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ABSTRACT

Kontopoulou, Evgenia-Maria PhD, Purdue University, August 2020. Randomized
Numerical Linear Algebra Approaches for Approximating Matrix Functions. Major
Professor: Petros Drineas.

This work explores how randomization can be exploited to deliver sophisticated

algorithms with provable bounds for: (i) The approximation of matrix functions, such

as the log-determinant and the Von-Neumann entropy; and (ii) The low-rank approx-

imation of matrices. Our algorithms are inspired by recent advances in Randomized

Numerical Linear Algebra (RandNLA), an interdisciplinary research area that ex-

ploits randomization as a computational resource to develop improved algorithms for

large-scale linear algebra problems. The main goal of this work is to encourage the

practical use of RandNLA approaches to solve Big Data bottlenecks at industrial

level. Our extensive evaluation tests are complemented by a thorough theoretical

analysis that proves the accuracy of the proposed algorithms and highlights their

scalability as the volume of data increases. Finally, the low computational time and

memory consumption, combined with simple implementation schemes that can easily

be extended in parallel and distributed environments, render our algorithms suitable

for use in the development of highly efficient real-world software.
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1 INTRODUCTION

Matrices arise in many scientific areas (e.g. genetics, physics, econometrics, text

analysis etc.) as mediums to encode information between observations (usually rep-

resented by the rows of the matrix) and attributes (usually represented by the columns

of the matrix). After the information matrix is constructed, functions are applied on

it, to extract useful information such as important features, principal directions, etc.

Nowadays, the explosion of data and “the curse of dimensionality” favor the gen-

eration of large-scale and extremely sparse matrices. Although the volume of data

increases rapidly, hardware improvements are not occurring at the same pace. Mod-

ern datasets can not fit in a regular-size main memory and state-of-the art algorithms

for their management are no longer applicable.

The following example highlights some of the reasons why traditional algorithms

do not scale in the case of large data. The exact computation of most matrix functions

boils down to the computation of their Singular Value Decomposition (SVD). Except

from its cubic computational complexity, SVD becomes prohibitive for large-scale

matrices for two more reasons: (i) The entire matrix must reside in the main memory,

and (ii) The often dense SVD factors require space larger than the sparse input data,

leading to memory overuse.

However, few are the applications where high accuracy is crucial, i.e. to accurately

compute all 16 decimal digits available. In most cases three to five accurate decimal

digits are enough. Therefore, the target has shifted from exact computations to

accurate approximations of values with low communication cost between main and

secondary memory. Over the years many solutions have been proposed, e.g. block

iterative methods [Saa11], communication efficient algorithms [BDHS11] etc.

This work explores how randomization can be exploited to deliver sophisticated

algorithms with provable bounds for:
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1. The approximation of logarithm-based matrix functions (see, [BDK+17]

and [KDS+20])

2. The low-rank approximation of matrices (see, [DIKMI18] and [FKKD17]).

Our algorithms are inspired by recent advances in Randomized Numerical Linear

Algebra (RandNLA), an interdisciplinary research area that exploits randomization

as a computational resource to develop improved algorithms for large-scale linear

algebra problems [DM18].

1.1 Approximation of logarithm-based matrix functions

The matrix logarithm is one of the most popular matrix functions. From the com-

putation of differential equations to control and graph theory, and quantum mechanics

various forms of the matrix logarithm are ubiquitous. In this work we concentrate on

log-based functions of the form:

f(log(g(A))) = γ (1.1)

where f(·) and g(·) are matrix or scalar functions, γ ∈ R and A ∈ Rn×n. We further

assume A to be a Symmetric Positive Semidefinite matrix (SPSD).

The naive solution to Eqn. (1.1) would have been to use a classic SVD algorithm1

to compute the singular values of A [Hig08]. However, as already discussed, such

computation, using conventional computational resources, is infeasible for large-scale

matrices hence a different approach should be considered.

We propose approximation algorithms for two logarithm-based quantities: (i)

log (det (A)), the logarithm of the determinant of A, with applications in interior

point methods, maximum likelihood computation, Gaussian graphical and Gaussian

process models, metric and kernel learning etc. and (ii) −Tr (A log(A)), the Von

1Classic SVD algorithm refers to the trivial O
(
n3
)

solutions.



3

Neumann entropy of the density matrix A with application in quantum mechanics

and information theory.

Careful mathematical manipulation of the two quantities shows that both can be

estimated using classic approximation theory (function approximations using Taylor

or Chebyshev polynomials) and RandNLA tools (e.g. provably accurate random trace

estimators [AT11], and provably accurate power method [Tre11,BDK+17]). Further-

more, in certain cases when the matrix is singular (which is meaningful only for the

Von Neumann entropy setting) we derive algorithms that leverage random projections,

a powerful RandNLA tool, that reduces the dimensionality of the matrix in a way

that the distance between the multidimensional points is preserved. Then, the sought

quantity is approximated using the definition formula applied on the singular values

extracted from the lower dimensional space. Experimental evaluation indicates that

our algorithms can approximate both quantities accurately and considerably faster

than the trivial O (n3) approaches [BDK+17,KDS+20].

1.2 Low-rank approximation of matrices

Low-rank approximations are broadly used in data analysis as a simple yet effec-

tive filter to extract important information from noisy data. It is known that the best

rank-k approximation is given by truncating the SVD [EY36]. However, as already

discussed, SVD’s cubic runtime highlights the demand for faster and accurate approx-

imation methods. This dissertation is concerned with two issues; (i) the quality of the

approximation to the top-k left singular vectors constructed from a block Krylov sub-

space [DIKMI18], and (ii) the extraction of sparse principal components [FKKD17]

using a randomized rounding technique.

Krylov subspace methods are broadly used to accurately compute singular vectors

and the corresponding singular values of matrices. In this work we are particularly

interested in understanding the quality of the approximation of the top-k left singular

vectors, Uk from a block Krylov subspace of block size q, Kq, and derive bounds
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that can potentially be informative and useful in implementing block-Lanczos type

methods in the future.

We derive two kind of bounds. First we bound the distance, in terms of angles,

between the spaces spanned by Uk and Ûk. This distance measure can be ill-posed

if Uk is not unique, meaning there is no singular gap between the k-th and the k+ 1-

st singular values of A. Second, we bound the error between A and its orthogonal

projection into the space spanned by Ûk. This bound is gap-independent. The novelty

of our work lies in the proofing techniques used. The traditional Lanczos convergence

analysis [Saa11] was combined with near optimal low rank approximations using least

squares. The critical point during this procedure was the connection of the principal

angles of the two spaces with the least squares residuals, which are broadly studied

in RandNLA.

The second problem we tackle, PCA, is a popular tool in learning information

from high dimensional data, because it extracts the directions towards which the

observations form clusters. Computationally, PCA is nothing more than the SVD of

a correlation matrix. Motivated by recent results in sparse PCA we investigate how

a combination of iterative optimization methods and simple randomized rounding

algorithms can produce principal components that preserve the sparsity of the initial

matrix and are inexpensive in terms of run time [FKKD17]. Experimental evaluations

show that the principal components we derive are sparse and meaningful, but not

pairwise orthogonal.

1.3 Structure

The dissertation is structured as follows. Sections 1.5, 1.6, 1.7 and 1.8 briefly

introduce the four topics, that will be discussed in the chapters that follow. Each

topic is accompanied by summaries of prior work and our results. Chapter 2 intro-

duces basic notation used throughout the dissertation, the required background on

linear algebra and probability theory as well as the basic RandNLA tools that will be
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useful for our algorithms and their analysis. Chapters 3 and 4 introduce the theoret-

ical analysis and empirical evaluation of our algorithms for the approximation of the

logarithm determinant of a symmetric positive definite matrix (SPD) and the approx-

imation of the Von Neumann entropy of a density matrix, respectively. Chapter 5

presents the analysis and empirical evaluation of our partially randomized algorithm

for sparse PCA. Chapter 6 discusses theoretical results for the approximation of dom-

inant singular spaces from block Krylov subspaces. Finally, Chapter 7 includes future

directions for the aforementioned problems.

1.4 Bibliographic note

Parts of section 1.5 and chapter 3 have been published in [BDK+17]. Parts of

section 1.6 and chapter 4 have been published in [KDS+20]. Parts of section 1.7 and

chapter 5 have been published in [FKKD17]. Parts of section 1.8 and chapter 6 have

been published in [DIKMI18].

1.5 Approximation of the logarithm determinant of a symmetric positive definite

matrix

Given a matrix A ∈ Rn×n, the determinant of A, denoted by det (A), is one

of the most fundamental quantities associated with A. Since its invention by Car-

dano and Leibniz in the late 16th century, the determinant has been an important

mathematical concept with countless applications in numerical linear algebra and

scientific computing. The advent of Big Data, increased the applicability of algo-

rithms that compute, exactly or approximately, matrix determinants; see, for exam-

ple, [LZL05,ZLLW08,ZL07,dBEG08,HSD+13] for machine learning applications (e.g.,

Gaussian process regression) and [LP01,KL13,FHT08,PB97,PBGS00] for several data

mining applications (e.g., spatial-temporal time series analysis).

Formal definitions of the determinant include the well-known formulas derived by

Leibniz and Laplace; however, neither the Laplace expansion nor the Leibniz formula
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can be used to design an efficient, polynomial-time2, algorithm to compute the

determinant of A. To achieve polynomial-time complexity for the computation of the

determinant, one should rely on other properties of the determinant. For example,

a standard approach would be to leverage the LU matrix decomposition (or the

Cholesky decomposition for SPD matrices) to get an O (n3) deterministic algorithm

for the computation of det (A).

Problem setup Our focus in this work is to approximate the logarithm of the

determinant of a SPD matrix A. The logarithm of the determinant, instead of the

determinant itself, is important in several settings like the computation of the max-

likelihood, Gaussian processes etc. (see, [LZL05, ZLLW08, ZL07, dBEG08, HSD+13,

LP01,KL13,FHT08,PB97,PBGS00]).

Definition 1. [The LogDet Problem ] Given a SPD matrix A ∈ Rn×n, compute,

exactly or approximately, logdet (A) = log (det (A)).

Related work Despite the importance of the problem, few methods have been

proposed, for the approximation of the logarithm of the determinant of general

SPD matrices. Most methods, including ours, given an SPD matrix A ∈ Rn×n with

eigenvalues λi, i− 1, . . . , n, are based on the following observation:

logdet (A) = log (det (A)) = log

(
n∏
i=1

λi (A)

)
=

n∑
i=1

log (λi (A)) = Tr (log [A])

(1.2)

In words eqn. (1.2) states that the logarithm of the determinant of A equals the

trace of its logarithm. Given this observation, a popular technique is to break the

estimation of Tr (log [A]) into two parts. First, to use polynomial expansions (see,

Section 2.3) to approximate powers of a matrix that is closely connected to log [A]

like, the Martin expansion (see, [Mar92,BP99,HAB14]), Chebyshev polynomials (see,

[PL04,HMS15]) or Taylor polynomials (see, [BDK+17]). Second, to employ a trace

2Indeed both methods, are computationally inefficient as they both require factorial computational
time.
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estimation technique like the Huntchinson’s trace estimator (see, [HMAS17]), the

Gaussian trace estimator (see [HAB14]) or some kind of loose lower bound (see,

[BP99]). In [PL04], the authors use closed formulas to compute the trace of small

powers (up to 4) of a matrix.

Most of the tools used require matrices with bounded spectrum, limiting the

applicability of most methods to SPD matrices of special structure, e.g. large sparce

matrices with eigenvalues in the interval [−1, 1] and structure of the form In−αD with

0 < α < 1 (see, [BP99]), diagonally dominant (SDD) SPD matrices (see, [HAB14])

or SPD matrices with eigenvalues in a more restricted interval (θ1, 1 − θ1) where

0 < θ1 < 1/2 (see, [HMS15]). Table 1.1 summarizes the above discussion, and help

to directly compare our results with previous work.

Table 1.1.: Summary of prior work on the approximation of the logarithm of the
determinant of an SPD matrix that can directly be compared to our approach. In is
the n × n identity matrix, α ∈ R with 0 < α < 1 and D ∈ Rn×n is a SPD matrix
with eigenvalues in the interval [−1, 1]. m refers to the number of expansion terms
retained, p refers to the number of algorithm repetitions or equivalently to the number
of random vectors created for the trace estimation, ε < 1 is the user defined accuracy
parameter and κ (A) refers to the condition number of the SPD matrix A ∈ Rn×n.

[BP99]

Matrix type Expansion type
In − αD Martin [Mar92]

Run time Bound

O (n log n) n·αm−1

(m+1)(1−α)
+ 1.96 ·

√
σ2

p

[HAB14]

Matrix type Expansion type
SDD Martin [Mar92]

Run time Bound

O
(

nnz (A) 1
ε2

log3 (n) log2
(

n·κ(A)
ε

))
ε · n

[HMS15]

Matrix type Expansion type
λi(A) ∈ [−1, 1] Stochastic Chebyshev

Run time Bound

O
(√

1
θ1

log 1
θ1

)
ε · n

A slightly different, but interesting, approach is to explicitly estimate Tr (log [A]).

This idea appeared in [HMAS17] in which the authors use Chebyshev polynomial in-
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terpolation to estimate spectral sums of the form Tr (f(X)) where f(x) is a function

with special characteristics. They apply their method on the approximation of the

logarithm determinant of SPD matrices with eigenvalues in the interval [a, b] a, b > 0

and in general non-singular matrices. Although the novel approach, their algorithms

require knowledge of the maximum and minimum eigenvalues, or some rough bounds

for them, which is not always easy to acquire. Both algorithms achieve additive

error bounds with running time that depends on the condition number of the ma-

trix. Along the lines of [HMAS17], the authors of [UCS17] propose a method that

instead of Chebyshev interpolation utilizes stochastic Lanczos quadrature to estimate

traces of matrix functions. They also apply their approach on the estimation of the

logarithm determinant of general SPD matrices deriving additive error bounds. Un-

like [HMAS17], the method in [UCS17] doesn’t seem to require prior knowledge of

any eigenvalues.

Finally, a completely different method has appeared in [SAI17]. The authors

approximate the logarithm of the determinant of an SPD matrix, using a randomized

subspace iteration approach. The derived bounds are not directly comparable to our

bounds. The work of [Reu02] uses an approximate matrix inverse to compute the

n-th root of det (A) for large sparse SPD matrices. The error bounds in this work

are a-posteriori and thus not directly comparable to our bounds.

Our contributions We present a fast approximation algorithm for the problem of

Definition 1. Our main algorithm (Algorithm 7) is randomized and runs in time

O
((m

ε2
+ log(n)

)
log

(
1

δ

)
nnz (A)

)
,

where nnz (A) denotes the number of non-zero elements in A, 0 < δ < 1 denotes the

failure probability of our algorithm, m > 0 and ε > 0 are user-controlledled accuracy

parameters, specified in the input of the algorithm.

The first step of our approximation algorithm uses the power method (see, Sec-

tion 2.5.1) to compute an approximation to the dominant eigenvalue of A that will
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be denoted as λmax. This value will be used in a normalization (preconditioning)

step in order to compute a convergent matrix-Taylor expansion. The second step

of our algorithm leverages a truncated matrix-Taylor expansion (see, Section 2.3.1)

of a suitably constructed matrix in order to compute an approximation of the log

determinant. This second step leverages a randomized trace estimation algorithm

from [AT11] (see, Section 2.5.2).

Let l̂ogdet (A) be the value returned by our approximation algorithm (Algo-

rithm 7); let logdet (A) be the true value of the logarithm determinant of A; let

λi (A) denote the i-th eigenvalue of A for all i = 1, . . . , n with λ1(A) ≥ λ2(A) ≥

. . . ≥ λn(A) > 0; let κ (A) = λ1(A)/λn(A) be the condition number of A. Our main

result, proven in Lemma 10, states that if,

m ≥
⌈

7κ (A) log

(
1

ε

)⌉
, (1.3)

where m is the number of Taylor terms retained, then, with probability at least 1−2δ,

∣∣∣l̂ogdet (A)− logdet (A)
∣∣∣ ≤ 2ε

n∑
i=1

log

(
7 · λ1(A)

λi(A)

)
︸ ︷︷ ︸

Γ

. (1.4)

Given our choice of m (see, eqn. (1.3)) the running time of the algorithm becomes

O
((

κ (A) log

(
1

ε

)
1

ε2
+ log n

)
log

(
1

δ

)
nnz (A)

)
. (1.5)

eqn. (1.5) shows that the runtime depends linearly on the condition number, κ (A).

The error of our algorithm scales with Γ, a quantity that is not immediately compa-

rable to logdet (A). It is worth noting that the Γ term increases logarithmically

with respect to the ratios λ1(A)/λi(A) ≥ 1 i = 1, . . . , n. Observe that

λ1(A)

λi(A)
≤ λ1(A)

λn(A)
= κ (A) .
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Thus, an obvious, but potentially loose upper bound for Γ, is

Γ =
n∑
i=1

log

(
7 · λ1(A)

λi(A)

)
≤ n · log (7κ(A)) . (1.6)

Our second result handles the family of SPD matrices whose eigenvalues all lie in

the interval (θ1, 1), with 0 < θ1 < 1; this setting was proposed in [HMS15]. In this

case, a simplified version of Algorithm 7 returns a relative error approximation to the

log-determinant of the input matrix. Indeed, Lemma 12 proves that, with probability

at least 1− δ, ∣∣∣l̂ogdet (A)− logdet (A)
∣∣∣ ≤ 2ε|logdet (A) |.

The running time of the simplified algorithm is

O
(

1

θ1

log

(
1

ε

)
1

ε2
log

(
1

δ

)
nnz (A)

)
. (1.7)

Observe, that
1

θ1

≥ λ1

λn
= κ (A) .

Thus, the run time depends on the condition number, κ (A).

1.6 Estimation of the Von Neumann entropy of density matrices

Entropy is a fundamental quantity in many areas of science and engineering. The

Von Neumann entropy, named after John Von Neumann, is an extension of classical

entropy concepts to the field of quantum mechanics. In his work, Von Neumann

introduced the notion of a density matrix, which facilitated extension of the tools of

classical statistical mechanics to the quantum domain in order to develop a theory of

quantum mechanics.
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From a linear algebraic perspective (see, Section 4.1 for details) the real density

matrix R is a SPSD matrix in Rn×n with unit trace. Let pi, i = 1 . . . n be the

eigenvalues of R in decreasing order; then, the entropy of R is defined as3

H (R) = −
n∑
i=1

pi log pi. (1.8)

The above definition is a proper extension of both the Gibbs entropy and the Shannon

entropy to the quantum case. It implies an obvious algorithm to compute H (R)

by computing the eigendecomposition of R; known algorithms for this task can be

prohibitively expensive for large values of n, particularly when the matrix becomes

dense [GV96], which is usually the case in our setting.

Problem setup Motivated by the high computational cost, we seek numerical al-

gorithms that approximate the Von Neumann entropy of large density matrices that

are faster than the trivial O (n3) approach.

Definition 2. [The Von Neumann Entropy Problem ] Given a density matrix

R ∈ Rn×n, compute, exactly or approximately, the Von Neumann entropy of R,

H (R).

Related work The first non-trivial algorithm to approximate the Von Neumann

entropy of a density matrix appeared in [WBS14]. Their approach is essentially

similar in spirit to our second approach (see, Section 4.3). Indeed, Algorithm 12 was

inspired by their approach.

