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ABSTRACT

Sudyanti, Putu Ayu G. Ph.D., Purdue University, August 2019. Nonparametric mix-
ture modeling on constrained spaces. Major Professor: Vinayak Rao.

Mixture modeling is a classical unsupervised learning method with applications
to clustering and density estimation. This dissertation studies two challenges in mod-
eling data with mixture models. The first part addresses problems that arise when
modeling observations lying on constrained spaces, such as the boundaries of a city
or a landmass. It is often desirable to model such data through the use of mixture
models, especially nonparametric mixture models. Specifying the component distri-
butions and evaluating normalization constants raise modeling and computational
challenges. In particular, the likelihood forms an intractable quantity, and Bayesian
inference over the parameters of these models results in posterior distributions that
are doubly-intractable. We address this problem via a model based on rejection sam-
pling and an algorithm based on data augmentation. Our approach is to specify such
models as restrictions of standard, unconstrained distributions to the constraint set,
with measurements from the model simulated by a rejection sampling algorithm. Pos-
terior inference proceeds by Markov chain Monte Carlo, first imputing the rejected
samples given mixture parameters and then resampling parameters given all samples.
We study two modeling approaches: mixtures of truncated Gaussians and truncated
mixtures of Gaussians, along with Markov chain Monte Carlo sampling algorithms for
both. We also discuss variations of the models, as well as approximations to improve
mixing, reduce computational cost, and lower variance.

The second part of this dissertation explores the application of mixture models to
estimate contamination rates in matched tumor and normal samples. Bulk sequenc-

ing of tumor samples are prone to contaminations from normal cells, which lead to



xXviil

difficulties and inaccuracies in determining the mutational landscape of the cancer
genome. In such instances, a matched normal sample from the same patient can be
used to act as a control for germline mutations. Probabilistic models are popularly
used in this context due to their flexibility. We propose a hierarchical Bayesian model
to denoise the contamination in such data and detect somatic mutations in tumor cell
populations. We explore the use of a Dirichlet prior on the contamination level and
extend this to a framework of Dirichlet processes. We discuss MCMC schemes to
sample from the joint posterior distribution and evaluate its performance on both

synthetic experiments and publicly available data.



1. INTRODUCTION

Nonparametric or infinite mixture models (Lo, 1984; Escobar and West, 1995; Ras-
mussen, 2000) are powerful modeling tools that are used to cluster observations or
estimate complex densities. This dissertation addresses two challenges in modeling
multimodal data using nonparametric mixture models: the first involves correctly es-
timating the density of observations on a constrained set; and the second deals with
estimating contamination rates and clustering mutations in tumor samples. The mo-
tivations and our proposed methods to address each of the challenges are described

in this chapter.

1.1 Density estimation for data on constrained spaces

Observations are often bounded within a specific domain. One example of such
data is crime data, where measurements are restricted to within the complex bound-
aries of a geographical entity, either because none exist outside (due to topographical
features like water bodies) or because measurements belong to another city/state/country.
Another example is flow cytometry, where measurements with component-values out-
side some range (e.g. 0 to 1024) are discarded. Other instances include single cell
RNA-sequencing data (Cao et al., 2017) (where count-measurements below some
threshold does not exist), operational risk modeling (Luo et al., 2009) (where loss
data only above a threshold are provided), stock price data (Aban et al., 2006), mor-
tality (Alai et al., 2013), survival (Cain et al., 2011), capture-recapture data (Manning
and Goldberg, 2010), where certain outcomes are truncated (Mandel, 2007), animal
movement data (Patterson et al., 2008), and climate data (Easterling et al., 2000).

In all of the above cases, it is important to accurately account for the boundaries

of the constraint set to avoid biases from boundary effects incorrectly interacting with



smoothness assumptions inherent in typical probability models. Doing so, however,
raises computational challenges due to the need to evaluate integrals over complicated
subsets of a Euclidean space. This problem is exacerbated when the data exhibits
rich multimodal and correlation structure, a common situation that requires mixture
(and sometimes nonparametric mixture) models.

Edge effects can sometimes be avoided by changing the parametric family used
for the mixture components. For example, in Kottas and Sanso6 (2007) and Matechou
et al. (2017), the authors used nonparametric mixtures of beta or gamma distributions
to represent the observed data. However, such models cannot easily model correlation
structure in multi-dimensional data, something that is natural to Gaussian mixture
models. Another approach is to transform the data to be unconstrained, and then
model the transformed data with a mixture of Gaussians. This can suffer from edge-
effects that are not easy to characterize. Importantly, both approaches are also not
applicable to more complex constraint sets.

We propose to treat observations lying on the constrained space as the outcome
of a rejection-sampling algorithm (Robert and Casella, 2005), with a proposal dis-
tribution ¢ defined on the simpler unconstrained space and with observations falling
outside the constraint set discarded. Following Rao et al. (2016); Beskos et al. (2006),
we carry out inference over the distribution ¢ by imputing the rejected samples. Im-
plicit in ¢ is all information about the original distribution of interest. Working
directly with the unconstrained ¢ and imputing the rejected proposals allows us to
use standard Bayesian modeling and computational techniques (such as nonparamet-
ric Bayesian models like Dirichlet process mixture models (Lo, 1984; Escobar and
West, 1995), and associated Gibbs samplers based on the Chinese restaurant process
(Neal, 2000) and the stick-breaking process (Ishwaran and James, 2001)).

In an application example in Rao et al. (2016), the authors briefly considered a
setting that we call truncated miztures of Gaussians. We study this in more detail, and
also consider another natural approach: miztures of truncated Gaussians. For both

models, we describe exact Markov chain Monte Carlo (MCMC) schemes to impute



the rejected proposals, allowing inference over cluster assignments, cluster parameters,
and cluster weights. In our experiments, we observe that naively implementing this
can result in poor MCMC mixing. To speed up computations, improve mixing, and
reduce MCMC estimation variance, we also propose and study modifications of the
original models and the associated MCMC sampling algorithms. The main results
from Chapters 3-6 can be found in the manuscript Sudyanti and Rao (2018). The
resulting algorithm significantly ourperforms the original algorithms, especially in

higher-dimensional settings.

1.2 Clustering mutations and estimating contaminations in tumor sam-

ples

The second part of this dissertation examines a different type of problem involving
mixture models on constrained spaces; specifically, DNA sequencing data of tumor
samples. Somatic mutations are DNA alterations that are unique to the tumor tissue
which drives its growth and proliferation. Correctly identifying these variants is
essential to drug discoveries and targeted treatments of cancer patients. However,
bulk DNA sequencing of tumor samples is often contaminated by normal samples,
leading to difficulties and inaccuracies in the detection of somatic mutations. While
DNA sequencing of a single cell can be used, the technology for this technique is
expensive, prone to high technical variations, and lacks the sequencing depths found
in bulk cells DNA sequencing technologies (Yadav and De, 2014).

The current standard approaches of estimating contamination in a DNA sequenc-
ing of tumor samples use external databases to improve the accuracy of the estimation
and make them dependable to the comprehensiveness of outside resources. Several
methods proposed the use of a matched normal and tumor sample to control for in-
herited mutations (Bergmann et al., 2016; Su et al., 2012; Larson and Fridley, 2013).
However, these methods do not concurrently provide detection of somatic mutations

and assume uniform contamination levels along the genome.



For this problem, we developed two novel hierarchical Bayesian models to estimate
contamination levels along the genome and accurately detect somatic mutations in
patients’ matched normal and tumor samples. We need mixture models to flexibly
cluster contamination levels, allowing for shared information along the genome. Due
to the label-switching problem commonly seen in mixture models, we placed an in-
formative prior over the contamination rate to prevent this problem. In this way, we
constrain the parameter space to allow for meaningful inference over contamination
level as well as mutations.

The first model is the simpler model with a Dirichlet prior on both the contami-
nation parameter and the joint genotypes. We extend this model to a framework of
Dirichlet processes, where clustering structure of the contaminations can be shared
across chromosomes. Both our models allow for nucleotide-specific contamination, as
well as genome-wide contamination, making them more flexible than existing meth-
ods. We employ a Markov chain Monte Carlo algorithm to sample from the joint
posterior distribution of the contamination rate and the binomial probabilities. We

evaluate our models on synthetic and real data.

1.3 Dissertation organization

The structure of this dissertation is summarized as follows:

e Chapter 2 provides a review of mixture models, both in the finite and infinite
case, as well as MCMC methods to sample from the posterior distribution of
the parameters in the model. It describes the main Gibbs sampling method

which we extend and implement in this dissertation.

e Chapter 3 starts with a review of the rejection sampling algorithm, followed by
a description of how this algorithm is used on complex spatial domains. We
then introduce our two models: truncated mizture of Gaussians and mixture of

truncated Gaussians.



Chapter 4 starts with a description of the existing data augmentation approach
proposed by Rao et al. (2016), followed by the associated MCMC algorithms
of each model within the framework of data augmentation. This chapter also
describes and justifies our extension to existing MCMC algorithms which we
call the thresholded sampler. This new sampler provides improvement in terms

of mixing and efficiency.

Chapter 5 provides evaluations of our approach to various synthetic datasets.

A detailed comparison of the two models is presented.

Chapter 6 presents the result of the application of our models and algorithms

to real-world data sets.

Chapter 7 provides sensitivity analysis of our methods to different hyperparam-
eter settings, as well as training set size. A further modification to the algorithm

is also explored here.

Chapter 8 describes our approaches to the tumor contamination problem. The

models and algorithms are presented here, as well as identifiability issues.

Chapter 9 presents performance results of the models and algorithms of Chapter

9 to various data, both synthetic as well as real.

Chapter 10 ends this dissertation with a summary and potential future research

directions.



2. OVERVIEW OF MIXTURE MODELS
2.1 Introduction

Mixture models are a class of latent variable models widely used to represent
data with several different sub-populations, allowing flexibility in modeling complex
densities. There are two main applications of mixture models: density estimation and
clustering. Example applications can be found in domains such as bioinformatics (Ji
et al., 2005; McNicholas and Murphy, 2010; Si Quang et al., 2008; Taslim et al., 2011),
astronomy (DeMars and Jah, 2013; Hao et al., 2009), social sciences (Newman and
Leicht, 2007; Bauer, 2007; Gormley and Murphy, 2008), neuroscience (Nord et al.,
2017; Gorriz et al., 2009), text mining (Blei and Lafferty, 2009; Steyvers and Griffiths,
2007), pattern recognition (Permuter et al., 2006; Li et al., 2013; Lagrange et al.,
2017), finance (Rombouts and Stentoft, 2015; Kalkbrener and Packham, 2015), and
many others.

Many of the contributions in this dissertation use mixture models as their con-
ceptual and theoretical foundation. The models and algorithms developed in later
sections, however, are motivated by real-world data that traditional mixture mod-
els are unable to accurately describe. In particular, we focus on improving density
estimation of data lying within often complex boundaries. Examples include bio-
logical data with known truncation values as well as spatial data with geographical
constraints (Figure 3.1 shows crime in Chicago). In this chapter, we review the foun-
dational literature of finite and infinite mixture models as well as associated inference
procedures in the Bayesian context. This will serve as an overview and reference of
key concepts used in later chapters. Readers who are interested in more in-depth
explanations are directed to McLachlan et al. (2019) for finite mixture models and to

Rasmussen (2000) and Neal (2000) for infinite mixture models.



2.2 Finite Mixture Models

We begin by reviewing mixture models with a finite number of components. Let
X ={Xj,..., X} be arandom sample of size n, where X; is a p-dimensional random
vector. In a mixture model, X; is assumed to come from one of K components, with
¢; € {1,..., K} representing the discrete latent cluster for that observation, and
where each component belongs to some parametric family of probability distributions
with its own unknown vector of parameters given by 6. Let @ be the collection of all
component parameters. For a given cluster k, the likelihood of an observation X; is
p(Xile; = k,0) = pr(X;|0k), where py is the k™ component’s distribution. We write
7, for the mixing weight of the k' component; this is a probability vector satisfying
0 <m, <1and ), m = 1. Then the joint probability of observation X; and cluster
¢; is given by

p(Xi, ¢ = k) = mepr(X;|0k), (2.1)

and the marginal probability of observation Xj; is given by

p(Xi10) = mipi(Xil6). (2.2)
h=1

For Gaussian mixture models, p, is the Gaussian density, and 6, would be the
mean and covariance of the k'™ Gaussian distribution; we write 6, = {u, Xx} and
p(X;|0k) = N(Xi|ur, Xx). In a Bayesian setting, a prior is placed over the compo-
nents’ weights 7r, as well as over the parameter 6. For the prior over 7r, it is common
to use the conjugate Dirichlet distribution. For the prior over the component parame-
ters 0y, we place a Normal-Inverse-Wishart (NIW) distribution. Overall, a data point
X; is drawn by first choosing ¢; € {1,..., K} from a multinomial distribution with

weights given by 7 and then sampling from the coresponding Gaussian component



N (pte;, X¢c;). This process is summarized by Equation (2.3) and is illustrated as a

Ci /)

graphical model in Figure 2.1.

7 ~ Dir(a/K,...,a/K)
0, ~ NIW(0)
¢;|m ~ Multinomial(7r)

Xi’Che NN(Xi‘MCwECi) (2'3>

In this model, 6y = {po, A, ?, v}, the hyperparameters for the Normal-Inverse-Wishart
prior. Notationally, we write X as the collection of observed data, c as the collection
of all class indicator variables, and 8 = {u, X1} | as the collection of all K com-
ponent parameters. The complete joint distribution of the above Gaussian mixture

model is as follows:

N
P(X. ¢ 0,m|a, b)) = (HP(XJ@, ., c,|7r> (HP (6, |90) (7]a) (2.4)
=1
N K
= [ [V (Xilpe,, ) Mult(cifaw) [ [ NIW ({5, 25 }{00) Dir (7 )
i=1 j=1
(o)
K
0.0 0).(5 1.0 N

Figure 2.1.: The density of a Gaussian mixture model in 1D with 2 components (left)
and the corresponding directed graphical model for N data points with K = 2 from
this density (right).



2.3 Inference for Finite Mixture Models

The most commonly used approach to estimate the parameters (7, 0) in a fi-
nite mixture model is through maximum likelihood estimation via the Expectation-
Maximization (EM) algorithm (Dempster et al., 1977). This algorithm employs an
iterative algorithm to find the solution to the maximum likelihood problem. It al-
ternates between two update steps: the expectation step uses the current parameter
values to evaluate the posterior probabilities of the latent class and the maximization
step estimates new values for the parameters. However, like other ML-based algo-
rithms, the EM provides a point estimate of the parameters and relies on asymptotic
properties to describe the uncertainties. If we are interested in learning the full dis-
tribution of the estimated parameters and maintaining uncertainty given prior beliefs
and observed data, then we can take the Bayesian approach to perform inference on
the parameters of the model. Now, the counterpart to EM algorithms are Markov
chain Monte Carlo (MCMC) sampling algorithms (Gamerman and Lopes, 2006; Gilks
et al., 1995; Brooks et al., 2011). Specifically, we use an MCMC technique called the
Gibbs sampler (Casella and George, 1992; Smith and Roberts, 1993), which gener-
ates samples from the posterior probability distribution of the parameters resulting
from the priors and observations. Each step of the Gibbs sampler draws from the
conditional distribution of a variable (or block of variables), with the remaining vari-
able fixed to its current value. We briefly describe Gibbs sampling for finite mixture
models here as it is more closely related to the contributions of this work.

Recall the probabilistic model of a finite Gaussian mixture model with conjugate
priors from Equation (2.3). In order to use the Gibbs sampling procedure to perform
inference, we must first determine the posterior distribution of all the unknown vari-
ables of the model. Applying Bayes’s rule and conditioning on the observed data,
we see that the posterior is proportional to the joint distribution given by Equation
(2.4). The conditional distribution of the component indicators ¢, the component

parameters 6, and the weight vector 7 can then be derived from this. Let 7=, 8",
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and c'~! be the value of the parameters for the current iteration of the Gibbs sampler.

Details of the update steps for the next iteration, ¢, are given as follows:

To update c: draw new cluster assignments for every observation ¢ by computing
the probabilities of choosing a cluster k for all £k = 1,..., K. The conditional

probabilities for ¢; are given by
P(c = k|c_'i, X, w70 a, o) ox W,f;’l (X,-|0};’1), (2.5)
where ¢™ is the collection of cluster indicators without observation i.

To update 7: compute the number of observations assigned to each cluster and use
these to update the parameters of the distribution over the mixing proportion of
the model. Write n}, = Zf\;l 1{c! = k} for the number of observations assigned

to component k at iteration ¢. Then,

P(r'|X,c', 0", a,0y) x Dir(n} +a/K,... nt +a/K). (2.6)

To update 0: estimate the new mean for component & by sampling from (2.7) for all
k=1,..., K. Equation (2.7) suggests that the conditional posterior probability

of cluster k, 0, only depends on observations that are assigned to k.

P(0;|X ¢!, ., 00) oc NIW(0i[0p) [] N (Xil61) (2.7)
{i:ci=k}

Since NIW is the conjugate of the multivariate Gaussian distribution, the con-

ditional distribution of the parameter update of 6, still belongs to NIW.

Each iteration of the Gibbs sampler alternates between sampling @, ¢, and 7 from
their conditional distribution given in equations (2.7), (2.5), and (2.6), respectively.
The process is repeated until the required number of samples have been generated.
Upon convergence of this MCMC procedure, the distribution of the draws produced by
the Gibbs sampler for the individual model parameters will approximate the posterior

distribution of the associated variable.



11

2.4 Dirichlet process mixture models (DPMM)

The finite mixture models described previously require setting the number of
components K. When K is unknown, practitioners usually search over a range of
values, say between 5 to 10, before implementing some model selection criteria (AIC,
BIC) to determine the final K. The “elbow” finding technique (Thorndike, 1953) is
another popular method designed to help practitioners to determine K, where an
evaluation metric (i.e. sum of squared errors) is chosen, and its value is computed
across a wide range of k. One can then plot the value of the evaluation metric
against its corresponding k. The appropriate K is the k£ such that the value of the
metric at k sits at the “elbow” of the graph, where the marginal gain of an additional
component is deemed insignificant. This approach can be computationally expensive
as parameter estimations are done on a variety of different k. Furthermore, it adds
another predefined variable to the problem, which is the range of k.

The above techniques can also be inappropriate because oftentimes the number
of components in a mixture model grows as new data are observed. A Bayesian
nonparametric approach to this problem is to set K equal to infinity, which allows
K to flexibly grow and adjust with the size of the data. In our example of the
finite Gaussian mixture model given by Equation (2.3), if we take the limit of K to
infinity, the Dirichlet prior over  becomes the Dirichlet Process prior (Teh, 2010;
Ferguson, 1973). Placing a Dirichlet Process prior over the mixing component enables
the mixture model to have infinitely many clusters, hence the name infinite mixture
models or nonparametric mixture models. Applications to DPMM includes: density
modeling using mixture models, clustering (Dahl, 2006), classification (da Silva, 2007),
haplotype inference in bioinformatics (Xing et al., 2007), topic modeling of documents
in information retrieval (Blei and Lafferty, 2009), recommendation systems (Gong
et al., 2015), and many others. We focus on a particular infinite mixture model
called the Dirichlet Process mixtures of Gaussians (Lo, 1984; Escobar and West,
1995; Rasmussen, 2000).
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Written as DP(«, Gy), the Dirichlet process is a stochastic process that describes
a distribution over probability measures on O. It is parameterized by a base distri-
bution Gy (which is some probability distribution) and a real-valued concentration
parameter «. For DP mixtures of Gaussians, the base measure G is typically a
Normal-Inverse-Wishart distribution. A sample from a DP is an infinite component
discrete probability distribution (Figure 2.2) given over the parameter 6 = (u, ).
Equation (2.8) provides the generative process of the Dirichlet Process mixtures of

Gaussians. The graphical model of this process is given in Figure 2.2.

