results extend these findings to show that the noise-resistance

responses of low and medium SR AN fibers are substantially better than high SR fibers

even at -5 dB SNR. In contrast to the normal-hearing population, the low and medium SR

AN fibers in the hearing-impaired population showed significantly poorer fricative coding in

quiet and in noise. Distorted tonotopy and adaptation likely contributed to these effects.

Impaired high-frequency neurons responded less to fricative energy due to elevated FTC tips

and overresponded to low-frequency energy in speech and in background noise as a result

of distorted tonotopy. Similarly, as these high-CF impaired AN fibers were responding to

preceding voiced speech and noise, it is likely that these AN fibers were affected by adaptation

and responded less robustly to the fricative.

Envelope is critically important for speech intelligibility (Shannon et al.,  1995 ; Smith

et al.,  2002 ). Envelope coding in AN-fiber responses is enhanced following NIHL (Henry

et al.,  2016 ; Kale and Heinz,  2010 ). However, this enhancement is deemed pathological

and is hypothesized to adversely affect speech perception in noisy backgrounds (Füllgrabe

et al.,  2003 ; Kale and Heinz,  2010 ; Moore et al.,  1996 ). In particular, this enhanced noise

envelope is thought to contribute to a lack of masking release for fluctuating maskers for

listeners with hearing impairment. The phenomenon of fluctuating masking release refers to

the improved speech perception by normal-hearing listeners when the masker has fluctua-

tions in the envelope (compared to stationary noise with a flat envelope) (Festen and Plomp,

 1990 ). To test the effect of NIHL on the envelope coding of speech, response envelopes were

extracted from AN fiber PSTHs using a multiresolution modulation filter bank for speech-

alone, noisy speech, and noise-alone conditions. This approach is a neural-domain extension

of well-established speech-intelligibility models that are based on speech-signal processing

(Dau et al.,  1999 ; Jørgensen et al.,  2013 ; King et al.,  2019 ). Speech coding fidelity, quanti-

fied using response-envelope correlation for speech-alone and noisy-speech, was significantly

reduced for the impaired population for both stationary and fluctuating maskers. More im-
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portantly, noise representation, quantified using response-envelope correlation for noise-alone

and noisy-speech, was enhanced following NIHL in both stationary and fluctuating masker

conditions. This increased noise representation highlights the more distracting nature of

noise for listeners with hearing impairment. Noise representation was significantly enhanced

for the fluctuating masker compared to the stationary masker. Any benefit in perception

due to release of masking is substantially reduced because this enhanced noise representation

potentially leads to greater distraction by the fluctuating masker.

8.5 Implications

8.5.1 Diagnosing distorted tonotopy noninvasively

Based on the results in this dissertation, distorted tonotopy could be an important fac-

tor contributing to individual variability in speech perception. For example, the degree of

distorted tonotopic mapping can vary across hearing-loss etiologies even though the degree

of hearing loss is similar (Henry et al.,  2019 ). NIHL leads to more severe distorted tonotopy

compared to metabolic hearing loss. However, whether distorted tonotopy occurs in humans

or not is currently unknown. The exact degree of distorted tonotopy depends on the specific

pattern of hair cell and/or stereocilia damage, which can vary across individuals based on

noise-exposure history (Liberman,  1984 ; Liberman and Dodds,  1984b ). Therefore, we need

a noninvasive metric to diagnose DT in humans.

Frequency-following responses (FFRs) hold excellent promise to diagnose DT noninva-

sively primarily for two reasons. First, FFRs receive significant contributions from neurons

tuned to high frequencies. The effects of DT are dramatic at these high frequencies. For

normal AN fibers, responses are dominated by near-CF-energy-driven envelope components

more so than TFS because phase-locking is weaker at high frequencies. In contrast, neurons

demonstrating DT effects encode low-frequency stimulus energy via FTC tails responses,

which shows up primarily as TFS responses. These differences in the weight of envelope and

TFS components of high-frequency neurons makes FFR an attractive tool. A second reason

that could also improve the sensitivity of the FFR as a diagnostic tool for DT is the com-

pression of AN fiber latency profiles following NIHL. Because of this latency compression,
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the range of high-frequency neurons that are mutually synchronous extends to even lower

CFs. As a result, a larger number of neurons with DT are recruited, which likely results in

larger FFR TFS responses (e.g., Chapter  7 ).