Independently and in parallel with our work, [MNS+18] presented a multipoint

interpolation algorithm (building upon [HNO08]) to compute a relative error ap-

proximation for the entropy of a real matrix with bounded condition number. The

proposed running time of Theorem 35 in [MNS+18] does not depend on the condition

number of the input matrix, which is a clear advantage in the case of ill-conditioned

3R is symmetric positive semi-definite and thus all its eigenvalues are non-negative. If pi is equal to
zero we set pi log pi to zero as well.
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matrices. However, the dependence of their algorithm on terms like (log n/ε)6 or

n1/3nnz (A) + n
√

nnz (A) (where nnz (A) represents the number of non-zero ele-

ments of the matrix A) could blow up the running time of the proposed algorithm

for reasonably conditioned matrices.

In [CSS18] the authors follow a different approach to approximate the Von Neu-

mann entropy. They describe an algorithm that builds upon the randomized subspace

iteration to compute a reduced full-rank matrix, Â. Then the eigenvalues of Â are

computed and the approximation to the Von Neumann entropy follows, using the

definition. This approach is comparable to our third approach (see, Section 4.5), but

it is limited in matrices with a singular gap between the k-th and k+1-st eigenvalues,

for some k < rank (A). The main result (see, [CSS18, Theorem 3]) shows that the

approximation error is proportional to the Von Neumann entropy of the best rank-k

approximation up to a multiplicative factor that depends on the singular gap between

the k-th and k + 1-st eigenvalues of A. This dependency on the singular gap is an

artifact of the subspace iteration and the Krylov subspace methods in general. We

will extend on this in Chapter 6. We should note that (i) the method in [CSS18] is

extended to compute approximations to the traces of matrix functions, and (ii) the

method works for HPSD matrices 4.

Finally, an interesting line of work concerns the approximation of the Von Neu-

mann entropy of the graph Laplacian. It has been proven that a graph can be

characterized by a density matrix of pure states [BGS06], cultivating a connection

between graph theory and the field of quantum theory. Interested readers can refer

to [CWLR19] or [CHHS20] for approaches to approximate the Von Neumann entropy

of the combinatorial graph Laplacian.

Our contributions We present and analyze three randomized algorithms to ap-

proximate the Von Neumann entropy of density matrices as defined in Definition 2.

4This should be considered with caution as there is not a thorough analysis to support this claim.
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The first two algorithms are heavily based on polynomial approximations; the

first approach (see, Section 4.2) uses Taylor polynomials (see, Section 2.3.1), while

the second approach (see, Section 4.3) uses Chebyschev polynomials (see, 2.3.2). More

specifically,

Approach 1: Given a density matrix R ∈ Rn×n Algorithm 10 runs in time

O
((

m
1

ε2
+ log(n)

)
log

(
1

δ

)
· nnz (R)

)
,

where nnz (R) denotes the number of non-zero elements in R. 0 < δ < 1

denotes the failure probability of the algorithm and ε > 0 and m > 0 are two

user-controlledled accuracy parameters specified in the input of the algorithm.

The first step of our approximation algorithm uses the power method (see,

Section 2.5.1) to compute an approximation, u, to the dominant eigenvalue of

R, p1. This value will be used in a normalization (preconditioning) step in

order to compute a convergent matrix-Taylor expansion. The second step of

our algorithm leverages a truncated matrix-Taylor expansion (see, Section 2.3.1

of a suitably constructed matrix (closely related to log [R]) in order to compute

an approximation of the Von Neumann entropy. This second step leverages a

randomized trace estimation algorithm from [AT11] (see, Section 2.5.2).

Let Ĥ (R) be the value returned by Algorithm 10; let H (R) be the true value

of the Von Neumann entropy of R; let pi (R) denote the i-th eigenvalue of R

for all i = 1, . . . , n with 1 > u ≥ p1(R) ≥ p2(R) ≥ . . . ≥ pn(R) ≥ ` > 0. Our

main result, proven in Lemma 4, states that if

m =

⌈
u

`
log

1

ε

⌉
(1.9)

then, with probability at least 1− 2δ

∣∣∣Ĥ (R)−H (R)
∣∣∣ ≤ 2εH (R) ,
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where m is the number of Taylor terms retained. Given our choice of m in

eqn. (1.9), the running time of the algorithm becomes:

O
((

u

`
· log

(
1

ε

)
1

ε2
+ log(n)

)
log

(
1

δ

)
· nnz (R)

)
.

Observe that,

u

`
≥ p1

pn
= κ (R) .

Thus, it is obvious that the running time depends on the condition number,

κ (R).

Approach 2: Given a density matrix R ∈ Rn×n the randomized Algorithm 12 runs

in time

O
((

m
1

ε2
+ log (n)

)
log

(
1

δ

)
· nnz (R)

)
where nnz (R) denotes the number of non-zero elements in R. 0 < δ < 1

denotes the failure probability of our algorithm and ε > 0 and m > 0 are two

user-controlled accuracy parameters specified in the input of the algorithm.

The first step of our approximation algorithm uses the power method (see,

Section 2.5.1) to compute an approximation, u, to the dominant eigenvalue of

R, p1. This value will be used in a normalization (preconditioning) step in order

to be able to use Chebyshev polynomials. The second step of our algorithm

leverages an expansion of Chebyshev polynomials (see, Section 2.3.2) of the

first kind to approximate the matrix analog of the function f(x) = x log (x).

The third step leverages a randomized trace estimation algorithm from [AT11]

to approximate the Von Neumann entropy (see, Section 2.5.2).

Let Ĥ (R) be the value returned by Algorithm 12; let H (R) be the true value

of the Von Neumann entropy of R; let pi (R) denote the i-th eigenvalue of R
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for all i = 1, . . . , n with 1 > u ≥ p1(R) ≥ p2(R) ≥ . . . ≥ pn(R ≥ ` > 0. Our

main result, proven in Lemma 5, states that if

m =

⌈√
u

2 · ε · ` · log(1/(1− `))

⌉
(1.10)

then, with probability at least 1− 2δ

∣∣∣Ĥ (R)−H (R)
∣∣∣ ≤ 3εH (R) .

Where m is the number of Chebyshev polynomials of the first kind that were

used for the approximation. Given our choice of m in eqn. (1.10), the running

time of the algorithm becomes:

O

((√
u

`
·
√

1

log
(

1
1−`

) · 1

ε2.5
+ log(n)

)
log(1/δ) · nnz (R)

)
.

Observe that,

u

`
≥ p1

pn
= κ (R) .

Thus, it is obvious that the running time depends on the square root of the

condition number, κ (R). Therefore, we expect the Chebyshev-based approach

to be faster than the Taylor-based one.

Our third approach (see, Section 4.5) is fundamentally different, if not orthogonal,

to the previous two approaches. It leverages the power of random projections [DM16,

Woo14] to approximate numerical linear algebra quantities, such as the eigenvalues

of a matrix. More specifically,

Approach 3:

Given a density matrix R ∈ Rn×n Algorithm 15 tackles a case when the two previous

polynomial-based algorithms do not apply. That is when the density matrix is
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low rank. In that case Theorems 4 and 5 fail as they both require the eigenvalues

of R to be strictly greater than zero. Algorithm 15 runs in time

O
(
nnz (R) + ns2

)
,

where nnz (R) denotes the number of non-zero elements in R; 0 < s � n is a

user controlled accuracy parameter specified in the input of the algorithm.

The first step of Algorithm 15 uses random projections (see, Section 2.5.3) to

reduce the dimensionality of the input matrix while preserving the relative dis-

tance between the multidimensional points. Towards this end we propose two

constructions for random projectors; (i) the fast subsampled Hadamard trans-

form (see, Algorithm 4) and (ii) the input sparsity transform (see, Algorithm 5).

In the second step of Algorithm 15 at most k singular values from the new sub-

space are computed and eqn. (1.8) is used to return an approximation to the

Von Neumann entropy of R.

Let Ĥ (R) be the value returned by Algorithm 15; let H (R) be the true value

of the Von Neumann entropy of R; let pi and p̃i be the i-th largest eigenvalue of

R and its approximation respectively. Our main result, proven in Theorem 10,

states that if the number of non-zero eigenvalues of R is at most k � n and

ε < 1/2 is the accuracy parameter, then with probability at least 0.9:

∣∣p2
i − p̃2

i

∣∣ ≤ εp2
i (1.11)

for all i = 1 . . . k and:

∣∣∣H (R)− Ĥ (R)
∣∣∣ ≤ √εH (R) +

√
3

2
ε. (1.12)

In words eqn. (1.11) states that Algorithm 15 returns approximations to the

eigenvalues of R such that each approximate eigenvalue squared is relatively

close to the corresponding actual eigenvalue squared. It further states that
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Algorithm 15 returns a relative-additive approximation to the Von Neumann

entropy of R. Using the input sparsity transform (see, Section 2.5.3) to con-

struct the random projector Algorithm 15 runs in time

O
(
nnz (R) + nk4ε4

)
.

Finally, to the best of our knowledge, we provide the first coherent analysis for

the approximation of the Von Neumann entropy of Hermitian density matrices.

This analysis is only available for our polynomial-based algorithms (see, Theorems 8

and 9). We leave it as an open problem the extension of our third approach on the

Hermitian case.

1.7 A randomized rounding algorithm for sparse principal component analysis (PCA)

The Principal Components Analysis (PCA) and the Singular Value Decomposition

(SVD) are fundamental data analysis tools, expressing a data matrix in terms of a

sequence of orthogonal vectors of decreasing importance. While these vectors exhibit

strong optimality properties and are often interpreted as fundamental latent factors

that underlie the observed data, they are linear combinations of up to all the data

points and features. As a result, they are notoriously difficult to interpret in terms

of the underlying processes generating the data [MD09].

The seminal work of [dGJ07] introduced the concept of Sparse PCA, where spar-

sity constraints are enforced on the singular vectors in order to improve interpretabil-

ity. As noted in [dGJ07, MD09, PDK13], an example where sparsity implies inter-

pretability is document analysis, where sparse principal components can be mapped

to specific topics by inspecting the (few) keywords in their support.

Problem setup Formally, Sparse PCA can be defined as a maximization problem

as shown in Definition 3.
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Definition 3 (The Sparce PCA Problem). Given an input matrix X ∈ Rm×n

with covariance matrix A = X>X ∈ Rn×n and an integer parameter k > 0, we seek

to find a vector xopt that is the solution to:

Zopt = max
x ∈ Rn

x>A x (1.13a)

s.t. ‖x‖0 = k (1.13b)

‖x‖2 = 1 (1.13c)

First, it is pretty obvious that removing (1.13b) problem (1.13) reduces to the

exact PCA problem (see, Section 2.2.3) that has a well known solution; xopt, the

eigenvector of A that corresponds to the dominant eigenvalue, Zopt, of A. Introducing,

the `0 constraint (1.13b) transforms problem (1.13) to NP-hard [MWA12]. Even

simple relaxations of the constraints such as the ones in problem (1.14) are still NP-

hard due to the restriction that xopt must contain at most k non-zero entries [dGJ07].

Zopt = max
x ∈ Rn

x>A x (1.14a)

s.t. ‖x‖0 ≤ k (1.14b)

‖x‖2 ≤ 1 (1.14c)

Notice that, although x>Ax 5 is convex, the same does not hold for (1.14b). It is

known that no `0 constraint can be convex; indeed ‖ · ‖0 is not an actual norm6.

On the other hand, constraint (1.14c) is convex; the `1 unit ball is a hypercube

therefore a convex set. Common approaches that approximate xopt include semi-

definite programming, sparsification of the top singular vector using a threshold,

convex relaxation of the constraints, e.t.c.

5Also interpreted as the maximization of the variance of x.
6This can be also proven by a simple counterexample.
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Related work The simplest sparse PCA approaches are to either rotate [Jol95]

or threshold [CJ95] the top singular vector of the matrix A. Such simple methods

are computationally efficient and tend to perform very well in practice (see, Sec-

tion 5.3). However, there exist cases where they fail (see, [CJ95] and Section 5.3).

An alternative line of research focused on solving relaxations of eqn. (1.13). For ex-

ample, an `1 relaxation of eqn. (1.13) was first used in SCoTLASS [JTU03]. Another

possible relaxation is a regression-type approximation [ZHT06], which was imple-

mented in [SCLE18]. Finally, efficient optimization methods have been developed

for the sparse PCA problem. For example, the generalized power method was pro-

posed in [JNRS10]: this method calculates stationary points for penalized versions of

eqn. (1.13).

Despite the many approaches that were developed for sparse PCA, only a handful

of them provide any type of theoretical guarantees regarding the quality of the ob-

tained (approximate) solution. For example, the semi-definite relaxation of [dGJ07]

was analyzed in [AW08], albeit for the special case where A is a spiked covariance

matrix with a sparse maximal singular vector. Briefly, [AW08] studies conditions for

the dimensions m and n of the initial data matrix X, and the sparsity parameter k,

so that the semi-definite relaxation of [dGJ07] recovers the sparsity pattern of the

optimal solution of eqn. (1.13). Other attempts for provable results include the work

of [dBG08], which was later analyzed in [dBG14]. In the latter paper, the authors

show bounds for the semi-definite relaxation of [dBG08], in the special case that the

data points are sampled using Gaussian models with a single sparse leading singular

vector. Strong compressed-sensing-type conditions were used in [YZ13] to guaran-

tee recovery of the optimal solution of eqn. (1.13) using a truncated power method.

However, [YZ13] requires that the optimal solution is approximately sparse and also

that the noise matrix has sparse submatrices with small spectral norm. The work

of [PDK13] describes a greedy combinatorial approach for sparse PCA and provides

relative-error bounds for the resulting solution under the assumption that the co-

variance matrix A has a decaying spectrum. It is important to note that in all the
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above papers special assumptions are necessary regarding the input data in order to

guarantee the theoretical bounds.

The last couple of years Sparse PCA has regained interest. Although, mul-

tiple works have appeared, we selected to report few of the peer-reviewed ones.

In [EZM+20] the authors present a method for sparse PCA via variable projections.

In this case, the sparse PCA problem is formulated as a value-function optimization

problem and is approximately solved using proximal gradient methods to find a sta-

tionary point. In [VDTC+19] the authors describe an approach to the sparse PCA

problem that adds weights to the elements. This approach is equivalent to adding

noise or regularization to the input data. Finally, in [PZ19] the authors present and

analyze a sparse PCA approach that is suitable for data with missing entries.

There are also connections between sparse approximations and subspace learning

methods, which are widely used in machine learning and data mining. Methods that

enforce sparsity have been developed for Human Activity Recognition [LZW+16],

Image Classification [LWGX16] and Natural Language Processing [DL20]. Moreover,

some of these methods have been applied to multidimensional data [TLWM07].

Our contributions We present and analyze a simple, two-step algorithm to ap-

proximate the optimal solution of the problem of eqn. (1.14). The proposed approach

first finds a stationary point of an `1-penalized version of problem (1.14). Then, a

randomized rounding strategy is employed to sparsify the resulting dense solution of

the `1-penalized problem.

Our guarantee is that given an input matrix X, its covariance matrix A = X>X,

a sampling factor s > 0 and an accuracy parameter ε > 0, the solution x̂opt of our

two-step algorithm follows the properties:

1. E [‖x̂opt‖0] ≤ s.

2. With probability at least 3/4,

‖x̂opt‖2 ≤ 1 + 0.15ε.
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3. With probability at least 3/4,

x̂>optAx̂opt ≥ x>optAxopt − ε. (1.15)

In words, the above theorem states that our sparse vector x̂opt is almost as good

as the optimal vector xopt in terms of capturing (with constant probability) almost

as much of the spectrum of A as xopt does.

1.8 Structural convergence results for approximation of dominant subspaces from

block Krylov spaces

Recently there has been an increased interest in Theoretical Computer Science, to

analyze randomized methods for the approximation of dominant subspaces and low

rank approximations from block Krylov spaces [MM15,WZZ15].

At this point it is crucial to describe the difference between low-rank approxima-

tion and the approximation of subspaces of an arbitrary matrix A ∈ Rm×n. The objec-

tive of a low-rank approximation is to find a matrix Z with orthonormal columns

that makes ‖A − ZZ>A‖ small in some unitarily invariant norm [HMT11, Woo14].

In contrast, a subspace approximation aims to find a space K that has a small

angle with the dominant target space, which in our case would be the space spanned

by the k left singular vectors associated with the top-k singular vectors of A. The

problem of subspace approximation is a much harder problem than the low-rank ap-

proximation one. A dominant subspace is said to be well-defined when, the top k

singular values are separated by a gap from the remaining singular values of A. In

contrast, low-rank approximations can be defined even in the absence of a singular

value gap. Furthermore, accuracy results for dominant subspace approximations are

automatically informative for low-rank approximations, but not vice versa.
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Problem setup This work will follow a line of research in which block Krylov

space methods are emerged to compute dominant left singular vector spaces of general

rectangular matrices.

Definition 4. [The Dominant Subspace Approximation and Low-Rank Ap-

proximation Problem] Given a matrix A ∈ Rm×n and a positive integer k <

rank (A). Let Uk be the top-k left singular vectors of A. The objective is to construct

approximations Ûk ∈ Rm×k for Uk for the following problems:

Dominant subspace approximation bound the angles between the column space

of Uk, range (Uk) and the column space of Ûk, range
(
Ûk

)
.

Low rank approximation bound the approximation error between A and its pro-

jection into range
(
Ûk

)
.

Related work Analyses of numerical methods that compute dominant subspaces

and eigenvectors from randomized starting vectors date back at least to the 1980s.

They include the power method and inverse iteration [Dix83, JI92], and information

theoretic analyses of Lanczos methods [KW92,KW94]. Well known analyses in Theo-

retical Computer Science focus on low-rank approximations [HMT11,Woo14], rather

than subspace computations, and as such tend not to produce bounds for the accu-

racy of subspaces. A popular approach towards low-rank approximation is subspace

iteration, which makes use of only the last iterate (AA>)qAX of a block Krylov

subspace method [HMT11,Woo14]. More recently [Sai19] proves bounds, in terms of

unitarilly invariant and Schatten-p norms, for the angles between singular subspaces

and the subspace spanned by (AA>)qAX, for the low-rank approximation of singular

spaces from (AA>)qAX and for the singular values.

Then came block Krylov methods, which exploit all of the iterates (AA>)jAX,

0 ≤ j ≤ q. The analysis in [MM15] relies on generalized matrix functions [ABF16,

HBI73], but is limited to Gaussian random matrices for starting guesses X ∈ Rn×k,

and Chebyshev polynomials for φ. The gap-dependent bound [MM15, Theorem 13]
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requires a gap between the k-th and (k+1)-st singular values. However, [MM15, Theo-

rems 10, 11, and 12] do not require a singular value gap. Such gap-independent bounds

are informative for low-rank approximations, but not for computations of specific

subspaces. In lines of [MM15], [WZZ15] focuses on gap-independent bounds and ran-

dom Gaussian starting guesses (see, [WZZ15, Theorem 3.1]). The proof techniques

in [WZZ15] are similar to ours, and leverage [BDMI11]. In [DI19] the authors extend

our “gap-dependent” angle bounds to bounds in terms of general Schatten-p norms.

They prove “gap-independent” bounds in terms of general Schatten-p norms for the

quality of the low-rank approximations under additive perturbations in the projector

basis and the matrix, or under additive and multiplicative perturbations that change

the number of columns of the matrix. They further establish a connection between

the quality of the low-rank approximation and the quality of the subspace.

The analyses in [BER04, BES05] target vectors rather than block methods, for

eigenvalues and invariant subspaces of non-Hermitian matrices, with a concern for

restarting. The block methods in [LZ15, Saa80] are Lanczos methods for Hermitian

eigenvalue problems, and the analyses exploit the (block) tridiagonal structure re-

sulting from recursions. Although singular value problems with block methods are

considered in [BR05] and in [BR06], the Krylov spaces are different and the focus is

on algorithmic issues of augmenting and restarting the Lanczos process, rather than

subspace distances. Krylov spaces For the solution of ill-posed least squares problems

via LSQR, [Jia17] analyzes the accuracy of a regularized solution, by bounding the

sine between Kj(A>A,A>v) and a dominant right singular vector space; however all

singular values must be distinct. In the context of low-rank approximations, [SZ00]

proposed a Lanczos bidiagonalization with one-sided reorthogonalization.