GlOé, GQ ~ DP(C\{, Go)
Xil0; = {pi, i} ~ N (Xl i, %) (2.8)

In the next section, we review in more detail the properties of the Dirichlet Process
prior, provide descriptions of the different representations, and present the generative

process of the infinite mixture models associated with the different representations.

2.4.1 Dirichlet processes

Consider the Dirichlet Process, DP(a, Gy). Random draws from a Dirichlet Pro-
cess are discrete probability measures consisting of locations and their weights (Figure
2.2). The concentration parameter o determines the sparsity of the location of the
draws, with smaller values of « yielding few locations with large weights, and the
remaining majority of locations with small weights. For a probability distribution
over a random measure G to be considered as a DP, it must satisfy the following

condition. Consider any finite partition Ay, ..., Ax of ©; GG is distributed according

to DP(a, Gy) if

(G(Al), G(Ag), ey G(AK)) ~ Dir(aGo(Al), OéGQ(AQ), e ,OéGQ(AK>). (29)
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T
| | | | |
0, ®, 0, 0,

Figure 2.2.: Graphical representation of Dirichlet Process mixtures of Gaussian (top).
Samples from a DP with base measure Gy (blue curve) from a standard Normal

distribution.

This condition suggests that the marginal distribution of a DP follows a Dirichlet
distribution, with parameters involving the product of a and a projection of the base

measure into the separate segments. Several properties follow this condition:
1. E[G(A)] = Go(A) for all A,

2. Var[G(A)] = w for all A,

3. As a — 00,G(A) = Go(A) for all A.

The second property indicates that the variance is inversely related to the concen-
tration or strength parameter a. Greater « yields denser locations, leading to a lower
variance in the mapping of G onto any A. On the other hand, if a — 0, G consists

of a single atom with a weight of 1 and location drawn from Gj. It is important to
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note that the third property does not imply that GG converges in distribution to G as
a — 00. This is due to the fact that draws from a DP form a discrete distribution,
even if Gy is a continuous function (Teh, 2010).

Let 61,...,60, € © be draws from G ~ DP(a,Gy) and A;,..., Ax be a finite
partition of ©. We can determine the number of realizations that belong in each
partition Ay, denoting this by ng; that is, n, = ZZN I4,(0;), where I4, (.) is an
indicator function for partition A;. By the property of the marginal distribution of
the DP in Equation (2.9) and the conjugacy between a Dirichlet distribution and a

multinomial distribution, we have:

(G(A1),G(As),...,G(AK))|(01,...,0,) ~ Dir(aGo(Ay) +n1,...,aGo(Ak) + ng).
(2.10)
It follows that the posterior must also be a DP with parameters that are a function
of the number of realizations in each partition. After some reparameterization, the

posterior of the DP becomes:

(G(Ay), G(As), ..., G(AK))|(0y,. .., 0,) ~ DP (a +n, = j‘_ —Go+ — j_ - 22:1(91-)

(2.11)
To sample a random probability distribution GG that satisfies the properties described
above, we can follow the stick-breaking scheme introduced in Sethuraman (1994).
This samples G' through the use of a Beta distribution, to provide the weight of
each point drawn from the base distribution GGy. Observations X can then be drawn
from G. It is also possible to sample observations from G directly without having to
simulate GG. This scheme is described in other constructions of the Dirichlet Process,
specifically the Chinese Restaurant Process (Blackwell et al., 1973). Both of these

techniques are used within this dissertation.
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Stick-breaking construction

The stick-breaking construction uses the discreteness property of the DP to rep-
resent the random measure GG as the sum of independent sequences of atomic masses

as follows: -
G:Zﬂ-k5¢k7 szﬁkn(l_/ﬁz) (212)
k=1 i=1

The sequence of independent random variables ()22, and (¢x)72, are distributed
as:

ﬁk’Oéo, Go ~ Beta(l, Oéo) Qbk‘Oéo, G() ~ Go. (213)

It can be shown that > 7, m = 1 almost surely. Notationally, the distribution

over the countable sequence of weights 7 is usually referred to as w ~ GEM(«y)
after Griffiths, Engen, and McCloskey (Pitman, 2002). We can then rewrite the DP

mixture of Gaussian model of Equation (2.3) as:

7|y ~ GEM(1, ap)
c; = k|m ~ my
0r|00 ~ Gy
Xilei =k, 0 ~ N(X;|pg, Zi,). (2.14)

Note that the observations are conditionally independent given the class indicator c
and the component parameters 8. Due to the decreasing nature of the sequence of
weights in this representation, it is possible to create a truncated approximation of
the DP by specifying the number of components, K. Our models in the first part of

this dissertation truncate the number of components at K = 50.

The Chinese Restaurant Process

Another way of simulating observation X from a DP is through the Chinese
Restaurant Process (CRP) (Pitman, 1995). Consider a restaurant with an infinite

number of tables with one dish per table. In this representation, each customer is



16

the observation, X;, generated by the mixture model. The tables are the components
or clusters, and the dish on the table is the value of the parameter shared by obser-
vations at that table. The first customer enters and picks a table randomly. This is
the cluster with parameter #; that observation 1 belongs to (¢; = 1). The customer
takes a value from a Gaussian with parameter 61, X; ~ N (X;|6;). The second cus-
tomer who comes in has two choices: join the table occupied by the first customer
(with probability of HLQ), or pick a new table (with probability %), where o is a
concentration parameter of the process. Having picked a table (cluster), the second
customer takes a value of X, from a Gaussian with the parameter at the chosen table
(cluster).
In the same fashion, the (n+1)% customer will pick an empty table with probability
a

—= and join an occupied table ¢ with probability

Ne

n+aoa

, where n, is the number of
customers (or equivalently, observations) that are in table ¢, and n is the total number
of customers at the restaurant. When a customer picks an occupied table, they share
the dish (component parameter) that is already available at that table. On the other
hand, if a customer chooses a new table, then a new dish (parameter) must be selected
for that table. A new dish for an empty table is drawn from the base distribution Gj.

The (n + 1)* observation’s cluster parameter is distributed as:

K+
1
6n+1|91:n ~ a——}-n < GQ + an%;) y (215)

=1
with its value following X, .1 ~ N (X,11]60,+1). The CRP is invariant under permu-
tations; this is formally known as exchangeability. Additionally, the seating arrange-
ments across tables in the Chinese Restaurant Process forms a partition of customers.
Any permutations of these partitions with an identical number of customers in each
table will have the same probability. The expected number of occupied tables for n
customers is given by O(alogn). The next section discusses how this representation

leads to the inference techniques of DPMM.
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2.5 MCMC methods for DPMM

Markov chain Monte Carlo sampling is a family of algorithms to simulate draws
from some complex distribution (Gamerman and Lopes, 2006; Gilks et al., 1995;
Brooks et al., 2011). Given data assumed to be generated according to a proposed
Bayesian model, samples from the posterior distribution of the parameters are of
interest. As an example, in the finite mixture model setting given by Equation (2.3),
samples from the posterior distribution of @, ¢, and 7 given the observed data X
can be used to summarize the entire model. For more complex models, it may be
infeasible or computationally inefficient to sample directly from the posterior density.
In such cases, MCMC methods are used to simulate these samples.

Samples from an MCMC procedure are a sequence of random variables satisfy-
ing the Markov property, whereby each random variable depends only on the last
preceeding value in the sequence. Additionally, these sequences must be constructed
such that the chain converges to the posterior distribution. Through this process,
the chain is able to improve its approximation of the target density, and for a long
enough sequence, the equilibrium distribution of the chain is approximately the tar-
geted posterior distribution.

This section looks at a specific type of MCMC method called Gibbs sampling
(Casella and George (1992), Smith and Roberts (1993)). Thus, the update step at
iteration ¢ for 6; is conditional on components that have already been updated at ¢,
as well as on other components that have yet to be updated at iteration ¢, still having
values from iteration ¢ — 1.

The main reference on Markov chain methods to estimate the posterior distribu-
tion of a DPMM is given by Neal (2000). This section reviews the general Gibbs sam-
pling algorithm for DP mixture models for both conjugate priors and non-conjugate
priors. These algorithms assume different representations of the DP, such as the CRP
and the Stick-breaking prior. The Gibbs sampling procedure with the Stick-breaking

prior is implemented in the development of the first part of this dissertation, while
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the non-conjugate Gibbs sampler is utilized for inference on a CRP-based DPMM of
the tumor contamination problem.

We first discuss the Gibbs sampler for the CRP with a conjugate prior. This
will provide a basic foundation to a more complicated setting such as the use of a

non-conjugate prior, which we implement in this work.

Gibbs sampling based on the Chinese Restaurant Process

The exchangeability property of the CRP can be used to treat every observation
as the last of n observations. Treating observation ¢ as the last observation yields the

following conditional distribution for its class assignment:
P(c; = k|lc™, X,0) < P(X;|lc; = k,c™,0)P(c; = k|c™), (2.16)
where ¢™ is the collection of cluster indicators for every observations outside of

observation i. Equation (2.15) provides the expression for the second term under the

CRP. Let Gy be NIW(6y). Then, combining with the likelihood of observation X; we

get:
b N(XG|6r), for seen k
P(c; = ke, X;,0) = ara-1 (Xil6k) (2.17)
bn—i—(;—l J N (X;]0,)NIW (0;|60)d6,  for unseen k,

where n is the total number of observations, n_; is the number of observations in
component k outside of ¢, and b is the appropriate normalizing constant such that the
equation is a proper density distribution. When an unseen k is sampled for a new c¢;,

0., is drawn from the posterior distribution of #.,. In this example,

0.1 X; ~ N(X;|0., ) NIW (6,,]00). (2.18)
Given all component memberships, we can now sample from the posterior distribution
of 8. The component parameter for cluster k, 6;, depends only on observations in k.
Conjugacy leads to a simple closed form solution to the conditional distribution:

Ok| X, i ~ NIW(6160) [] N(Xil6k), (2.19)
{ieCk}
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where C/, is the collection of the index of observations in cluster k, and X is the
collection of observations in cluster k. By conjugacy, Equation (2.19) is still NIW.
The full algorithm is given in Algorithm 1 (Algorithm 2 in Neal (2000)).

Algorithm 1: Gibbs sampling with CRP prior and latent state
Input: Given 0 and c of the current state of the Markov chain

1 fori=1,...,ndo
2 Ifn_;., =0, remove 0., from the state;
3 Draw a new ¢; from Equation (2.17);

4 If the new n_;., = 0, draw 0., from Equation (2.18).
5 end

6 for k € {c1,...,¢,} do

7 Draw a new value for 6, from Equation (2.19)

s end

9 Repeat

Gibbs sampling based on the truncated Stick-breaking representation

The CRP-based Gibbs sampler relies on the full conditional distribution P(c¢;|c—;, X),
which results in a sampler that updates one coordinate at a time. This can result
in slow mixing and is inefficient as the total number of observations grows larger.
In particular, the sampler can get stuck at certain values of ¢;, and may take many
iterations to break the pattern. These issues can be avoided by using a truncated
stick-breaking prior which reduces the model to a finite-dimensional problem. The
truncation of the prior into finite dimensionality allows blocks of parameters to be up-
dated at the same time, giving rise to its name, the blocked Gibbs sampler (Ishwaran
and James, 2001).

This Gibbs sampler iteratively samples from the conditional distributions of the

variables 0,c and . Recall that GEM is the prior over the weights described in
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Section 2.4.1. To derive the conditional posterior distributions for ¢, 8,7, we first
determine its joint probability distribution, which is given by:
K N
P(X, 7,0, clag, 6y) = GEM(m|ag) [ [ NIW (6,165) | [ 7. N (Xil60). (2.20)
k=1 i=1
Here K is the total number of components allowed by the stick-breaking prior. To

update the parameters of the model, we iteratively sample from its conditional dis-

tribution given as follows:

1. The conditional distribution for the mixing proportion 7r:

m=V and mm=01-VHA-Vy)...(1=V; )V, fork=2...,K—1,

(2.21)
where
K
Vk* ~ Beta <1 + Mk,Oéo + Z Ml)
I=k+1
for k=1,..., K —1, and M, is the total number of ¢;s that equal to k.
2. The conditional distributions for c:
P(c; = kle™, X, m,0, aq,00) o< T, N(X;i|0k). (2.22)

Conditioned on 7r, we can update all ¢;s independently. Recall that in the CRP,
this update step is done sequentially.

3. The conditional distribution of the component parameter 6:

P(6k|c, X, 7,04, 0, 60) o< NIW(6]6p) [ [ MV (Xi16%), (2.23)

1€C
where C}, are the index of all observations in the k™ cluster.
Gibbs sampling involving non-conjugate priors

The algorithms in Section 2.5 can be challenging to implement when Gq is not

a conjugate prior for 6, as Equation (2.17) would often involve intractable integrals.
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One way to get around this problem is by including an auxiliary parameter tem-
porarily during the update process. When updating ¢;, m auxiliary components are
introduced with parameters drawn from Gj. If observation i is not associated with
these auxiliary components at the end of the update step, the m parameter values are
discarded, and new ones are to be drawn at the update step of the next observation.

The use of auxiliary variables is most useful for cases where it is more feasible to
update with respect to the joint distribution rather than the marginal. Given two
random variables = and y, our goal is to sample from p(z) which involves evaluating
intractable integrals. We can instead sample from another distribution p(z,y) in
which the marginal with respect to x is p(z). Values of y are drawn from p(y|z), and
then parameter updates are performed on p(zx,y), before samples of y are discarded.
As long as p(z) is the marginal of x under p(z,y), this process will converge to p(x).

Let k= be the total number of non-empty components and h = k= + m. By
using the auxiliary variable trick described above, the conditional cluster assignment

of Equation 2.5 becomes

bni_ojle(Xiwk)? for 1 <k <k~
P(Ci = ]{7|C_1:7X7;,61,...’9h) — (224>

b-2L" N(X;16,), for k= < k < h.

n+a—1

Note that now the conditional distribution do not involve any integration. The com-
plete update process is given by Algorithm 2.24. The MCMC sampler of our proposed
model for estimating tumor contamination involves a non-conjugate prior over the
parameters of the components. The algorithm will be discussed with more detail in

Chapter 8.

2.6 Summary

In this chapter, we reviewed mixture models, the main type of model used through-
out this work. We started by discussing the finite mixture model, presented a concrete
example of the model, and provided its MCMC algorithm in the Bayesian setting.

Then we moved to the more complex setting of infinite mixture models. We reviewed
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the Dirichlet Process prior, described its properties and its two representations: the
stick-breaking construction and the Chinese Restaurant Process. We then discussed
how the Dirichlet Process is used in the mixture model setting to become what is
commmonly known as the Dirichlet Process Mixture Models (DPMM). Lastly, we re-
viewed the MCMC techniques often utilized to perform posterior inference for DPMM.
These techniques provide the key tools for the majority of the work in this disserta-

tion.

Algorithm 2: Gibbs sampling for non-conjugate priors

Input: Given ¢ = (¢1,...,¢,) and @ = (0 : k € {c1,...,c,}) of the current
state of the Markov chain

1 fori=1,...,ndo

2 Set k™ as the number of distinct values in c and h = k=~ +m
3 if ¢; = ¢; for some j # i then

4 Draw values of 0, from G for which k&~ < k <h

5 if ¢; # ¢; for all j # i then

6 Label ¢; = k= + 1;

7 Draw values of 0, from G for which k= +1 < k < h

8 Draw a new value for ¢; € {1,...,h} from Equation (2.24)

9 end

10 for k € {¢1,...,¢,} do

11 Draw a new value from 6| X;
12 end

13 Repeat
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3. FLEXIBLE MIXTURE MODELS ON CONSTRAINED SPACES
3.1 Introduction

This chapter introduces the first problem this dissertation addresses, nonpara-
metric mixture modeling on constrained spaces. We review the rejection sampling
algorithm and describe how this algorithm is used to model observations lying within
a constrained space. We introduce two mixture models, truncated miztures of Gaus-
sians (TMoG) and miztures of truncated Gaussians (MoTG), and we discuss and
illustrate their data generating processes. This chapter provides the modeling frame-

work within which our algorithmic contributions and extensions are applied.

3.2 Rejection sampling

We first describe the rejection sampling (Gilks and Wild, 1992), or the accept-
reject, algorithm that is used as the main building block of the algorithms presented
in this dissertation. Suppose we are interested in sampling from a distribution p(z)
on some space of . Assume that directly sampling from p is infeasible due to the
complexity of the distribution. Suppose there exists another distribution ¢ which we
already know how to sample from that satisfies % < M for a known constant M.
This ensures that the support of p is a subset of the support of ¢, otherwise, there
would be regions of p that are never sampled by ¢. The density p will be referred to as

the “target density”, and ¢ will be the “proposal density.” We can then draw proposals

Under this process, all

x from ¢ and accept or reject x with a probability of -2 E]f)

accepted draws will be distributed as p. The rejection sampling algorithm can be

summarized as follows:

1. Sample x from q.
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2. With probability 1\5225)7 accept  as a draw from p. Otherwise, return to 1.

Observe that if p(z) o lsq(z), where Tg(.) is an indicator function for S, then pro-
posals from ¢ inside S are always accepted and are always rejected from outside S.
This process can be repeated until the desired number of draws from p is attained.
The constant M controls the efficiency of the algorithm and a large value can cause
the rejections of many samples, leading to inefficiencies in the process. One important
property of the rejection sampling algorithm is that the number of draws needed from
the candidate density ¢ before acceptance is a geometric random variable with success

probability %

3.3 Rejection sampling on complex spatial domains

Chicago Area

Figure 3.1.: Data lying on constrained subsets of Euclidean space. The left pane
shows synthetic observations lying in the space S specified by the solid black line.
The right pane shows the location of homicide events in the city of Chicago. Here,

the city limit defines the space S.

Given the above definition of rejection sampling, we can translate the idea to
model observations on a more complex spatial space. Consider observations X =

{z1,...,z,} lying on a subset S of a Euclidean space X. The set S might be the set of
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Figure 3.2.: An illustration of edge effects for observations distributed as N(0,0.1)
truncated to [0, 1]. Shown in red is the posterior predictive density of the truncated

density when estimated with a vanila mixture of Gaussians with no consideration of

S = [0, 1]. Shown in blue is the real density of a truncated N'(0,0.1) in S.

positive reals, the unit sphere, or something more interesting like the city of Chicago.
Examples of such observations could be crime events in Chicago or coyote sightings in
Rhode Island where the observations are a 2-dimensional vector consisting of latitudes
and longitudes representing the location of the events. We show a simulated and a
real example in Figure 3.1.

We model the observations as i.i.d. draws from a probability distribution p(z)
whose support equals S. Our goal is to estimate p(z) from the observations X, and
to do so, we will take a Bayesian approach, placing a prior over p(z) and studying
the resulting posterior distribution. Unfortunately, the requirement that p(z) be
restricted to S raises challenges for both model specification as well as computation.
For many interesting settings, the probability density p(z) will involve an integral
over S, and will therefore be intractable for all but simple choices of S. Posterior
inference is consequently a doubly-intractable problem (Murray et al., 2006).

Note that it is important to account for edge effects in any modeling approach.

Typically, probability density inside the constraint will be smooth. However, the
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absence of observations outside the constraint set will result in the probability density
at the boundaries being underestimated (Figure 3.2). For a simple constraint set like
the unit square, edge effects can be avoided by changing the parametric family used
for the mixture components, (e.g. in Kottas and Sanso (2007) and Matechou et al.
(2017), the authors used nonparametric mixtures of beta or gamma distributions).
However, such models cannot easily model correlation structure in multi-dimensional
data, something that is natural to Gaussian mixture models. Another approach is
to transform the data to be unconstrained, and then model the transformed data
with a mixture of Gaussians. This can suffer from edge-effects that are not easy to
characterize. Importantly, both approaches are also not applicable to more complex
constraint sets, like the city of Chicago (Figure 3.1).