The interaction between DT and the stimulus timbre (spectral slope) can be leveraged

to form a sensitive DT diagnostic metric as described in Chapter  7 . For stimuli with white

spectrum, FFR responses for hearing-impaired animals are dominated by polarity-tolerant

envelope components. This is because, for white noise filtered through FTCs affected by DT,

there is near-equal representation of a broad range of frequencies, which leads to enhanced

envelope. In contrast, stimuli with negatively sloping spectrum excite the tails of FTCs

affected by DT substantially more than the tip because of high stimulus energy concentration

at these tail frequencies. Future experiments that systematically study the effect of spectral

slope and stimulus intensity on the representation of DT in FFRs will be helpful in developing

an optimal diagnostic metric for DT based on FFRs.

8.5.2 Hearing-aid strategies

Even though our noise-exposure protocol yielded a flat-frequency hearing loss, neural

representations of high-frequency speech features (such as F2 and F3 for voiced speech and

spectral peaks in the fricative /s/) were significantly degraded compared to low-frequency

features (such as F0 and F1). In fact, these low-frequency features were overrepresented

in the responses of impaired AN fibers due to DT. Therefore, to counter these DT effects,

amplifying high-frequency features and limiting the masking ability of low-frequency features

are hypothesized to improve the neural coding of speech. These processing schemes apply

specifically to hearing-impaired populations that are diagnosed to have DT.

Our results showed differential audibility effects for high-intensity and low-intensity

speech tokens. Short-term intensity for speech can vary over a ∼30-dB range. In our data,

neural activity was restored for high-intensity voiced speech but not for low-intensity un-

voiced speech. In fact, these results are consistent with psychoacoustic studies that have

reported uncompensated audibility for consonants at a gain that is sufficient for vowel per-

ception (Phatak and Grant,  2014 ; Phatak et al.,  2009 ). As described earlier, expansion of

ANF threshold distributions potentially contributes to these effects. These results highlight
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the importance of adaptive gain control strategies, where gain can be computed based on

short-term spectral properties to mitigate these differential effects.

Restoring overall audibility may not be sufficient to support near-normal (unvoiced)

consonant perception for listeners with hearing impairment. That is because neural coding

of consonants (e.g., stop consonants or fricatives) are mediated by sustained as well as onset

cues for normal AN fibers (Delgutte,  1980 ; Heil,  2003 ). In contrast, onset responses were

significantly reduced for impaired neurons, more so than sustained responses (e.g., for /s/).

Adaptation as a result of overresponding to preceding voiced speech segments could have

contributed to these onset reductions. Promisingly, a previous study has shown that onset

rate is similar (or even enhanced) for impaired neurons when tones are played at equal

sensation level for both (normal and impaired) groups (Scheidt et al.,  2010 ). Therefore, it

could be possible to enhance onset responses by using higher intensities. Another way onset

responses could be enhanced is by using a steeper rise time for these low-intensity consonants.

Although neural evidence for enhanced onset with steeper rise time is limited to interaural

time difference encoding by neurons in the inferior colliculus (Dreyer and Delgutte,  2006 ;

Griffin et al.,  2005 ), it is likely that onset coding of consonants presented monaurally can

also be improved in a similar way. Future research investigating these effects of envelope

shape on consonant perception will be informative.

Psychoacoustic studies have highlighted the importance of high-frequency (4 to 10 kHz)

information in speech although most hearing-aids rarely go over 4 kHz (Boyd-Pratt and

Donai,  2020 ; Levy et al.,  2015 ; Monson et al.,  2019 ; Moore,  2016 ). Results presented here

demonstrate that usable speech information is encoded by auditory-nerve fibers with CF at

these high frequencies, even at -10 dB SNR. In particular, AN fibers with low and medium

spontaneous rate show noise-robust representations. Therefore, it may be worthwhile to

provide these extended high-frequency cues if listeners have sufficient residual high-frequency

hearing.
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8.5.3 Both speech-coding fidelity and noise-related distractions are important
factors to consider for speech perception