Our contributions Our work on subspace computations is motivated by the prob-

abilistic approach for low-rank approximations via block Krylov spaces of [MM15] and

the standard Lanczos convergence analysis [Saa11, Section 6.6] combined with opti-

mal low-rank approximations via least squares problems [BDMI11, BDMI14] which
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is also our innovative feature. We present structural, deterministic bounds on the

quality of the subspaces for general starting guesses. Our results are based on the

following assumptions:

1. The block Krylov spaces have maximal dimension.

2. The analysis assumes exact arithmetic and does not address the implementation

of numerically stable recursions.

More specifically, we derive two main results for the problems of Definition 4.

Both results leverage the gap amplifying polynomials φ(x) of degree 2q + 1 with odd

powers (see, Section 6.1), a starting guess X ∈ Rn×s (see, Section 6.1), and the crucial

assumption that rank
(
V>k X

)
= k, where Vk are the top-k right singular vectors of

A. Let Σk, Σk,⊥ be the diagonal matrices of the polynomial φ(x) applied on the

top-k and the bottom-(n− k) singular values of A, respectively. Then

1. Our first result (see, Section 6.2), bounds the distance between the block

Krylov subspace, Kq and the space spanned by the top-k left singular vectors

of A, Uk.

‖ sin Θ(Kq,Uk)‖2,F ≤ ‖φ(Σk,⊥)‖2 ‖φ(Σk)
−1‖2 ‖V>k,⊥X(V>k X)†‖2,F .

The dependence on the singular gap between the k-th and the (k+1)-st singular

value of A is clear by the appearance of the term ‖φ(Σk,⊥)‖2 ‖φ(Σk)
−1‖2 which

is the actual singular gap amplified.

2. Our second result (see, Section 6.3), bounds the quality of the approximation

of Uk from the block Krylov space, Kq. Let Ûk denote the approximation to

the top-k left singular vectors of A. Then,

‖A− ÛkÛ
>
k A‖2,F ≤ ‖A−UkU

>
k A‖2,F + ‖φ(Σk,⊥)‖2 ‖V>k,⊥X(V>k X)†‖2,F .
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In this case it is apparent, by the term ‖φ(Σk,⊥)‖2, that the bound depends

on the k + 1-st singular value and not on the singular gap as observed at the

previous result.

Both bounds have a dependency on the starting guess X (see, Section 6.5). This is

obvious by the appearance of the term ‖V>k,⊥X(V>k X)†‖2,F in both bounds, a term

that measures the quality of the starting guess.
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2 PRELIMINARIES

This chapter introduces basic notation used through out the dissertation. It further

includes summary of the necessary background on linear algebra (see, Section 2.2),

polynomial approximation theory (see, Section 2.3) probability theory (see, Sec-

tion 2.4) and RandNLA tools (see, Section 2.5) that is required by the algorithms

and technical proofs presented later.

2.1 Basic notation

We will be using bold uppercase Latin letters, A,B, . . . , and bold lowercase Latin

letters, a,b, . . . to represent matrices and vectors respectively. Scalars will be denoted

by either lowercase Latin letters a, b, . . . or Greek letters, α, β, . . . . In will represent

the identity matrix of size n×n, while 1n, 0n will represent the all ones and all zeros

vectors of size n, respectively. Similarly, 1n×n, 0n×n will represent the all zeros and all

ones matrices of size n× n, respectively. The (i, j)-th element of a matrix A ∈ Rm×n

will be denoted as Ai,j where i = 1, . . . ,m and j = 1, . . . , n.

Given a square matrix, A ∈ Rn×n, Tr (A), det (A) will denote the trace and the

determinant of A respectively. λi, σi will denote the i-th eigenvalue and i-th singular

value of A, respectively. The rank of A will be denoted by rank (A) and its condition

number by κ (A).

Unless defined as a space, we will use blackboard bold uppercase Latin letters to

denote random variables, e.g. X, will denote the random variable X. We will use the

notation E [·] and Var [·] to denote the expectation and the variance of a random

variable, respectively. Given an event E in the sample space Ω, Pr [E ] will denote the

probability of E to happen.
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Finally, we will define the k-th derivative of a function f , with 0 6= k > 2 as f (k)(·).

The first and second derivatives of f will be denoted as f ′(·) and f ′′(·), respectively.

2.2 Linear algebra basics

This section summarizes basic Linear Algebra background that is useful for the

following chapters.

2.2.1 Vector and matrix norms

A norm can be seen as the generalization of the absolute value in vector spaces

by providing a sense of distance between points in the vector space. Mathematically

a norm is briefly defined as the function that maps an object from a vector space to

the non-negative real space.

Definition 5 (Vector Norm [GV96]). A vector norm on Rn is a function f : Rn →

R that satisfies the following properties:

Positive Semi-Definiteness f(x) ≥ 0, x ∈ Rn (i.e. f(x) = 0 iff x = 0)

Subadditivity f(x + y) ≤ f(x) + f(y), x,y ∈ Rn

Absolute Homogeneity f(αx) = |α| f(x), α ∈ R, x ∈ Rn

A matrix norm is defined similarly1, by substituting Rn with Rm×n and vectors with

matrices. This manuscript, unless stated otherwise, considers the class of p-norms.

The p-norm of a vector x ∈ Rn is defined as:

‖x‖p = (|x1|p + |x2|p + · · ·+ |xn|p)
1
p , p > 02 (2.1)

where xi represents the i-th component of x. The most common vector p-norms are:

1-norm:

‖x‖1 = |x1|+ |x2|+ · · ·+ |xn|
1Indeed Rm×n is isomorphic to Rmn.
2The zero norm ‖ · ‖0 although referred as a norm it is not an p-norm. That is because it does not
satisfy the positive semi-definite property of the vector norms.
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2-norm or Eucledian norm:

‖x‖2 =
(
|x1|2 + |x2|2 + · · ·+ |xn|2

) 1
2 =

(
x>x

) 1
2

∞-norm:

‖x‖∞ =
n

max
i=1
|xi|

The p-norm of a matrix A ∈ Rm×n is defined as:

‖A‖p = sup
x 6=0

‖Ax‖p
‖x‖p

(2.2)

where x ∈ Rn. Common matrix p-norms include:

1-norm:

‖A‖1 = max
1≤j≤n

m∑
i=1

|aij|

2-norm:

‖A‖2 =

(
max
1≤j≤n

λj(A
>A)

) 1
2

= σmax

∞-norm:

‖A‖∞ = max
1≤i≤m

n∑
j=1

|aij|

Besides the matrix p-norms a large class of matrix norms that is ubiquitously used

throughout the manuscript is the family of Schatten p-norms of a matrix A ∈ Rm×n.

The Schatten p-norm is defined as:

‖A‖p = (Tr (|A|p))
1
p =

min{m,n}∑
i=1

σi(A)p

 1
p

, (2.3)

where σi(A), i = 1, . . . ,min {m,n} is the i-th singular value of A. Commonly used

Schatten p-norms are:

3Also known as the Nuclear Norm.
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Schatten 1-norm (or Trace Norm3):

‖A‖1 = Tr (A) =

min{m,n}∑
i=1

σi(A)

Schatten 2-norm (or Frobenius Norm)

‖A‖F =
(
Tr
(
A>A

)) 1
2 =

min{m,n}∑
i=1

σi(A)2

 1
2

=

(
m∑
i=1

n∑
j=1

|Ai,j|2
) 1

2

∞-norm (or Spectral Norm)

‖A‖∞ = σmax(A)

2.2.2 The singular value decomposition (SVD)

Any matrix A ∈ Rm×n can be decomposed in the form

A = U

 Σ

0(m−n)×n

V>, if m ≥ n (2.4)

or

A = U
(

Σ 0m×(n−m)

)
V>, if m < n (2.5)

where U ∈ Rm×m and V ∈ Rn×n are the orthogonal matrices of the left and right

singular vectors of A respectively. Σ ∈ Rq×q, with q = min{m,n} is the diagonal

matrix of the singular values of A. Eqn. (2.4) and eqn. (2.5) define the full SVD of

A. Given r = rank (A) we define the thin SVD of A as:

A = UΣV>, (2.6)
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where U ∈ Rm×r and V ∈ Rn×r are the orthonormal matrices of the left and right

singular vectors associated with the r non-zero singular values residing in the diagonal

matrix Σ ∈ Rr×r.

Let A = UΣV> be the full SVD of an m × n matrix A, so that U and V are

the orthogonal matrices of the singular vectors and Σ is the diagonal matrix of the

singular values. Then given a rank parameter k ≤ min{m,n}, the best rank-k

approximation of A, Ak, is defined as:

Ak = UkΣkV
>
k ,

where Uk and Vk are the orthonormal matrices of the top-k left and right singular

vectors respectively and Σk is the diagonal matrix of the top-k singular values.

Theorem 1 (Eckart–Young–Mirsky Theorem). Given a matrix A ∈ Rm×n and

rank r > k. The solution of the approximation problem:

min
rank(Z)=k

‖A− Z‖2,F (2.7)

is given by

Z = Ak = UkΣkV
>
k

The minimum value of (2.7)

‖A−Ak‖2,F = σk+1

2.2.3 Generalized Moore-Penrose pseudo-inverse

Given a matrix A ∈ Rm×n we define the generalized Moore-Penrose Pseudoinverse,

denoted by A†, as the unique matrix that satisfies the following properties:

1. AA†A = A

2. A†AA† = A†
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3. (AA†)> = AA†

4. (A†A)> = A†A

Algebraically, the Moore-Penrose Pseudoinverse is computed using the Singular Value

Decomposition:

A† = VΣ−1U>

where V ∈ Rn×n and U ∈ Rm×m are the orthogonal matrices of the right and left

singular vectors of A respectively, and Σ ∈ Rm×n is the diagonal matrix of the singular

values of A.

Theorem 2 ( [Bjö15, Theorem 2.2.3]). Given two matrices A ∈ Rm×k and B ∈

Rk×n, if rank (A) = rank (B) = k, then

(AB)† = B†A†. (2.8)

The principal component analysis (PCA) The principal component analysis

is a popular method in data mining and machine learning. It provides information

about the direction towards which the variance is large. PCA is a simple yet powerful

tool that reveals the underlying structure of the data by emerging the SVD of the

covariance matrix. In this dissertation we are more interested in expressing PCA as

an optimization problem (see, Problem 6).

Definition 6 (The PCA Problem). Given an input matrix X ∈ Rm×n with co-

variance matrix A = X>X ∈ Rn×n, we seek to find a vector x that is the solution to:

Zopt = max
x ∈ Rn

x>A x (2.9a)

s.t. ‖x‖2 = 1 (2.9b)

In general we assume that the input matrix X is mean-centered as each column is

assumed to be a random variable with zero mean. The solution of problem (2.9) is the
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dominant eigenvectors of the covariance matrix A and the corresponding eigenvalue

is the value of Zopt. The top eigenvector of A is further called the first principal

component. Principal components of decreasing order can be found using deflation;

e.g. the k-th principal component can be found, by first computing the deflated

matrix

Ak = A−
k−1∑
m=1

Zoptmxmx>m,

where xm is the m-th principal component and Zoptm the corresponding eigenvalue

and then solving the problem (2.10):

Zoptk = max
xk ∈ Rn

x>k Ak xk (2.10a)

s.t. ‖xk‖2 = 1 (2.10b)

The final step is to enforce orthogonality between the k principal components x1, . . . ,xk−1,xk.

This can be done by invoking a procedure like Gram-Schmidt.

2.2.4 Matrix inequalities

In this section we review important matrix inequalities that will appear in many

of our technical proofs.

Triangle inequality The triangle inequality bounds the distance between two vec-

tors. Given two vectors x ∈ Rn and y ∈ Rn then for any invariant norm ‖ · ‖

‖x + y‖ ≤ ‖x‖+ ‖y‖.

Strong sub-multiplicativity The strong sub-multiplicativity of the Frobenius

norm [HJ91, page 211] associates the Frobenius norm of the product of two ma-
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trices with the Frobenius norm of the one matrix and the spectral norm of the other.

Given the matrices A ∈ Rm×k and B ∈ Rk×n,

‖AB‖F ≤ ‖A‖2‖B‖F

‖AB‖F ≤ ‖A‖F‖B‖2.

Matrix Pythagoras Lemma 1 is the matrix analog of the well known Pythagorean

theorem.

Lemma 1 (Matrix Pythagoras). Given the matrices A,B ∈ Rm×n. If A>B = 0n×n

then

‖A + B‖2
F = ‖A‖2

F + ‖B‖2
F .

2.2.5 Positive (semi-)definiteness of matrices

Symmetric or Hermitian positive (semi-)definite matrices appear ubiquitously in

linear algebra. They are structured matrices with special eigenvalue properties that

are frequently desired in many applications. Recall, that a symmetric (or Hermitian)

matrix has only real eigenvalues.

Definition 7 (Symmetric Positive Definite Matrix (SPD)). A symmetric

matrix A ∈ Rn×n is also positive definite if for all non-zero vectors x ∈ Rn, x>Ax >

0.

Definition 8 (Symmetric Positive semi-Definite Matrix (SPSD)). A sym-

metric matrix A ∈ Rn×n is also positive semi-definite if for all vectors x ∈ Rn,

x>Ax ≥ 0.

The analogs of Definitions 7 and 8 in the complex space are given in Definitions 9

and 10.

Definition 9 (Hermitian Positive Definite Matrix (HPD)). A Hermitian

matrix A ∈ Cn×n is also positive definite if for all non-zero vectors x ∈ Cn, x∗Ax >

0.
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Definition 10 (Hermitian Positive semi-Definite Matrix (HPSD)). A Her-

mitian matrix A ∈ Cn×n is also positive semi-definite if for all vectors x ∈ Cn,

x∗Ax ≥ 0.

2.2.6 Matrix functions

Given a matrix A ∈ Cn×n and a scalar function f we can define the n× n matrix

f(A) as the generalization of f in a multidimensional space. There exist multiple

definitions of f(A); we refer the interested reader to [Hig08, Chapter 1]. In this

dissertation we will use a definition that is closely connected with the spectrum of A.

Definition 11 (The Jordan Canonical Form [Hig08, Section, 1.2.1]). Any ma-

trix A ∈ Cn×n can be expressed in the Jordan canonical form:

Z−1AZ = J = diag (J1, J2, . . . , Jp) (2.11)

where, J ∈ n× n is the unique Jordan matrix4 and Z is a nonsingular matrix; the

submatrix Jk is referred as the k-th Jordan block and is defined as:

Jk = Jk(λk) =


λk 1

λk
. . .

. . . 1

λk

 ∈ Cmk×mk , (2.12)

where λk is the k-th eigenvalue of A and m1 +m2 + · · ·+mp = n.

Now, if A has s distinct eigenvalues, λ1, λ2, . . . , λs and the order of the largest

Jordan block in which λi appears is ni, then a matrix function is said to be defined

on the spectrum of A if the values f (j)(λi), j = 0, . . . , ni − 1 i = 1, . . . , s exist.

4The Jordan matrix is unique up to the ordering of the Jordan blocks [Hig08].
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Definition 12 (Matrix Function via Jordan Canonical Form [Hig08, Defi-

nition 1.2]). Let f be defined on the spectrum of A ∈ Cn×n and let A have the Jordan

canonical form of eqn. (2.11). Then

f(A) = Zf(J)Z−1 = Z diag (f(Jk)) Z−1, (2.13)

where

f(Jk) =


f(λk) f ′(λk) . . . f (mk−1)(λk)

(mk−1)!

f(λk)
. . .

...
. . . f ′(λk)

f(λk)

 (2.14)

If A is diagonalizable then the Jordan canonical form reduces to the eigendecom-

position A = ZDZ−1 where D ∈ Cn×n is the diagonal matrix of the eigenvalues of

A, and Z ∈ Cn×n is the unitary matrix of the eigenvectors of A. Then eqn. (2.13)

yields

f(A) = Zf(D)Z−1 = Z diag (f(λi)) Z−1

In this dissertation we will frequently refer to logarithms of positive definitive

matrices. Recall that a symmetric (or Hermitian) matrix, A, has all its eigenvalues

in the real space. If in addition, A is positive definite then it is always diagonalizable

with eigenvalues strictly greater than zero. Thus f(x) = log(x) can be defined on the

spectrum of A and log [A]5 is defined as in Definition 13.

Definition 13 (Logarithm of a Positive Definite Matrix). Given an SPD

matrix A ∈ Rn×n, we define the logarithm of A, denoted by the n× n matrix log [A],

as :

log [A] = UDU>,

5Since there are not negative eigenvalues, then A has a unique principal logarithm (see, [Hig08,
Theorem 1.31]).
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where U ∈ Rn×n is the orthogonal matrix of the eigenvectors of A and D ∈ Rn×n is

the diagonal matrix

diag (log(λ1(A)), log(λ2(A)), . . . , log(λn(A)) .

Similarly, given an HPD A ∈ Cn×n, we define the logarithm of A, denoted by the

n× n matrix log [A], as :

log [A] = UDU∗,

where U ∈ Cn×n is the unitary matrix of the eigenvectors of A and D ∈ Rn×n is the

diagonal matrix

diag (log(λ1(A), log(λ2(A)), . . . , log(λn(A)) .

We should note that the logarithm of a positive semi-definite matrix can only be

defined under certain assumptions e.g. if we assume that log (0) = 0.

2.3 Function approximation via polynomials

In this section we describe two of the most popular polynomials that are broadly

used for the approximation of continuous functions. The Taylor polynomials are de-

scribed in Section 2.3.1 and the Chebyshev polynomials are described in Section 2.3.2.

2.3.1 Taylor series

The Taylor series first formulated by James Gregory but later introduced by Brook

Taylor in 1715 is a powerful mathematical tool and is broadly used in approximation

theory. The Taylor series represent a function as the infinite combination of terms

that are associated with the derivatives of the function on a certain point.
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Definition 14 (Taylor Series [HHW18, Section 10.8]). Let f be a function with

derivatives of all orders throughout some interval containing α as an interior point.

Then the Taylor series generated by f at x = α is

∞∑
k=0

f (k)(α)

k!
(x− α) = f(α) + f ′(α)(x− α) +

f ′′(α)

2
(x− α)2

+ · · ·+ f (n)(α)

n!
(x− α)n + . . .

The easiest way to approximate a function f that is at least m times differentiable

at a point α is by using the Taylor polynomial of degree n which consists of the first

n terms of the Taylor series of f on x = α:

Definition 15 (Taylor polynomials [HHW18, Section 10.8]). Let f be a function

with derivatives of order up to n in some interval containing α as an interior point.

Then for any integer from 1, . . . ,m the Taylor polynomial of order n generated by f

at x = α is

n∑
k=0

f (k)(α)

k!
(x− α) = f(α) + f ′(α)(x− α) +

f ′′(α)

2
(x− α)2

+ · · ·+ f (n)(α)

n!
(x− α)n

Using Definition 15 and assuming that m ≤ n the m-th order approximation of f

follows from:

f(x) ≈
m∑
k=0

f (k)(α)

k!
(x− α).

The approximation error is proportional to the reminder of the series

Rm(x) = O
(
|x− α|m+1

)
.

We further define the Taylor expansion of log(1−x) at zero6 and its matrix analog.

Both definitions will be useful in the chapters that follow.

6This is also called the McLaurin expansion.
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Definition 16 (Taylor expansion of log(1− x)). Let x be a scalar variable that

satisfies |x| < 1. Then:

log(1− x) = −
∞∑
k=1

xk

k
.