Our approach is to regard the distribution p(x) as a restriction and renormalization
on S of some other distribution ¢(x) on the ambient space X. Thus, p(z) < Is(z)q(x),
where Tg(+) is the indicator function for S, and ¢(z) is a standard distribution, chosen
such that MCMC posterior sampling techniques already exist. Defining p(z) this
way allows sharp drops in the probability density from inside to outside S and avoids
undesirable smoothing effects across the boundaries. We restrict ourselves to subsets
having positive probability under ¢(x) and, in practice, to subsets of X having positive
Lebesgue measure.

Observe that the probability p(z) has an intractable normalizing constant given

by:
z = /Sq(x)dx.

Despite this, it is easy to simulate from p(z) by rejection sampling with an acceptance
probability of 1 for inside S and 0 outside. Thus, the rejection sampling algorithm

from Section 3.2 now becomes:
1. Propose x from q

2. Accept z if z € S, otherwise, go to 1.
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At a high level, our strategy is to specify a flexible, possibly nonparametric prior
over the distribution ¢(x) and thus implicitly over p(x). Placing a prior over the
unconstrained distribution ¢(x), allows us to avail of standard Bayesian modeling
tools. We treat the observations X as the outcome of a rejection sampling algorithm,

where we propose from ¢(x) and discard samples falling outside of S.

3.4 Mixture modeling on constrained spaces

One characteristic of data given in the above examples is that X is often not evenly
distributed throughout the domain S. For instance, some areas of Rhode island can
experience more coyote sightings because it is less densely populated or are near their
food sources and like any other city, there are regions of Chicago where crime rates
are higher. A common approach to model such data is through the use of mixture
models, as described in Chapter 2. Mixture models allow flexibility in estimating more
complex densities, especially those with multimodality. Unfortunately, specifying a
mixture model on a complex domain like in Figure 3.1 is not easy. We thus take
the rejection sampling approach explained previously. More concretely, p(x) will
be a mixture model truncated within S, and ¢(x) will be a proposal distribution
on the whole space. Proposals within S are accepted with probability of 1, and
those that are outside are rejected. We parametrize both the constrained density of
interest, as well as the proposal density, by 6, writing them respectively as ¢(z|0)
and p(z]0) x 1s(z)q(x|@). The proposal density g(x|6) is a mixture model, and the
parameter 6 represents the mixing proportions 7, as well as the component parameters
S, where, in the case of Gaussians, § = (u, ).

Following Chapter 2, in a Bayesian setting, it is typical to place a Dirichlet prior
over 7, and in nonparametric setting, a DP prior over 7. When working with a mixture
of Gaussians, we would place a Normal-Inverse-Wishart (NIW) prior over the (u, X)
pairs. Let 6y be the hyperparameter for the prior over the component parameters and

ap be the hyperparameter for the distribution over weights. We write the latter as
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Dir, though it could be either the Dirichlet or a stick-breaking prior. Then, for the

case of Gaussian likelihoods, the prior over parameters can be written as follows:

m|lag ~ Dir(ag),  (pk, 2k)|00 ~ NIW(6p), k=1,2,---. (3.1)

3.4.1 Truncated Mixture of Gaussians (TMoG)

In the first approach we consider, our proposal distribution ¢(z|f) is a simple
unconstrained mixture model. Assume K components, each with its own mean py €

R? and covariance matrix 3; € R?*?. Then the proposal has the form

q(x|0) = mN (], ). (3.2)

The parameter 6 consists of the mixing distribution 7 and the K component param-
eters {(p1,21),---, (uK,Xk)}. In nonparametric settings with a Dirichlet process
prior, K is infinity, and the proposal distribution becomes a Dirichlet process mix-
ture of Gaussians. We assume our constraint set S is some subset of R? with nonzero
Lebesgue measure, so that the observations follow a density equal to ¢(z|f), truncated
to S and renormalized. We call this distribution a truncated mixture of Gaussians
(TMoG):

Ls(a) Sy TN (], %)
Jsda Sy N (], Si)

To simulate observations from this model, we make proposals from equation (3.2) until

p(x|f) =

(3.3)

one lies in S. We note that since proposals are made independently from the mixture
distribution of Equation (3.2), rejected proposals preceding a particular observation
need not belong to the same cluster. Figure 3.3 describes the generative process of
this model in more detail. The full model with the stick-breaking prior is given by
the following:

m|lag ~ GEM(1, )
(tr, Bx) |00 ~ NIW (o), k=1,2,...

iy ¢ = K|, { (g Z) JiZy ~ TMOG({ (1, 3) 12, 70) (3-4)
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Figure 3.3.: The generative process of TMoG starts by selecting a cluster and sam-
pling a single draw from it. If this falls outside S (the solid line), again select a
cluster, and sample another draw from that cluster. The process is repeated until a
cluster component produces an accepted draw (left). When the desired number of
accepted draws is reached, the set of accepted draws is distributed as TMoG (right).
Dashed lines represent cluster likelihoods; dots and crosses are accepted and rejected

proposals, respectively.

3.4.2 Mixtures of Truncated Gaussians (MoTG)

In the previous section, we modeled an unknown density on a constrained space
with a truncated mixture model (in particular, a truncated mixture of Gaussians).
In this section, we take a second approach, modeling the density as a mizture of
truncated distributions (for concreteness, a mixture of truncated Gaussians). For a
subset S of a d-dimensional Euclidean space, write Ns(z|u, X) for a Gaussian with

mean p and covariance Y restricted to that subset:

Na(alp, 3) = ]}S( )xﬁ'“’ >). (3.5)

A mixture of K truncated Gaussians with parameters {(u1,%1),. .., (ux, Xx)} and
with mixing proportion 7 has probability density given by:

p(z]) = Zwk/\/g e, ). (3.6)
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Unlike the truncated mixture of Gaussians which involves a single intractable nor-
malization constant (Equation (3.2)), the equations above show that the mixture of
truncated Gaussian involves K (albeit simpler) intractable normalization constants.
As before, we place Dirichlet/stick-breaking priors on 7 and a conjugate Normal-
Inverse-Wishart prior on the components parameters (g, ).

The generative process then follows:

W‘ao ~ Dir(ag), (uk, Ek)|¢90 ~ NIW(90>, k= 1, e K,

Xileo, { (e, Zr) ey ~ Ns(milpte;, Be,),  cilm ~ Multinomial(r), i=1,...,N.

For mixture models with the stick-breaking construction, we change the distribution
of the weight vector to GEM(1, ay).

Having chosen the cluster ¢; of observation ¢ from the distribution 7, the challenge
now is to sample from the corresponding truncated normal distribution Ns(z|pe,;, X, )-
To do this, we again use rejection sampling, now proposing from the unconstrained
Gaussian distribution N (z|u.,, X, ) until acceptance. Figure 3.4 outlines this process

in more detail.

3.5 Comparison between TMoG and MoTG

We have described two models for representing data on a constrained space. We
showed how both models have different data-generating mechanisms, but both can be
used to represent the same observed data within a bounded region. In this section,
we will explore in more detail the relationship of the two models. First we will look at
a setting where the value of the component parameters are the same across the two
models, in that §IMoG = GMOTG We show there exist component weights that make
the two densities equal. Then, we show by means of a simulation and a toy example
that if both the weights and the component parameters are the same, the resulting

probability density will be different.
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Figure 3.4.: The generative process of MoTG starts by picking a cluster and sampling
from the associated unconstrained distribution until an acceptance (left). This is
repeated until the desired number of acceptances are made (right). The set of all
accepted draws are distributed as MoTG on S. The solid line is the constraint set S,
the dashed lines represent the cluster components; dots and crosses are accepted and

rejected proposals, respectively.

Set OMoTG = gIMoG  Denote w as the weights of the components in a MoTG and
w as the weights of the components in a TMoG. Given x, an observation in S, the
probability of x under the two models are given by

wl./\f(x|91) Ly N (alfk) wK./\/'(x\HK)

0 MoTG __
p(]6,w) fs (x|61)dx Js N (x|6)dz

(3.7)

and,

Jo Sop N ()0 do Jo Sop N ()0 ) d

We can find a set of weights such that the value of Equation (3.8) equals that of

($|0 w)TMoG

(3.8)

Equation (3.7) for observation x. Under this assumption, the relationship between

the weights is given by

0))
o= DN @O (3.9)

fs Zk:l N (2|0r)dz
Additionally, we visually compare the probability density of both models through

simulation. Setting K = 50, we first sample component weights from a Dirichlet
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Figure 3.5.: Probability densities of MoTG (blue) and TMoG (red) for points in
[0, 1] through random simulation from the prior. The shaded area represents the area

between the first and third quartiles of the distribution.

distribution with parameter 1 and component parameters from a Normal-Inverse-
Gamma with parameters o = 0, \g = 2,9 = 2, and Fy = 0.05. We computed the
values of Equation (3.7) and Equation (3.8) for z € [0,1]. By repeating this process
1000 times, we then find the mean, first quartile, and third quartile of the distribution.
Figure 3.5 visualizes our result, which indicates that the two models have different
probability densities.

Lastly, we will show that in a scenario where both the component parameters
and the weights are equal across the two models, the probability densities of the two
functions will differ as well. Suppose we have one-dimensional continuous observations
that lie in D = [0, 1]. For illustration, suppose we model these observations with a
mixture of two Gaussian distributions, A(0,0.1) and N(0.2,0.1). Assume that the
weights given to the first and second Gaussians are w; = }1 and wqy = %, respectively.
The domain D here is simple enough that the analytical solution is easy to compute
with standard numerical integration techniques. Within this setup, we would like to

compute the density of a point in the domain; let this point be x = 0.3. Write w, p,
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and o as the collection of the weights, mean, and standard deviation, respectively.

The analytical solution is given as follows:

For TMoG, we have:

2
o) = Z% LWl @l o) o 198107,

xw? b
plele, g, fD i= 1w2 (|3, 07)dw

Similarly, for MoTG, we get:

I|Hu Uz)
P(zlw, p, o Z W“m)dx = 1.39831.

The above results suggest that if the component weights, mean, and standard
deviation are the same across the two models, their analytical solutions are different.
In our simulation studies in Chapter 5, we show that these differences are greater in
more complex constraints, compared to that of simple contraints, such as the unit

square seen in this example.

3.6 Summary

In this chapter, we briefly reviewed the rejection sampling method and described
how this mechanism can be translated to modeling observations on a constrained
space. We proposed two models, truncated mixtures of Gaussians (TMoG) and mix-
tures of truncated Gaussians (MoTG), and illustrated their data generating processes.
We concluded this chapter by comparing the two models via an analytical toy example
and showed that they differ. In the next chapter, we discuss the MCMC algorithms,

specifically, the Gibbs sampling methods associated with each of these models.
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4. MCMC FOR MIXTURE MODELS ON CONSTRAINED SPACES
4.1 Introduction

This chapter provides the main computational algorithms for the two models we
introduced in Chapter 3. We review a data augmentation scheme to impute rejected
samplers given observations from a rejection sampling method. This was proposed
in Beskos et al. (2006) and Rao et al. (2016). We show how this mechanism can
be incorporated in the original Gibbs sampling scheme for infinite mixture models
described in Chapter 2. We described the exact MCMC schemes for the two models
that target the exact posterior over the distribution ¢ and, through this, the poste-
rior distribution over p. We present the joint distribution as well as the conditional
distributions for each update step of the Gibbs sampler. In addition, we introduce
and justify a modification to the original sampler that aims to speed-up computation,

reduce variance, and improve mixing.

4.2 Data augmentation for rejection sampling

We first describe a general data augmentation scheme for MCMC inference on
models with truncation described in Chapter 3. Recall that observations X were
accepted proposals from the proposal distribution ¢ and a prior over ¢q. Given X, we
wish to sample from the posterior distribution over ¢(x), implicit in which is all infor-
mation contained in the posterior over p(z). While ¢(z) is a simpler object than p(z),
its conditional distribution given the observations X is still not easy to sample from.
In order to do this, we recognize that if we augment the observations X with the
rejected proposals from ¢(x), then conditional inference over ¢(z) is straightforward.

In particular, the rejected proposals (call these Y) together with the observations
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X form i.i.d. samples from the unconstrained model q. This allows the use of stan-
dard MCMC methods for posterior inference over ¢, and imputing Y eliminates any
intractable integrals arising from the constraint set S.

The question now is how to impute the rejected proposals Y. In Rao et al.
(2016), it was shown that the set of rejected samples preceding each observation are
exchangeable across different observations. Consequently, in order to reconstruct the
rejected samples for any observation z, one merely has to sample a new observation
from the rejection sampler on S and associate all rejected samples to x. Concretely,
this involves simulating from the proposal distribution ¢(x) until an acceptance and,
after discarding the accepted sample, assigning the remainder to observation x. This
idea was first proposed by Beskos et al. (2006) in the specific setting of parameter
inference for stochastic differential equations. Repeating this for each observation in
the dataset X allows all discarded samples to be imputed.

Recall the model described in Section 3.4, where we are interested in the posterior
of the parameter  given observations X, p(6|X). To sample from this distribution,
we simulate from the distribution p(, Y| X), which has p(6|X) as its marginal distri-

bution. We sample on this augmented space by repeating two Gibbs steps:
1. Simulate the rejected proposals Y given the parameter 6

2. Update the parameter 6 given the rejected samples Y, targeting the density
q(01X,Y).

Algorithm 3 provides the general data augmentation scheme. A proof of its cor-
rectness can be found in Rao et al. (2016). The next sections will describe the exact
Gibbs sampling methods based on this data augmentation scheme for both TMoG
and MoTG.
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Algorithm 3: An iteration of MCMC for posterior inference over p(6|X) (Rao

et al., 2016)
Data: The observations X = {z1,...,z,}, and the current parameter values

Result: New parameter value 0

1 for each observation x; do

2 while an accepted sample & has not been drawn do

3 draw y independently from ¢(-|0);

4 end

5 Discard z and treat the preceding rejected proposals as Y;;
6 end

n

7 Gather all the rejected samples, calling them V: Y = (J V;;

=1

8 Update 6 from ¢(0|X,Y) x q(X,Y|0)p(0) using any MCMC kernel, calling the
new value 5;

9 Discard the rejected samples Y

4.3 Gibbs sampling for TMoG

Recall the full TMoG models given by Equation (3.4). Given observations X from
this process, MCMC inference over the parameters involves first imputing the rejected
proposals conditioned on the parameters and then updating the parameters given
these imputed variables. Having updated the parameters, we discard the rejected
samples and repeat the process. We describe the steps of the overall Gibbs sampler

below.

Imputing the rejected proposals Y: To impute the rejected proposals given X
and 0 = (m, u, %), we follow steps 1 to 6 of Algorithm 3, proposing from the
mixture of normals (Equation (3.2)) to generate a pseudo-dataset of the same
size as X, keeping all the rejected proposals generated along the way. Call

these Y, and write R for the total number of elements in Y. Each element y;
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lies outside the constraint set S and is associated with a mixture component
cf from which it was drawn. Write C* = {¢],...,,cy} for the set of cluster
assignments of the imputed proposals. Y and C*, together with X, will be
used to update the parameters 6, as well as the cluster assignments of the

observations (write these as C'= {cy,...,¢,}). The joint probability is

K N
p(X,Y, 7, 1, 2, C,C*|ag, 8y) =Dir(m|ap) H NIW (g, X |60o) H e, N (| ey, B, ) X
k=1 i=1

R

HWC:N(yr|MC:, Ecjﬁ) (41)

r=1

Updating C, 7, and the (g, Xx)’s is now straightforward as described next.

Updating the mixing proportions n: Write n; and m; for the total number of
observations and rejected samples, respectively, in cluster k. These are easily
calculated from C' and C*. For a Dirichlet distribution prior over 7, the Gibbs

conditional over 7w takes the simple form
p(m| X, Y, 0,C,C*, ap, by) = Dir(ny +mq + ag, ... ,ng + mg +ag).  (4.2)

For a nonparametric stick-breaking prior over 7, the conditional update for 7 is
a simple adaptation of standard methodology (such as in Ishwaran and James
(2001)) and is similar to that given in Equation (2.21). Specifically, to update
the mixing proportion when a stick-breaking prior with truncation is used, we

follow

m=Vy and m=01-V")1-=-V)...(01=V )V, fork=2,... . K—1
(4.3)
where

K
V' ~ Beta <1 +np +my, o+ Z (g + ml)> (4.4)
I=k+1

for k = 1,..., K — 1. The key point implied by Equation (4.2) and (4.3)
for any prior over 7 is to include both observations and rejected samples in the

cluster counts.
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Updating the cluster assignments ¢;: Use —i to represent quantities calculated
after excluding observation i. The conditional distribution for ¢;, the cluster

assignment of observation ¢, is then given by
p(Ci = klcﬁi, C*, X, Y, 9, Qp, 60) X WkN(IZLuk, Ek) (45)

Thus, conditioned on 7, all ¢;s can be updated independently. Alternately, one
can also marginalize out m and update ¢;s sequentially. Now, if the ¢;’s follow
a Polya urn/Chinese restaurant process update (Neal, 2000), the conditional
distribution is then similar to that of Equation (2.17). Again, we must consider
both the number of observations as well as the number of rejected proposals at
any cluster, as given by the following:

. nt A+ mION (25|0k), for seen k
P(e; = k|C™,C*, X, Y, 8, a0, 60) (i N ()

oo [ N (2:]10;)NIW (0 |60)d0y,, for unseen k
(4.6)

where 0, = (g, 2k).

Updating the cluster parameters (py, Xx): The conditional distribution for the
cluster parameters depends both on observations and rejected samples assigned
to that cluster. Writing C}, and Cj for the indices of observations and rejected
samples assigned to cluster k, respectively, and 7% for all parameters except

(px, X ), we have

P, Zil07%, X, Y, C g, 60) o< pluk, Silo) [ [ plwiliww So) T porlis Sr)

1€Cy T‘EC;

oc NIW (s, Sil60) [ [ N (@il Se) [T NV @eliaw Zi)-

1€Cy 'I‘GC;

(4.7)

The parameters for all components can be updated independently and with
a conjugate Normal-Inverse-Wishart prior, sampling from this distribution is

easy. We expand the hyperparameters of the NIW to 6y = (uo, Ao, Po, 10)-
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Then, the posterior distribution of the parameters of component k is also a

Normal-Inverse-Wishart distribution with parameters given by the following:

p(,u’w Ek‘eﬁka X7 K Ca o, 90) = NIW(IMka Ek’ﬂna )‘m (I)m l/n) (48)
)\0 + (nk + mk) )\0 + (nk + mk)
Up = Vo + (ng + mg) (4.11)

)\0 + (nk + mk)
Ao + (ng + my)

(2 = p0) (2 — )"

®, =+ S5+

(4.12)

where

_ 1
z:m ZmH—ZyT (4.13)

i€Cy reCy
S= > (m-2=-2" zeXuY. (4.14)
i€{CLUCs}

This completes all update steps by the Gibbs sampler for TMoG.

4.4 Gibbs sampling for MoTG

Recall from Section 3.4.2 that unlike the truncated mixtures of Gaussians model,

in MoTG all rejected samples associated with an observation come from the same

component as that observation. This results in subtle differences in the associated

MCMC sampler, where now rejected proposals of each observation must be imputed in

a cluster-specific manner. Having imputed these, we must update cluster assignments

and parameters, again in a manner slightly different from the TMoG case. As before,

at the end of these updates, we discard the imputed samples and repeat. We describe

the full Gibbs sampling procedure below.

Imputing the rejected proposals Y: Unlike TMoG, where each observation is an

accepted proposal from a mixture of Gaussians, now each observation is an ac-

cepted proposal from the single Gaussian component to which it was initially
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assigned. Accordingly, to impute the rejected proposals for observation x; be-
longing to cluster ¢;, we repeatedly propose from component ¢; until acceptance
and keep all the rejected proposals. We now have to keep track of which rejected
proposals belong to which observation, and we write Y; for the set of rejected
samples preceding observation z;, R; for the cardinality of Y;, and C' for the

collection of all ¢;. The joint probability density is then

K N
p(X,Y, 7,0, Clay, 6y) =Dir(wag) | [ NIW (1, Sil6o) | | pleilm)

k=1 =1
R;
(N($illuciv Eci) HN(yir|:uCﬂ Ecz)) : (415)
r=1

We use this to update the latent variables as described below.