Speech perception in the presence of broadband (speech-shaped) noise could be adversely

affected by two related but distinct factors. These factors are: (1) reduced speech-coding

fidelity and (2) enhanced noise representation. Speech-coding fidelity refers to the available

speech-related information, which is already reduced for clean-speech (i.e., without back-

ground noise) following NIHL. Enhanced noise representation emerges when background

noise is present. This noise-enhancement can be distracting for listeners to make use of the

available speech-related information. Noise representation was enhanced for the impaired

AN-fiber population as a direct result of distorted tonotopy and broader tuning because

low-frequency energy in speech-shaped broadband noise dominated the response of impaired

fibers. These effects reflect the reduced ability of impaired AN fibers to use high-SNR spec-

trotemporal glimpses because their broader tuning allows substantial noise energy to pass

through the filter. These results are consistent with perceptual results in that speech per-

ception by listeners with hearing impairment is substantially affected by background noise.

Overall, these results highlight the need for robust noise-reduction algorithms for any com-

munication channel, e.g., hearing aids and telephone lines, to mitigate the effects of this

increased susceptibility to masking noise. Furthermore, design of these communication ap-

plications as well as any acoustic space (e.g., auditoriums and lecture halls) should consider

both maximizing speech-coding fidelity and minimizing noise-related distractions.

8.5.4 Implications for modeling studies

Speech-intelligibility (SI) models quantify the effects of acoustic manipulations on speech

intelligibility. More importantly, SI models can be used to optimize intervention strategies for

listeners with hearing impairment in an objective framework (Heinz,  2015 ). However, existing

SI models work well for normal-hearing listeners but not for listeners with hearing impairment

because of our limited understanding of the various effects of sensorineural hearing loss on

speech coding. Our results offer two key insights into how these SI models can be improved
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and extended to account for hearing-loss effects on SI. First, SI models should consider the

effects of both speech-coding fidelity and noise-related distractions.

Second, the front-end of these SI models should accommodate physiological differences

across individuals. Physiological effects of sensorineural hearing loss can dramatically vary

across hearing-loss etiologies. For example, inner- and outer-hair-cell-specific hearing loss of

a similar degree can lead to widely different neural representations (Axe,  2017 ). Similarly,

even at the hair cell level, damage to tip link or stereocilia can result in different neural

coding profiles (Clark and Pickles,  1996 ). Therefore, these physiological factors should be

included in SI models. A few existing SI models have the provision for inner- versus outer-

hair-cell damage (Scheidiger et al.,  2018 ; Zaar et al.,  2019 ); however, including more precise

fine-grained options (e.g., stereocilia versus tip link damage) will likely lead to more accurate

SI models. Future research establishing the various effects of these different physiological

insults on speech coding and developing noninvasive assays to diagnose these different trauma

types will improve modeling outcomes.

8.6 Limitations

8.6.1 Limitations of the dataset

As with any neurophysiological study, our experimental design was based on recordings

from a limited number of AN fibers for either group. As a result, sampling of CFs and

SRs may be biased based on the exact electrode placement in individual experiments. To

minimize this bias, AN-fiber data were pooled across animals, and multiple sequential elec-

trode placements were used for each animal. Despite these efforts, these data may still

be biased. For example, CF and SR distributions were different between the two groups.

SR distribution for the impaired group was shifted to lower SRs; this effect likely reflects

damage to inner hair cell stereocilia (resulting in reduced transduction currents) more so

than sampling differences (Liberman and Dodds,  1984a ). Similar to SR distributions, CF

distributions were also different between the two groups. We attempted to minimize these

differences by comparing CF-band averages across groups for most neural metrics. Another

limitation was the relatively sparse sampling of very low-frequency (<500 Hz) AN fibers.
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Therefore, it is difficult to confidently comment on speech-coding degradations for fibers at

these low frequencies. However, this is a minor limitation because of two reasons. First,

speech information is maximally concentrated between the 0.5 to 4 kHz band, which was

well represented in our dataset. Second, clinically common hearing-loss etiologies include

greater damage at high frequency compared to at very low frequency (Parthasarathy et al.,

 2020 ).