A matrix generalization of Definition 16 is given in Lemma 2.

Lemma 2 (Taylor expansion of log [In −A]). Let A ∈ Rn×n be a symmetric

matrix whose eigenvalues all lie in the interval (−1, 1). Then,

log [In −A] = −
∞∑
k=1

Ak

k
.

2.3.2 Chebyshev polynomials

The Chebyshev polynomials were introduced in 1854 by Pafnuty Chebyshev and

frequently appear in numerical analysis and approximation theory. The Chebyshev

polynomials is a family of orthogonal polynomials with the largest possible leading

coefficients whose absolute values for inputs from [−1, 1] are bounded by 1. In ap-

proximation theory the Chebyshev polynomials are widely used in polynomial inter-

polation as the computed interpolants (built utilizing the Chebyshev nodes) minimize

the Runge phenomenon and provide an excellent approximation to the actual poly-

nomial. Additionally, the Chebyshev polynomials provide the best, in terms of the

maximum norm, polynomial approximation to a continuous function.

Definition 17 (Chebyshev Polynomials [Tre12, eqn. (3.1)] ). Given a variable

x, a function f defined in [−1, 1] and a variable z ranging over the unit circle in the

complex plane,

f(x) ≈
n∑
k=0

αkTk(x), (2.15)

where αk is the coefficient of Tk which is the k-th Chebyshev polynomial defined as

the real part of the function zk on the unit circle

x =
1

2
(z + z−1) = cos θ, θ = cos−1 x
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Tk(x) =
1

2
(zk + z−k) = cos(kθ).

The construction of Chebyshev polynomials is a recursive procedure distinguished in

two kinds:

1. Chebyshev polynomials of the first kind:

T0(x) = 1

T1(x) = x

Tk+1 = 2xTk(x)− Tk−1(x)

2. Chebyshev polynomials of the second kind:

U0(x) = 1

U1(x) = 2x

Uk+1 = 2xUk(x)− Uk−1(x)

In this dissertations, unless stated otherwise, we will refer to the Chebyshev poly-

nomials of the first kind. Finally, Theorem 3 describes the Chebyshev series of a

function f(x) with special characteristics.

Theorem 3 (Chebyshev series [Tre12, Theorem (3.1)]). If f is a Lipschitz continuous

function on [−1, 1], then it has a unique representation as a Chebyshev series,

f(x) =
∞∑
k=0

αkTk(x),

which is absolutely and uniformly convergent. The coefficients are given for k ≥ 1 by

the formula

αk =
2

π

∫ 1

−1

f(x)Tk(x)√
1− x2

dx,
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and for k = 0 by the formula

α0 =
1

π

∫ 1

−1

f(x)Tk(x)√
1− x2

dx.

The Clenshaw algorithm The Clenshaw algorithm implements a recursive for-

mula that fastly computes linear combinations of Chebyshev polynomials like the one

of eqn. (2.15). In this section we briefly sketch Clenshaw’s algorithm to evaluate linear

combinations of Chebyshev polynomials with matrix inputs. Clenshaw’s algorithm is

a recursive approach with base cases bm+2(x) = bm+1(x) = 0 and the recursive step

(for k = m,m− 1, . . . , 0):

bk(x) = αk + 2xbk+1(x)− bk+2(x), (2.16)

where αk is the k-th coefficient of the linear combination. Then, the linear combina-

tion of Chebyshev polynomials, fm(x) can be computed using the formula:

fm(x) =
1

2
(α0 + b0(x)− b2(x)) . (2.17)

Using the mapping x→ 2(x/u)− 1, eqn. (2.16) becomes

bk(x) = αk + 2

(
2

u
x− 1

)
bk+1(x)− bk+2(x). (2.18)

In the matrix case, we substitute x by a matrix. Therefore, the base cases are

Bm+2(R) = Bm+1(R) = 0 and the recursive step is

Bk(R) = αkIn + 2

(
2

u
R− In

)
Bk+1(R)−Bk+2(R) (2.19)

for k = m,m− 1, . . . , 0. The final sum is

fm(R) =
1

2
(α0In + B0(R)−B2(R)) . (2.20)
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Using the matrix version of Clenshaw’s algorithm, we can now provide a modified

Clenshaw scheme to compute g>fm(R)g, where g ∈ Rn. First, we right multiply

eqn. (2.19) by g,

Bk(R)g = αkIng + 2

(
2

u
R− In

)
Bk+1(R)g −Bk+2(R)g,

yk = αkg + 2

(
2

u
R− In

)
yk+1 − yk+2. (2.21)

Eqn. (2.21) follows by substituting yi = Bi(R)g. Multiplying the base cases by g,

we get ym+2 = ym+1 = 0 and the final sum becomes

g>fm(R)g =
1

2

(
α0(g>g) + g>(y0 − y2)

)
. (2.22)

Algorithm 1 summarizes all the above.

Algorithm 1 Clenshaw’s algorithm to compute g>fm(R)g.

Input: αi, i = 0, . . . ,m, R ∈ Rn×n, g ∈ Rn

Output: g>fm(R)g.
1: Set ym+2 = ym+1 = 0
2: for k = m,m− 1, . . . , 0 do
3: yk = αkg + 4

u
Ryk+1 − 2yk+1 − yk+2

4: end for
5: return g>fm(R)g = 1

2

(
α0(g>g) + g>(y0 − y2)

)

2.4 Probability theory basics

This section summarizes the basics of probability theory that will frequently ap-

pear in our probabilistic analyses.

Definition 18 (Union Bound). Given n events E1, E2, . . . , En with E1 ⊆ E2 ⊆ · · · ⊆

En then

Pr [E1 ∪ E2 ∪ · · · ∪ En] = Pr [E1] + Pr [E2] + · · ·+ Pr [En] .
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Definition 19 (Linearity of Expectation). Given the random variables (X1,X2, . . . ,Xn)

over the sample space Ω1 × Ω2 × · · · × Ωn ⊆ R then

E [X1 + X2 + · · ·+ Xn] = E [X1] + E [X2] + · · ·+ E [Xn] .

Definition 20 (Markov’s Inequality). Given the non-negative random variable

X over the sample space Ω ⊆ R7 with expected value E [X] = µ and a scalar λ > 0, it

holds:

Pr [X ≥ λµ] ≤ 1

λ

or given τ = λµ > 0,

Pr [X ≥ τ ] ≤ µ

τ
.

2.5 Randomized numerical linear algebra (RandNLA) tools

This section presents randomized numerical linear algebra tools and the corre-

sponding probabilistic bound that will be useful in the design and analysis of our

algorithms.

2.5.1 Power method with provable bounds

The power-method is an iterative method used to obtain an accurate estimate

of the largest eigenvalue of a matrix A. Briefly, A is repeatedly post-multiplied

with a vector (see, step 4 of Algorithm 2) that after a sufficient number of iterations

converges to the dominant eigenvector of A (i.e. the eigenvector associated with

the largest eigenvalue of A). Then, the Rayleigh quotient is used to obtain the

approximation to the largest eigenvalue, λ1(A) (see, step 6 of Algorithm 2). An

important part of each iterative method, is its initialization. In the case of power

method, it is important to initialize 0n, the initial approximation of the dominant

eigenvector, 1n, as good as possible. Multiple initializations have been suggested (e.g.

7Mathematically denoted as: X ∈ Ω ⊆ R≥0.
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0, 1, Gaussian vectors, e.t.c.), but in our case we will be using Rademacher vectors

(see, step 2 of Algorithm 2). This is a choice that has been used in [Tre11] to enable

further theoretical analysis of the power method on SPSD matrices that results in

probabilistic guarantees useful for our results in Chapters 3 and 4.

Algorithm 2 Power method, repeated q times.

Input: SPSD matrix A ∈ Rn×n, integers q, t > 0
Output: λ̃1(A), the approximation to the largest eigenvalue, λ1(A) and ũ1, the

approximation to the dominant eigenvector u1 of A.
1: for j = 1, . . . , q do
2: Pick uniformly at random a vector xj0 ∈ {+1,−1}n
3: for i = 1, . . . , t do
4: xji = A · xji−1

5: end for

6: λ̃j1(A) =
xjt
>

Axjt

xjt
>

xjt
7: end for
8: return λ̃1(A) = maxj=1...q λ̃

j
1(A) and ũ1 = xjt

Algorithm 2 is a randomized algorithm specifically for SPSD matrices, and a slight

modification of Algorithm Power of [Tre11] to (i) boost the success probability (by

repeating the algorithm q times) and (ii) to return the approximation to the dominant

eigenvalue of A. Lemma 3 (see, [Tre11] for a proof) argues that any λ̃j1(A) is close

to λ1(A):

Lemma 3 ( [Tre11, Theorem 1]). For any fixed j = 1 . . . q, and for any t > 0,

ε > 0, with probability at least 3/16,

(1− ε)
1 + 4n(1− ε)2t

λ1(A) ≤ xjt
>
Axjt

xjt
>
xjt

= λ̃j1(A).

Algorithm 2 runs in time proportional to

O (q · t (n+ nnz (A))) .
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We continue to bound the number of repetitions, q and the number of inner iterations,

t, of Algorithm 2. Let e = 2.718 . . . and let ε = 1 − (1/e) and t =
⌈
log
√

4n
⌉
; then,

with probability at least 3/16, for any fixed j = 1 . . . q,

1

6
λ1(A) ≤ 1

2e
λ1(A) ≤ λ̃j1(A).

It is now easy to see that the largest value λ̃1(A) (and the corresponding vector xt)

fails to satisfy the inequality (1/6)λ1(A) ≤ λ̃1(A) with probability at most

(
1− 3

16

)q
=

(
13

16

)q
≤ δ,

where the last inequality follows by setting q = d4.82 log(1/δ)e ≥ log(1/δ)/ log(16/13).

Finally, we note that, from the min-max principle, λ̃1(A) ≤ λ1(A). Lemma 4 sum-

marizes the above.

Lemma 4. Let λ̃1(A) be the output of Algorithm 2 with q = d4.82 log(1/δ)e and

t =
⌈
log
√

4n
⌉
. Then, with probability at least 1− δ,

1

6
λ1(A) ≤ λ̃1(A) ≤ λ1(A).

The running time of Algorithm 2 is

O
(
n+ nnz (A) log(n) log

(
1

δ

))
.

2.5.2 The Gaussian trace estimator

Even though computing the trace of a square n × n matrix requires only O (n)

arithmetic operations, the situation is more complicated when A is implicitly known

through a matrix function, e.g., A = X2, for some matrix X and the user only

observes X. For situations such as these, Avron and Toledo [AT11] analyzed several

algorithms to estimate the trace of a SPSD matrix A. Algorithm 3 sketches the



45

Gaussian trace estimator, while Lemma 5 guarantees that Algorithm 3 returns an

(ε, δ)-estimator to Tr (A).

Algorithm 3 Gaussian Trace Estimation

Input: SPSD matrix A ∈ Rn×n, 0 < ε < 1, and 0 < δ < 1.
Output: γ, the approximation to Tr (A).

1: p = d20 log(2/δ)/ε2e
2: Generate g1,g2, . . . ,gp i.i.d. random Gaussian vectors in Rn

3: γ = 0
4: for i = 1, . . . , p do
5: γ = γ + g>i Agi
6: end for
7: return γ = γ/p

Lemma 5 ( [AT11, Theorem 5.2]). Let A ∈ Rn×n be an SPSD matrix, let 0 <

ε < 1 be an accuracy parameter, and let 0 < δ < 1 be a failure probability. If

g1,g2, . . . ,gp ∈ Rn are independent random standard Gaussian vectors, then, for

p = d20 log(2/δ)/ε2e, with probability at least 1− δ,∣∣∣∣∣Tr (A)− 1

p

p∑
i=1

g>i Agi

∣∣∣∣∣ ≤ ε ·Tr (A) .

An improved bound for the Gaussian trace estimator can be found in [RKA15].

Roosta-Khorasani and Ascher provide the “sufficient” bound, p ≤ 8 · c(ε, δ) (where

c(ε, δ) is a function of ε and δ), for the number of Gaussian vectors required to achieve

an (ε, δ)-estimator to Tr (A). Instead, lemma 5 requires p ≤ 20 ·c(ε, δ) random Gaus-

sian vectors, which is 2.5 times worse than the bound of [RKA15].

2.5.3 Random projections

Random projections is a powerful tool in RandNLA. It is used as a dimensional-

ity reduction technique and is usually preferred for its simplicity; it requires only a

cheap multiplication of the input matrix with a random projection matrix of special

structure.
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The main idea behind random projection is the Johnson–Lindenstrauss (see, Lemma 6)

which in words states that a set of high-dimensional points can be projected to a

lower-dimensional space nearly preserving the distances between them.

Lemma 6 (Johnson–Lindenstrauss). Given a set S of d points in Rn and an

integer k << n, there exists a map function f : Rn → Rk, mapping the points in S

to the much lower dimensional space Rk. Setting k = O (log(d)/ε2) the guarantee is

that with probability at least 1− 1/d,

(1− ε)‖x− y‖2
2 ≤ ‖f(x)− f(y)‖2

2 ≤ (1 + ε)‖x− y‖2
2 0 ≤ ε ≤ 1

for all pairs of points x, y ∈ S.

The matrix multiplication between the input matrix and the random projection

matrix, requires O (d · n · k) operations. In [AC09], Ailon and Chazelle claim that

this multiplication can be performed in O (d · n · log(k)), using the fast Johnson-

Lindenstrauss transform (see, [DMMS11,Tro11] for more details).

Many constructions of the random projection matrix have been proposed. A

trivial random projection matrix is the random Gaussian matrix, i.e the matrix

whose values are drawn i.i.d. from the normal distribution N ∼ (0, 1). In this

section we will describe two random projection matrix constructions; the subsampled

randomized Hadamard transform (see, Section 2.5.3) and the input sparsity transform

(see, Section 2.5.3). We refer the reader to [Woo14] for more details on various

constructions of random projection matrices.

The randomized subsampled Hadamard transform The randomized Hadamard

transform is a crucial step in the design of the fast Johnson-Lindenstrauss transform

(see, [AC09]). Its construction is based on the Hadamard matrix, H̃n, that is recur-

sively defined as:

H̃n =

H̃n/2 H̃n/2

H̃n/2 −H̃n/2

 H̃2 =

+1 +1

+1 −1

 .
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The normalized Hadamard transform can then be defined as:

Hn =
1√
n

H̃n. (2.23)

Let D ∈ Rd×d be the diagonal matrix with entries that get values according to

eqn. (2.24).

Dii =

 +1 , with probability 1/2

−1 , with probability 1/2
(2.24)

The randomized Hadamard transform is then defined to be the product HD. If

we further define the matrix S ∈ Rn×k to be the matrix of k rows of In that are

picked uniformly at random with replacement we can define the product DHS as

the randomized subsampled Hadamard transform. Algorithm 4 summarizes the steps

descibed for the construction of the randomized subsampled Hadamard transform.

Lemma 7 has appeared in [DMMS11, Tro11] and [Woo14] and describes the quality

Algorithm 4 The Subsampled Randomized Hadamard Transform

Input: Integers n, k > 0 with k � n.
Output: Π ∈ Rn×k, the random projection matrix.

1: Let S be an empty matrix. . it will finally be in Rn×k

2: for t = 1, . . . , k do
3: Pick uniformly at random an integer, i, from {1, 2, . . . , n}. . i.i.d. trials with

replacement
4: Append ei to S. . ei ∈ Rn is the i-th canonical vector.
5: end for
6: Let H ∈ Rn×n be the normalized Hadamard transform matrix. . see eqn. (2.23).
7: Let D ∈ Rn×n be a diagonal matrix with

Dii =

{
+1 , with probability 1/2
−1 , with probability 1/2

8: return Π = DHS.

of the random projection using the subsampled randomized Hadamard transform.
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Lemma 7. Let U ∈ Rn×r such that U>U = Ir and let Π ∈ Rn×k be constructed by

Algorithm 4. Then, with probability at least 0.9,

∥∥∥n
r

U>ΠΠ>U− Ir

∥∥∥
2
≤ ε,

by setting

s = O
(

(r + log(n)) · log(r)

ε2

)
.

Input sparsity transform The input sparsity transform of [CW13] is a major

breakthrough that uses a special construction for the random projection matrix8. It’s

novelty, lies in the fact that the matrix multiplication between the input matrix, A and

the random projection matrix, can be performed in time proportional to the sparsity

of A, O (nnz (A)). The input sparsity transform was further analyzed in [MM13]

and [NN13]. Algorithm 5 sketches the construction of the transform. Lemma 8 has

appeared in [MM13].

Algorithm 5 Input-Sparsity Transform

Input: Integers n, k > 0 with k � n.
Output: Π ∈ Rn×k, the random projection matrix.

1: Let S be an empty matrix.
2: for t = 1, . . . , n do
3: Pick uniformly at random an integer, i, from {1, 2, . . . , k}. . ii.i.d. trials

with replacement
4: Append e>i to S. . ei ∈ Rk is the i-th canonical vector.
5: end for
6: Let D ∈ Rn×n be a diagonal matrix with

Dii =

{
+1 , with probability 1/2
−1 , with probability 1/2

7: return Π = DS.

8Also, known as CountSketch matrix, especially in data stream literature; see, [CCFC04]
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Lemma 8 ( [MM13, Appendix A1]). Let U ∈ Rn×r such that U>U = Ir and let

Π ∈ Rn×k be constructed by Algorithm 5. Then, with probability at least 0.9,

‖U>ΠΠ>U− Ir‖2 ≤ ε,

by setting

k = O
(
r2/ε2

)
.

We refer the interested reader to [NN13] for improved analyses of Algorithm 5 and

its variants.

We do note that even though it appears that Algorithm 5 is always better than

Algorithm 4 (at least in terms of their respective theoretical running times), both

algorithms are worth evaluating experimentally: in particular, prior work [PBMID13]

has reported that Algorithm 4 often outperforms Algorithm 5 in terms of empirical

accuracy and running time when the input matrix is dense.
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3 APPROXIMATION OF THE LOGARITHM DETERMINANT OF A

SYMMETRIC POSITIVE DEFINITE MATRIX

We present our algorithm for the approximation of the logarithm determinant of a

symmetric positive definite matrix. Throughout the chapter we will use the notation

logdet (A) to refer to the logarithm of the determinant of a SPD matrix A and the

notation l̂ogdet (A) to refer to its approximation. Our algorithm achieves, with high

probability, additive error guarantee for general SPD matrices, and relative error

guarantee for SPD matrices with spectrum in the interval (0, 1).

The chapter is organized as follows: in Section 3.1 we provide the mathematical

setting under which we will work and any essential information that will be useful

through out the chapter. In Section 3.2 we describe the main algorithm that achieves

additive error approximation to logdet (A). In Section 3.3 we describe the modified

main algorithm that achieves relative error approximation to logdet (A). Finally,

Section 3.4 provides a comprehensive empirical evaluation of our main algorithm on

a variety of datasets.

Sections of chapter 3 have been published in [BDK+17]

A Randomized Algorithm for Approximating the Log Determinant of a Symmetric

Positive Definite Matrix C. Boutsidis, P. Drineas, P. Kambadur, E-M. Kontopoulou,

A. Zouzias in Linear Algebra and its Applications (2017), Vol. 533, pp.95-117

3.1 Setting

We focus on SPD matrices with a full set of eigenvectors. Given an SPD matrix

A ∈ Rn×n our goal is to compute logdet (A). Towards this end, we define the SPD

matrix B = A/α where 0 < α < ‖A‖2. Obviously ‖B‖2 < 1. Now, consider the

eigendecomposition of B, B = UΛU>, where U ∈ Rn×n is the orthogonal matrix
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whose columns correspond to the eigenvectors of B and Λ is the diagonal matrix with

the eigenvalues , λi(B), i = 1, . . . , n, of B in decreasing order.

