posted on 2020-05-13, 00:59authored bySukirtSukirt
This thesis explores the application of deep learning techniques to problems in fluid mechanics, with particular focus on physics informed neural networks. Physics
informed neural networks leverage the information gathered over centuries in the
form of physical laws mathematically represented in the form of partial differential
equations to make up for the dearth of data associated with engineering and physi-
cal systems. To demonstrate the capability of physics informed neural networks, an
inverse and a forward problem are considered. The inverse problem involves discov-
ering a spatially varying concentration ?field from the observations of concentration
of a passive scalar. A forward problem involving conjugate heat transfer is solved as
well, where the boundary conditions on velocity and temperature are used to discover
the velocity, pressure and temperature ?fields in the entire domain. The predictions of
the physics informed neural networks are compared against simulated data generated