Another limitation is the lack of histological assessments to confirm the nature of hair-cell

damage in our dataset. Instead, physiological inferences were made as a proxy to anatomical

labeling methods (Liberman,  1984 ). For example, CFs were estimated based on the high-

frequency-side slopes of FTCs (Liberman,  1984 ). Reduction in DPOAE levels and reduced

Q10 values were used as a confirmation for significant OHC damage.

Data were collected in response to a single speech sentence and two (stationary and 8-Hz

sinusoidally amplitude modulated noise) frozen maskers. The exact phase relationship across

these stimuli could have systematic effects on the neural responses. This is particularly true

for speech in the presence of the fluctuating masker. However, these phase effects are not

expected to systematically vary across groups because the same set of stimuli was used for

both groups. Future studies documenting the effects of several maskers and speech sentences

will be helpful in replicating and generalizing these results.

The number of intensities used per stimulus was limited due to AN-fiber recording-time

limits (∼15 min/fiber on average). Therefore, our data lacks a thorough characterization

of the effects of intensity variation. Another potential confound could be the difference in

intensities used for different groups (i.e., 65 dB SPL for the normal-hearing group and 80

dB SPL for the hearing-impaired group). A higher intensity could partly contribute to the

distorted-tonotopic effects for the impaired population. However, this intensity difference is

unlikely to play a significant role because of the following reasons. First, FFR data collected

at an equal-intensity (70 dB) paradigm for both groups showed distorted tonotopy effects

for the impaired population, similar to AN data. Second, distorted tonotopy is evident in

impaired AN-fiber responses when stimuli are presented only 10 dB above threshold (Henry

et al.,  2016 ). Finally, temporal responses of normal AN fibers show distorted tonotopic

effects only at very high (>100 dB SPL) intensities and are relatively narrowband below 100
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dB SPL (Wong et al.,  1998 ). Therefore, the use of fixed intensities and the difference in these

intensities between groups should not affect the conclusions presented in this dissertation in

any significant way.

8.6.2 Anesthetized animals as a model of the (awake) human auditory system

While single unit responses and FFRs data reported here provide crucial insights into

the neural-coding alterations following noise-induced hearing impairment, they do not reflect

other central or feedback (efferent) processes that may be important for speech understand-

ing. One such feedback process is the medial olivocochlear reflex, which can dynamically

change the input-output function of single nerve fibers (Guinan,  2006 ; Liberman and Guinan,

 1998 ). However, in our anesthetized-chinchilla animal model, medial olivocochlear reflex ef-

fects are expected to be small (Aedo et al.,  2015 ). Similarly, the effects of MEMR are likely

to be significantly reduced. Another important factor is the role of attention, which can

critically affect speech perception performance and perceptual tasks in general (Knudsen,

 2007 ; Lu et al.,  2017 ; Shinn-Cunningham and Best,  2008 ). However, the analyses used in

this dissertation were limited to quantifying the information available in the periphery and

midbrain and comparing this information between groups. Ways to overcome these limita-

tions include using single-/multi-unit recordings or evoked recordings such as EEG and FFR

from awake animals, using ecologically relevant stimuli for animals, or training the animal

to discriminate speech tokens.

8.6.3 Other physiological factors affecting neural coding

Several other physiological factors are important to consider to thoroughly character-

ize the effects of sensorineural hearing loss on speech coding. However, the effects of these

factors, such as suppression, adaptation, and latency, were not systematically quantified in

this dissertation. It should be noted that the effects of these factors were likely present

in our data, unlike the effects of efferent systems, which are substantially reduced due to

anesthesia. Suppression is reduced following acoustic trauma (Miller et al.,  1997 ; Sayles

et al.,  2016 ; Schmiedt et al.,  1990 ). In fact, the strength of suppression can vary across
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hearing loss etiologies (Schmiedt et al.,  1990 ). For example, reduction in suppression is more

severe for NIHL than for age-related hearing loss. Temporal dynamics (i.e., onsets/offsets)

can also differentially affect the responses from the two groups because AN fibers become

less frequency selective following NIHL. Compared to normal AN fibers, impaired AN fibers

responded (nonselectively) to a greater portion of the speech stimulus (e.g., Fig  4.8 ). There-

fore, the effects of temporal dynamics or adaptation could be substantially different between

the two groups. Similarly, acoustic trauma reduces latency of AN fiber responses (Henry et

al.,  2014 ; Scheidt et al.,  2010 ). These changes in latency profiles hold important implications

for across-fiber coding schemes for speech (Heinz et al.,  2010 ). Future studies and analyses

investigating the role of these physiological factors on speech coding following sensorineural

hearing loss will be insightful.