It follows that

logdet (A) = log(det (α ·A/α))

= log(αndet (A/α)) (3.1)

= log (αn) + log (det (B)) (3.2)

= n log(α) + log

(
n∏
i=1

λi(B)

)
(3.3)

= n log(α) +
n∑
i=1

log(λi(B)) (3.4)

= n log(α) + Tr (log [B]) . (3.5)

Eqn. (3.1) and eqn. (3.3) follow from standard properties of the determinant. Eqn. (3.2)

and eqn. (3.4) follow from standard properties of the logarithm function. Finally,

eqn. (3.5) follows from the fact that,

Tr (log [B]) =
n∑
i=1

λi(log [B])

=
n∑
i=1

log(λi(B)). (3.6)
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Eqn. (3.6) follows from the definition of matrix functions (see, Section 2.2.6). More

precisely, let h(x) = log x for any x > 0 and let h(0) = 0. Then,

∑
i,λi>0

log λi(B) = Tr (h(Λ))

= Tr
(
h(Λ)U>U

)
= Tr

(
Uh(Λ)U>

)
(3.7)

= Tr (h(B))

= Tr (log [B]) , (3.8)

where eqn. (3.7) follows from the circular property of the trace operator and eqn. (3.8)

follows from the definition of h(x).

3.2 Additive error approximation for general SPD matrices

Lemma 9 is the starting point of our main algorithm for approximating the de-

terminant of a SPD matrix. In words the lemma states that the computation of the

logarithm determinant of an SPD matrix A can be reduced to a two-fold task; first,

computing the largest eigenvalue of A followed by computing the trace of all the

powers of a matrix C related to A.

Lemma 9. Let A ∈ Rn×n be an SPD matrix. For any α with λ1(A) < α, define

B := A/α and C := In −B. Then,

logdet (A) = n log(α)−
∞∑
k=1

Tr
(
Ck
)

k
. (3.9)

Proof. In eqn. (3.5) we proved that given SPD matrices A ∈ Rn×n and B = A/α

for 0 < α ≤ ‖A‖2, logdet (A) = n log(α) + Tr (log [B]) . The goal is to compute

Tr (log [B]) as, given α the computation of n log(α) is trivial.
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Algorithm 6 High Level Procedure for Log Determinant Computation

1: function logdet(A)
2: Compute α such that λ1(A) < α.
3: C← In −A/α.
4: Sum← 0.
5: for k ← 1, . . . do
6: Sum← Sum+ Tr

(
Ck
)
/k.

7: end for
8: logdet (A)← n log(α)− Sum.
9: return logdet (A).

10: end function

Tr (log [B]) = Tr (log [In − (In −B)])

= Tr

(
−
∞∑
k=1

(In −B)k

k

)
(3.10)

= −
∞∑
k=1

Tr
(
Ck
)

k
. (3.11)

Eqn. (3.10) follows from the Taylor expansion of Lemma 2 because all the eigenvalues

of C = In − B are contained1 in (0, 1) and Eqn. (3.11) follows from the linearity of

the trace operator.

3.2.1 Algorithm

Lemma 9 indicates a high-level function for computing the logarithm determinant

of an SPD matrix A that is described in Algorithm 6.

To implement step 2 we use the power method from numerical linear algebra litera-

ture (see, Section 2.5.1). Step 3 is straightforward. To implement step 5, we truncate

the expansion
∑∞

k=1 Tr
(
Ck
)

keeping few of the summands. This step is important

1Indeed, if x is an eigenvector of B then (In − B)x = (1 − λx(B))x, which means that λi(C) =
1 − λi(B). Given that 0 < λi(B) < 1 for all i = 1 . . . n, we conclude that 0 < λi(C) < 1, for all
i = 1 . . . n.



54

Algorithm 7 Additive Error Randomized Log Determinant Estimation

Input: A ∈ Rn×n, accuracy parameter ε > 0, and integer m > 0.

Output: l̂ogdet (A) the approximation to logdet (A).
1: Compute λ̃1(A) using Algorithm 2 . iwith t = O (log n) and q = O (log(1/δ)).
2: α = 7λ̃1(A)
3: C = In −A/α
4: p = d20 log(2/δ)/ε2e
5: Generate g1,g2, . . . ,gp ∈ Rn be i.i.d. random Gaussian vectors.
6: for i = 1, 2 . . . , p do
7: v

(i)
1 = Cgi

8: γ
(i)
1 = g>i v

(i)
1

9: for k = 2, . . . ,m do
10: v

(i)
k := Cv

(i)
k−1.

11: γ
(i)
k = g>i v

(i)
k . Inductively γ

(i)
k = g>i Ckgi)

12: end for
13: end for
14: return l̂ogdet (A) = n log(α)−

∑m
k=1

(
1
p

∑p
i=1 γ

(i)
k

)
/k

since the quality of the approximation, both theoretically and empirically, depends

on the number of summands (denoted by m) that will be kept. On the other hand,

the running time of the algorithm increases with m.

Finally, to estimate the traces of the powers of C, we use the randomized algorithm

of Section 2.5.2. Our approach is described in detail in Algorithm 7; notice that step 8

in Algorithm 7 is an efficient way of computing

l̂ogdet (A) := n log(α)−
m∑
k=1

1

k

(
1

p

p∑
i=1

g>i Ckgi

)
. (3.12)

3.2.2 Error bound

Lemma 10 that follows, proves that Algorithm 7 returns an accurate approxima-

tion to logdet (A).
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Lemma 10. Let l̂ogdet (A) be the output of Algorithm 7 on inputs A, m, and ε.

Then, with probability at least 1− 2δ,

∣∣∣l̂ogdet (A)− logdet (A)
∣∣∣ ≤ (ε+

(
1− 1

7κ (A)

)m)
· γ, (3.13)

where γ =
∑n

i=1 log
(

7 · λ1(A)
λi(A)

)
. If m≥

⌈
7κ (A) log

(
1
ε

)⌉
, then

∣∣∣l̂ogdet (A)− logdet (A)
∣∣∣ ≤ 2γε. (3.14)

Proof. First, note that using our choice for α in Step 2 of Algorithm 7 and applying

Lemma 4, we get that, with probability at least 1− δ,

λ1(A) <
7

6
λ1(A) ≤ α ≤ 7λ1(A), (3.15)

The strict inequality at the leftmost side of the above equation follows since all eigen-

values of A are strictly positive. Let’s call the event that the above inequality holds E1;

obviously, Pr [E1]≥1− δ (and thus Pr
[
Ē1

]
≤ δ). We condition all further derivations

on E1 holding and we manipulate ∆ =
∣∣∣l̂ogdet (A)− logdet (A)

∣∣∣ as follows:

∆ =

∣∣∣∣∣
m∑
k=1

(
1

p

p∑
i=1

g>i Ckgi

)
/k −

∞∑
k=1

Tr
(
Ck
)
/k

∣∣∣∣∣
≤

∣∣∣∣∣
m∑
k=1

(
1

p

p∑
i=1

g>i Ckgi

)
/k −

m∑
k=1

Tr
(
Ck
)
/k

∣∣∣∣∣+

∣∣∣∣∣
∞∑

k=m+1

Tr
(
Ck
)
/k

∣∣∣∣∣
=

∣∣∣∣∣1p
p∑
i=1

g>i

(
m∑
k=1

Ck/k

)
gi −Tr

(
m∑
k=1

Ck/k

)∣∣∣∣∣︸ ︷︷ ︸
∆1

+

∣∣∣∣∣
∞∑

k=m+1

Tr
(
Ck
)
/k

∣∣∣∣∣︸ ︷︷ ︸
∆2

.

Below, we bound ∆1 and ∆2 separately. We start with ∆1; the idea is to apply

Lemma 5 on the matrix
∑m

k=1 Ck/k with p = d20 log(2/δ)/ε2e. Let E2 denote the

probability that Lemma 5 holds; obviously, Pr [E2]≥1 − δ (and thus Pr
[
Ē2

]
≤ δ)
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given our choice of p. We condition all further derivations on E2 holding as well to

get

∆1 ≤ ε ·Tr

(
m∑
k=1

Ck/k

)

≤ ε ·Tr

(
∞∑
k=1

Ck/k

)
. (3.16)

In the inequalityof eqn. (3.16) we used the fact that C is a positive matrix, hence for

all k, Tr
(
Ck
)
> 0. The second term ∆2 is bounded as follows:

∆2 =

∣∣∣∣∣
∞∑

k=m+1

Tr
(
Ck
)
/k

∣∣∣∣∣ ≤
∞∑

k=m+1

Tr
(
Ck
)
/k (3.17)

=
∞∑

k=m+1

Tr
(
Cm ·Ck−m) /k ≤ ∞∑

k=m+1

‖Cm‖2 ·Tr
(
Ck−m) /k (3.18)

= ‖Cm‖2 ·
∞∑

k=m+1

Tr
(
Ck−m) /k ≤ ‖Cm‖2 ·

∞∑
k=1

Tr
(
Ck
)
/k

≤
(

1− λn (A)

α

)m
·
∞∑
k=1

Tr
(
Ck
)
/k. (3.19)

In the inequality of eqn. (3.17), we used the triangle inequality and the fact that C is

a positive matrix. In the inequality of eqn. (3.18), we used the following fact2: given

two positive semidefinite matrices A,B of the same size, Tr (AB) ≤ ‖A‖2 ·Tr (B) .

Finally, in the inequality of eqn. (3.19), we used the fact that

λ1(C) = 1− λn(B) = 1− λn(A)/α.

Combining the bounds for ∆1 and ∆2 gives

∣∣∣l̂ogdet (A)− logdet (A)
∣∣∣ ≤ (ε+

(
1− λn (A)

α

)m)
·
∞∑
k=1

Tr
(
Ck
)

k
.

2This follows from Von Neumann’s trace inequality.
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We have already proven in Lemma 9 that

∞∑
k=1

Tr
(
Ck
)

k
= −Tr (log [B]) = n log(a)− logdet (A) .

Notice that the assumption of Lemma 9 (λ1(A) < α) is satisfied from the inequality

of eqn. (3.15). We further manipulate the last term as follows:

n log(a)− logdet (A) = n log(α)− log

(
n∏
i=1

λi(A)

)

= n log(α)−
n∑
i=1

log (λi(A))

=
n∑
i=1

(log (α)− log (λi(A)))

=
n∑
i=1

log

(
α

λi(A)

)
.

Collecting our results together, we get:

∣∣∣l̂ogdet (A)− logdet (A)
∣∣∣ ≤ (ε+

(
1− λn (A)

α

)m)
·

n∑
i=1

log

(
α

λi(A)

)
.

Using the inequality of eqn. (3.15) (only the upper bound on α is needed here) proves

the inequality of eqn. (3.13) of Lemma 9 getting:

∣∣∣l̂ogdet (A)− logdet (A)
∣∣∣ ≤ (ε+

(
1− λn (A)

7λ1 (A)

)m)
·

n∑
i=1

log

(
7λ1 (A)

λi(A)

)
︸ ︷︷ ︸

γ

≤
(
ε+

(
1− λn (A)

7λ1 (A)

)m)
· γ (3.20)

To prove the inequality of eqn. (3.14), we use the well-known property:

(
1− ξ−1

)ρ ≤ e−ρ/ξ, (3.21)
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where e = 2.718 . . ., is the Euler’s number, and ρ, ξ > 0. Then observe that:

(
1− λn (A)

7λ1 (A)

)m
=

(
1− 1

7κ (A)

)m
.

To get relative error we need to find the value of m such that
(

1− 1
7κ(A)

)m
≤ ε, then

from the inequality of eqn. (3.21) we get:

(
1− 1

7κ (A)

)m
≤ e

−m
7κ(A) , (3.22)

and we restrict the rightmost part to be at most ε:

e
−m

7κ(A) ≤ε
−m

7κ (A)
≤ log ε

m ≥7κ (A) log

(
1

ε

)
.

Using the derived lower bound for m, the bound of eqn. (3.20) transforms to a relative

error one: ∣∣∣l̂ogdet (A)− logdet (A)
∣∣∣ ≤ 2γε.

Finally, recall that we conditioned all derivations on events E1 and E2 both holding,

which can be bounded as follows:

Pr [E1 ∩ E2] = 1−Pr
[
Ē1 ∪ Ē2

]
,

using the union bound we get:

1−Pr
[
Ē1 ∪ Ē2

]
≥1−Pr

[
Ē1

]
−Pr

[
Ē1

]
≥1− 2δ.

This concludes our proof.
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3.2.3 Running time

Step 1 takes O (nnz (A) log(n) log(1/δ)) time; we assume that nnz (A)≥n, since

otherwise the determinant of A would be trivially equal to zero. The algorithm

inductively computes vk and g>i Ckgi = g>i vk for all k = 1, 2, . . . ,m. Given vk−1, vk

and g>i Ckgi can be computed in nnz (C) and O (n) time, respectively. Notice that

nnz (C) ≤ n + nnz (A). Therefore, step 5 requires O (p ·m · nnz (A)) time. Since

p = O (ε−2 log(1/δ)), the total cost of Algorithm 7 is

O
(

nnz (A) ·
(m

ε2
+ log n

)
· log

(
1

δ

))
.

3.3 Relative error approximation for SPD matrices with bounded eigenvalues

In this section, we argue that a simplified version of Algorithm 7 achieves a relative

error approximation to the logdet (A), under the assumption that all the eigenvalues

of the SPD matrix A lie in the interval (θ1, 1), where 0 < θ1 < 1. This is a mild

generalization of the setting introduced in [HMS15].

Given the upper bound on the largest eigenvalue of A, the proof of the following

lemma (which is the analog of Lemma 9) is straightforward.

Lemma 11. Let A ∈ Rn×n be an SPD matrix whose eigenvalues lie in the interval

(θ1, 1), for some 0 < θ1 < 1. Let C := In −A; then,

logdet (A) = −
∞∑
k=1

Tr
(
Ck
)

k
. (3.23)

Proof. Similarly to the proof of Lemma 9,

logdet (A) = log

(
n∏
i=1

λi(A)

)
=

n∑
i=1

log(λi(A)) = Tr (log [A]) .
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Now,

Tr (log [A]) = Tr (log [In − (In −A)])

= Tr

(
−
∞∑
k=1

(In −A)k

k

)
(3.24)

= −
∞∑
k=1

Tr
(
Ck
)

k
. (3.25)

Eqn. (3.24) follows from the Taylor expansion of Lemma 2 because all the eigenvalues

of C = In − A are contained3 in the interval (0, 1). Eqn. (3.25) follows from the

linearity of the trace operator.

Then eqn. (3.23) suggests the approximation scheme that is the analog of the

one defined in eqn. (3.12) and emerges using the trace estimator of Lemma (5) and

truncating the infinite series to m:

l̂ogdet (A) := −
m∑
k=1

1

k

(
1

p

p∑
i=1

g>i Ckgi

)
. (3.26)

3.3.1 Algorithm

We simplify Algorithm 7 as follows: we skip steps 1 and 2 and in step 3 we set

C = In−A. Finally the algorithm returns the approximation to the logdet (A) using

eqn. (3.26). Algorithm 8 sketches the aforementioned changes.

3.3.2 Error bound

Lemma (12) proves that in the special case when all the eigenvalues of the SPD

matrix A lie in the interval (θ1, 1), with 0 < θ1 < 1, Algorithm 8 returns a relative

error approximation to logdet (A).

3Indeed, if x is an eigenvector of A then (In − A)x = (1 − λx(A))x, which means that λi(C) =
1 − λi(A). Given that θ1 < λi(A) < 1 for all i = 1 . . . n and that 0 < θ1 < 1, we conclude that
0 < λi(C) < 1− θ1, for all i = 1 . . . n.
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Algorithm 8 Relative Error Randomized Log Determinant Estimation

Input: A ∈ Rn×n, accuracy parameter ε > 0, and integer m > 0.

Output: l̂ogdet (A) the approximation to logdet (A).
1: C = In −A
2: p = d20 log(2/δ)/ε2e
3: Generate g1,g2, . . . ,gp ∈ Rn be i.i.d. random Gaussian vectors.
4: for i = 1, 2 . . . , p do
5: v

(i)
1 = Cgi

6: γ
(i)
1 = g>i v

(i)
1

7: for k = 2, . . . ,m do
8: v

(i)
k := Cv

(i)
k−1.

9: γ
(i)
k = g>i v

(i)
k . Inductively γ

(i)
k = g>i Ckgi

10: end for
11: end for
12: return l̂ogdet (A) = −

∑m
k=1

(
1
p

∑p
i=1 γ

(i)
k

)
/k

Lemma 12. Let l̂ogdet (A) be the output of Algorithm 8 on inputs A and ε. Then,

with probability at least 1− δ,

∣∣∣l̂ogdet (A)− logdet (A)
∣∣∣ ≤ 2ε · |logdet (A)| .

Proof. The proof follows in lines the proof of Lemma 10. We first manipulate the

absolute error ∆ =
∣∣∣l̂ogdet (A)− logdet (A)

∣∣∣ as follows:

∆ =

∣∣∣∣∣
m∑
k=1

(
1

p

p∑
i=1

g>i Ckgi

)
/k −

∞∑
k=1

Tr
(
Ck
)
/k

∣∣∣∣∣
≤

∣∣∣∣∣
m∑
k=1

(
1

p

p∑
i=1

g>i Ckgi

)
/k −

m∑
k=1

Tr
(
Ck
)
/k

∣∣∣∣∣+

∣∣∣∣∣
∞∑

k=m+1

Tr
(
Ck
)
/k

∣∣∣∣∣
=

∣∣∣∣∣1p
p∑
i=1

g>i

(
m∑
k=1

Ck/k

)
gi −Tr

(
m∑
k=1

Ck/k

)∣∣∣∣∣︸ ︷︷ ︸
∆1

+

∣∣∣∣∣
∞∑

k=m+1

Tr
(
Ck
)
/k

∣∣∣∣∣︸ ︷︷ ︸
∆2

.

We continue by separately bounding ∆1 and ∆2 . We start with ∆1; the idea is

to apply Lemma 5 to approximate the trace of the matrix
∑m

k=1 Ck/k using p =
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d20 log(2/δ)/ε2e, random Gaussian vectors. Hence, with probability at least 1 − δ

(this is the only probabilistic event in this lemma and hence 1 − δ is a lower bound

on the success probability of the lemma):

∆1 ≤ε ·Tr

(
m∑
k=1

Ck/k

)

≤ε ·Tr

(
∞∑
k=1

Ck/k

)
. (3.27)

The inequality of eqn. (3.27) follows if we observe that C is positive definite, hence

for all k, Tr
(
Ck
)
> 0. Bounding ∆2 follows the lines of the proof of Lemma 10:

∆2 =

∣∣∣∣∣
∞∑

k=m+1

Tr
(
Ck
)
/k

∣∣∣∣∣ =

∣∣∣∣∣
∞∑

k=m+1

Tr
(
Cm ·Ck−m) /k∣∣∣∣∣

≤

∣∣∣∣∣
∞∑

k=m+1

‖Cm‖2 ·Tr
(
Ck−m) /k∣∣∣∣∣ = ‖Cm‖2 ·

∣∣∣∣∣
∞∑

k=m+1

Tr
(
Ck−m) /k∣∣∣∣∣

≤ ‖Cm‖2 ·

∣∣∣∣∣
∞∑
k=1

Tr
(
Ck
)
/k

∣∣∣∣∣
≤ (1− λn (A))m

∣∣∣∣∣
∞∑
k=1

Tr
(
Ck
)
/k

∣∣∣∣∣ . (3.28)

In the inequality of eqn. (3.27), we used the fact that λ1(C) = 1−λn(A). Combining

the bounds for ∆1 and ∆2 gives:

∣∣∣l̂ogdet (A)− logdet (A)
∣∣∣ ≤ (ε+ (1− λn (A))m) ·

∞∑
k=1

Tr
(
Ck
)

k
.

