Purdue University Graduate School
MS_thesis_Darshan.pdf (4.39 MB)

Nonlinear Dynamics of Thermoelastic plates

Download (4.39 MB)
posted on 2023-04-28, 01:48 authored by Darshan SoniDarshan Soni

 Nonlinear flexural vibrations of simply supported rectangular plates with thermal coupling  are studied for the case when the plate is harmonically excited by the force acting normal to the  midplane of the plate. The coupled thermo-mechanical equations are derived by applying the  Galerkin procedure on the von-Karman equation and the energy equation for an element of the  plate. The thermo-mechanical equations are second order in transverse displacement and first order  in thermal dynamics. In our first study, we represent the transverse displacement, bending moment  and membrane force due to temperature by one mode approximation, and study the response of  thermoelastic plate in time and frequency domain. The analysis of forced vibration to a transverse  harmonic excitation is carried out using harmonic balance as well as direct time integration coupled  to a Fourier analysis for a range of excitation frequencies. The effects of thermal coupling, material  nonlinearity and different amplitudes of excitation on the thermoelastic plate’s transverse  displacement and thermoelastic variables are investigated. The method of averaging is applied to the one mode case to transform the nonlinear modal  equations into sets of two-dimensional dynamical systems which govern the amplitudes and phases  of the two modes. The averaged system is studied in detail by using pseudo arc-length continuation  schemes implemented in MATCONT. The physical phenomena of interest in this study arise when a plate exhibits two distinct  linear modes of vibration with nearly the same natural frequency. To analyze the dynamics of the  thermoelastic plate in this scenario, we utilize a two-mode approximation. The response of the  plate, as a function of excitation frequency, is determined for the two-mode model using  MATCONT, and several bifurcation points are identified. Our analysis reveals two types of  solutions: single-mode and coupled-mode solutions. We find that stable single-mode and coupled mode solutions can coexist over a wide range of amplitudes and excitation frequencies. Under the influence of thermal coupling, our analysis using MATCONT reveals the  identification of Neimark-Sacker bifurcation points. After a detailed study of the Neimark-Sacker  region using Fourier spectrum and Poincare section, we conclude that a pitchfork bifurcation  occurs, resulting in stable asymmetric solutions. We further investigate the effect of in-plane forces  or mechanical precompression on the thermoelastic plate, using MATCONT for a fixed value of  force, damping, and excitation frequency. We find that the in-plane forces lead to buckling, which  12 is identified as a branch point cycle (pitchfork bifurcation) in MATCONT. Consequently, the  bifurcation diagram of transverse displacement as a function of in-plane forces can be divided into  prebuckling and post buckling regions, with multistable solutions in each region. To validate our one mode model, we use ANSYS software to verify the transverse  displacement and temperature results. We validate the frequency and time domain results for both  the linear and nonlinear cases, and plot contours using ANSYS to observe the variation of  displacement and temperature over the surface of the plate. Our one mode model results closely  match with the ANSYS results, leading us to conclude that our one mode approximation is accurate  and that the coupled thermo-mechanical equations we derived are correct.  


Degree Type

  • Master of Science


  • Mechanical Engineering

Campus location

  • West Lafayette

Advisor/Supervisor/Committee Chair

Anil Bajaj

Additional Committee Member 2

Fabio Semperlotti

Additional Committee Member 3

Andres Arrieta