8.6.4 Biological feasibility of the analyses employed

The approach adopted in this dissertation was to quantify information available in the

periphery for normal-hearing and hearing-impaired animals. A variety of metrics (from

simple rate count to more sophisticated cepstral analysis) were used to quantify the coding

strength of several stimulus features. All these methods may not be strictly biologically

feasible. Nevertheless, the brain may have alternative neural representations of these features

that correlate with the metrics used in this dissertation. For example, a modulation filter

bank was used to estimate central envelope representation. Although the exact filters may

not exist in the brain, a related representation may exist in the responses of modulation-

sensitive neurons in the midbrain (Joris et al.,  2004 ; Krishna and Semple,  2000 ; Nelson and

Carney,  2007 ). Similarly, spectral (phase-locking) information may be extracted by monaural

coincidence detection mechanisms (Young,  2008 ). Although there is no evidence to support

that neural circuits are able to perform cepstral analysis, a metric based on simple across-CF

coincidence detection could be proportional to cepstral peak height of the ALSR.
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8.7 Future Work

This dissertation has made three broad significant contributions. First, it has established

a framework where invasive spike-train data and noninvasive evoked responses can be ana-

lyzed using the same advanced signal processing tools. Second, by applying this framework

to invasive and noninvasive data in response to speech in noise, this dissertation has identified

neural correlates of several perceptual deficits that listeners with hearing impairment expe-

rience during everyday communication. In particular, DT may have dramatic implications

for human speech perception. Finally, this dissertation has developed a FFR-based met-

ric to noninvasively diagnose DT in humans. These contributions pave the way for several

potential avenues of future research as described below.

8.7.1 New research avenues using the unifying framework

A key benefit of the quantitative framework presented in Chapter  3 is that by using

apPSTHs to analyze spike-train data, the same metrics can be used to analyze both spike-

train data and evoked responses. These apPSTHs include existing [e.g., d(t)] as well as

new [e.g., φ(t)] PSTHs. The study of response TFS has traditionally been carried out using

d(t), or using the difcor, which is related to the autocorrelation function of d(t). However,

d(t) and difcor may quantify the total coding (i.e., both envelope and TFS) of the signal

and not just the TFS, particularly for low-frequency stimuli (see Chapter  3 ). In contrast to

d(t), φ(t) represents the Hilbert-phase of the response, and therefore is a more appropriate

representation of the response TFS. As recent studies have highlighted the role of response

TFS on speech perception in noisy environments (Ding et al.,  2014 ; Shamma and Lorenzi,

 2013 ), φ(t) would be useful in accurately quantifying TFS components in neural responses.

Another example of an advanced signal processing approach possible because of using

apPSTHs is the use of frequency demodulation and filtering to estimate the strength of

dynamic spectrotemporal components (e.g., formants in voiced speech) at high spectral res-

olution. Narrower spectral resolution leads to more specific spectral estimates. Similarly, the

harmonicgram represents a spectrally compact representation for signals with a harmonic

spectrum (e.g., voiced speech). These spectrally specific metrics are advantageous to use
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compared to previous broadband metrics for studying the neural representation of natu-

ral and complex stimuli, in healthy and diseased auditory systems. Several such examples

were presented throughout this dissertation. Examples of future research questions include

studying the coding of frequency-modulated tones following inner-hair-cell-specific damage

with high spectral resolution (unlike previous studies that used spectrogram-like approaches

(Axe,  2017 ). Psychoacoustic studies have hypothesized that inner-hair-cell-specific damage

can lead to neural-coding deficits for frequency-modulated tones. Using the harmonicgram

(or the frequency demodulation) approach, representation of frequency-modulated tones can

be studied at high spectral resolution.