We have already proven in Lemma 11 that

∞∑
k=1

Tr
(
Ck
)

k
= −Tr (log [A]) = −logdet (A) .
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Collecting our results, we get:

∣∣∣l̂ogdet (A)− logdet (A)
∣∣∣ ≤ (ε+ (1− λn (A))m) · |logdet (A)| .

Using 1− λn(A) < 1− θ1, we conclude that

∣∣∣l̂ogdet (A)− logdet (A)
∣∣∣ ≤ (ε+ (1− θ1)m) · |logdet (A)| .

Using an argument similar to the one used in eqn. (3.22) we find that by setting:

m =

⌈
1

θ1

· log

(
1

ε

)⌉

guarantees that (1− θ1)m ≤ ε and therefore:

∣∣∣l̂ogdet (A)− logdet (A)
∣∣∣ ≤ 2ε · |logdet (A)| .

This concludes the proof.

3.3.3 Running time

The running time of Algorithm 8, is equal to O (p ·m · nnz (A)). Given that

p = O
(

log(1/δ)
ε2

)
and m = O

(
log(1/ε)
θ1

)
, the running time of Algorithm 8 becomes

O
(

log(1/ε) log(1/δ)

ε2 · θ1

· nnz (A)

)
.

3.4 Empirical evaluation

The goal of our experimental section is to establish that our approximation to the

logdet (A) (as computed by Algorithm 7) is both accurate and fast for both dense and
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sparse matrices. The accuracy of Algorithm 7 is measured by comparing its result

against the exact logdet (A) computed via the Cholesky factorization.

We developed high-quality, shared- and distributed-memory parallel C++ code for

the algorithms listed in this paper. All of the code that was developed for this paper is

hosted in http://web.ics.purdue.edu/~ekontopo/software.html. In it’s current

state, our software supports: (1) ingesting dense (binary and text format) and sparse

(binary, text, and matrix market format) matrices, (2) generating large random SPD

matrices, (3) computing both approximate and exact spectral norms of matrices, (4)

computing both approximate and exact traces of matrices, and (5) computing both

approximate and exact log determinants of matrices. Currently, we support both

Eigen [GB+10] and Elemental [PMVdG+13] matrices. As we wanted the random

SPD generation to be fast, we have used parallel random number generators from

Random123 [SMDS11] in conjunction with Boost.Random.

All our experiments ran on “Nadal”, a 60-core machine, where each core is an

Intel R© Xeon R© E7-4890 machine running at 2.8 Ghz. Nadal has 1 TB of RAM and

runs Linux kernel version 2.6-32. For compilation, we used GCC 4.9.2. We used Eigen

3.2.4, OpenMPI 1.8.4, Boost 1.55.7, and the latest version of Elemental at https://

github.com/elemental. For experiments with Elemental, we used OpenBlas, which

is an extension of GotoBlas [GVDG08], for its parallel prowess; Eigen has built-in the

BLAS and LAPACK packages.

3.4.1 Empirical results for dense matrices

In our experiments, we used two types of synthetic SPD matrices. The first type

were diagonally dominant SPD matrices and were generated as follows. First, we

created X ∈ Rn×n by drawing n2 entries from a uniform sphere with center 0.5 and

radius 0.25. Then, we generated a symmetric matrix Y by setting

Y = 0.5 ∗ (X + X>).

http://web.ics.purdue.edu/~ekontopo/software.html
https://github.com/elemental
https://github.com/elemental
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Finally, we ensured that the desired matrix A is positive definite by adding the

value n to each diagonal entry [Cur09] of Y: A = Y + nIn. We will call this

method randSPDDenseDD.

The second approach generates SPD matrices that are not diagonally dominant.

We created X,D ∈ Rn×n by drawing n2 and n entries, respectively, from a uni-

form sphere with center 0.5 and radius 0.25; D is a diagonal matrix with small

entries. Next, we generated an orthogonal random matrix Q using the QR decom-

position. Thus, Q is an orthonormal basis for range (X). Finally, we generated

A = QDQ>. We call this method randSPDDense. randSPDDense is more expensive

than randSPDDenseDD, as it requires an additional O (n3) computations for the QR

factorization and the matrix-matrix product.

To evaluate the runtime of Algorithm 7 against a baseline, we used the Cholesky

decomposition to compute the logdet (A). More specifically, we computed A = LL>

and returned logdet (A) = 2 · logdet (L). Since Elemental provides distributed and

shared memory parallelism, we restricted ourselves to experiments with Elemental

matrices throughout this section. Note that we measured the accuracy of the ap-

proximate algorithm in terms of the relative error to ensure that we have numbers of

the same scale for matrices with vastly different values for logdet (A); we defined the

relative error e as e = 100(x− x̃)/x, where x is the true value and x̃ is the approxi-

mation. Similarly, we defined the speedup s as s = tx/tx̃, where tx is the time needed

to compute x and tx̃ is the time needed to compute the approximation x̃.

We first tested dense synthetic matrices, generated using randSPDDense; these are

relatively ill-conditioned matrices. We experimented with various matrix sizes. More

specifically n, the number of rows and columns of A, was set to get values from the

set {5, 000, 7, 500, 10, 000, 12, 500, 15, 000}.

Algorithm 7 has two profound sources of accuracy loss. The first one comes from

the truncation of the Taylor series, while the second from the trace estimation. We

are particularly interested in observing how the number of Taylor terms, m and the
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number of random Gaussian vectors, p are influencing the quality fo the approxima-

tion.

First, we discuss the effect of m, the number of Taylor terms; Figure 3.1 depicts

our results for the sequential case (the number of processors was set to one) when

using p = 60 random Gaussian vectors and t = 2 log
√

4n power method steps. On the

y-axis, we observe the relative error, which is measured against the exact logdet (A)

as computed via the Cholesky factorization. We observe that for these ill-conditioned

matrices and small values of m (typically less than four) the relative error is high,

indicating the dependence of the approximation to the condition number of input

matrix as well as to the number of Taylor terms. However, for all values of m ≥ 4, we

observe that the error drops significantly and stabilizes showing that as m grows the

effect of the condition number on the accuracy of the approximation is diminishing.

This however, comes with an increase in the running time as observed in Figure 3.2.

We note that in each iteration, all random processes were re-seeded with new values;

we have plotted the error bars Figure 3.1. The standard deviation for both the

accuracy and the running time was consistently small; indeed, it is not visible to the

naked eye at scale. To see the benefit of approximation, we compare Figure 3.2 with

Figure 3.1. For example, at m = 4, for all matrices, we get at least a factor of two

speedup. As n gets larger, the speedup also increases. For example, for n = 15, 000,

the speedup at m = 4 is nearly six-fold. In terms of accuracy, Figure 3.1 shows

that at m = 4, the relative error is approximately 4%. This speedup is expected

as the Cholesky factorization requires O (n3) operations; Algorithm 7 only relies on

matrix-vector products, the number of which is independent of n.

Finally, we discuss the parallel speedup in Figure 3.3, which shows the relative

speedup of the approximate algorithm with respect to the baseline Cholesky algo-

rithm. For this evaluation, we set m = 4 and varied the number of processes, denoted

by np, from one to 60. The main take away message from Figure 3.3 is that the ap-

proximate algorithm provides nearly the same or increasingly better speedups when

compared to a parallelized version of the exact (Cholesky) algorithm. For example,
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Figure 3.1.: Relative error for N × N synthetic dense SPD matrices generated by
randSPDDense, using p = 60 random Gaussian vectors and t = 2 log

√
4n power

method steps. The number of processors was set to one.

for n = 15, 000, the speedup for using the approximate algorithm is consistently

around 6.5x. Figure 3.3 further indicates that our method with dense inputs can be

fast without consuming a significant amount of computational resources. In Table 3.1

we report the values of logdet (A) and the corresponding run time when running the

implementation of Algorithm 7, along with the the baseline as computed using the

Cholesky factorization. The reported numbers are the ones observed when m = 4

Taylor terms.

For the second set of dense experiments, we generated diagonally dominant matri-

ces using randSPDDenseDD; we were able to quickly generate and run benchmarks on

matrices of sizes N ×N with N in the set {10, 000, 20, 000, 30, 000, 40, 000} due to



68

1 2 3 4 5 6 7 8 9 10

Taylor terms

0

2

4

6

8

10

12

14

S
p

e
e
d

U
p

SpeedUp Synthetic Data

N=5000

N=7500

N=10000

N=12500

N=15000

Figure 3.2.: Speedup for N × N synthetic dense SPD matrices generated by
randSPDDense, using p = 60 random Gaussian vectors and t = 2 log

√
4n power

method steps. The number of processors was set to one.

Table 3.1.: Results and sequential running times when p = 60, m = 4 and t = log
√

4n
for synthetic SPD matrices generated using randSPDDense. The mean and standard
deviation are reported over ten iterations.

n
logdet (A) time (secs)

exact mean std exact mean std
5000 -3717.89 -3546.920 8.10 2.56 1.15 0.0005
7500 -5474.49 -5225.152 8.73 7.98 2.53 0.0015
10000 -7347.33 -7003.086 7.79 18.07 4.47 0.0006
12500 -9167.47 -8734.956 17.43 34.39 7.00 0.0030
15000 -11100.9 -10575.16 15.09 58.28 10.39 0.0102

the relatively simpler procedure involved in matrix generation. In this set of experi-

ments, due to the diagonal dominance, all matrices were well-conditioned. The results
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Figure 3.3.: Parallel speedup for N × N synthetic dense SPD matrices generated
by randSPDDense, using m = 4 Taylor terms, p = 60 random Gaussian vectors and
t = 2 log

√
4n power method steps.

of our experiments on the well-conditioned matrices are presented in Figures 3.4, 3.5

and 3.6. It’s clear that there is a noticeable improvement over the results presented

in Figures 3.1, 3.2 and 3.3. First, it is obvious from Figure 3.4 that very few terms of

the Taylor series (i.e., small m) are sufficient to get highly accurate approximations.

In fact, we see that even at m = 2, we are approaching 0% and at m = 3, for most of

the matrices, we have near-zero percent relative error. Recall that, according to our

theoretical analysis, both the error bound as well as the bound for m depend on the

condition number of the matrix. This experimental result, combined with Figure 3.5

is particularly encouraging; for example at m = 2, we seem to not only have a nearly

lossless approximation of logdet (A), but also have at least a 5x speedup. Similarly
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to Figure 3.2, the speedup improves as the size of the matrix increases. For example,

for N = 40, 000, the speedup at m = 2 is nearly 20x.
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Figure 3.4.: Relative error for N × N synthetic dense diagonally dominant SPD
matrices generated by randSPDDenseDD, using p = 60 random Gaussian vectors and
t = 2 log

√
4n power method steps. The number of processors was set to one.

We conclude our analysis by presenting Figure 3.6, which similarly to Figure 3.3,

points out that at any level of parallelism, Algorithm 7 maintains its relative perfor-

mance over the exact (Cholesky) factorization.

In Table 3.2 we report the values of logdet (A) and the corresponding running

time when running the implementation of Algorithm 7, along with the the baseline

as computed using the Cholesky factorization. The reported numbers are the ones

observed when m = 2 Taylor terms.
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Figure 3.5.: Speedup for N × N synthetic diagonally dominant dense SPD ma-
trices generated by randSPDDenseDD, using p = 60 random Gaussian vectors and
t = 2 log

√
4n power method steps. The number of processors was set to one.

Table 3.2.: Results and sequential running times when p = 60, m = 2, and
t = 2 log

√
4n for diagonally dominant dense random matrices generated using

randSPDDenseDD. The mean and standard deviation are reported over ten iterations.

n
logdet (A) time (secs)

exact mean std exact mean std
10000 92103.1 92269.5 5.51 18.09 2.87 0.01
20000 198069.0 198397.4 9.60 135.92 12.41 0.02
30000 309268.0 309763.8 20.04 448.02 30.00 0.12
40000 423865.0 424522.4 14.80 1043.74 58.05 0.05
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Figure 3.6.: Parallel speedup for N × N synthetic dense diagonally dominant SPD
matrices generated by randSPDDenseDD, using m = 2 Taylor terms, p = 60 random
Gaussian vectors and t = 2 log

√
4n power method steps.

3.4.2 Empirical results for sparse matrices

To generate a sparse, synthetic matrix A ∈ Rn×n, with nnz (A) non-zeros, we use

a randomized rounding technique based on a Bernoulli distribution to determine the

location of the non-zero entries and a uniform distribution to generate the values.

First, we completely fill the n principle diagonal entries. Next, we generate index

positions equal to pca (nnz (A)− n)/2 in the upper triangle for the non-zero entries

by sampling from a Bernoulli distribution with probability (nnz (A) − n)/(n2 − n).

We reflect each entry across the principle diagonal to ensure that A is symmetric
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and we add n to each diagonal entry to ensure that A is SPD (actually, A is also

diagonally dominant).

To demonstrate the prowess of Algorithm 7 on real-world data, we used SPD matrices

from the University of Florida’s sparse matrix collection [DH11]. The complete list

of matrices from this collection used in our experiments, as well as a brief description

of each matrix, is given in columns one through four of Table 3.3. It is tricky to

pick any single method as the “exact method” to compute the logdet (A) for a sparse

SPD matrix A. One approach would be to use direct methods such as Cholesky

decomposition of A [Dav06, Gup00]. For direct methods, it is difficult to derive an

analytical solution for the number of operations required for the factorization as a

function of the number of non-zero entries of the matrix, as this is highly dependent

on the structure of the matrix [GKK97]. In the distributed setting, one also needs

to consider the volume of communication involved, which is often the bottleneck.

Alternately, we can use iterative methods to compute the eigenvalues of A [Dav75] and

use the eigenvalues to compute logdet (A). It is clear that the worst case performance

of both the direct and iterative methods is O (n3). However, iterative methods are

typically used to compute a few eigenvalues and eigenvectors: therefore, we chose to

use the Cholesky factorization based on matrix reordering to compute the exact value

of logdet (A). It is important to note that both the direct and iterative methods are

notoriously hard to implement, which comes to stark contrast with the almost trivial

implementation of Algorithm 7, which is also embarrassingly parallelizable.

The true power of Algorithm 7 lies in its ability to approximate logdet (A) for

sparse A. The Cholesky factorization, as most direct methods for factorizing a matrix,

is prone to fill-in and thus for many problems, there is insufficient memory to factorize

a large, sparse matrix. In our first set of experiments, we wanted to show the effect

of m on: (i) the convergence of logdet (A), and (ii) the cost of the solution. To this

end, we generated sparse, diagonally dominant SPD matrices of size n = 105 and

varied the sparsity from 0.1% to 1% in increments of 0.25%. We did not compute

the exact logdet (A) for these synthetic matrices merely because the aim of this
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experiment is to study the speedup with m for various sparsity ratios. The values

of t, the number of power method steps and p, the number of random Gaussian

vectors, were held constant at 2 log
√

4n and 60 respectively. Figure 3.7 depicts the

convergence of logdet (A) measured as a relative error of the current estimate over

the final estimate. As can be seen — for well conditioned matrices – convergence is

fast. Figure 3.8 shows the relative cost of increasing m; using m = 1 as the baseline.
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Figure 3.7.: Convergence rate of Algorithm 7, on synthetic sparse inputs, to the final
value of logdet (A) as observed at m = 25 Taylor terms. The number of random
Gaussian vectors was fixed to p = 60, and the number of power method steps was
fixed to t = 2 log

√
4n. The number of processors was set to one.

It seems that the additional cost incurred by increasing m is linear when all other

parameters are held constant.
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Figure 3.8.: Relative cost of iterations of Algorithm 7, on synthetic sparse inputs
with p = 60, random Gaussian vectors and t = 2 log

√
4n, power method steps. The

baseline was set to m = 1 Taylor terms.The number of processors was set to one.

The results of running Algorithm 7 on the UFL matrices are shown in Table 3.3.

The numbers reported for the approximation are the mean and standard deviation

over ten iterations, for t = 5 power method steps, and p = 5 random Gaussian

vectors4. The value of m varied between one and 150 in increments of five, to select the

best average accuracy. The matrices shown in Table 3.3 have a nice structure, which

results in easy reorderings and consequently an efficient computation of the Cholesky

factorization. We see that even in such cases, the performance of Algorithm 7 is

4We experimented with various values of p and t and picked the smallest values that did not result
in accuracy loss.
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commendable due to its lower algorithmic complexity. In the case of thermomech TC,

we achieve good accuracy while achieving a 22x speedup.
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4 ESTIMATION OF THE VON NEUMANN ENTROPY OF DENSITY

MATRICES

This chapter presents our algorithms for the approximation of Von Neumann Entropy

of a density matrix. Throughout the chapter we will use the notation H (A) to refer

to the actual Von Neumann entropy of the density matrix A and the notation Ĥ (A)

to refer to its approximation.

Our first two algorithms, that will also be addressed as polynomial-based algo-

rithms achieve with high probability relative error guarantees for the approximation

of the Von Neumann entropy of real and complex density matrices with a full

set of pure states. Our third set of algorithms, that will be also be addressed as

random-projection-based algorithms, achieve additive-relative error guarantees for

the approximation of the Von Neumann entropy of real density matrices that do not

necessarily have a full set of pure states.

The chapter is organized as follows: in Section 4.1 we provide the mathemat-

ical setting under which we will work and any essential information that will be

useful through out the chapter. The polynomial-based algorithms are described in

Sections 4.2 and 4.3. The random-projection-based algorithms are described in Sec-

tion 4.5. Finally, Section 4.6 provides the empirical evaluation of our algorithms on

a variety of datasets.

Sections of chapter 4 have been published in [KDS+20]

Randomized Linear Algebra Approaches to Estimate the Von Neumann Entropy of

Density Matrices E-M. Kontopoulou, G. Dexter, A. Grama, W. Szpankowski, P.

Drineas in IEEE Transactions on Information Theory (2020), to appear
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4.1 Setting

We focus on finite-dimensional function (state) spaces. In this setting, the density

matrix R represents the statistical mixture of k ≤ n pure states, and, unless stated

otherwise, has the form

R =
k∑
i=1

piψiψ
>
i ∈ Rn×n. (4.1)

The vectorsψi ∈ Rn for i = 1 . . . k represent the k ≤ n pure states and can be assumed

to be pairwise orthogonal and normal, while pi’s correspond to the probability of

each state and satisfy pi > 0 and
∑k

i=1 pi = 1. From a linear algebraic perspective,

eqn. (4.1) can be rewritten as

R = ΨΣpΨ
> ∈ Rn×n, (4.2)

where Ψ ∈ Rn×k is the orthonormal matrix of the vectors ψi and Σp ∈ Rk×k is a

diagonal matrix whose entries are the (positive) pi’s. Given our assumptions for ψi,

Ψ>Ψ = I; also R is symmetric positive semi-definite with its eigenvalues equal to pi

and corresponding left/ right singular vectors equal to ψi’s; and Tr (R) =
∑k

i=1 pi =

1. Notice that eqn. (4.2) essentially reveals the (thin) Singular Value Decomposition

(SVD) [GV96] of R. The Von Neumann entropy of R, denoted by H (R) is equal to

(see, also eqn. (1.8))

H (R) = −
∑
i:pi>0

pi log pi

= −Tr (Rlog [R]) . (4.3)

Eqn. (4.3) follows from the definition of matrix functions (see, Section 2.2.6). More

precisely, we overload notation and consider the full SVD of R, namely R = ΨΣpΨ
>,

where Ψ ∈ Rn×n is an orthogonal matrix whose top k columns correspond to the k

pure states and the bottom n − k columns are chosen so that ΨΨ> = Ψ>Ψ = In.
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Here Σp is a diagonal matrix whose bottom n − k diagonal entries are set to zero.