Updating the mixing proportion 7: Write n, for the number of observations as-
signed to component k. The conditional distribution for 7 follows a Dirichlet

distribution:
p(m|X,Y,0,C, ap,0y) < Dir(ny + g, ..., ng + ap). (4.16)

Unlike TMoG, this distribution does not involve the rejected samples at all.
This is because for each observation, a cluster is chosen from 7 only once, with

all rejected proposals assigned to that same component.

For any other prior over 7 (e.g. a Dirichlet process), the conditional update rule
remains unchanged from standard methodology, involving only cluster assign-
ment counts of observations. Thus, when the truncated stick-breaking prior is

used over 7, we update the mixing proportion as follows:

m=Vy and mm=00-V")1-V)...(1=V )V, fork=2... K—1,
(4.17)

where

K
V' ~ Beta (1 +ng, ap+ Z nl)

I=k+1
fork=1,...,K — 1.
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Updating the cluster assignment c¢;: Unlike TMoG, updating ¢; now involves the
rejected proposals asssociated with observation ¢ and has conditional distribu-
tion

R;
plc; = k|C™, X, Y, 0, a0, 00) oc mN (| pr, i) HN(yirmk, Xk). (4.18)

r=1
This is a consequence of the fact that the cluster assignment is made only
once, after which proposals are made from that cluster until acceptance. This
also accounts for the fact that without the rejected proposals, this distribution
would be proportional to mpNs(z;|uk, L) and would involve the intractable
normalization constant of component k. Imputing the rejected proposals avoids
having to calculate this quantity, though now the associated rejected proposals

are transferred along with that observation to a new cluster.

If 7 were marginalized out (e.g. under a Chinese Restaurant Process), the cluster
update rule becomes similar to that of the update equations found in Chapter

2 as follows:

R;
plei = k|C™,C™ X, Y, 0, 0, 00) o 0N (@i, Sk) [ [N Wirlitn, k) (4.19)
r=1
for seen k and
R;
x g / <N<xi|uk,zk>HN(MAM,E,C)) NIW (64|60 )d0y, (4.20)
r=1

for unseen k. Here C™% refers to all rejected proposals except those associated

with <.

Updating the cluster parameters (py, 3;): For the same reason as above, updat-
ing cluster parameters also requires conditioning on the imputed samples. The

conditional distribution is identical to that for TMoG:

Pl Sel07%, XY, C, ag, 0p) oc NIW (g, Si[6o) [ | (N(%Wkazk) 1T N(y|ﬂk72k)> :

i€Cy yey;
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With a Normal-Inverse-Wishart prior for the Gaussian mixture model, sampling

from this distribution is easy. As with TMoG, the posterior distribution is also

a NIW with a slight difference in notation, where now m; = ZieCk R;:
p(,uka zk‘eﬁka X7 Yva Ca Qo, 90) = NIW(/”C’ Zk|:una )‘na (I)m Vn) (421)
A\ _
= 0ko (ng +my) + 2 (4.29)
Ao + (nk + mk) Ao + (nk + mk)
Up = Vo + (ng + mg) (4.24)

0 LI ;) (2 — ),

B, = Dy + S +
0 Ao + (ng +my)

(4.25)
and similarly,
1
i=— () xi—l—Zy)) (4.26)
T+ 11 (ieCk ( yev;

S=> (z—2(z—2)" zue{ruY} (4.27)

1€Cy

This completes the entire Gibbs sampling step for MoTG.

4.5 Reducing MCMC variance

In our experiments, we see that despite their exactness, these MCMC algorithms
come at the cost of a high variance, especially in higher-dimensional settings. At a
high level, this can be attributed to the nonparametric prior over ¢ being too flexible
and placing too much probability mass on proposal distributions ¢ that themselves
place significant probability mass outside of S. The observations X govern how ¢
assigns probability within S, characterizing the distribution p that we care about.
Right outside the boundary of S, the observations X indirectly constrain ¢ because
of prior smoothness assumptions. As we move away from S, the influence of the
observations starts to wane, and the posterior over ¢ reverts back to the prior. In the

part of X-space away from S, the MCMC sampler explores what is effectively the prior
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distribution over ¢ by simulating rejected proposals Y from ¢ and then simulating ¢
from its posterior distribution given these rejections. The resulting coupling between
Y and ¢ can cause the MCMC chain to mix very poorly, and the estimate of the
distribution over ¢ can have large variance.

To understand the mechanics of this more clearly for mixture models, observe
that as the MCMC algorithm explores parameter space, a cluster will occasionally
be produced under which the subset S has low probability. Producing an accepted
proposal from this component can require a large number of rejected proposals. As a
consequence, the MCMC algorithm will experience a slowdown, taking a long time to
move through an MCMC iteration, with the increased number of rejected proposals
also increasing coupling between MCMC iterations. The large number of rejected
samples will start to swamp out the observations X, causing the cluster parameters
to drift away from the observations and S, further exacerbating the issue. The net
effect is longer computation times and larger variances in the MCMC estimates.
Since MoTG proposes from a particular Gaussian component until acceptance (unlike
TMoG, which picks a new component for each proposal), we expect that this effect
is worse for MoTG than TMoG.

An obvious remedy is then to choose the hyperparameters of the nonparametric
prior to concentrate on ¢gs with high probability around S. Setting parameters in this
manner is not easy, however, especially with complex, asymmetric constraint sets
such as those shown in Figure 3.1.

We instead take a more direct approach. At a highlevel, rather than setting the
hyperparameters of the DP prior over ¢, we aim to allow the practitioner to use
fairly default settings. Instead, their judgement will be to set a parameter p € (0, 1),
corresponding to the belief that ¢ is restricted to distributions satisfying ¢(S) = p.
Small values of p imply that ¢ assigns relatively large probability outside S, resulting in
a large number of rejected samples. This is useful when the constraint set S is complex
and one expects significant probability mass at the edges. Values close to one imply

beliefs that the proposal distribution need not be too complex outside. Note that since
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we use a nonparametric prior over ¢, one does not have to be too careful about p. In
fact, we expect that for any setting of p, the posterior is asymptotically consistent
provided a reasonable prior is placed over the variance of the mixture components
(see e.g. Canale and De Blasi (2017)). p however can have a significant impact on
mixing and finite-sample performance. From our experiments, we recommend p = 0.5
as a reasonable default.

Write Q, for the space of probability measures that assign probability p to S.
Working with these as priors over ¢ is closely related to the approach outlined in
Kessler et al. (2015), where the authors are interested in nonparametric Bayesian
priors given specifications of certain marginal distributions; in our setting, we specify
that the marginal probability of S equals p. Following that work, posterior simulation
would have to be approximate, involving kernel density estimates of marginal proba-
bilities under the original prior. Unlike that work which considers general marginal
specifications, we have a simple and specific requirement: any ¢ simulated from the
nonparametric prior (whether TMoG or MoTG) must satisfy ¢(S) = p. We instead
propose a much simpler approximation strategy, one that becomes more accurate as
the number of observations increase. As before, the Gibbs sampler involves three

steps:

Imputing the rejected proposals Y: The fact that ¢(S) = p means that the num-
ber of rejected samples is geometrically distributed with success probability p.
This, and the fact that they are exchangeable (Rao et al., 2016), allows a sim-
ple simulation approach: first sample the number of rejected samples from the
geometric distribution with parameter p, and then use rejection sampling to

sample their locations outside S.

Updating cluster parameters § and weights w: This step presents a challenge,
since we need to update these while satisfying the constraint ¢(S) = p. However,
we observe that for reasonably large datasets, the likelihood allows us to drop

this constraint in the prior without introducing too much error. In particular,
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with n observations, our imputation scheme introduces %n rejected samples.
For large n, standard consistency results for DP mixture models tell us that the
posterior will concentrate around gs that satisfy ¢(S) = p. Since we are really
interested in p(z) o« 1s(x)q(z), any deviation of ¢(S) from p is renormalized out,
and introduces minimal error into our final analyses. Our experiments confirm

this.

Updating cluster assignments C: Having instantiated the proposal distribution
q through its parameters 6 = (5, w), updating the cluster parameters is identical

to corresponding steps in the original TMoG and MoTG samplers.

4.6 Additional simplifications

In the original MCMC samplers, to impute rejected proposals for an observation,
proposals are made until one is accepted. In the previous section, to restrict ourselves
to proposal distributions satisfying ¢(S) = p, we simulate a geometrically distributed
number of rejections, recognizing the added fact that now ¢(S) = p. For a dataset
with n observations, the average number of rejected proposals is %n. For a rea-
sonably large n, the law of large numbers allows us to approximate the number of
rejected samples with its average, avoiding the need for any stochastic simulation and
simplifying the algorithm.

Secondly, in many settings, the practitioner might be conservative choosing p, so
that the number of rejections from the geometric distribution exceeds that produced
by the original algorithm. To avoid this undersirable inefficiency, we suggest a further

simplifications, changing the first step of the Gibbs sampler to:

Imputing the rejected proposals Y: simulate rejected proposals from ¢ outside

S until nkTp or n acceptances are produced, whichever occurs first.

Effectively, we are changing our marginal specification, restricting our nonparametric

prior to ¢’s satisfying ¢(S) > p (instead of the strict equality from before). We repeat
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(MoTG shows a similar result), corresponding to p = 0.5. Shown in the figure are the
mean and +1 standard deviation (as the error bar), of the values for every training

set size.

that changing the marginal specification in this way does not affect the asymptotic
properties of our nonparametric model. For finite number of observations, a small
value of % simplifies computation and improves MCMC mixing. Making this too
small can introduce edge effects as not enough observations are produced outside S,
hurting the ability to create large density values at the boundaries.

In our experiments, we consider different settings of this threshold, setting %
to 0.5, 1, 5, and 50. We refer to the final simplified sampler as a thresholded sam-
pler. Chapter 5 studies the trade-offs involved for different threshold settings and
the performance of the algorithm in terms of time and the predictive likelihood for
various simulation studies. Our experiments suggest a threshold of 1, corresponding
to p = 0.5, is most useful for typical settings.

When updating the cluster parameters in the Gibbs sampling step, our sampler
does not enforce the restriction we placed on the prior of ¢. For this reason, our
thresholded sampler is an approximate MCMC sampler. We argue that the standard

consistency result guarantees a small approximation error with large sample sizes.
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We show this empirically in Figure 4.1 by plotting the Monte Carlo estimates of ¢(S)
as the number of observations is increased. We used the MCMC samples from our
experiments in Section 5.5 to draw observations from the posterior distribution and
calculated the proportion and expected number of draws that are in S. We see that
the mean proportion converges to 0.5 and, consequentially, the expected number of
samples converges to 1, as training set size increases. This is consistent with our
chosen threshold of 1 which corresponds to p = 0.5. This verifies that our sampler,
although an approximation, has small error as long as the data set size is greater than

100.

4.7 Summary

We outlined a data augmentation scheme based on the rejection sampling al-
gorithm and showed how this mechanism can be incorporated in a Gibbs sampler.
We present the conditional distributions for the update steps in the Gibbs sampling
methods with data augmentation that are associated with our two proposed mod-
els, TMoG and MoTG. Additionally, we showed how each sampler can be used in
both finite and infinite mixture models. Both of the methods we outlined described
the exact sampler that allows for infinite draws from the candidate distribution q.
While this can estimate p with high accuracy, we show in the experiments that it is
computationally ineffecient.

We discussed the drawback of the exact MCMC sampler and proposed modifica-
tions to improve the algorithm. We started by introducing p, corresponding to the
weight given to the region S by the proposal ¢, so that ¢(S) = p. We explained that
the number of rejections in the rejection sampling scheme is geometrically distributed
with acceptance probability of p. Our final approach, the thresholded sampler, simu-
lates from a model requiring ¢(S) > p. This translates to an acceptance probability
that is greater than or equal to p, with mean less than 1—;3. Our thresholded sam-

pler allows practitioners to choose the mean number of rejections per observations,
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which we call thresholds. If the threshold is 5, which corresponds to p = %, and n

6’
is 100, then we would expect at most n% = 500 number of rejections produced by
the sampler. In Chapters 5 and 6, we show that through experimental results on a
variety of synthetic and real datasets, our approach improves mixing and increases

the efficiency of the original algorithm.
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5. EXPERIMENTS ON SYNTHETIC DATA

5.1 Introduction

We applied the models introduced in Chapter 3 and their associated MCMC algo-
rithms with the improvements described in 4 to synthetic datasets. This simulation
study includes both simple and complex constraints, in one-dimensional as well as
two-dimensional settings. We studied the modeling and computational trade-offs be-
tween the truncated mixtures of Gaussians (TMoG) and the mixtures of truncated
Gaussians (MoTG) models as well as between different settings of p (or equivalently,
different thresholds for the number of rejections). Each of these experiment provides
a good assessment of the models performance on a variety of different setting.

We repeated each experiment 100 times, plotting the median and 25% and 75%
quantiles for both test log-likelihood and compute time. Our MCMC samplers used a
total of 5000 iterations with the first 2000 discarded as burn-in. In all experiments, we
used a stick-breaking prior truncated to 50 components with concentration parameter
set to 1.

For most studies, we generated datasets with 500 observations and evaluated per-
formance by using 80% of the data as training and the remaining 20% as held-out
test data. We evaluated the test-likelihood using importance sampling, verifying these
numbers with numerical integration when possible.

We considered 6 different settings of p corresponding to threshold values of 0, 0.5,
1, 5, 50, and infinity. Here, 0 means no data augmentation, so that the data are
modeled with an unconstrained mixture model that is not cognizant of truncation
boundaries. We will see that this can result in inappropriately low probability at the
boundaries of the constraint set as the mixture model tries to explain the absence

of any observations outside S. A threshold of infinity means no thresholding, cor-
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responding to our exact MCMC algorithms. The remaining settings correspond to
our proposed thresholded sampler, which limit the maximum number of rejections per

observation, corresponding to progressively smaller bounds on ¢(S).

5.2 Truncated Gaussian distributions on the unit interval

We start with a simple one-dimensional setting where the constraint set S is the
unit interval. This does not really require our methodology since all normalization
constants can easily be calculated numerically, or since one might choose a different
modeling approach like a mixture of Beta distributions. Nevertheless, this provides
a simple test case to exactly evaluate the effect of different modeling and algorithmic
choices. In higher dimensions (such as the unit square or hypercube), the limitations
of standard methods become more evident and our methodology will be necessary to
capture correlation structure as well as high probabilities at the edges. We consider
two datasets, one drawn from a truncated Gaussian centered at the midpoint of the
interval (in particular, A(0.5,0.1)), and one at the edge (in particular, A/(0,0.1)).
We model these datasets using TMoG and MoTG, placing on the components a

Normal-Inverse-Gamma prior given by
wl(a?, o, o) ~ N (po, 0% Xo), o?| (g, Bo) ~ Inv-Gamma(ag, Bp). (5.1)

We set the mean parameter p to the true mean (0 or 0.5) and set parameters Ao, ag
and [y to 2,2, and 0.05 respectively.

We present the results for TMoG on the first dataset in Figure 5.1 (the results of
MoTG are almost identical). The left panel plots the posterior predictive density given
the observations for all threshold settings, and we can see no noticeable differences
here. The right-panel quantifies this, plotting the log-likelihood of the test dataset (on
the y-axis) against the time taken to run 100 iterations. Again, we see no differences
in the predictive log-likelihood or run-times.

The lack of sensitivity to thresholding stems from the simplicity of the problem

where the true data generation mechanism involves a Gaussian density, most of whose
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mass is restricted to within the constraint set. Our algorithm recovers this fact so that
the inferred proposal distribution ¢ closely approximates the generating Gaussian,
resulting in the number of rejected samples rarely hitting even the smallest threshold

level.
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Figure 5.4.: Histogram of the number of rejections at every iteration for MoTG (left)

and TMoG (right) for the truncated N(0,0.1) Gaussian on the unit interval.

The second dataset presents a more challenging problem with the mode located at
the boundary. Now, thresholding does play a role, with the fit becoming increasingly
accurate as rejected proposals are incorporated. Figure 5.2 shows the mean predictive
density for MoTG (to the left) and TMoG (to the right). With low thresholds (and
especially when equal to 0) the posterior predictive experiences a clear shift away from
the left boundary; despite the fact that we use a flexible mixture of Gaussians to model
this distribution. Essentially, the model struggles to reconcile the abrupt change

in the number of observations across the boundary and compromises by smoothing
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across the boundary, resulting in a moderate (rather than high) density at the edge.
While it might be possible to try to get around this using a prior allowing very
peaked components, it will not account for the smoothness of the density inside
the interval. This emphasizes the importance of accounting for boundary effects in
modeling constrained data.

Figure 5.3 presents the speed-accuracy trade-off for different threshold settings,
each plotting the log-likelihood of the test dataset on the y-axis against the run-time
for 100 iterations on the x-axis. Results for MoTG are to the left and TMoG to
the middle. As expected, we see an increase in run-time as the threshold increases,
though there are no significant differences among threshold larger than 1 (indicating
that these thresholds are never reached). Interestingly, the qualitative degradation
resulting from setting the expected number of rejections to 0 does not manifest itself
quantitatively, with no difference in test performance for different settings of the
threshold. This is partly because not enough test observations lie close to the edge
to significantly affect the log-likelihood. We will see such effects later with sharper
densities and higher-dimensional settings. If however, we bias the test dataset to favor
observations near the edges, we see a clear drop in performance when the threshold
is set to 0. Here, we selected the test set from observations in the interval (0,.05).

In terms of efficiency, we find that TMoG runs significantly faster than MoTG.
This is a result of the generative process of MoTG where having picked a cluster, one
must repeatedly sample from it until an acceptance. When the chosen cluster assigns
low probability to S, we get a large number of rejections before acceptance. This can
also initiate a runaway event where the rejected proposals (that lie outside S) draws
the cluster away from S while increasing its mixture selection probability, resulting
in even more rejections. Figure 5.4 demonstrates this by plotting histograms of the
number of rejected proposals for different threshold settings. When this threshold is
infinite, the number of rejected samples is more than an order of magnitude larger

for MoTG.
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With regards to the diagnostic of the sampler, we computed the effective sample
size (ESS) of MCMC results for both samplers by storing the parameter value of
the highest weighted component. For MoTG, the effective sample size is highest for
threshold 0.5 at 660, followed by threshold 1 at 132. Similarly, the ESS for TMoG is
highest for threshold 0.5 at 410, followed by threshold 1. For both models, all other
thresholds have ESS of less than 50; further emphasizing the need for a thresholded

sampler.

5.3 Beta Distribution

The previous section suggests that the number of auxiliary rejected samples need
not be much larger that the observed dataset. In fact, we recommend fixing p =
0.5 (corresponding to a threshold of 1) for typical settings. Our next experiment,
while still relatively simple, considers the situation when the true density lies outside
the model class. Now we used TMoG and MoTG to model observations from a
Beta(0.1,0.1) on the interval [0, 1]. This parameter setting results in sharp modes at
each end of the interval. We still use the Normal-Inverse-Gamma prior as in Equation

(5.1) with parameters: p = sample average of the data, A =2, « = 2, and = 0.01.
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Figure 5.5.: Posterior mean density of MoTG (left) and TMoG (right) for data from
a Beta(0.1,0.1).
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(right) for data from Beta(0.1, 0.1)

Figure 5.5 plots the estimated densities for both MoTG and TMoG. Similar to
the previous experiment, we see that if the truncation is too strong, the model fails to
adequately capture the peaks at the boundaries of the interval. Looking at the quan-
titative results in Figure 5.6, we see a clear monotonic improvement in test-likelihood
for both MoTG and TMoG as more and more rejected samples are included. Now,
capturing the sharp peaks at the edges of the boundary requires more rejected samples
outside the interval. From this figure, it is clear that thresholding below 5 rejections
per observation results in poor performance where the case with no thresholding
performs best. Of course in practice, one does not know the true density. In such
situations, one can use the number of observations near the edges as a guideline for
setting the threshold. As an example, if a large proportion of the observations lies
near the edges, then one might need a larger threshold. As before, this accuracy comes
at a computational cost with larger thresholds having longer run-times. Again, each
TMoG setting is significantly more efficient than its MoTG counterpart.

