Productive Failure Learning in Physics Education
The study investigates the effectiveness of productive failure learning using a contrasting-cases design of ill-structured problems followed by well-structured problems. Fifty-one future elementary school teachers, enrolled in an undergraduate physics course were randomly assigned to one of the three conditions: a) ill-structured followed by well-structured problems (IS-WS), b) well-structured followed by well-structured problems (WS-WS), and c) ill-structured followed by ill-structured problems (IS-IS). The study hypothesized that the first condition with a contrasting-case design would outperform the non-contrasting-case design. After solving treatment problems in their respective conditions, all the participants took a post-test that comprised both ill-structured and well-structured problems. The one-way and two-way ANOVA results showed that while productive failure learning (IS-WS) outperformed WS-WS on both procedural and conceptual knowledge in the well-structured post-test, there was no significant difference between the three learning conditions in the ill-structured post-test. The findings indicated that structuring instruction lies on a continuum between highly structured and unstructured. For higher-level physics education, productive failure learning provided the optimum balance of discovery learning via ill-structured problems and guided instruction via well-structured problems to activate prior knowledge, draw attention to critical features of the canonical concept, and facilitate motivation and excitement within learners, resulting in effective learning.
History
Degree Type
- Master of Science
Department
- Technology Leadership and Innovation
Campus location
- West Lafayette