8.7.2 Role of distorted tonotopy on speech perception

Although several dramatic effects of distorted tonotopy were reported in this dissertation,

whether distorted tonotopy affects humans or not is currently unknown. Therefore, a timely

research question is to test for distorted tonotopy in human listeners. Primary evidence

for distorted tonotopy is based on invasive spike-train data recorded from AN fibers (Henry

et al.,  2016 ; Miller et al.,  1997 ). As similar spike-train data are unlikely to be recorded from

human listeners in the near future (Verschooten et al.,  2019 ), we have to resort to noninvasive

assays to diagnose distorted tonotopy. In this regard, a metric similar to the DTslope metric

described in Chapter  7 will prove useful for testing DT in humans.

While speech was an ideal signal to quantify neural coding deficits due to distorted tono-

topy, it may not be the most optimal stimulus for a diagnostic metric. Instead, multi-band

harmonic complexes could be useful to develop an efficient diagnostic metric. For example,

consider a stimulus, x[n], which is a mixture of two harmonic complexes, x1[n] and x2[n]. Say

x1[n] has a fundamental frequency of F01, and it only contains lower-order harmonics such

that the spectral power of x1[n] is restricted to below a frequency, Fco. Similarly, say x2[n]

has a fundamental frequency of F02, and it only contains higher-order harmonics such that

its spectral bandwidth is restricted to above Fco. Spectral properties of x1[n] and x2[n] can

be independently manipulated. Such a multiband harmonic complex (x[n] = x1[n] + x2[n])

can be an efficient diagnostic stimulus to record FFRs. FFRs from listeners without dis-

torted tonotopy are expected to show large F02-based envelope components because of the
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high-frequency bias of FFRs. In contrast, listeners with distorted tonotopy should show en-

hanced F01-based TFS components in the FFR response. The exact parameters (e.g., F01,

F02, and Fco frequencies and intensity associated with individual harmonic complexes) can

be adjusted to develop an optimal diagnostic metric.

If DT were to be demonstrated in humans, it would be important to document the role

of DT on speech perception. Based on the results presented in this dissertation, DT could

have dramatic effects on speech perception as it severely degrades any temporal-place coding

scheme. However, whether this hypothesis holds true for humans remains to be seen.

8.7.3 Disentangling DT effects from broader-tuning effects

Traditionally, threshold elevation and broader bandwidth have been thought to be the

major factors affecting speech perception for listeners with hearing loss (Shrivastav,  2012 ;

Young,  2012 ). Data presented in this dissertation suggest that distorted tonotopy could have

an even greater adverse effect of speech perception. For example, the dramatic reduction in

near-CF power relative to low-frequency power in the response spectrum (Fig  4.4 ) is unlikely

due to bandwidth broadening alone. While a broader bandwidth can reduce near-CF power,

it does not explain the increase in low-frequency power. These qualitative differences between

the effects of DT and broader bandwidth on speech coding can be formally quantified in at

least two ways as described below.

First, information theoretic analysis can be used to disentangle the effects of these two

factors by estimating the channel capacity of the auditory nerve. Approximate models of

the auditory filter could be used to capture important tuning properties with and without

distorted tonotopy. For example, tip-to-tail ratio of AN fiber FTCs can be varied to control

the degree of DT. The effects of broader bandwidth can be thought of as to reduce the

number of independent channels in the system. For example, consider three channels with

CF = 1 kHz, 1.25 kHz, and 1.5 kHz. All these channels could be independent in a normal-

hearing system. For a system with broader bandwidth, channels with CF = 1 kHz and

1.25 kHz may become dependent whereas channels with CF = 1 kHz and 1.5 kHz may

still be independent. In contrast to broader bandwidth, DT leads to significant across-

fiber dependency (e.g., between AN fibers with CF = 1 kHz and 1.5 kHz) that spans many
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octaves of frequencies, particularly for stimuli with pink spectrum (e.g., speech). Therefore,

DT would likely have a substantially more severe effect on the channel capacity compared

to broader bandwidth.