More over, the trace plot of the number of rejections in Figure 5.7 shows that
the mixing in TMoG is better than its counterpart across all thresholding. In the
exact case where no thresholding is enforced, both models shows poor mixing. As we

limit the number of rejections through our proposed thresholded sampler, the MCMC
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Figure 5.7.: Trace plot of the number of rejections for MoTG (left) and TMoG (right)

on varying degree of thresholding.

mixing improved significantly. These results proved that the new sampler is able to
reduce variance and increase efficiency.

In terms of the ESS of each sampler, we see a similar trend to that of the first
experiment. Again, we examine the parameter estimates for the mean of the model
on the highest weighted component. We then compute the ESS for the collection of
means across all iterations. For TMoG, the ESS is highest at threshold 0.5 with a
value of 1654 and decreases monotonically as the threshold is increased, reaching to
only 3 where no thresholding is enforced. For MoTG, the ESS averages at 1935 across
all thresholds. These results suggests that while the number of rejections are high for
MoTG@G, the model were still able to produce independent samples.

Further, we examine whether the samplers for both models have converged by
computing the shrink factor, ]%, proposed by Gelman et. al. Gelman et al. (2013).
To do this, we computed the between- and within-sequence variances of 5 individual
runs with different initializations for all thresholds. We find that R is equal to 1

across all experiments, suggesting that the chains have converges.
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Figure 5.9.: Speed-accuracy plot for MoTG (left) and TMoG (right) for data from

the mixture of two bivariate Gaussians

5.4 Mixture of Bivariate Gaussians in the unit square

Our next synthetic experiment considers data on the two-dimensional plane. Our
constraint set S is the unit square [0, 1]? with data generated from a mixture of two
Gaussians, one centered at (0, 0) and the other diagonally across at (1,1). We generate
1000 observations from this model, using 400 as training and 100 as test. For both
TMoG and MoTG, we place Normal-Inverse-Wishart priors on the components given

by
il (pos A, 2) ~ N(po, 2/A),  Z[(P,v) ~ Inv-Wish(®, v). (5.2)

The parameters are set as follows: o = (0.5,0.5), A =1, ® = 0.0115, and v = 4,

where I is the 2-dimensional identity matrix. We show contour plots of the estimated
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densities for TMoG for different threshold settings in Figure 5.8. Visually, it is clear
from the figures that there is an increasing accuracy in modeling the mode of the
density at the corner of the constrained space and is consistent with the results seen
on the previous experiments.

Figure 5.9, plotting test log-likelihood against compute time for different threshold
settings, tells a more complicated story. As before, we see that TMoG is significantly
faster than MToG, now by almost two orders of magnitude. Additionally, increasing
the threshold parameter results in an increase in the run time. For TMoG, per-
formance with a threshold of 0 is significantly worse than other settings and larger
thresholds do results in significant improvement in performance.

Interestingly for MoTG, large settings of the threshold parameter result in a de-
crease in test-likelihood. Figure 5.10 shows that MoTG allows for observations to
have a high number of rejections when the average number of rejections across all
iterations is almost similar: 2894 for MoTG and 3899 for TMoG. Furthermore, Fig-
ure 5.11 shows that the variance of the highest weighted component for MoTG is
exponentially higher than that of TMoG. These results illustrate the importance of
controlling variance through the introduction of asymptotic bias in the MCMC al-
gorithm. The effect is more noticeable in two-dimensions than in one because the
probability of rejection increases with dimension. A threshold of 1 to 5 represents a
reasonable compromise between too much bias and variance. This effect is much less

noticeable for TMoG.

5.5 Mixture of Bivariate Gaussians in complex constraint

Lastly, we consider a significantly more complex 2-dimensional domain S shown
in Figure 5.13. We randomly draw 500 observations from 3 bivariate Gaussians cen-
tered on the edges of an island. Because our algorithms are set to improve density
estimation at the boundary of the domain, this simulation study investigates relative

performance in this area. For this particular experiment, we tested the performance
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Figure 5.10.: Number of rejections on exact sampler for MoTG (left) and TMoG
(right).
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Figure 5.11.: The variance of the component with the highest weight for MoTG (left)
and TMoG (right).

of the algorithms only on observations near the edges of the boundary. We scaled
the data by 1.05, find observations that lie outside the boundary, use 100 of these

observations as the test set, and randomly select 400 of the remainder as the training
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Figure 5.12.: Speed-accuracy plots for MoTG (left) and TMoG (right).
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Figure 5.13.: Contour plot of log posterior mean density for TMoG for different p.
Thresholds are 0, 0.5, 1, 5, 50, and Infinity (left to right, top to bottom)

set. We then run 5000 MCMC interations with a burn-in of 2000. For both TMoG

and MoTG, we place Normal-Inverse-Wishart priors on the components as follows
LL|(,U(),)\, 2) ~ N(M07Z/>‘)7 Z'((I)7V) ~ InV—WiSh((I),V). (53)

The parameters of the NIW distribution are: pg = (0.5,0.5), A = 0.1, & =
0.00115, and v = 4, where I is the 2-dimensional identity matrix. Figure 5.13 shows
the estimated density for TMoG for different p, and again we see a steep drop in

density outside the constraint set, which is likely to lower probability density at the
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boundaries. Figure 5.12 plots performance of TMoG and MoTG for varying p and
again, TMoG is much faster. Further, TMoG’s predictive performance plateaus at
thresholding equal to 1 (p = 0.5), while MoTG requires higher thresholds. That a
threshold of 1 does a good job can be guessed from the fact that unlike the beta
distribution, observations are relatively well-dispersed near the boundaries. In the
case where the test set were randomly sample through out the island, the performance
of MoTG shows similarity to that of the bivariate case in a unit square in that,
it decreases significantly as threshold increases. Further investigation towards the
number of rejections and the variance of the components shows similar trends to that
of Figure 5.10 and Figure 5.11.

Like before, we use the parameter estimates of the highest weighted component
to compute the ESS of the samplers. The ESS for MoTG from lowest threshold to no
threshold are: 433, 621, 279, 210, 22, and 433. Similarly for TMoG, the ESS are: 261,
137, 52, 52, 49, and 12. In general, MoTG consistently provides more independent
samples than TMoG. In both models, a threshold of 0.5 results in the highest number
of ESS. However, this specific threshold value results in insignificant performance in
MoTG when compare to that of no thresholding. In these cases, a threshold of 1
corresponding to a p = % should be a good compromise for both models.

In this example also, we see that the value of the test log likelihood estimate differ
between the two models, even when using the same test observations. These differ-
ences are almost unnoticeable in our previous experiments and are most pronounce
here due to the more complex bounds. This is consistent to our analytical findings

in Section 3.5.

5.6 Summary

In this chapter, we evaluated our two models with the thresholded sampler on
synthetic datasets. We contrasted the predictive performance as well as the efficiency

of both samplers. In the first experiment which involves a simple one-dimensional
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Gaussian, we show that using vanilla mixture models with no truncation can lead
to inaccuracy in the density estimation at the edge of the support. Our second
experiment with the beta distribution, revealed the need for higher thresholds to
accurately predict the mode in this density. Moving on to two-dimensional data in
our third experiment, we show that MoTG performs very poorly at higher thresholds
due to the run away effect which leads to high variance. In our last experiment, we
show that with bias test cases, both samplers perform well and produce significant
differences in prediction when compare to the mixture models with no truncation.

Across all our experiments, we find that TMoG is consistently faster than its
counterpart and more robust to the dimensionality of the data. We find that our
thresholded sampler is effective in reducing computation time while maintaining the
same relative degree of performance to that of the exact sampler. Additionally, this
sampler prevents the run-away effect that is evident in higher threshold that in turns
improve MCMC mixing. In the next chapter, we applied both samplers to real-world
data.
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6. APPLICATIONS TO REAL DATA
6.1 Introduction

In this chapter, we consider two real datasets, one of flow-cytometry data and
one of homicide data in the city of Chicago. Our experiments with synthetic data
suggest that MoTG is significantly more expensive computationally than TMoG, both
in terms of the number of auxiliary variables produced as well as the mixing of the
resulting MCMC algorithm. This is even more clear with the real datasets; in fact,

for the crime data, we focus only on results from TMoG in this section.

6.2 Flow Cytometry data

We first consider a dataset of acute graft-versus-host disease (GvHD) flow-cytometry
measurements from patients with bone-marrow transplants (Brinkman et al., 2007).
GvHD can arise after receiving stem cells, when transplanted donor T-cells (“the
graft”) attack the patient’s healthy organs (“the host”). The dataset from Brinkman
et al. (2007) contains 6809 “control” and 9083 “positive” observations from 31 pa-
tients. We focus on the control observations, which are from patients who did not
develop either acute or chronic GvHD after the transplant. Each observation in-
volves measurements of 4 activation markers: CD4, CD8b, CD3, and CDS, with each
measurement varying between 0 and 1024. The data collection process is such that
observations outside this range are discarded, resulting in a sharp drop in intensity
outside this set (see Figure 6.1 for projections of the raw data onto two-dimensional
planes). We scale the data to lie in the four-dimensional unit hypercube, which forms

our constraint set S.
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Figure 6.1.: Contour plots of the posterior mean distribution for MoTG (top) and
TMoG (bottom) applied to flow-cytometry data. Subfigures are thresholds of 0, 1, 5,
and 50.
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Figure 6.2.: Speed-accuracy performance of MoTG (left), TMoG (center), and TMoG

with biased test set for flow-cytometry data

This dataset was briefly considered in Rao et al. (2016), where the authors demon-
strated the feasibility of MCMC inference for TMoG. Here we analyze it more system-
atically, evaluating the performance of our two models, as well as different threshold

settings. As before, in our mixture models we use the Normal-Inverse-Wishart as
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the prior, with parameters: pg = 0.5, A\g = 0.01, & = 0.001/4, and v = 5. I, is the
four-dimensional identity matrix.

Figure 6.1 shows contour plots of the predictive density of the models for different
threshold settings, while Figure 6.2 shows how thresholding trades-off between predic-
tive performance and compute time. For MoTG, we observe now that test-likelihood
is no longer monotonic with the threshold setting, in fact, performance worsens as
the threshold increases above 5. This is largely because now we are working with
4-dimensional observations, and without controlling the prior over ¢(S), it is easy
to explore elements that produce very large numbers of rejected samples. This can
severely affect MCMC mixing.

In fact, we do not include the case where the threshold is set to infinity, since this
occasionally produced a very large number of rejections that brought our simulations
to a near halt. Figure 6.2 shows a steep drop in test log-likelihood for large thresholds,
and in the contour plots of Figure 6.1, this manifests itself in the loss of multimodal
structure.

This reiterates the point that even though a large threshold reduces bias, it can
significantly increase variance, and that MoTG is particularly sensitive to this. As
we described earlier, a significant driver of this large variance is poor mixing due to
the large number of auxiliary variables. Figure 6.3 shows MCMC traceplots of the
number of rejected samples over MCMC iterations for MoTG, and we see that other
than for the low thresholds, the MCMC chain mixes very poorly. By thresholding the
number of rejections, we are implicitly focusing on simpler model structure outside
S, resulting in improved MCMC performance.

The TMoG model runs much faster, and produces much better fit than their
MoTG counterpart; this is clear qualitatively from Figure 6.1 and quantitatively
from Figure 6.2. We do not see any significant changes in predictive performance
with increasing threshold (although there is improvement in median performance).
More importantly we do not see performance decay as the threshold increases, though

without any thresholding, we did observe occasional MCMC iterations with a large
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Figure 6.3.: MCMC trace plot of number of rejections for MoTG for flow-cytometry
data

number of rejections. As before, this is because a large fraction of test samples lie
away from the edges. A quick analysis of the dataset reveals that less that 5% of
the observations lie within 0.01 of an edge, suggesting (as the figure verifies) that
a threshold of 1 will be adequate. The rightmost subplot in Figure 6.2 focuses on
performance at the boundaries, constructing the test set from observations within
0.01 of an edge. Now we see a slight improvement with threshold value. Figure
6.4 shows that autocorrelation of the number of rejections across iteration increases
with threshold, and given the same threshold, that of MoTG is much worse. The

autocorrelations of TMoG for threshold 1 does not extend beyond 10 to 15 iterations.

6.3 Chicago crime data

In our final experiment, we consider a dataset of criminal activity recorded in the
city of Chicago. We gathered data from the city of Chicago data-portal', and plot it in
Figure 3.1. Each recording in this dataset includes details such as case number, time,
type of crime, as well as the longitude and latitude of the crime location. We restrict

ourselves to modeling locations of homicide crimes occuring between the years 2012

'https://data.cityofchicago.org/Public-Safety
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Figure 6.4.: ACF plot of the number of rejections for MoTG (top) and TMoG (bot-

tom) on application to flow cytometry data

to 2017, resulting in 3220 observations. Thus, each observation is a measurement in a
two-dimensional space where the longitude and latitude are the x- and y-coordinates
respectively. The range of longitude value is from —87.8465 to —87.5316, while lat-
itude range from 41.6479 to 42.0225. We rescaled these values to between —1 and
1.

Within the 2-dimensional Euclidean space, our constraint set S is the interior of
the city of Chicago. To characterize this complex, non-convex set, we gathered data

for the boundaries of the 77 neighborhood limits of Chicago?, and approximated each

’https://www.cityofchicago.org/city/en/depts/doit/provdrs/gis.html
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Figure 6.5.: Contour plots of the log posterior mean density for TMoG on the Chicago
crime data with thresholds 0, 1, 5, 50, and Infinity (left to right, and then top to
bottom).

neighborhood with a polygon using the R spatial polygon package, SP3. Combined
together, these polygons formed the entire city limits. The package SP also allows to
check whether a point lies inside a polygon. We used this function in our rejection
sampling algorithm, to decide whether or not a proposal on R? lies within Chicago.
We present results from modeling this data using TMoG in Figure 6.5. We do not
include results from MoTG since, as indicated by our previous experiments, this takes
much longer to run and produces results that 1) are much worse and 2) are sensitive
to p. For our prior over cluster parameters, we used a two-dimensional Normal-
Inverse-Wishart distribution with parameters py = (0,0), A\g = 0.1, & = 0.00115,
and v = 4. Figure 6.5 visualizes the posterior distribution through samples from

the MCMC algorithm for different settings of the threshold parameter. Each subplot

3https://cran.r-project.org/web/packages/sp/
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Figure 6.6.: Speed-accuracy plot of TMoG on Chicago test data. The left figure gives
the performance on test data with random observations, the right figure gives the

performance on test data with observations near the boundary.

shows the log of the posterior mean density for TMoG given the crime data, with
the grey contour lines showing the estimated proposal distribution ¢, and the black
lines highlighting them within the Chicago limits. The latter gives (up to a constant)
the density of interest, whose properties can easily be estimated from the MCMC
samples.

For all threshold settings, we observe two modes, one to the south of Chicago,
and one to the west. When the threshold is set to 0, the range of density values near
the boundary is smaller, being flattened to account for the absence of observations
just outside the border. This misses many details near the boundary, for instance,
there is a sharp cluster of observations right on the north-east boundary of Chicago
which is lost for the threshold settings of 0. For larger threshold settings, the rejected
proposals produce a significant cluster most of whose mass lies outside the city limits,
but which overlaps with the city to allow a bump in probability at the corner. Edge
smoothing-effects due to the constraint also result in coarser estimates at the mode
to the west of the city.

An interesting phenomenon is the mild structure in the density contours away

from the city boundaries. These are transients, resulting from the data-augmentation
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Figure 6.7.: Distribution of percentages near the boundary (left) from posterior pre-
dictive checks on 1000 MCMC samples for threshold 1. The vertical line at 15.28 gives
the percentage of the real data with an estimated p-value of 0.456. Crime instances

along the edges (right) of Chicago, that are prone to underestimation.

interacting with the thresholding. These do not affect inferences over the subset of
interest, and are not relevant to the main estimation problem. Nevertheless, these
represent an inefficiency in the thresholding procedure, and a waste of computational
resources. A future research direction is to favor thresholding away from the subset
S of interest.

Figure 6.6 quantifies the effect of threshold settings, plotting predictive perfor-
mance of TMoG on held-out test data versus threshold. The left plot gives results
for test data randomly sampled from the original dataset, and we see a slight, but
not significant performance hit with no augmentation. The right subplot presents
results when the test dataset is drawn from observations in Chicago neighborhoods
touching the boundary. Now we see a significant loss of predictive performance with-
out data-augmentation, providing quantitative justification of the importance of our
data-augmentation scheme to accurately model probability structure near the edges
of the constraint set.

As far as run-time is concerned, we see that a threshold of 0 is much faster that

other settings, and that the average run-time does not increase significantly for larger
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thresholds. In fact, the relative inefficiency of these settings has little to do with
our data-augmentation scheme. For instance, our recommended setting of TMoG,
with threshold set to 1, produces on average around 2346 rejected proposals, which
is less than a 50% increase in the original dataset. Instead, the increased run-time
reflects our relatively crude approach to deciding if a proposal lies in the Chicago city
limit. Our implementation, using the R package SP, needs to check that a proposal
does not lie in any of the 72 Chicago neighborhoods before we can reject it. This
accounts for the bulk of the run-time for non-zero thresholds (the vanilla mixture
model without data-augmentation is unaware of the borders of the city and therefore
does not include such checks). With a more careful implementation of the Chicago
border, we can reduce this overhead.

To further validate our model, we used the MCMC posterior samples to run a
posterior predictive check. For each MCMC sample, we generated the same amount
of data (3220 observations) inside Chicago. We then scaled the data by a factor
of 1.2 and computed the percentage that lie outside of Chicago. We compare the
distribution of this quantity to the realized value in the observed dataset. Figure
6.7 plots both these quantities, with the observed value lying right in the middle of
the predictive distribution. The resulting p-value (corresponding to the proportion of
simulated values to the right of the observed quantity) was 0.46, suggesting a good
fit.

In terms of the quality of the samples provided by the sampler, we computed the
effective sample size for the estimated mean and variance of the highest component
of the mixtures. We find that threshold 0.5 provide the highest ESS value at 50 for
the mean and 32 for the variance of the first dimension. These values suggest an

equilibrium of the simulated sequences has been achieved.
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6.4 Summary

We applied our thresholded sampler to two real world datasets: flowcytometry
measurements and homicides in Chicago. We show results that are consistent with
our synthetic data in that for higher dimensions and higher thresholds, MoTG fails
exhibits a high variance and fails to estimate the appropriate posterior density. On
the other hand, TMoG consistently showed better results across all experiments and
applications. The thresholded sampler of TMoG improves time efficiency as well as

mixing.
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7. SENSITIVITY ANALYSIS AND FURTHER MODIFICATIONS
7.1 Introduction

In Chapters 5 and 6, we tested our approach in various experimental scenarios
and evaluated its performance in terms of predictive performance and time efficiency.
In this chapter we assess our models’ sensitivity to different hyperparameter settings
of the stick-breaking prior. In addition, we explore a modification of our thresholded
sampler which involves restriction on the boundaries of the rejected samples, and
targets proposals that lie close to the target space S. We show that this improves
mixing of the Markov chain Monte Carlo algorithms while maintaining the accuracy

and efficiency of the original algortihms.