Let h(x) = x log x for any x > 0 and let h(0) = 0. Then,

−
∑
i,pi>0

pi log pi =−Tr (h(Σp))

=−Tr
(
h(Σp)Ψ

>Ψ
)

=−Tr
(
Ψh(Σp)Ψ

>) (4.4)

=−Tr (h(R))

=−Tr (Rlog [R]) , (4.5)

where eqn. (4.4) follows from the circular property of the trace operator and eqn. (4.5)

follows from the definition of h(x).

4.2 An approach via Taylor series

Our first approach to approximate the Von Neumann entropy of a density matrix

uses a Taylor series expansion to approximate the logarithm of a matrix, combined

with a relative-error trace estimator for symmetric positive semi-definite matrices and

the power method to upper bound the largest singular value of a matrix. Lemma 13

is the starting point of our main algorithm for approximating the Von Neumann

entropy of a density matrix. In words Lemma 13 states that the computation of the

Von Neumann entropy of a density matrix R with a full set of pure states, boils down

to a two-fold task; first, computing the largest eigenvalue of R and second, computing

the trace all the powers of a matrix that is related to R.

Lemma 13. Let R ∈ Rn×n be a symmetric positive definite matrix with unit trace

and whose eigenvalues lie in the interval [`, u], for some 0 < ` ≤ u < 1. Then,

H (R) = log u−1 +
∞∑
k=1

Tr
(
R(In − u−1R)k

)
k

. (4.6)
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Algorithm 9 High Level Procedure for Von Neumann Entropy Computation

1: function VNEntropy(R)
2: Compute u such that p1(R) ≤ u.
3: C← (In −R/u).
4: Sum← 0.
5: for k ← 1, . . . do
6: Sum← Sum+ Tr

(
RCk

)
/k.

7: end for
8: H (R)← log(1/u) + Sum.
9: return H (R).

10: end function

Proof. From the definition of the Von Neumann entropy and a Taylor expansion,

H (R) = −Tr
(
R log

(
uu−1R

))
= −Tr ((log u)R)−Tr

(
R log(In − (In − u−1R))

)
= log u−1 −Tr

(
−R

∞∑
k=1

(In − u−1R)k

k

)
(4.7)

= log u−1 +
∞∑
k=1

Tr
(
R(In − u−1R)k

)
k

.

The first term of eqn. (4.7) follows since R has unit trace while the second term of

eqn. (4.7) comes from the Taylor expansion of log [In −A] as expressed in Defini-

tion 16. It is then the case that the eigenvalues of In − u−1R are all in the interval

(0, 1− (`/u)], whose upper bound is strictly less than one since, by our assumptions,

`/u > 0.

4.2.1 Algorithm

Lemma 13 indicates a high-level function for computing the Von Neumann entropy

of a density matrix R that is described in Algorithm 9.

To implement step 2 we use the power method from the numerical linear algebra

literature (see, Section 2.5.1). Step 3 is straightforward. To implement step 5, we
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Algorithm 10 A Taylor series approach to estimate the Von Neumann entropy.

Input: R ∈ Rn×n, accuracy parameter ε > 0, failure probability δ, and integer
m > 0.

Output: Ĥ (R), the approximation of H (R).
1: Compute p̃1, the estimate of the largest eigenvalue of R, p1, using Algorithm 2

with t = O (log n) and q = O (log(1/δ)).
2: u = min{1, 6p̃1}.
3: s = d20 log(2/δ)/ε2e.
4: Generate g1,g2, . . . ,gs ∈ Rn i.i.d. random Gaussian vectors.
5: return

Ĥ (R) = log u−1 +
1

s

s∑
i=1

m∑
k=1

g>i R(In − u−1R)kgi
k

.

truncate the expansion
∑∞

k=1 Tr
(
RCk

)
keeping few of the summands. This step is

important since the quality of the approximation, both theoretically and empirically,

depends on the number of summands (denoted by m) that will be kept. On the other

hand, the running time of the algorithm increases with m. Finally, to estimate the

traces of the powers of C times R, we use the randomized algorithm of Section 2.5.2.

Our approach is described in detail in Algorithm 10. We note that step 4 of Algo-

rithm 10 can be efficiently implemented as it was indicated in step 5 of Algorithm 7

in Section 3.2.1.

4.2.2 Error bound

Theorem 4 is our main quality-of-approximation result for Algorithm 10. It es-

sentially proves that Algorithm 10 returns an accurate approximation to H (R).

Theorem 4. Let R be a density matrix such that all probabilities pi, i = 1 . . . n satisfy

0 < ` ≤ pi. Let u be computed as in Algorithm 10 and let Ĥ (R) be the output of

Algorithm 10 on inputs R, m, and ε < 1; Then, with probability at least 1− 2δ,

∣∣∣Ĥ (R)−H (R)
∣∣∣ ≤ 2εH (R) ,
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by setting m =
⌈
u
`

log 1
ε

⌉
. The algorithm runs in time

O
((

u

`
· log(1/ε)

ε2
+ log(n)

)
log(1/δ) · nnz (R)

)
.

Proof. We begin by making the assumption that our analysis on Algorithm 2 is suc-

cessful, which happens with probability at least 1−δ. In this case, u = min{1, 6p̃1} is

an upper bound for all probabilities pi. For notational convenience, set C = In−u−1R.

We start by manipulating ∆ =
∣∣∣Ĥ (R)−H (R)

∣∣∣ as follows:

∆ =

∣∣∣∣∣
m∑
k=1

1

k
· 1

s

s∑
i=1

g>i RCkgi −
∞∑
k=1

1

k
Tr
(
RCk

)∣∣∣∣∣
≤

∣∣∣∣∣
m∑
k=1

1

k
· 1

s

s∑
i=1

g>i RCkgi −
m∑
k=1

1

k
Tr
(
RCk

)∣∣∣∣∣+

∣∣∣∣∣
∞∑

k=m+1

1

k
Tr
(
RCk

)∣∣∣∣∣
=

∣∣∣∣∣1s
s∑
i=1

g>i

(
m∑
k=1

RCk/k

)
gi −Tr

(
m∑
k=1

1

k
RCk

)∣∣∣∣∣︸ ︷︷ ︸
∆1

+

∣∣∣∣∣
∞∑

k=m+1

Tr
(
RCk

)
/k

∣∣∣∣∣︸ ︷︷ ︸
∆2

.

We now bound the two terms ∆1 and ∆2 separately. We start with ∆1: the idea

is to apply Lemma 5 on the matrix
∑m

k=1 RCk/k with s = d20 log(2/δ)/ε2e. Hence,

with probability at least 1− δ:

∆1 ≤ ε ·Tr

(
m∑
k=1

RCk/k

)
(4.8)

≤ ε ·Tr

(
∞∑
k=1

RCk/k

)
. (4.9)

A subtle point in applying Lemma 5 is that the matrix
∑m

k=1 RCk/k must be SPSD

To prove that
∑m

k=1 RCk/k is SPSD we first define the SVD of R be R = ΨΣpΨ
>,

where all three matrices are in Rn×n and the diagonal entries of Σp are in the interval

[`, u]. Then, it is easy to see that

C = In − u−1R = Ψ(In − u−1Σp)Ψ
>



84

and

RCk = ΨΣp(In − u−1Σp)
kΨ>.

This proves that the matrix RCk is SPSD for any k, a fact which will be useful

throughout the proof. Now,

m∑
k=1

RCk/k = Ψ

(
Σp

m∑
k=1

(In − u−1Σp)
k/k

)
︸ ︷︷ ︸

W

Ψ>,

which shows that W is also a SPSD matrix which in turn validates the inequality of

eqn. (4.8). Additionally, since RCk is SPSD, its trace is non-negative, which proves

the inequality of eqn. (4.9). We proceed to bound ∆2 as follows:

∆2 =

∣∣∣∣∣
∞∑

k=m+1

Tr
(
RCk

)
/k

∣∣∣∣∣ =

∣∣∣∣∣
∞∑

k=m+1

Tr
(
RCmCk−m) /k∣∣∣∣∣

=

∣∣∣∣∣
∞∑

k=m+1

Tr
(
CmCk−mR

)
/k

∣∣∣∣∣ ≤
∣∣∣∣∣
∞∑

k=m+1

‖Cm‖2 ·Tr
(
Ck−mR

)
/k

∣∣∣∣∣ (4.10)

= ‖Cm‖2 ·

∣∣∣∣∣
∞∑

k=m+1

Tr
(
RCk−m) /k∣∣∣∣∣ ≤ ‖Cm‖2 ·

∣∣∣∣∣
∞∑
k=1

Tr
(
RCk

)
/k

∣∣∣∣∣ (4.11)

≤
(

1− `

u

)m ∞∑
k=1

Tr
(
RCk

)
/k. (4.12)

To prove the inequality of eqn. (4.10), we used Von Neumann’s trace inequality1. The

inequality of eqn. (4.10) follows since Ck−mR is SPSD2. To prove the inequality of

eqn. (4.11), we used the fact that Tr
(
RCk

)
/k ≥ 0 for any k ≥ 1. Finally, to prove

eqn. (4.12), we used the fact that ‖C‖2 = ‖In − u−1Σp‖2 ≤ 1 − `/u since, by our

assumptions, the smallest entry in Σp is at least `. We also removed unnecessary ab-

1Indeed, for any two matrices A and B, Tr (AB) ≤
∑

i σi(A)σi(B), where σi(A) (respectively
σi(B)) denotes the i-th singular value of A (respectively B). Let ‖ · ‖2 to denote the induced-2
matrix or spectral norm, then ‖A‖2 = σ1(A) (its largest singular value). Given that each singular
value of A is upper bounded by σ1(A) then we can rewrite Tr (AB) ≤ ‖A‖2

∑
i σi(B); if B is

symmetric positive semi-definite, Tr (B) =
∑

i σi(B).
2This can be proven using an argument similar to the one used to prove eqn. (4.8).
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solute values since Tr
(
RCk

)
/k is non-negative for any positive integer k. Combining

the bounds for ∆1 and ∆2 gives

∣∣∣Ĥ (R)−H (R)
∣∣∣ ≤ (ε+

(
1− `

u

)m) ∞∑
k=1

Tr
(
RCk

)
k

.

We have already proven in Lemma 13 that

∞∑
k=1

Tr
(
RCk

)
k

≤ H (R)− log u−1 ≤ H (R) ,

where the last inequality follows since u ≤ 1. Collecting our results, we get

∣∣∣Ĥ (R)−H (R)
∣∣∣ ≤ (ε+

(
1− `

u

)m)
H (R) .

Setting

m =

⌈
u

`
log

1

ε

⌉
and using Euler’s identity as defined in eqn. (3.21) of Section 3.2.2 we guarantee that

(1− `/u)m ≤ ε. The failure probability of Algorithm 10 is at most 2δ; the sum of the

failure probabilities of Algorithm 2 and Algrorithm 3. This concludes the proof.

A few remarks are necessary to better understand Theorem 4. First, ` could be

set to pn, the smallest of the probabilities corresponding to the n pure states of the

density matrix R. Second, it should be obvious that u in Algorithm 10 could be

simply set to one and thus we could avoid calling Algorithm 23 to estimate p1 by p̃1

and thus compute u. However, if p1 is small, then u could be significantly smaller

than one, thus reducing the running time of Algorithm 10, which depends on the ratio

u/` (see, eqn. (4.13)). Third, ideally, if both p1 and pn were used instead of u and

`, respectively, the running time of the algorithm would scale with the ratio p1/pn,

which is equal to the condition number of R.

3Actually we will be using u = 1 for our Hermitian case Taylor-based approach.
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4.2.3 Running time

Finally, we discuss the running time of Algorithm 10, which is equal to

O (s ·m · nnz (R)) .

Since s = O
(

log(1/δ)
ε2

)
and m = O

(
u log(1/ε)

`

)
, the running time becomes (after ac-

counting for the running time of Algorithm 2)

O
((

u

`
· log(1/ε)

ε2
+ log(n)

)
log(1/δ) · nnz (R)

)
. (4.13)

4.3 An approach via Chebyschev polynomials

Our second approach is a Chebyschev polynomial-based approximation scheme

to estimate the Von Neumann entropy of a density matrix. Our approach follows

the work of [WBS14], but our analysis uses the trace estimators of [AT11] and Algo-

rithm 2 and its analysis. Importantly, we present conditions under which the proposed

approach is competitive with the approach of Section 4.2.

The proposed algorithm leverages the fact that the Von Neumann entropy of a

density matrix R is equal to the (negative) trace of the matrix function f (R) =

Rlog [R] and approximates f (R) using the weighted sum of Chebyschev polynomials

of the first kind (see, Section 2.3.2); then, the trace of the resulting matrix is estimated

using Algorithm 3.

First we define the Chebyshev polynomial approximation for the scalar function

f(x) = x log(x), with x ∈ [0, u].

Definition 21. The analytical function f(x) = x log(x) on [0, u] can be approximated

by the polynomial fm(x) of degree m ≥ 0, defined as:

fm(x) =
m∑
w=0

αwTw(x), (4.14)
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where,

Tw(x) = cos

(
w · arccos

(
2

u
x− 1

))
is the Chebyschev polynomial of the first kind of degree w > 0 and

α0 =
u

2

(
log

u

4
+ 1
)
, α1 =

u

4

(
2 log

u

4
+ 3
)
, αw =

(−1)wu

w3 − w
,

are the coefficients of fm(x).

Definition 22. Let R ∈ Rn×n be a symmetric positive definite matrix with unit trace

and whose eigenvalues lie in the interval [`, u], for some 0 < ` ≤ u < 1. Then,

H (R) ≈ −Tr (fm(R)) = −Tr

(
m∑
w=0

αwTw(R)

)
(4.15)

4.3.1 Algorithm

Given a density matrix R ∈ Rn×n with eigenvalues u ≥ p1 ≥ · · · ≥ pn, Defini-

tion 22 reveals a high-level function for the approximation of H (R) that is sketched

in Algorithm 11.

Algorithm 11 High Level Procedure for the Von Neumann Entropy Estimation

1: function VNEntropy(R)
2: Compute u such that p1(R) ≤ u.

3: return Ĥ (R) = −Tr (fm(R)).
4: end function

To implement step 2 we use the power method from the numerical linear algebra

literature (see, Section 2.5.1). To estimate the trace of fm(R), we use the randomized

algorithm of Section 2.5.2. Our approach is depicted in detail in Algorithm 12.

We note that the computation in step 5 can be efficiently done using Clenshaw’s

algorithm (see, Algorithm 1).
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Algorithm 12 A Chebyschev polynomial approach to estimate the Von Neumann
entropy.

Input: R ∈ Rn×n, accuracy parameter ε > 0, failure probability δ, and integer
m > 0.

Output: Ĥ (R), the approximation to H (R).
1: Compute p̃1, the estimate of the largest eigenvalue of R, p1, using Algorithm 2

with t = O (log(n)) and q = O (log(1/δ).
2: u = min{1, 6p̃1}.
3: s = d20 log(2/δ)/ε2e.
4: Generate g1,g2, . . . ,gs ∈ Rn i.i.d. random Gaussian vectors.
5: return

Ĥ (R) = −1

s

s∑
i=1

g>i fm(R)gi.

4.3.2 Error bound

Theorem 5 is our main quality-of-approximation result for Algorithm 12. It es-

sentially proves that Algorithm 12 returns an accurate approximation to H (R).

Theorem 5. Let R be a density matrix such that all probabilities pi, i = 1 . . . n satisfy

0 < ` ≤ pi. Let u be computed as in Algorithm 10 and let Ĥ (R) be the output of

Algorithm 12 on inputs R, m, and ε < 1; Then, with probability at least 1− 2δ,

∣∣∣Ĥ (R)−H (R)
∣∣∣ ≤ 3εH (R) ,

by setting m =
√

u
2ε` log(1/(1−`)) . The algorithm runs in time

O
((√

u

` log(1/(1− `))
· 1

ε2.5
+ log(n)

)
log(1/δ) · nnz (R)

)
.

Proof. We will condition our analysis on Algorithm 2 being successful, which happens

with probability at least 1−δ. In this case, u = min{1, 6p̃1} is an upper bound for all

probabilities pi. Recall that in the introduction of the chapter we defined the function

h(x) = x log x for any real x ∈ (0, 1], with h(0) = 0. Let R = ΨΣpΨ
> ∈ Rn×n be

the density matrix, where both Σp and Ψ are both matrices in Rn×n. Notice that
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the diagonal entries of Σp are the pi’s and they satisfy 0 < ` ≤ pi ≤ u < 1 for all

i = 1 . . . n.

Using the definitions of matrix functions (see, Section 2.2.6), we can now define

h(R) = Ψh(Σp)Ψ
>, where h(Σp) is a diagonal matrix in Rn×n with entries equal to

h(pi) for all i = 1 . . . n. We now restate Proposition 3.1 from [WBS14] in the context

of our work, using our notation.

Lemma 14. The function h(x) in the interval [0, u] can be approximated by

fm(x) =
m∑
w=0

αwTw(x),

where α0 = u
2

(
log u

4
+ 1
)
, α1 = u

4

(
2 log u

4
+ 3
)
, and αw = (−1)wu

w3−w for w ≥ 2. For any

m ≥ 1,

|h(x)− fm(x)| ≤ u

2m(m+ 1)

≤ u

2m2
, (4.16)

for x ∈ [0, u].

In Lemma 14, Tw(x) = cos(w · arccos((2/u)x − 1)) for any integer w ≥ 0 and

x ∈ [0, u]. Notice that the function (2/u)x − 1 essentially maps the interval [0, u],

which is the interval of interest for the function h(x), to [−1, 1], which is the interval

over which Chebyschev polynomials are commonly defined. Lemam 14 exploits the

fact that the Chebyschev polynomials form an orthonormal basis for the space of

functions over the interval [−1, 1].
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We now move on to approximate the entropy H (R) using the function fm(x).

First,

−Tr (fm(R)) =−Tr

(
m∑
w=0

αwTw(R)

)

=−Tr

(
m∑
w=0

αwΨTw(Σp)Ψ
>

)

=−
m∑
w=0

αwTr (Tw(Σp))

=−
m∑
w=0

αw

n∑
i=1

Tw(pi)

=−
n∑
i=1

m∑
w=0

αwTw(pi). (4.17)

Recall that H (R) = −
∑n

i=1 h(pi). We can now bound the difference between

Tr (−fm(R)) and H (R). Indeed,

|H (R)−Tr (−fm(R))| =

∣∣∣∣∣−
n∑
i=1

h(pi) +
n∑
i=1

m∑
w=0

αwTw(pi)

∣∣∣∣∣
≤

n∑
i=1

∣∣∣∣∣h(pi)−
m∑
w=0

αwTw(pi)

∣∣∣∣∣
≤ nu

2m2
. (4.18)

The inequality of eqn. (4.18) follows by the bound of eqn. (4.16) in Lemma 14, since

all pi’s are in the interval [0, u].

Recall that we further assumed that all pi’s are lower-bounded by ` > 0 and thus

H (R) =
n∑
i=1

pi log
1

pi
≥ n` log

1

1− `
. (4.19)

We note that the upper bound on the pi’s follows since the smallest pi is at least

` > 0 and thus the largest pi cannot exceed 1 − ` < 1. We note that we cannot use

the upper bound u in formula of eqn. (4.19), since u could be equal to one; 1 − ` is
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always strictly less than one but it cannot be a-priori computed (and thus cannot be

used in Algorithm 12), since ` is not a-priori known.