Second, modeling and machine learning approaches can be combined to further investi-

gate the differences between the effects of DT and broader tuning on phoneme confusion.

Models of DT and broader bandwidth, similar to those described in the previous paragraph,

can be used to derive peripheral representations in response to several phonemes. Classi-

fiers can be constructed for both systems using the same training and validation datasets

(e.g., phonemes in the background of stationary noise and reverberation). A novel dataset

(e.g., phonemes masked by multi-talker babble) can be used to test the efficiency of individ-

ual classifiers. Results presented in this dissertation suggest that a classifier based on the

DT-affected system will perform worse than a classifier based on the system with broader

tuning.

8.7.4 Effects of different hearing-loss etiologies on speech in noise coding

Substantial variability in speech perception remains despite compensating for audibility

loss. A major source of this variability is hypothesized to be peripheral differences. In

this dissertation, speech coding deficits were explored in a specific model of hearing loss,

which is a chinchilla model of noise-induced hearing loss due a two-hour long discrete noise

exposure. The profiles of inner- and outer-hair-cell damage could potentially make this

model a good model for some human listeners. However, these damage profiles vary widely

depending on parameters of the noise exposure and species (Kujawa and Liberman,  2019 ).

The exact pattern of hair-cell/stereocilia damage for a human listener with a history of

life-long exposure to moderate sounds may be quite different from the pattern observed for

chinchillas exposed to a single discrete loud noise. Investigating speech-coding deficits for

a variety of hearing-loss etiologies (e.g., blast exposed, hair-cell-specific damage, metabolic

hearing loss) and relating physiological data with anatomical and evoked data will be critical

in improving our understanding of the effects of peripheral factors on speech-intelligibility

variability. In this regard, establishing the effects of specific hearing-loss protocols on the

severity of distorted tonotopy and ANF threshold distribution will be particularly important.
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– Future application of this tool includes biofeedback to improve treatment quality for children
with unilateral brain damage

•
Visiting researcher at Technical University of Denmark May 2017 - June 2017
 With Torsten Dau, Ph.D. 
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– Extended multi-resolution speech-based envelope power spectrum model to neural domain in
collaboration with the  Hearing Systems Group 

•
Information theoretic analysis of receptive fields of nonlinear
auditory neurons July 2014-July 2015
Undergraduate Thesis,  Advisor: Sharba Bandyaypadhyay, Ph.D.  

– Implemented a gradient ascent algorithm to find maximally informative spectral dimensions
for a high dimensional non-Gaussian stimulus space that resembles natural stimuli for highly
nonlinear dorsal cochlear neurons

•
Vocal tract trajectory estimation from Electromagnetic
Articulography (EMA) May 2013-Dec 2014
Research Project at IISc Bangalore.  Advisor: Prasanta Kumar Ghosh, Ph.D  

– Applied dynamic programming aided affine transformation for spatiotemporal alignment of real-
time MRI and EMA to interpolate spatially rich articulator trajectories with the high temporal
resolution and  created a GUI for on the fly generation of midsagittal video from audio using
acoustic-to-articulatory inversion 

Professional Experience

•
Internship at Texas Instruments, Bangalore, India May 2014 - July 2014
EMI Characterization of FRAM based Metering Board

– Designed schematics of power and communication components to match PCB specifications and
executed functional Electromagnetic analysis using nWave

– Interfaced various components with FRAM-microcontroller to achieve faster and power eco-
nomic energy meter

Teaching/Mentoring Experience

• Teaching Assistant for BME-511 Biomedical Signal Processing for graduate students
Purdue University, Fall 2020 and Fall 2018.  Professor: Michael Heinz, Ph.D. 

– Responsibilities include designing and lecturing two weeks of the course on  frequency domain
characterization of signals  , all grading, and weekly office hours

• Teaching Assistant for BME-595 Neural Surgery and Instrumentation for Systems Neuroscience for
graduate students, Purdue University, Fall 2017.  Professor: Mark Sayles, M.D., Ph.D. 