7.2 Sensitivity to the DP prior

We conducted several more experiments to measure the effect of the choice of the
prior on the performance of our samplers, specifically, the Dirichlet Process prior.
We focus on one experiment, the bivariate Gaussian on a small island (Section 5.5).
In Chapter 4, we discussed how p specifies the weight or probability given over the
target region S when sampling from the proposal distribution ¢(x). It is important
to study the effect of the number of components provided by this proposal, which in
turn affects that of p, to the predictive performance of the algorithm.

In an infinite mixture model, the number of components is controlled by the
hyperparameter of the stick-breaking prior, ap. Small g values correspond to fewer
components, allowing for densely populated clusters which can lead to smaller number
of rejections. Larger g produces greater number of non-empty clusters, causing the

pool of rejections to come from a more diverse set of component parameters.
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Figure 7.1.: Speed-accuracy plot for MoTG (top) and TMoG (bottom) for varying
levels of ay, from left to right, ag = 0.1, 1, and 10.

Recall that in all our experiments, we set a symmetric prior with o = 1. In
this section, we study the performance of our Gibbs sampler with «q values at 0.1, 1,
and 10, in the same experimental set up as mentioned in Chapter 5. Across all our
experiments in this section, we omit threshold 0.5 as this produces result that closely
resembles that of threshold 1.

Figure 7.1 compares the results for TMoG and MoTG in 3 separate sub-figures.
We see that in terms of time, the results are consistent with our hypothesis in that
smaller aq requires less computational time as fewer clusters are formed. The vari-
ation in the efficiency across oy is higher in MoTG, where there is almost a 10-fold
change in accuracy and time moving from 0.1 to 1. In particular, the change in the
hyperparameter of the DP highly effects the exact case of MoTG, as seen by its sig-
nificantly longer run time (top right of Figure 7.1). This suggests that the generative
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Table 7.1.: Estimated p-values from model checking of application to Crime data with

varying degree of ay.

Threshold
0 1 5 50 Inf
Qp
0.1 0.017 0.011 0.073 0.118 0.011
1 0.433 0.456 0.612 0.621 0.537
10 0.091 0.036 0.063 0.093 0.169

process for MoTG causes it to be more sensitive to the prior. Unlike its counterpart,
the TMoG model appears to be more robust to the choice of «y.

In addition to looking at the effect of the concentration parameter of the DP, we
also examine its effect on the model by running posterior predictive checks (Gelman
et al., 2013). Here, we examine the MCMC samples of the application to the crime
data from Section 6.3. Similar to the above experiment, we vary the sparsity of the
components by setting ag to 0,0.1 and 10. for each posterior sample of the DPMM
parameters from the Gibbs sampler, we generated 3220 observations and calculated
the proportion that fall within the boundary of Chicago (see Figure 6.7). We do this
with 3000 MCMC samples and computed the p-value of this distribution, presenting
the result in Table 7.1. With oy = 0.1, the table suggests that the model is inadequate
for the data; except for thresholds 5 and 50, their p-values are mostly significant under
the 0.05 cut-off. This result reinforces the need to use enough components that in
turn will allow higher number of rejected draws to accurately model the data. Again,
the choice of thresholding helps the model to fit the data better. On the other hand,
higher number of clusters does not translate to a better model, as seen from results
with oy = 10. In general, with ay = 1, the model performs well under the model

checking diagnosis.
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7.3 Constrained rejections

Rejected samples that are located too far from S slow computation and lead to the
run-away effect. This is especially true in MoTG. Ideally, our samplers only draws
proposals from regions close enough to the ambient space of S since only these are
needed to estimate the density within S. A natural approach is to restrict the area
at which the sampler will be drawing proposals from. If the proposals are beyond
a prespecified distance away from S, we can ignore them in the sampling algorithm.

We do this by imposing an additional boundary, T, around S.

Algorithm 4: An iteration of MCMC for posterior inference over p(6|X)

Data: The observations X = {z1,...,z,}, and the current parameter values 6
Result: New parameter value 0

1 for each observation x; do

2 while an accepted sample & has not been drawn do

3 draw y independently from ¢(-|0);

4 check that y is in T;

5 end

6 Discard = and treat the preceding rejected proposals as Y;;
7 end

n

8 Gather all the rejected samples, calling them V: Y = |J V;;
i=1

9 Update 0 from ¢(0|X,Y) x ¢(X,Y|0)p(#) using any MCMC kernel, calling the
new value 6:

10 Discard the rejected samples Y

When the sampler draws a proposal that lies between S and T, we consider this
draw as a candidate for our rejection sampling scheme. Alternatively, if a proposal
lies outside of both S and T, we ignore it altogether, and proceed to draw another
proposal from the prior, q. Figure 7.2 illustrates this idea in more detail. The choice

T should ideally be simple, such as a unit square or a circle around the perimeter of
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Figure 7.2.: Bivariate Gaussian data lying on a subset in a Euclidean space. The left
pane shows synthetic observations, shown in black, lying in the space S specified by
the solid black line. The right pane shows data with boundary T encompassing S as

the constrained for rejected proposals in red.

S, as to prevent additional overhead in computation time. This method requires only
a slight modification to Algorithm 3. We summarize this in Algorithm 4. Theoreti-
cally, this modification truncates the proposal ¢(x) to within T. Further theoretical
and experimental studies need to be conducted to fully understand the effect of this
truncation to the posterior of p(z). Results of experiments to simulated data are

described in the next subsection.

7.3.1 Experiments

We evalaluated and tested the performance of this new modification on the syn-
thetic data used in Section 5.5. Recall that the observations comes from a bivariate
Gaussian distribution lying on an island. Here S is the island, and our choice of T is
a circle surrounding S (see Figure 7.2). The radius of the circle is half of the longest

span on S multiply by a tuning parameter v. Here, v ranges from 1 to oo where oo is
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Figure 7.3.: Trace plot for the parameters of the most likely clusters without con-

strained rejections (left) and with constrained rejections (right) on TMoG.
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Figure 7.4.: Performance plot for method without constrained rejections (left) and

with constrained rejections (right) on TMoG.

equivalent to our algorithm with no thresholding. We placed the same prior to that
used in Section 5.5 and picked v as 1.1.

Figure 7.3 shows the traceplot of the component with the highest weight at every
iteration. This figure suggests improvement in the sampler when T is imposed on
the algorithm. Improvement can also be seen from the effective sample size of the

Markov chain sampler. At threshold of 1, the original method produce an effective
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Figure 7.5.: Effect of varying size of v on speed and accuracy, with values of v from

left to right: 1.05,1.1, and 1.5

sample size of 16. This number is increased to 139 with a bounded rejection space.
The modification comes at no cost to the efficiency and accuracy of the algorithm.
Figure 7.4 shows that the two methods produces comparable performance on 100
cross-validation data. The performance is also robust with respect to the varying
size of v (see Figure 7.5). Although the result is promising, a deeper theoretical and
empirical understanding is needed to fully comprehend how the restriction in the form

of T affect the prior on S.

7.4 Effect of sample size

In Chapter 4 we mentioned the effect of training size on the probability of the
prior in S. We showed that as the sample size increases, the proportion of the pos-
terior samples in S converges to the true p. In this section, we explore the effect
of training size with varying degree of thresholding, on the predictive performance
of the samplers. Understanding its relationship can help practitioners decide on the
appropriate thresholding based on the size of the data set. Again, we use the same
synthetic data given in Figure 7.2, with identical hyperparameters and experimental
setting to that of the experiments in Chapter 5. We vary the training set size from
10, 50, 100, 200, 300, and 500 by random sampling and ran the sampler with 100

cross-validations each. Figure 7.6 presents the result of the experiment for TMoG.
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Figure 7.6.: Performance plot for method with varying sample sizes on TMoG model.

From left to right and top to bottom, the training size is: 10, 50, 100, 200, 300 and 500

We see that for small sample sizes (i.e. 10 and 50), the predictive likelihood does
not show any significant change across the different threshold. When the training
set is 100, there is a clear difference between the thresholded sampler to that of the
model with no data augmentation scheme (threshold 0). However, we see that the
test likelihood plateaus when the training set size is greater than 200. Along with
our result in Chapter 4 (Figure 4.1), for this type of data, we would need at least 200
observations with threshold equals to 1 (p = 0.5) for good predictability.

7.5 Summary

In this chapter, we explored the effect of the concentration parameter of the DP
on the performance of the model. We showed that the sampler is robust to the
different settings in terms of accuracy and, model checking reveals that an oy = 1
suffices for most experiments. Additionally, we introduced a slight modification to

our thresholded sampler where we restrict the proposals to be within a specified
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distance from S. Our experiments suggest that this can further improve mixing and
has no effect to the predictability and efficiency of the model. Lastly, we explored the
effect of sample size on the predictive performance of the model with results that are

consistent to our results from Chapter 4.
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8. CLUSTERING MUTATIONS AND ESTIMATING
CONTAMINATION RATES VIA MIXTURE MODELS

8.1 Introduction

In this chapter and the next, we focus on the second contribution of this thesis
which involves the use of nonparametric mixture models to better understand the
characteristics of DNA structure in tumor cells. Cells that rapidly duplicate are sus-
ceptible to changes in the genetic information that they carry; often, these cells will
form clusters of mutated cells commonly known as tumors. Malignant tumor cells,
or cancer cells, can spread and invade nearby tissues in the body, and so understand-
ing the DNA alteration that occurs in tumor cells is important to learn the genetic
markers that are the drivers of tumor growth.

Scientists are particularly interested in DNA alterations that are somatic. These
are mutations that are unique to the tumor environment, in constrast to germline
mutations that are hereditary. Somatic mutations at a single base location of the
genome are also referred to as single nucleotide variants (SNVs). We use both terms
interchangeably in this chapter. To better distinguish between somatic mutations
and germline mutations, studies have proposed the use of DNA sequencing of cells
from matched normal and tumor tissues of a patient (Bergmann et al., 2016; Su et al.,
2012; Roth et al., 2012). By doing this, scientists hope to reduce false discoveries and
increase the accuracy of detecting somatic mutations.

Figure 8.1 illustrates the process of using DNA sequencing information from a
matched normal and tumor sample. Reads from the sequencing machines are aligned
to a reference genome (a database assembled by scientist that catalogues the DNA
sequence representative of a species) and matches are computed at every location

along the genome. The results are count observations at each locus of the DNA,
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Reference
Genome ACTGAACCGGTAGGACCA
ACTGAACCGGTACGACCA
—-CTGAACCGGTACGACGA
Normal --TGAACCGGTACGACCA
-—--GAACCAGTACGACCA
—————— CCGGTACGACGA
————————— GTACGACCA
———————————— CGACGA Figure 8.1: Example of read
yr 123444554666077747 alignments from a tumor and
N™ 123444555666777777
normal sample to the reference
ACTGAACCGGTARGACHEA genome (purple). The number
--TGAACCGCTACGACGA
Tumor ----AACCGCTACGACGA of matches, Y, and the depth
————— ACCGCTACGACCA
__________ TACGACEA of the reads, N, are counted
G line = & = . .
ermene GACRA at each locus i. These infor-
Somatic
yt 112234444155066636 mations are then used to deter-
Nt 112234444455566666 . o _
/' f >\ mine whether a site is germline
(AR, 2B)
(88, BB) (BB BB} (green) or somatic (yellow).

consisting of the number of match reads and the total number of reads at that locus.
Based on these findings, two alleles, A for a match and B for a mismatch, for that
specific site in the DNA are determined. Given these, one can interpret the genetic
constitution (genotype) of a base location using Table 8.1. Through this process,
scientists are better able to distinguish and detect somatic mutations that exist in
the tumor environment.

DNA sequencing of tumor samples are known to produce sample contamination
which is a condition where tumor samples are contaminated with normal cells (or
conversely, normal samples with tumor cells). Contaminations can alter the read
match counts of a tumor sample with respect to the reference genome (Figure 8.1)
which lead to difficulties and inaccuracies in downstream analysis, such as in validat-
ing predictive models of somatic mutations, and in providing biological interpretation

of expressed genes (Zhao and Simon, 2010). While DNA sequencing of a single-cell
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Table 8.1.: Biological interpretation of joint-genotypes (source: Roth et al. (2012)).

on /0t AA AB BB

AA  Wild-type Somatic  Somatic
AB LOH Germline LOH

BB Error Error Germline

Pair of
Chromosomes

Tumor Normal
AA 1
AB 0.5
\ / Sitej —— N

BA 0.5
BB 0
TCACGATTGACGTGCACAT
CTCACGATTGTCGT
TCACGAATGA
TCAC

Figure 8.2.: An illustration of contaminated tumor and normal sample, along with

their contaminated read sequences (left). A pair of chromosome at site 7, its possible

genotypes, and its associated probabilities of matching the reference genome.

can be used, the technology for this technique is expensive, prone to high techni-
cal variations, and lacks the sequencing depths found in bulk cells DNA sequencing
technologies (Yadav and De, 2014).

Yadav and De (2014) presented a detailed study to compare existing methods
across different technologies to estimate the contamination level of a sample. The
current standard approaches are VerifyBamID (Jun et al., 2012) and ContEst (Cibul-
skis et al., 2011). Both of these methods use external databases to improve the
accuracy of the estimation, making them dependent on the comprehensiveness of

outside resources. Methods that involve the use of sequencing informations alone
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by means of a matched normal and tumor samples were also introduced (Bergmann
et al., 2016; Su et al., 2012; Larson and Fridley, 2013). However, these methods do
not concurrently provide detection of somatic SNVs. Further, current approaches
assume contamination rates are uniform across all loci.

We propose two hierarchical Bayesian models to flexibly estimate contamination
rate in a matched normal and tumor DNA sequencing data, while concurrently detect-
ing somatic mutation at a base location. Our models allow for contamination levels to
vary across locations, permitting information to be shared along the genome. This is
particularly useful for when DNA sequencing data are noisy (Tomlinson and Oesper,
2018), which is commonly found in multi-sample bulk sequencing data. We do this
via the use of a mixture model with a Dirichlet prior (Section 2.2). Next, we extend
this framework to use a Dirichlet Process prior (2.4) that allows for contaminations
to be shared by multiple locations along the genome and does not restrict the number
of common contamination values. These models are described in more details in the

next section.

8.2 Methodology

Consider a human genome with only two possible alleles at each base position
in the genome, A and B, corresponding to a match and a mismatch to the ref-
erence genome (see Figure 8.2). Then, the set of possible diploid genotypes are
G = {BB,AB, AA}. For genotype AB, we should observe approximately 50% of
the reads to match the reference genome (Kim et al., 2013). Similarly, we expect
close to 100% of the reads to match the reference genome for genotype AA, and
0% matches for genotype BB. Thus, the match probabilities of observing the afore-
mentioned combinations are {0, 0.5, 1}, respectively. Denote these probabilities by
0™ = {67,0%,...,0m} for sample with normal cells and 6* = {6%, 65, ... 0. } for tu-
mor samples, where m indicates the total number of locations (i.e. base positions) of

the genome, and 67, 0! € {0,0.5,1}.
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Write (; € [0, 1] for the contamination level at a specific location ¢ in the chromo-

some. Now, the probability of observing a match is given by
pi = GOF + (1= G)o; (8.1)

In a paired normal and tumor human sample, we have 2 measurements at each location
i, and following the standard convention in Roth et al. (2012), the set of possible joint-
genotypes are the Cartesian product of the set G, which is G x G = {(gn,9:) € G}.
Accordingly, the joint-genotype probabilities at location m is also (67, 6" ) where 67,
0t € {0,0.5,1}. These joint-genotypes are of interest as they provide information as
to the type of mutation that occured at a specific base position of the DNA, and can
be interpreted as given by Table 8.1. Here, wild-type describes a condition of perfect
matches in both normal and tumor samples: (AA, AA), somatic indicates a potential
tumor variant: (AA, AB) or (AA, BB), germline is a variant in both samples of
normal (AB, AB) and tumor (BB, BB), LOH is the loss of heterozygosity: (AB, AA)
or (AB, BB). An error occur when a homozygous variant mutates back to match the
reference genome; an unlikely event, and suggests a potential error in the base calling
or alignment process.

Now, at each locus i, we have 2 contamination levels (/" for the normal sample
and ¢! for the tumor sample, as well as 2 match probabilities p" and p, where pg
is the probability of matches at ¢ for sample j. Similar to the one sample case, the
probability of pf is a linear combination of the probabilities of the joint-genotype such

as,
pl =00+ (1—¢)o!

Let Y/ be the number of matches we observe at nucleotide location i and N/ be
the total number of reads found at ¢ for each sample j, then, Y;j follows a Binomial

distribution given by,

Y/ ~ Bin(N/, )
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We aim to estimate 67, 0%, (™ and ¢}. Note that ! and 0!" are shared by observations at
the same location, and the mixing proportion Cf , may be shared across observations
at different locations. In this fashion, we are able to determine the joint-genotype at

each position while considering uniform or shared contamination rates.

8.2.1 Properties of p

Let ,5{ be the empirical value for p{ , calculated by the fraction of observed matches
at location 7 to the total number of reads at that location. Given j, we can evaluate

all possible empirical ff values for each i by enumerating the joint-genotype (67, 6%)

and solving for @J as follows
5 PO o PP —0i

e Y Taa

(8.2)

We assume that tumor samples have contamination levels of no more than half and
normal samples will have contamination levels of no less than half. This is because
the label of the samples are almost always known by the scientists performing cell
extractions and/or sequencing of these cells.

Given the empirical parameter value, pf and p¢, and under our assumption that
(" — ¢! >= 0, we can determine the characteristics of each contamination rate with

varying pair of genotype.
n t n t\on t n\pnt
Pi — P = (Cz - Cz)ez + (C@ -G )91 (8-3)
= (¢ = ¢)O; —6;) (8.4)

Given fixed 07 and 6!, there are 3 potential values for the p! and p!:

1. If 0" < 0%, then p' < pt since (' — (! >=10
2. If 07 > 6%, then pI' > p! since (' — (! >=0

3. If 0} = 6}, then pf — p; = 0 or p}' = p;

7
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This suggests that if p? = pf, the model is unidentifiable with respect to the
contamination rate, as any values of (’s would satisfy the given pair of empirical
parameters. The pair of observations with this characteristic would be of no use to
the model because they fail to give any information of contamination. Including these
observations into the analysis can bias the result. We later utilize this information
to filter out unidentifiable observations and use only those that provides a unique
solution to the system of linear equation above.

As previously mentioned, our goal is to allow the sharing of contamination levels
across all base positions in the genome. We can do this by clustering Cf such that
sites within the same cluster share the same contamination estimate. Similarly, we
can also allow sites to perform clustering over the 9 values of the joint-genotype,
(6™,0"). In this work, we take to both finite and infinite mixture models to represent
these clusterings. In the finite setting, we assume countable number of components
over (", (', and (6",6"), by placing a Dirichlet prior over these parameters. We
extend this framework to allow for infinite number of components over (" and (*, by
placing a Dirichlet Process prior over these parameters. The DP prior will allow for
flexible number of clusters with shared values drawn from a carefully chosen based

distribution. We describe both models in the next two sections.

8.2.2 Mixture models with Dirichlet Prior (M1)

The models proposed by Jun et al. (2012) and Bergmann et al. (2016) involve
dividing the parameter space when estimating the contamination level of a given
sample. In this first model, we adopt the same approach by dividing the parameter
space of C{ into fine grid and placing a Dirichlet prior on the distribution of Cf and
the joint-genotype (07,6!). Sampling from these parameters now involved sampling
from a series of multinomial distribution which is straightforward to do.

