Purdue University Graduate School
PhD_Thesis_Akash_Agarwal.pdf (3.28 MB)


Download (3.28 MB)
posted on 2022-09-01, 00:10 authored by Akash AgarwalAkash Agarwal

Program anomaly detection — modeling normal program executions to detect deviations at runtime as cues for possible exploits — has become a popular approach for software security. To leverage high performance modeling and complete tracing, existing techniques however focus on subsets of applications, e.g., on system calls or calls to predefined libraries. Due to limited scope, it is insufficient to detect subtle control-oriented and data-oriented attacks that introduces new illegal call relationships at the application level. Also such techniques are hard to apply on devices that lack a clear separation between OS and the application layer. This dissertation advances the design and implementation of program anomaly detection techniques by providing application context for library and system calls making it powerful for detecting advanced attacks targeted at manipulating intra- and inter-procedural control-flow and decision variables. 

This dissertation has two main parts. The first part describes a statically initialized generic calling context program anomaly detection technique LANCET based on Hidden Markov Modeling to provide security against control-oriented attacks at program runtime. It also establishes an efficient execution tracing mechanism facilitated through source code instrumentation of applications. The second part describes a program anomaly detection framework EDISON to provide security against data-oriented attacks using graph representation learning and language models for intra and inter-procedural behavioral modeling respectively.

This dissertation makes three high-level contributions. First, the concise descriptions demonstrates the design, implementation and extensive evaluation of an aggregation-based anomaly detection technique using fine-grained generic calling context-sensitive modeling that allows for scaling the detection over entire applications. Second, the precise descriptions show the design, implementation, and extensive evaluation of a detection technique that maps runtime traces to the program’s control-flow graph and leverages graphical feature representation to learn dynamic program behavior. Finally, this dissertation provides details and experience for designing program anomaly detection frameworks from high-level concepts, design, to low-level implementation techniques.


Degree Type

  • Doctor of Philosophy


  • Industrial Engineering

Campus location

  • West Lafayette

Advisor/Supervisor/Committee Chair

Juan P. Wachs

Advisor/Supervisor/Committee co-chair

Patrick T. Eugster

Additional Committee Member 2

Vaneet Aggarwal

Additional Committee Member 3

Roshanak Nateghi