– Responsible for laboratory experiments, helping students with neural data analysis, all grading,
and weekly office hours
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•  Mentor in Summer Undergraduate Research Fellowship Program at Purdue University 

– Involved in designing the project and guiding student throughout the project and final presen-
tation

Journal Publications

•  Parida, Satyabrata., Michael Heinz. “Noninvasive measures of distorted tonotopic speech coding
following noise-induced hearing loss.” Journal of the Association for Research in Otolaryngology. 2020. 

•  Parida, Satyabrata., Hari Bharadwaj, Michael G. Heinz. “Spectrally specific temporal analyses of
spike-train responses to complex sounds: A unifying framework.” bioRxiv (2020) 

Oral Presentations

•  Parida, Satyabrata., Michael G. Heinz. “Degradation of Speech-In-Noise Coding in Auditory-Nerve
Fibers Following Cochlear Hearing Loss: Insights from Spectro-Temporal and Information-Theoretic
Approaches.” Abstract 43rd Midwinter Meeting. Association for Research in Otolaryngology, 2020,
San Jose, CA 

•  Parida, Satyabrata., Michael G. Heinz. “Evidence for distorted tonotopy following noise-induced
hearing loss using speech frequency following responses.” Abstract Midwest Auditory Research Con-
ference, 2019, Springfield, IL 

•  Parida, Satyabrata., Michael G. Heinz. “Effects of noise-induced hearing loss on speech-in-noise
envelope coding: Inferences from single-unit and non-invasive measures in animals” Abstract 177th
Meeting. Acoustical Society of America, 2019, Invited 

Poster Presentations

•  Parida, Satyabrata., Michael G. Heinz. “Effects of Noise-Induced Hearing Loss on Speech-In-Noise
Envelope Coding.” Abstract 42nd Midwinter Meeting. Association for Research in Otolaryngology,
2019, Baltimore, MD, PS 581 

•  Parida, Satyabrata., Michael G. Heinz. “Neurophysiological Evaluation of Speech Masking Release
Based on the Envelope Power Spectrum Model.” Abstr. 41st Midwinter Meeting. Assoc. for Research
in Otolaryngology, 2018, San Diego, CA, PS 588 

•  Parida, Satyabrata., Michael G. Heinz. “Neurophysiological Evaluation of the Speech based En-
velope Power Spectrum Model.” Abstract 40th Midwinter Meeting. Association for Research in Oto-
laryngology, 2017, Baltimore, MD, PS 488 
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•  Parida, Satyabrata., Ashok Kumar Pattem, and Prasanta Kumar Ghosh. “Estimation of the Air-
Tissue Boundaries of the Vocal Tract in the Mid-Sagittal Plane from Electromagnetic Articulograph
Data.” Sixteenth Annual Conference of the International Speech Communication Association. 2015. 

Scholastic Achievements

• 2020, 2018 Neuroscience Research Travel Award, Purdue Institute for Integrative Neuroscience (PIIN)

• 2020 Tier-1 Purdue Graduate Student Government Travel Award

• 2019 Midwest Auditory Research Conference Travel Grant

• 2019 Purdue College of Engineering Conference Travel Award

• 2019 Acoustical Society of America Travel Award

• 2019 Association for Research in Otolaryngology Travel Award

•  2017 Joe Bourland Graduate Student Travel Reimbursement Award, Purdue University 

•  Finalist for Best Student Papers, INTERSPEECH-2015 

• Qualified for IIT-JEE-2011 (All India Rank 894), AIEEE-2011 (All India Rank 264)

• Ranked 7/60k in Higher Secondary (2011) and 8/0.4 Million in Secondary (2009) Board Exams,
Odisha State, India

Technical Skills

Programming Languages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . C/C++/Python
Operating Systems . . . . . . . . . . . . . . . . . . . . . . . . Ubuntu-Linux, Microsoft Windows
Other Applications . . . . . . . . . . . . . . . . . . . . . . . GITHUB, LATEX, MATLAB, Eclipse

Relevant Courses

Information Theory Estimation Theory
Biomedical Signal Processing Digital Signal Processing
Probability and Random Variables Machine Learning
Psychophysics Neural Mechanisms in Health and Disease
Signals and Networks Programming and Data Structure
Biomedical Instrumentation Matrix Algebra
Probability and Stochastic Processes Digital Image Processing
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