Let a be the concentration parameters associated for the joint-genotypes, and a,

and ay the associated concentration parameters for (* and ¢!. The dimension of a,,
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and oy depends on the number of components (grid) use in the model, while that of a
is 9, corresponding to the number of possible joint-genotype. Since the label of each
sample is known (i.e. tumor or normal sample), we can impose prior knowledge on
the value of the concentration parameters of the Dirichlet distribution to reflect this

information. The complete generative process of the model is given by the following
m; ~ Dirichlet()
u; ~ Multinomial(;)

(07,6;) = (6", 6)u,

1771

G, ~ Dirichlet(a,) G ~ Dirichlet (o)

v ~ Multinomial(G,,) vl ~ Multinomial(G;)

G =G G =G

Vi~ Bin(N?, G167 + (1= ¢)6)) Vi~ Bin(N, GO7 + (1= ¢)6)

This model can produce biases in its estimation due to the divisions of the param-
eter space. An increase in accuracy could potentially be obtained through smaller
grid sizes but will lead to computational inefficiency in the estimation as more grid
values have to be evaluated before choosing the optimal point. The same criticism
has been raised to other methods of similar nature. Nevertheless, this model provides
a simple representation to address our problem, as well as providing good verification

for more complex models such as the DP mixture model which we discuss next.

8.2.3 Mixture models with Dirichlet Process prior (M2)

We extend M1 to allow for flexible clustering of the contamination rate, an al-
ternative to dividing the parameter space into fine grids. We do this by placing a
Dirichlet Process prior over both (" and ¢! through the Chinese restaurant process
representation of the DP (see Section 2.4.1).

Let H; be the base distribution of the individual Dirichlet Process for j = {n,t}.

For example, we may place a Beta(2,5) or a Unif(0, 0.5) for H; over (', to reflect the
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tumor sample label. This is also important to prevent the label switching property of
the DP which we explain in more detail in Section 8.4. The complete data generating

process for model M2 is as follows

m; ~ Dirichlet(cx)
u; ~ Multinomial(r;)

(07,07) = (6", 6",

1771

G,, ~ DP(ozn, Hn) Gy ~ DP(ozt, Ht)
Czn ~ Gy Czt ~ Gy
Y ~ Bin(N}, (707 + (1 - ¢")6;) Y~ Bin(N/, (07 + (1 = ¢)6))

For both models M1 and M2, the likelihood equation is then the product of the

likelihood of m locations as follows

L(¢™,¢*, 6™, 6°Y) = [ [ Bin(N7", (67 + (1 — ()65 Bin(N}, 167 + (1 - ¢)é)
i=1
. Nzn non n\ pt\yl non n\ gt \N'—y?
:H yr (GO + (1= ¢o)" (1 = GH6F + (1 — ¢)8;) " ¥ x
i=1 N7

Ny t t_ ot
() o+ = oo+ - o

We take the Bayesian approach to estimating the parameters of both models
through Markov chain Monte Carlo methods. Specifically, we adopt the Gibbs sam-

pling algorithms from Section 2.5.

8.3 Markov chain Monte Carlo sampling

We employ the standard Gibbs sampling procedure to draw from the posterior
distribution of the parameters. For each model, we derive the conditional distribution
from the joint distribution of the corresponding model. The following sections show

the detail of the update steps involve in the Gibbs sampling procedures.
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8.3.1 Gibbs sampling for M1

The Gibbs sampler for M1 involves evaluating the conditional probability of
and (! at each point of the grid in the parameter space, and evaluating the proba-
bility of (6™, 6"); across its 9 values. The following Equation provides the conditional

distribution of sampling all 3 parameters at location i:

P( 17;1717 Cf;h (Qn’ et)ui|(9n7 9t)—i7 sza Ct_za Yn7 th Nn7 Nta a1, &g, a)

o P(v} =k, v = Lu; = jlu_s, v, 0" Y™ Y N* N" o, o, ) (8.5)

OCP(Y;‘n:yinlvzn:k?“’i:ijin>P<}/;t:yﬂvleaui:jv‘]\[f)x

P! = k:|v7_‘i,an)P(vf = l|vt_i,at)P(ui = jlu_;, @) (8.6)

where k = {1,...,K},l={1,...,L},j ={1,...,9}, and the value of { K, L} depends
on the total number of grid spaces use in the model. To update the parameters, the
algorithm samples from K x L x 9 vector of probabilities. After integrating out the

respective GG, and Gy, the conditional distribution of the latent class indicators are

given by:
My, —i + Oni,
P! =klv",., a,) = ’ . 8.7
e 1)
Similarly,
P! = ot ;, ) = — i (8.8)

L
m - 1 + ZT‘:]. atr
where my, _; is the number of observations in cluster £ minus observation . Lastly,

for the joint-genotype we have:

mj—i +

m—1+22:1aT'

P(u; = jlu_;, o) = (8.9)

Equations (8.6) to (8.9) provide the main building block for an iteration of our
Gibbs sampler. The complete steps are given by Algorithm 5. This procedure can be

repeated to produce the desired number of samples after the chain converges.
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Algorithm 5: Gibbs sampling for Model M1

1 Initialize v, v}, and u; for each i = 1,... m;

2 fori=1,...,mdo

3 Compute Equation (8.7) and (8.8) forall k=1,..., K andl=1,...,L;
4 Compute Equation (8.9) for all j =1,...,9;

5 | Compute Bin(y?[N7", pI'), Bin(y;| N7, pf);

6 Compute conditional probability as in Equation (8.6);

7 Update v?, vf, and u;

8 end

9 Repeat

8.3.2 Gibbs sampling for M2

In this second model, we place a Dirichlet process prior over the contamination
level Cij . Consequentially, sampling from the conditional distribution becomes more
involved. We adopt the Chinese Restaurant Process representation of the DP (see:
Section 2.4.1) and the corresponding Gibbs sampler (see: Section 2.5). We write
,ofc = (JO + (20!, the probability of observation i given the parameter of component
¢, ¢J. To update the cluster assignment corresponding to (f , we sample from the

conditional distribution given by the following:

b Bin(yR INT, ), for 1<c<k~
P(c =c|c™, yr, ¢t ) = + (810
bt Bin(y| N/, pir), for k™ <c<h

\ m—1l+a

(

b—=t< Bin(y!|Nf, pt,), for 1 <c <k~
m—14+a ? 1 e/ — —
P(Ct = C|Ct—iayfa Cfa e 7sz) = i (811)

\bmf{iaBin(yﬂNf,pfc), for k= <c<h

where m_; . are the number of observations in cluster ¢ not including observation ¢, o
is the concentration parameter of the Dirichlet Process, and s is the number of latent

components.
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To keep the distribution of ("™ and (' invariant, we implement the Metropolis-
Hastings algorithm at every update step of (" and ('. Let Unif(aé, /B{)) be the tran-
sition probability for j = {n,t}. Assuming symmetric transition probabilities, we
accept a candidate draw for the (7 with the following probability:

I PGP
[T Pyl PG
_ I Bin(y |NY, €207 + (1 — ¢2)67) Unif(¢X o, 57)
[T Bin(yf [ N7, ¢=207 + (1 = ¢r=1)00) Unif(¢: o, )

(8.12)

(8.13)

where ¢* denotes the candidate ¢, ("~ denotes the current ¢, m, is the number
of observations in cluster ¢, and subscript c¢ is the cluster indicator. The update step
of Equation (8.13) is performed for all ¢ € {1,--- , k™ }.

Let u; be elements of {1,...,9}, indicating cluster assignment for observation i
associated with the 9 joint-genotypes. Similar to that of M1, to sample the cluster
indicator we have,

m; i + Q;
m=1+3_ a

Pu; = jlu_;, ) = (8.14)

We can then sample from the conditional distribution from the 9 joint-genotype

(07, %) as follows

P(u; = jlu_;, o)

Finally we get,
my —i + Q;
m=1+3_ a
(8.15)

P(ui :].|'Uf—i7<?7 f,yf,yf,Ni”,Nf) = Bin(Nf,p?)Bin(Nf,pg)

8.4 Identifiability

The label switching problem arises when using Markov chain Monte Carlo to draw

posterior samples in mixture models or any other latent variable models. It occurs
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Algorithm 6: Gibbs sampling for Model M2

t
79

c, ek and u; for each i = 1,... m;

7

=

Initialize ¢,
2 for d € n,t do

3 fori=1,...,mdo

4 Draw a new value for ¢f from {1,...,k} according to Equation (8.10)

and (8.11)

5 end
6 Draw a new value for ¢? with acceptance probability given by Equation

(8.13).

7 end

g fori:=1,...,m do

9 Draw u; from Equation (8.15)
10 end

11 Repeat

when unsupervised assignment of labels to distinct groups is infeasible due to the
permutation invariance property of the likelihood. For instance, in a 2-component
mixture model, even if the 2 clusters are clearly separated, the labels (1,2) and (2,1)
have equal posterior probability. Both Celeux et al. (2000) and Stephens (2000) pro-
vides deeper explanations to the label switching problems. Formally, assume finite
number of components, K, in the probabilistic models given in Equation (2.3). In-
ference for this model is drawn from the posterior distribution of the parameters

P(m,0,c|X). Define any permutation of the parameters as,

v(m,0) = (M) - Twy)s (Bua)s -+ Ouiy)) (8.16)

Given a set of parameter values for (7r,8), the order of which these values are asso-
ciated to which components, does not affect the likelihood of the mixture model. In

other words, the likelihood is invariant with respect to the labels of the components,

such that the likelihood L(7,0|X) = L(v(m,0)|X). When exchangeable priors are
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imposed on the parameters, the resulting posterior distributions are invariant under
all permutations v. Without a specific constraint on the priors, the chain of the
MCMC method will explore all possible arrangements of the posterior, resulting in
symmetric multi-modal distribution. This multimodality of the posterior is prob-
lematic if the task at hand is to cluster observations into meaningful groups, as the
marginal posterior distribution is the same for each component.

Researchers have also noted that label switching is important to MCMC conver-
gence (Jasra et al., 2005). If the modes are well separated, the sampler may get stuck
in exploring only one mode and is unable to jump to other modes. When this happens,
posterior inference over each component could be meaningful, however, convergence
of the chain may be questionable as it has fail to explore all modes of the posterior
distribution.

Label switching is a problem in our setting because if we allow the contamination
rates to sample from [0, 1], the posterior will explore ¢ values that potentially switches
the label of the tumor and normal sample. As an example, a ¢! = 0.25 with joint-
genotype (67,60%) = (1,0) result in the same binomial probability as ¢! = 0.75 and
(67,601) = (0,1). This leads to inaccuracy in both the estimation of the contamination
rate, as well as in the detection of somatic mutations.

Several methods in the literature have been proposed to counter the problem of
label switching. The most natural method is to adapt the idea from the frequentist
point of view, which is to impose an artificial contraint on the parameter estimates
(iie. m < m < ... < mg) to break the symmetry (Diebolt and Robert, 1994;
Chung et al., 2004). Other methods includes: proposing a random permutation
of the labels through a Metropolis-Hastings step in the Gibbs sampling procedure
(Papastamoulis and Iliopoulos, 2010; Jasra et al., 2005; Frithwirth-Schnatter, 2001),
finding a permutation that minimizes a certain loss function (Celeux, 1998; Stephens,

2000; Nobile and Fearnside, 2007; Rodriguez and Walker, 2014), and incorporating

uncertainties through a probabilistic relabeling strategy (Yao, 2012; Jasra, 2006).
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Our approach to counter the label switching problem and provide a more accurate
estimate to the contamination, is to use an informative prior over the contamination
level. More specifically, we placed a Unif(0, 0.3) for the tumor sample and Unif(0.7,1)

for the normal sample.

8.5 Summary

We introduced two mixture models, M1 and M2, to estimate contamination levels
and detect somatic mutations in a matched tumor and normal sample. We do this
to allow for sharing of contamination levels across the genome. Both models differ in
the prior placed over for the contamination level, M1 uses the Dirichlet prior and M2
utilizes the Dirichlet Process prior. We defined the models and described the MCMC
algorithms associated with each one. Additionally, we reviewed the label switching

problem inherent to mixture models and outlined our strategy to tackle this problem.
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9. EXPERIMENTS ON SYNTHETIC AND REAL DATA
9.1 Introduction

We evaluated our models described in Chapter 8 in a variety of experimental
settings. We considered three different scenarios; the first involves a uniform contam-
inaton level across all locations in the genome, the second deals with varying level
of contaminations across the genome, and the third involves in silico data of DNA
sequencing from a matched normal and tumor sample. Lastly, we applied our models
to publicly available data. We compared both M1 and M2 in the first two experiments
and, as M2 is more efficient with large datasets, implemented only M2 in the last two

experiments.

9.2 Simulation studies

For each experiment, we use a grid size of 0.01 over the parameter space of both
¢" and (. To reflect the known sample label in M1, we constrained the parameter
space of " to [0.7,1] and ¢ to [0,0.3]. In model M2, we do this by setting the
base distribution for (", H,, to be Unif(0.7,1), and that of ¢*, H,, to be Unif(0,0.3).
For both models, the prior for the joint-genotype is a symmetric Dirichlet prior with
a = 1. The MCMC simulations were run with 5000 iterations and a burn-in of 2500.

Random initializations were used at the start of the chain.

9.2.1 Uniform contamination

In this first experiment, we consider uniform (i.e. fixed) contamination rates for
all 7 along the genome. We generated synthetic data of 200 observations from a

binomial distribution, using randomly selected joint-genotypes (67, 6!), and a known

177
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Table 9.1.: Mean absolute errors and standard deviations for both M1 and M2 on

uniform contamination rate.

Prior P p" ¢t "
Dirichlet 0.0072 4+ 0.0001 0.0078 + 0.0002 0.0184 + 0.0003 0.0194 + 0.0003
DP 0.0019 £ 0.0002 0.0021 £ 0.0003 0.0040 £ 0.0004 0.0044 + 0.0005
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Figure 9.1.: Posterior distribution of the joint-genotype, (0", 6), for M1 (result is
similar for M2) on data with uniform contamination rate. To draw inference from
this figure, observation 59 appears to have a joint-genotype of (1, 1) which based on
Table 8.1, suggests a wild-type mutation.

contamination level of ¢! = 0.1 and ¢ = 0.9 for all ¢ = 1,---,200. The depth of
reads, Nij , is distributed as a Poisson random variable with mean 200.

Figure 9.1 shows the distribution of the joint-genotype for 2500 MCMC samples
of 10 random observations. Both models provided consistent results and were able to
recover the correct joint-genotypes for all 200 observations. Figure 9.2 and Figure 9.3
show the posterior distribution of p’ and ¢? for both models. We see that variance of

the estimates is higher when using a Dirichlet prior over a DP prior, indicated by a
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Figure 9.2.: Posterior distribution of p’s on 10 randomly selected observations for
model M1 (top) and M2 (bottom) on data with uniform contamination rate. In each
subfigure, the left shows the posterior probabilities of the tumor sample, p', and the
right shows that of the normal sample, p™. Filled circles show the real p values of the
observations, while diamonds represent the mode (for M1) or mean (for M2) of the

posterior distribution.
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Figure 9.3.: Posterior distribution of (’s on 10 randomly selected observations for
model M1 (top) and M2 (bottom) on data with uniform contamination rate. In each
subfigure, the left shows the posterior distributions of the contamination rate on the
tumor sample, ¢*, and the right shows that of the normal sample, (™. Filled circles
show the real ¢ values of the observations, while diamonds represent the mode (for

M1) or mean (for M2) of the posterior distribution.
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Figure 9.4.: Effective sample size for the MCMC samples of ¢* (left) and ¢" (right)

for M1 (top) and M2 (bottom) on data with uniform contamination rate.

wider violin plot. Both models have explored the entire parameter space of each ¢ and
the ESS, given by Figure 9.4, suggests good mixing, with most observations in M1
having low correlation. On the other hand, the effective sample size for observations
in M2 have greater variation, lying between 76 to 2500 samples.

To measure the accuracy and efficiency of both models and algorithms, we ran 20
different initializations on the same data. At every iteration, we take the absolute
difference between the estimate and the real value as a measure of error. We use the

posterior mode as parameter estimates for M1, and the posterior mean for M2. We
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use the Mean Absolute Error (MAE) to evaluate the performance of every initializa-
tions, and then computed the mean and standard deviation of the MAE across all
initializations. Table 9.1 suggests that both models accurately estimated the binomial
probabilities p? for each sample j € {n,t} and all initializations were able to correctly
identify the joint-genotype, (67, 6%), for all observations i =1,--- ,m.

Additionally, we measured the efficiency of the two models across the different
initializations. The mean time in seconds for M1 is 209 per 100 MCMC samples,
where the 5th and 95’th quantile lies at 207.79 and 210.33 seconds, respectively. On
the other hand, the average time for M2 is 5.72 seconds per 100 iterations, with the
same quantiles at 5.64 and 5.97 seconds. These result suggest that the model with a
Dirichlet prior (M1) performs significantly slower than that of the Dirichlet Process
prior (M2). This is because M1 requires more extensive computation as the likelihood

at each grid of the parameter space must be evaluated. Efficiency could potentially be

improved by using wider grid sizes, at the cost of accuracy to the parameter estimates.

9.2.2 Varying contaminations

Our second experiment involved another synthetic data set where the contami-
nation rates vary by locations. Contamination levels were generated by randomly
selecting a set of discrete, equally spaced ¢* values in [0,0.3] and ¢" values in [0.7,1]
with grid size of 0.01. Observations in each sample were drawn from a binomial
distribution with randomly assigned joint-genotype (6™, 6"), and the corresponding ¢
value for each i. The total number of reads, N;, were drawn from a Unif(100, 200),
and rounded down to the nearest integer.

As with the previous experiment, the results show a consistency between the two
models. Figure 9.5 shows the posterior distribution of the match probabilities of 10
randomly sampled observations. It indicates that the true binomial probabilities p’,
where j € {n,t}, were recovered by the models as it lies within the range of the

posterior distributions. Naturally, a DP prior produces a much smoother distribution
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Figure 9.5.: Posterior distribution of p’s on 10 randomly selected observations for

model M1 (top) and M2 (bottom) on varying contamination rate across locations. In

each subfigure, the left shows the posterior probabilities of the observations on tumor

sample, p', and the right shows that of the normal sample, p*. Filled circles show

the real p values of the observations, while diamonds represent the mode (for M1) or

mean (for M2) of the posterior distribution.
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Table 9.2.: Mean Absolute Errors and standard deviations for both M1 and M2 on

varying contamination rate.

Prior P P ¢t ¢

Dirichlet 0.01717 £ 0.00003 0.01755 £ 0.00002  0.05432 £ 0.0007  0.05535 £ 0.0007
DP 0.01671 £ 0.00009 0.01783 £ 0.00063  0.05249 £ 0.00022  0.05470 £ 0.00049
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for both M1 (top) and M2 (bottom)
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(e.g. observations 94 and 127 in Figure 9.7), as the component parameters were drawn
from a continuous base distributions. Figure 9.6 suggests that both algorithms have
mixed well and have explored the entire parameter space, in terms of the parameters
¢* and (™.

Similar to the previous experiment, we ran 20 different initializations of the chain
on the same data and summarized the accuracy and efficiency of both algorithms
in Table 9.2. Again, the algorithms were able to accurately estimate the binomial
probabilities up to one hundredth of a decimal, with the DP having slightly higher
deviations. Both models exhibit higher error in estimating the contamination when
compared to that of the uniform contaminations. This is due to the fact that the
possible values for the contamination is now higher. All initializations were able
to correctly identify the joint-genotype for every observations, despite having higher
errors in the contamination estimate. This suggests that there are potentially multiple
solutions to the contamination rate given a fixed joint-genotype. In terms of efficiency,
again, the DP prior performed much faster than the Dirichlet prior, averaging at 8

seconds per 100 iterations compare to 76 seconds for the Dirichlet prior.

9.2.3 In stlico data

Our final experiment involved matched in silico tumor and normal samples which
more closely represents the distribution found in the real data. The contamination
level is known to be at 0.1 for the tumor sample, and 0.9 for the normal sample. The
raw data contains 86336 common locations amongst both samples.

Biologically, most locations will have similar distribution across both tumor and
normal samples, as most locations will not be affected by the tumor. Data of these
kind are known to be really noisy, with only a handful of observations containing
insightful information. The left figure in Figure 9.9 indicates that the empirical
probability (the observed matches over the depth of reads) of the locations are highly

correlated across the two samples; quantitatively, the Pearson correlation is 0.98,
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tumor sample, ¢, and the right shows that of the normal sample, (. Filled circles
show the real ¢ values of the observations, while diamonds represent the mode (for

M1) or mean (for M2) of the posterior distribution.
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Figure 9.8.: Posterior distribution of the joint-genotype, (0", 6"), for M1 (result is
similar for M2) on varying contamination rate across locations. To draw inference
from this figure, observation 178 appear to have a joint-genotype of (1, 0), which,

based on Table 8.1, suggest a somatic mutation.
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suggesting a near perfect positive correlation. For this reason, preprocessing of the
raw data are commonly done and are necessary to find observations that contain
valuable signals.

We filter for locations that have pair of frequencies (or empirical probabilities)
between 0.2 and 0.8; our final data set contains 986 observations. Even after filtering
was done, we see that the density of the two samples are still relatively similar (Figure
9.9), albeit with significant Kolmogorov-Smirnov test result. We use the same set of
prior and hyperparameters as our previous two experiments, and ran the MCMC
algorithm on 10,000 iterations with burn-in of 5,000. As shown by the previous
two experiments, M2 is computationally more efficient. For this reason, we only
implemented our model with a DP prior (M2) in this experiment.

Figure 9.11 shows the contamination estimate of the data. While there are few
observations with signal contamination at the known level of 0.1 and 0.9, most obser-
vations have estimates around 0.3 and 0.7, which is both the upper and lower bound
of the parameter space of (. This could indicate true contaminations at that level,
or that the real estimate falls outside the parameter space, and the model finds the
closest value that still satisfies the prior information.

Further investigation towards individual observations and its possible contam-
ination estimate suggests that most observations are unidentifiable. As shown in
Equation 8.4, when the probability of the binomial distributions are approximately
equal across the two samples, the model is unidentifiable as there are infinitely many
solutions to the contamination rate. This is apparent in Figure 9.12 and Table 9.4
with most observations having joint-genotype estimate of (0.5,0.5).

Furthermore, given the frequency of an observation, the possible { estimate does
not satisfy our models assumptions. To illustrate, observation 367 in Figure 9.10 have
a frequency of 0.575 in the tumor sample and 0.574 in the normal sample. We can
compute its possible contamination levels through solving two simple linear equations
and enumerating its joint-genotype. This is shown in Table 9.3. Recall the assumption

of our models is that the contamination rates for the tumor sample should be less



109

Table 9.3.: Possible contamination rate given the frequencies at location 367

(6™, 6% (0,1) (0.5,1) (1,0) (1,0.5) Frequency
¢t 0.425 0.850 0.575  0.150 0.575
¢ 0.426 0.852 0.574 0.128 0.574

Table 9.4.: Result of joint-genotypes on in silico data

o™ /6" AA AB BB

AA 0 (Wild-type) 195 (Somatic) 53 (Somatic)
AB 175 (LOH) 437 (Germline) 77 (LOH)
BB 35 (Error) 62 (Error) 0 (Germline)

than 0.5 and above 0.5 for the normal sample. Table 9.3 suggests that for this specific
observation our model assumption is violated, or that it has the same joint-genotype,
since given the frequencies, there is no possible solution to the contamination levels
that would meet our assumptions, even when deviations in the empirical probabilities
are considered.

The outcome seen in Table 9.4 may be biologically inaccurate, as we would not
expect most of our DNA to be Germline. This means that it is also impractical for
use in determining the contamination rate of a sample. These results indicate a need
for more conservative preprocessing strategies to better retrieve relevent information

from the data.

9.3 Application

The matched normal and tumor data used in this section is obtained from the
NID Genomic Data Commons!, a public benchmark data for detecting mutation or

variation in the genome. These data are provided for the purpose of comparative

'https://gdc.cancer.gov/resources-tcga-users/tcga-mutation-calling-benchmark-4-files
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Figure 9.10.: Posterior distribution of p’s (top) and (’s (bottom) on 10 randomly se-

lected observations for model M2 (top) on in silico data. The left shows the posterior

of the observations on tumor sample and the right shows that of the normal sam-

ple. Filled circles show the empirical probability of the observations, while diamonds

represent the mode (for M1) or mean (for M2) of the posterior distribution.
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Figure 9.11.: Estimated contamination levels for tumor (left) and normal (right) on

in silico data.
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evaluations of mutation calling algorithms, as the cell lines are publicly available for
validation. While mixtures of the pure and normal are provided, at the time of the
analysis, we were only able to secure the pure samples. Nevertheless, we implemented
our model to the pure tumor and normal samples, and expect the contamination rate
to be 0 for ¢* and 1 for ¢". Each observation in both data set consists of a nucleotide
location in the genome, the total number of reads mapped to this location, and the
number of reads matching the reference genome from both the forward and backward
strand of the DNA.

The raw data contains 23,822 common genome wide locations across the two sam-
ples. The empirical probability of location ¢ in each sample, p¢ and pF, is given by
the ratio between the number of matched reads to the total number of mapped reads.
We plot these values against one another to see the changes in the mutation profile
between the two samples. Similar to the in silico data from our previous experiment,
the left most figure in Figure 9.13 indicates very little shift in the frequency, as most

locations lie along the diagonal regression line, suggesting a perfect linear relation-
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ship. Unlike the in silico data, there are scarcely any observations that cluster in the
left bottom corner, with most lying in the top right corner (associated with a nearly
perfect match), indicating that most locations closely match the reference genome.
We hypothesize that for locations along the regression line (in red), the tumor causes
little change to the genomic landscape, and therefore, provide weak signal of contam-
inations. Furthermore, given that the data contains pure normal and tumor samples,
observations along the regression line will lead to the unidentifiability of the contami-
nation estimate. To ensure identifiability, we included only points that lie as far away
from the regression line as possible. For this reason, we took a more conservative
strategy in the preprocessing step, compared to what was done on the in silico data.

We added an intercept term of 0.2 and -0.2 to the regression line and discarded
all observations that lie between the two lines (shaded pink in Figure 9.13). The final
data contains 1199 common locations, and the density of its empirical probability is
given in Figure 9.13. The densities show that the normal sample contains more high
and low frequencies, whereas the tumor sample contains more frequencies around
half. The bar graph in Figure 9.13 presents these probabilities by location, sorted
in decreasing order based on the tumor frequencies. This figure shows the locations
along the genome that the tumor were able to surpress the number of matches to the
reference (indicated by higher normal frequency).

Similar to that of the in silico experiment, we model this data using a DP prior
(M2), and ran the MCMC algorithm for 10,000 iterations with a burn-in of 5,000.
We set the same hyperparameter for the DP, but use a different value for the joint-
genotype; to more closely reflect the mutational landscape, we adopted the hyperpa-
rameters used by Roth et al. (2012) given by Table 9.5.

The result shows a similar trend to that of the in silico data. Although there
are a few contamination estimates at 0 and 1, most estimates of the contamination
peaks at the upper boundary on the tumor sample (0.3) and lower boundary on the
normal sample (0.7) of its parameter space (Figure 9.15). The posterior of ¢’ in

Figure 9.14 shows that the algorithm has explored the parameter space but most
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estimates are around the boundary. More over, the scatter plot in Figure 9.13 is
inconsistent with the known contamination rate of the data. With a ¢* of 0 and
¢" of 1, we should expect to see clusters at (6,,6;) where 6 € {0,0.5,1}. However,
we only observed clusters primarily at (1, 1) and along the regression lines, which
again, will lead to unidentifiable estimates. Furthermore, the high number of errors
in Table 9.6 is another indication of either inconsistency between the data and model
assumptions, or better preprocessing step is needed to filter out locations before model

implementation.

Table 9.5.: Hyperparameter for the Dirichlet prior on the joint-genotypes of pure

normal and tumor data

0"/6t AA AB BB
AA 105 102 10?
AB  10* 10* 10?
BB 1 1 104

Table 9.6.: Result of joint-genotypes on pure normal and tumor data

o™ /6" AA AB BB

AA 0 (Wild-type) 320 (Somatic) 186 (Somatic)
AB 159 (LOH) 50 (Germline) 61 (LOH)
BB 166 (Error) 257 (Error) 0 (Germline)

9.4 Summary

We tested both algorithms in a variety of experimental settings: uniform con-
tamination, varying contamination, and in silico data with uniform contamination.

In addition, we implemented our model on a pure matched tumor and normal sam-
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Figure 9.14.: Posterior distribution of p’s (top) and (’s (bottom) on 10 randomly

selected observations for model M2 (top) for pure tumor and normal sample. The

left shows the posterior of the observations on tumor sample and the right shows

that of the normal sample. Filled circles show the empirical probability values of the

observations, while diamonds represent the mode (for M1) or mean (for M2) of the

posterior distributions.
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Figure 9.15.: Estimated contamination levels for tumor (left) and normal (right) on

public data.

Normal = 0 Normal = 0.5 Normal = 1

5000 -
4000 -
3000 -
2000 -
1000 -

O -
5000 -
4000 -
3000 -
2000 -
1000 -

O -
5000 -
4000 -
3000 -
2000 -
1000 -

Jown|

0=

Counts
G'0 = Jowny

Jown|

I

74 242319446686750788107308T127 74 2423194466867507881073087127 74 2423194466867507881073087127
Observations
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normal and tumor data. To draw inference from this figure, observation 74 appear to

have a joint-genotype of (0.5, 1), which, based on Table 8.1, suggest a LOH.
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ple data, obtained from publicly available databases. For this data, we assume the
contamination level to be 0 and 1, respectively.

In the first two experiments, we generated the data by randomly assigning appro-
priate contamination levels and joint-genotype for each observation in the dataset.
Both models performed very well in the first two scenarios, with small error on the
posterior estimate of all the parameters in the models. In term terms of efficiency,
both experiments show that M2 is significantly faster by a factor of 100. Predictably,
the grid size used in M1, highly impacts the accuracy and efficiency of the algo-
rithm. The posterior distribution of the parameters for model M2 shows a smoother
distribution, compare to that of M1.

When the models were implemented on in silico data, the estimate from the
posterior distribution of both ¢* and (™ were incompatible to the known contamination
of the data. The same results were seen when the models were applied on the pure
normal and tumor samples. In fact, most contamination estimates across the two
samples were found to be at the boundary of the parameter space.

There are two potential reasons behind these discrepancies. First, preprocessing is
an important step in evaluating modeling results, especially in the context of genomic
dataset. In similar applications, for example, outside annotation is used to filter and
exclude certain sites within the genome. Other methods in this area utilizes additional
information to filter for sites along the genome. Specifically, Larson and Fridley (2013)
and Su et al. (2012) only uses location along the genome that are heterozygous (i.e.
AB sites); both Jun et al. (2012) and Cibulskis et al. (2011) first identifies homozygous
loci (i.e. AA and BB sites) based on separate array data, using only these sites for
purity estimation; lastly, Bergmann et al. (2016) uses a separate tool to filter for a
pre-selected highly informative genomic markers. Additionally, these methods utilizes
other information in their model that we did not consider, such as the probability of
sequencing error per read (Jun et al., 2012; Bergmann et al., 2016; Cibulskis et al.,

2011), as well as base calling probabilities.
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Second, our modeling assumptions may be inconsistent with that of the real data
due to technical noise. In particular, empirical analysis has shown sequencing ex-
periments tend to incorrectly represent heterozygous loci mapped at rates < 0.5 (Su
et al., 2012; Larson and Fridley, 2013), which impacts accurate estimation of tumor
purities. This fact is inconsistent with our assumptions in placing a probability of
0" = 0' = 0.5 to heterozygous genotype AB. Understanding these potential issues as
well as including technical variation within the modeling assumptions are promising

directions for further investigation.
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10. SUMMARY AND FUTURE WORK
10.1 Summary

This dissertation focused on solving two specific problems involving nonparamet-
ric Bayesian mixture models. First, we investigated the problem of density estimation
for observations on constrained spaces. Data are often bounded by complex spatial
domains such as the city of Chicago. Modeling these type of data without consid-
ering the domain, result in underestimation of observations lying at the edge of the
boundary, as the model attempts to account for the sharp drop in the number of
observations lying beyond the boundary. To mitigate this issue, we adopted the re-
jection sampling algorithm and showed that the observations can be generated by
proposing from an unconstrained distribution and accepting proposals that fall in
the constrained set. Based on the different proposal distributions used, we proposed
two models: the truncated mixtures of Gaussians (TMoG) and mixtures of truncated
Gaussians (MoTG). Chapter 3 described these models in more detail by providing a
brief review of rejection sampling and how it can be used to generate data in more
complex domains. This chapter also included comparisons between the two models
by means of simulation and a toy example.

The resulting probability density of the two models, involve intractable normal-
izing constants that causes posterior sampling to be doubly-intractable. By charac-
terizing both our models through a rejection sampling scheme, we utilized a data
augmentation method that avoids computing intractable normalizing constants. Our
methodology is most useful for nontrivial constraint sets, such as the boundaries of
a city. It is also useful in simpler settings like the simplex, or the unit disc, when
existing mixture models are not flexible enough to represent rich correlation struc-

ture or to capture sharp changes in probability across boundaries. In Chapter 4, we
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presented existing MCMC samplers for the data augmentation scheme and described
how these samplers can be costly and exhibit poor mixing. We introduced a user de-
fined parameter, p, that specifies the probability given by the prior to the constrained
sets of interest. We translated this probability into threshold that quantifies the limit
to the number of rejections per observations in the sampler. Also in this chapter, we
provided justifications to this modified sampler and described how it is necessary to
reduce variance and improve efficiency.

We tested our methods on various experimental settings in Chapter 5. In the first
experiment involving a one-dimensional Gaussian, we illustrated how the likelihood
of observations near the border can be underestimated when the constrained set
is not accounted for. Our second experiment provided an example where higher
thresholds may be required for data with sharp modes near the boundary. In the
bivariate Gaussian experiment, we compared both models and showed that MoTG
can fail with higher thresholds due to the coupling between the prior and number
of rejections. In our last experiment, we evaluated the predictive performance of
both samplers to a setting with more complex constraint and showed that under our
scheme, the likelihood of observations near the edges improved significantly. Across
all our experiments, we showed that TMoG is significantly faster and performs better
than MoTG. Chapter 6 continues our implementation of both models to applications
on two real datasets: flow-cytometry data and Chicago homicide data. We included
posterior predictive checking for model diagnostics, and observed that the results
on the comparison of both models to these data were consistent to our findings in
Chapter 5.

In chapter 7, we provided a sensitivity analysis of our models and algorithms to
the hyperparameters of the Dirichlet Process prior that were placed over the weights
of the mixing components. We showed that smaller number of components result
in lower predictive performance of observations near the boundary. We extended
the rejection sampling scheme to include an outer limit on the perimeter of the con-

straint set to bound the location of the proposal draws from the prior. We showed
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through experimental testing that this modification further improved mixing while
maintaining its efficiency.

Chapter 8 presented our approach to the second problem this dissertation ad-
dresses. DNA sequencing from tumor samples are susceptible to contamination by
normal cells that leads to inaccuracies in the detection of mutations driving tumor
growth. We motivated the problem in Chapter 8 and introduced the two models we
developed to estimate the contamination rates in a matched normal and tumor sam-
ple. The first model involved a finite mixture model by placing a Dirichlet prior over
the contamination parameter. We extended this model to the framework of infinite
mixtures by placing a Dirichlet Process prior over the contamination parameter. Our
models allow for varying contamination levels along the genome, as well as for the
detection of somatic mutations. We discuss the models in detail and presented the
associated MCMC algorithms for both models.

In Chapter 9, we implemented both models and algorithms on synthetic as well as
real data. Our first experiment involved fixed contamination rate along the genome.
We showed that the models can accurately estimate the observed probability, the
contamination level, as well as the genotype of each location in the genome. In the
second experiment, we implemented our models and algorithms to a setting with
varying levels of contamination along the genome. The result was consistent to that
of the first experiment where the sampler were able to accurately recover the cor-
rect parameter estimates for all observations. Across 20 different initializations, we
showed that the model with the Diriclet Process prior was significantly faster than
its counterpart.

In the application of our models and algorithms to public data with known con-
tamination, we showed that there were some incompatibilities between the posterior
estimates to the given contamination level. We described the two main reasons be-
tween these discrepancies. The first reason was the need for better preprocessing
strategies such as filtering for only heterozygous or homozygous sites using separate

array data or other stand alone tools. The second reason was the need to account for
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technical noise in our modeling assumptions. Multiple studies have shown that se-
quencing experiments can incorrectly represent the probability of a heterozygous loci
at a site. Further understanding of the technical variation in the data can potentially

improve modeling outcomes.

10.2 Future work

In this section, we outline the possible extensions to the models and algorithms

we proposed to the two problems addressed in this dissertation.

10.2.1 Density estimation of data on constrained spaces

For the density estimation of data on constrained spaces, there are a couple of

future directions that can be explored.

1. Improving the computational efficiency of the MCMC algorithms by employing
a less crude way of checking whether a proposal falls in the constrained set. In
our application to the Chicago homicide data, each proposal drawn from the
prior is inspected across all 77 neighborhood limits of Chicago before it can be
ruled as a rejection. This was done mainly because the data provided involved
separate coordinate bounds for all 77 neighorhoods. One obvious way to reduce

this overhead is to use only the outer coordinates of Chicago.

2. Future studies can extend our work to continuous state space models with re-
stricted domains. In Chapter 3, we mentioned a specific dataset of coyotes in
Rhode Island!. We can include time in addition to the geographical location to
model the movements of these coyotes, that are restricted to the island. Each
iteration of the Gibbs sampling procedure will include an additional step to
sample from the conditional distribution over time. Many studies have model

animal mobilities using continuous state space models (Hanks et al., 2015; John-

'http://theconservationagency.org/narragansett-bay-coyote-study/
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son et al., 2008). However, these methods do not account for the limitation in
the movement of the animals due to spatial restriction, which again, can under-

estimate the density near the boundary.

3. Our thresholding scheme serves to regularize the proposal distribution, limiting
how much mass it assigns outside the constraint. It is interesting to look at
more refined approaches to this, such as increasing the likelihood of truncation
with distance from the constraint. We have briefly attempted to explore this
idea in Chapter 7 but further theoretical and empirical studies are needed to

fully understand the behavior of the proposal distribution in this setting.

4. The thresholded sampler presented in Chapter 4 describes a specific case of
marginally specifiying the prior ¢q. It would be of interest to implement the

general marginal specification introduced by Kessler et al. (2015) in our sampler.

5. We can explore other Bayesian inference techniques, such as variational Bayes
(Blei et al., 2017), to accurately estimate the probability density of observations
on constrained spaces. It would also be promising to generate observations on
complex constrained spaces using scalable framework such as the Variational

Auto-encoder (Kingma and Welling, 2013).

10.2.2 Clustering mutations and estimating contaminations in matched

normal and tumor samples

For the problem of estimating contamination levels in a matched normal and
tumor sample, there are some immediate avenues of future improvements that we can

explore.

1. The next focus would be to implement better strategies in preprocessing the
data before applying the algorithms. As mentioned in Chapter 9, we want to
filter out heterozygous location along the genome (Larson and Fridley, 2013; Su

et al., 2012) to provide better identifiable estimation of both the contamination
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and the joint-genotype. Further, we can modify our assumptions to the genotype
probability to reflect technical noise that exist in these type of data (i.e. the
probability of genotype AB is < 0.5 (Su et al., 2012; Larson and Fridley, 2013)).
We can allow variation in the genotype probabilities by placing a prior over the

parameters (Roth et al., 2012).

. We can explore the use of nonparametric mixtures to determine clonal and
subclonal mutations occuring in the tumor environment (Jiao et al., 2014; Roth

et al., 2014).
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