We can now restate the bound of eqn. (4.18) as follows:

|H (R)−Tr (−fm(R))| ≤ u

2m2` log(1/(1− `))
H (R)

≤εH (R) , (4.20)

where the last inequality follows by setting

m =

√
u

2 · ε · ` · log(1/(1− `))
. (4.21)

Next, we argue that the matrix −fm(R) is symmetric positive semi-definite (under

our assumptions) and thus one can apply Lemma 5 to estimate its trace. We note

that

−fm(R) = Ψ (−fm(Σp)) Ψ>,

which trivially proves the symmetry of −fm(R) and also shows that its eigenvalues

are equal to −fm(pi) for all i = 1 . . . n. We now bound∣∣∣∣(−fm(pi))− pi log
1

pi

∣∣∣∣ = |−fm(pi) + pi log pi|

= |pi log pi − fm(pi)|

≤ u

2m2
≤ ε` log

1

1− `
,

where the inequalities follow from Lemma 14 and our choice for m from eqn. (4.21).

This inequality holds for all i = 1 . . . n and implies that

−fm(pi) ≥ pi log
1

pi
− ε` log

1

1− `
≥ (1− ε)` log

1

1− `
,
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using our upper (1− ` < 1) and lower (` > 0) bounds on the pi’s. Now ε ≤ 1 proves

that −fm(pi) are non-negative for all i = 1 . . . n and thus −fm(R) is a symmetric

positive semi-definite matrix; it follows that its trace is also non-negative.

We can now apply the trace estimator of Lemma 5 to get∣∣∣∣∣Tr (−fm(R))−

(
−1

s

s∑
i=1

g>i fm(R)gi

)∣∣∣∣∣ ≤ ε ·Tr (−fm(R)) . (4.22)

For the above bound to hold, we need to set

s =
⌈

20 log(2/δ)/ε2
⌉
. (4.23)

We now conclude as follows:

∣∣∣H (R)− Ĥ (R)
∣∣∣ ≤ |H (R)−Tr (−fm(R))|+

∣∣∣∣∣Tr (−fm(R))−

(
−1

s

s∑
i=1

g>i fm(R)gi

)∣∣∣∣∣
(4.24)

≤ εH (R) + εTr (−fm(R)) (4.25)

≤ εH (R) + ε(1 + ε)H (R) (4.26)

≤ 3εH (R) . (4.27)

The inequality of eqn. (4.24) follows by adding and subtracting −Tr (fm(R)) and

using sub-additivity of the absolute value; the inequality of eqn. (4.25) follows by

eqn. (4.20) and eqn. (4.22); the inequality of eqn. (4.26) follows again by eqn. (4.20);

and the inequality of eqn. (4.27) follows by using ε ≤ 1.

The failure probability of Algorithm 12 is at most 2δ; the sum of the failure

probabilities of Algorithm 2 and Algrorithm 3. This concludes the proof.
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4.3.3 Running time

Finally, we discuss the running time of Algorithm 12, which is equal to

O (s ·m · nnz (R))

. Using the values for m and s from eqn.. (4.21) and eqn. (4.23), the running time

becomes (after accounting for the running time of Algorithm 2)

O
((√

u

` log(1/(1− `))
· 1

ε2.5
+ log(n)

)
log(1/δ) · nnz (R)

)
.

4.3.4 Comparison between Theorems 4 and 5

The similarities between Theorems 4 and Theorem 5 are obvious: same assump-

tions and directly comparable accuracy guarantees. The only difference is in the

running times: the Taylor series approach has a milder dependency on ε, while the

Chebyschev-based approximation has a milder dependency on the ratio u/`, which

controls the behavior of the probabilities pi. However, for small values of ` (`→ 0),

log
1

1− `
= log

(
1 +

`

1− `

)
≈ `

1− `
≈ `.

Thus, the Chebyschev-based approximation has a milder dependency on u but not

necessarily ` when compared to the Taylor-series approach. We also note that the

discussion following Theorem 4 is again applicable here.

4.3.5 A comparison with the results of [WBS14]

The work of [WBS14] culminates in the error bounds described in Theorem 5 (and

the ensuing discussion). In our parlance, [WBS14] first derives the error bound of

eqn. (4.18). It is worth emphasizing that the bound of eqn. (4.18) holds even if the
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pi’s are not necessarily strictly positive, as assumed by Theorem 5: the bound holds

even if some of the pi’s are equal to zero.

Unfortunately, without imposing a lower bound assumption on the pi’s it is difficult

to get a meaningful error bound and an efficient algorithm. Indeed, the error implied

by eqn. (4.18) (without any assumption on the pi’s) necessitates setting m to at least

Ω(
√
n) (perhaps up to a logarithmic factor, as we will discuss shortly). To understand

this, note that the entropy of the density matrix R ranges between zero and log(k),

where k is the rank of the matrix R, i.e., the number of non-zero pi’s. Clearly, k ≤ n

and thus log(n) is an upper bound for H (R). Notice that if H (R) is smaller than

n/(2m2), the error bound of eqn. (4.18) does not even guarantee that the resulting

approximation will be positive, which is, of course, meaningless as an approximation

to the entropy.

In order to guarantee a relative error bound of the form εH (R) via eqn. (4.18),

we need to set m to be at least

m ≥
√

n

2εH (R)
, (4.28)

which even for “large” values of H (R) (i.e., values close to the upper bound log(n))

still implies that m is O
(
ε−1/2

√
n/ log(n)

)
. Even with such a large value for m,

we are still not done: we need an efficient trace estimation procedure for the matrix

−fm(R). While this matrix is always symmetric, it is not necessarily positive or

negative semi-definite (unless additional assumptions are imposed on the pi’s, like we

did in Theorem 5).

4.4 Approaches via Taylor and Chebyshev expansions for Hermitian density matrices

Hermitian positive definite matrices, frequently arise in quantum mechanics. The

analyses of Sections 4.2 and 4.3 focus on real density matrices; we now briefly discuss

how they can be extended to apply on Hermitian density matrices. Recall that both

approaches follow the same algorithmic scheme. First, the dominant eigenvalue of
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the density matrix is estimated via the power method; a trace estimation follows us-

ing Gaussian trace estimators on either the truncated Taylor expansion of a suitable

matrix function or on a Chebyshev polynomial approximation of the same matrix

function. Interestingly, the Taylor expansions, as well as the Chebyshev polynomial

approximations, both work when the input matrix is complex. However, the estima-

tion of the dominant eigenvalue of R poses a theoretical difficulty: to the best of our

knowledge, there is no known bound for the accuracy of the power method in the

case where R is complex. Lemma 4 guarantees relative error approximations to the

dominant eigenvalue of real matrices, but we are not aware of any provable relative

error bound for the complex case. To avoid this issue we will be using one as a (loose)

upper bound for the dominant eigenvalue.

The crucial step in order to guarantee relative error approximations to the Von

Neumann entropy of a Hermitian positive definite matrix is to guarantee relative

error approximations for the trace of a Hermitian positive definite matrix. Lemma 5

assumes symmetric positive semi-definite matrices; we now prove that the same lemma

can be applied on Hermitian positive definite matrices to achieve the same guarantees.

Theorem 6. Every Hermitian matrix A ∈ Cn×n can be expressed as

A = B + iC, (4.29)

where B ∈ Rn×n is symmetric and C ∈ Rn×n is anti-symmetric (or skew-symmetric).

If A ∈ Cn×n is positive semi-definite, then B is also positive semi-definite.

Proof. The proof is trivial and uses the fact that for any Hermitian (symmetric)

positive semi-definite matrix all eigenvalues are real and greater than zero.

Theorem 7. The trace of a Hermitian matrix A ∈ Cn×n expressed as in eqn. (4.29)

is equal to the trace of its real part:

Tr (A) = Tr (B) .
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Proof. Using Tr (A) = Tr
(
A>
)
, it is easy to see that

Tr (A) = Tr (B + iC) = Tr (B) + iTr (C)

= Tr
(
B>
)

+ iTr
(
C>
)

= Tr (B) .

The last equality follows by noticing that the only way for the equality to hold for a

skew-symmetric matrix C is if Tr
(
C>
)

= −Tr
(
C>
)
. This is true only if C is the

all-zeros matrix.

In words, Theorem 7 states that the trace of a Hermitian matrix equals the trace

of its real part. Similarly, Theorem 6 states that the real part of a Hermitian positive

semi-definite matrix is symmetric positive semi-definite. Combining both theorems

we conclude that we can estimate the trace of a Hermitian positive definite matrix

up to relative error, using the Gaussian trace estimator of Lemma 5 on its real part.

Therefore, both approaches generalize to Hermitian positive definite matrices using

one as an upper bound instead of u for the dominant eigenvalue. Algorithms 13 and 14

are modified versions of Algorithms 10 and 12 respectively that work on Hermitian

inputs (the function Re(·) returns the real part of its argument in an entry-wise

manner).

Algorithm 13 A Taylor series approach to estimate the Von Neumann entropy.

Input: R ∈ Cn×n, accuracy parameter ε > 0, failure probability δ, and integer
m > 0.

Output: Ĥ (R), the approximation to H (R).
1: s = d20 log(2/δ)/ε2e.
2: Generate g1,g2, . . . ,gs ∈ Rn i.i.d. random Gaussian vectors.
3: return

Ĥ (R) =
1

s

s∑
i=1

m∑
k=1

g>i
(
Re
[
R(In −R)k

])
gi

k
.

Theorems 8 and 9 are our main quality-of-approximation results for Algorithm 13

and 14.
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Algorithm 14 A Chebyschev polynomial approach to estimate the Von Neumann
entropy.

Input: R ∈ Cn×n, accuracy parameter ε > 0, failure probability δ, and integer
m > 0.

Output: Ĥ (R), the approximation to H (R).
1: s = d20 log(2/δ)/ε2e.
2: Generate g1,g2, . . . ,gs ∈ Rn i.i.d. random Gaussian vectors.
3: return

Ĥ (R) = −1

s

s∑
i=1

g>i (Re [fm(R)]) gi.

Theorem 8. Let R be a complex density matrix such that all probabilities pi, i =

1 . . . n satisfy 0 < ` ≤ pi. Let Ĥ (R) be the output of Algorithm 13 on inputs R, m,

and ε < 1. Then, with probability at least 1− δ,

∣∣∣Ĥ (R)−H (R)
∣∣∣ ≤ 2εH (R) ,

by setting m =
⌈

1
`

log 1
ε

⌉
. The algorithm runs in time

O
(

log(1/ε)

` · ε2
· log(1/δ) · nnz (R)

)
.

Theorem 9. Let R be a density matrix such that all probabilities pi, i = 1 . . . n satisfy

0 < ` ≤ pi. Let Ĥ (R) be the output of Algorithm 14 on inputs R, m, and ε < 1.

Then, with probability at least 1− δ,

∣∣∣Ĥ (R)−H (R)
∣∣∣ ≤ 3εH (R) ,

by setting m =
√

1
2ε` log(1/(1−`)) . The algorithm runs in time

O

(√
1

` log(1/(1− `))
· 1

ε2.5
log(1/δ) · nnz (R)

)
.
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Algorithm 15 Approximating the entropy via random projection matrices

Input: Integer n (dimensions of matrix R) and integer k (with rank of R at most
k � n, see eqn. (4.1)).

Output: p̃i, i = 1 . . . k, the approximation to the top-k eigenvalues of R and Ĥ (R),
the approximation to H (R).

1: Construct the random projection matrix Π ∈ Rn×s . see Section 2.5.3 for details
on Π and s.

2: R̃ = RΠ ∈ Rn×s.
3: Compute the (at most) k non-zero singular values of R̃, p̃i, i = 1 . . . k.
4: return p̃i, i = 1 . . . k and

Ĥ (R) =
k∑
i=1

p̃i log
1

p̃i

.

4.5 An approach via random projection matrices

Finally, we focus on perhaps the most interesting special case: the setting where

at most k (out of n, with k � n) of the probabilities pi of the density matrix R of

eqn. (4.1) are non-zero. In this setting, we prove that elegant random-projection-based

techniques achieve relative error approximations to all probabilities pi, i = 1 . . . k. The

running time of the proposed approach depends on the particular random projection

that is used and can be made to depend on the sparsity of the input matrix.

4.5.1 Algorithm

The proposed algorithm uses a random projection matrix Π to create a “sketch”

of R in order to approximate the pi’s. In words, Algorithm 15 creates a sketch of the

input matrix R by post-multiplying R by a random projection matrix; this is a well-

known approach from the RandNLA literature (see, [DM16] for details). Assuming

that R has rank at most k, which is equivalent to assuming that at most k of the

probabilities pi in eqn. (4.1) are non-zero (e.g., the system underlying the density

matrix R has at most k pure states), then the rank of RΠ is also at most k. In this
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setting, Algorithm 15 returns the non-zero singular values of RΠ as approximations

to the pi’s, i = 1 . . . k.

4.5.2 Error bound

Theorem 10 is our main quality-of-approximation result for Algorithm 15.

Theorem 10. Let R be a density matrix with at most k � n non-zero probabilities

and let ε < 1/2 be an accuracy parameter. Then, with probability at least 0.9, the

output of Algorithm 15 satisfies

∣∣p2
i − p̃2

i

∣∣ ≤ εp2
i

for all i = 1 . . . k. Additionally,

∣∣∣H (R)− Ĥ (R)
∣∣∣ ≤ √εH (R) +

√
3

2
ε.

Algorithm 15 (combined with Algorithm 5 below) runs in time

O
(
nnz (R) + nk4/ε4

)
.

Proof. At the heart of the proof of Theorem 10 lies the following perturbation bound

from [DV92, Theorem 2.3].

Theorem 11. Let DAD be a symmetric positive definite matrix such that D is a

diagonal matrix and Aii = 1 for all i. Let DED be a perturbation matrix such

that ‖E‖2 < λmin(A). Let λi be the i-the eigenvalue of DAD and let λ′i be the i-th

eigenvalue of D(A + E)D. Then, for all i,

|λi − λ′i| ≤
‖E‖2

λmin(A)
.
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We note that λmin(A) in the above theorem is a real, strictly positive number4. Now

consider the matrix RΠΠ>R>; we will use the above theorem to argue that its singu-

lar values are good approximations to the singular values of the matrix RR>. Recall

that R = ΨΣpΨ
> where Ψ has orthonormal columns. Note that the eigenvalues of

RR> = ΨΣ2
pΨ
> are equal to the eigenvalues of the matrix Σ2

p; similarly, the eigenval-

ues of ΨΣpΨ
>ΠΠ>ΨΣpΨ

> are equal to the eigenvalues of ΣpΨ
>ΠΠ>ΨΣp. Thus,

we can compare the matrices

ΣpIkΣp and ΣpΨ
>ΠΠ>ΨΣp.

In the parlance of Theorem 11, E = Ψ>ΠΠ>Ψ − Ik. Applying either Lemma 7

(after rescaling the matrix Π) or Lemma 8, we immediately get that ‖EA‖2 ≤ ε < 1

with probability at least 0.9. Since λmin(Ik) = 1, the assumption of Theorem 11 is

satisfied. We note that the eigenvalues of ΣpIkΣp are equal to p2
i for i = 1 . . . k (all

positive, which guarantees that the matrix ΣpIkΣp is symmetric positive definite, as

mandated by Theorem 11) and the eigenvalues of ΣpΨ
>ΠΠ>ΨΣp are equal to p̃2

i ,

where p̃i are the singular values of ΣpΨ
>Π. (Note that these are exactly equal to the

outputs returned by Algorithm 15, since the singular values of ΣpΨ
>Π are equal to

the singular values of ΨΣpΨ
>Π = RΠ). Thus, we can conclude that:

∣∣p2
i − p̃2

i

∣∣ ≤ εp2
i . (4.30)

4This follows from the fact that A is a symmetric positive definite matrix and the inequality 0 ≤
‖E‖2 < λmin(A).
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The above result guarantees that all pi’s can be approximated up to relative error

using Algorithm 15. We now investigate the implication of the above bound to ap-

proximating the Von Neumann entropy of R. Indeed,

k∑
i=1

p̃i log
1

p̃i
≤

k∑
i=1

(1 + ε)1/2pi log
1

(1− ε)1/2pi

≤ (1 + ε)1/2

(
k∑
i=1

pi log
1

pi
+

k∑
i=1

pi log
1

(1− ε)1/2

)

= (1 + ε)1/2H (R) +

√
1 + ε

2
log

1

1− ε

≤ (1 + ε)1/2H (R) +

√
1 + ε

2
log(1 + 2ε) (4.31)

≤ (1 +
√
ε)H (R) +

√
3

2
ε. (4.32)

In the inequality of eqn. (4.31) we used 1/(1− ε) ≤ 1 + 2ε for any ε ≤ 1/2 and in the

inequality of eqn. (4.32) we used log(1 + 2ε) ≤ 2ε for ε ∈ (0, 1/2). Similarly, we can

prove that:
k∑
i=1

p̃i log
1

p̃i
≥ (1−

√
ε)H (R)− 1

2
ε. (4.33)

Combining the bounds (4.32) and (4.33) we get

∣∣∣∣∣
k∑
i=1

p̃i log
1

p̃i
−H (R)

∣∣∣∣∣ ≤ √εH (R) +

√
3

2
ε.

This conclude the proof.

4.5.3 Running time

We conclude by discussing the running time of Algorithm 15, which is dominated

by the low rank approximation of step 3. Given the running time of O (nnz (A) + nk2)



102

(see, [NN13, Figure 1]) for step 3 combined with Algorithm 5 for the construction of

the matrix Πwe get a total running time of:

O
(
nnz (R) + nk4/ε4

)
.

4.5.4 Comparison between Theorems 10, 4 and 5

Comparing the above result with Theorems 4 and 5, we note that Theorem 10 does

not necessitate imposing any constraints on the probabilities pi, i = 1 . . . k. Instead, it

suffices to have k non-zero probabilities. The final result is an additive-relative error

approximation to the entropy of R (as opposed to the relative error approximations

of Theorems 4 and 5); under the mild assumption H (R) ≥
√
ε, the above bound

becomes a true relative error approximation5.

4.5.5 The Hermitian case

The above approach via random projections critically depends on Lemmas 7 and 8,

which, to the best of our knowledge, have only been proven for the real case. These

results are typically proven using matrix concentration inequalities, which are well-

explored for sums of random real matrices but less explored for sums of random

complex matrices.

4.6 Empirical evaluation

In this section we report experimental results in order to demonstrate the prac-

tical efficiency of our algorithms. We show that our algorithms are both numerically

accurate and computationally efficient. Our algorithms were implemented in Matlab

R2016a on a node with two 10-Core Intel Xeon-E5 processors (2.60GHz) and 512 GBs

of RAM.

5Recall that H (R) ranges between zero and log(k).
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We generated random density matrices for most of which we used the QETLAB

Matlab toolbox [Joh16] to derive (real-valued) density matrices of size 5, 000×5, 000,

on which most of our extensive evaluations were run. We also tested our methods on

a much larger 30, 000× 30, 000 density matrix, which was close to the largest matrix

that Matlab would allow us to load. We used the function RandomDensityMatrix of

QETLAB and the Haar measure; we also experimented with the Bures measure to

generate random matrices, but we did not observe any qualitative differences worth

reporting. Recall that exactly computing the Von Neumann entropy using eqn. (1.8)

presumes knowledge of the entire spectrum of the matrix; to compute all singular

values of a matrix we used the svd function of Matlab. The accuracy of our proposed

approximation algorithms was evaluated by measuring the relative error; wall-clock

times were reported in order to quantify the speedup that our approximation algo-

rithms were able to achieve.

4.6.1 Empirical results for the Taylor and Chebyshev approximation algorithms

We start by reporting results on the Taylor and Chebyshev approximation algo-

rithms, which have two sources of error: the number of terms that are retained in

either the Taylor series expansion or the Chebyshev polynomial approximation and

the trace estimation that is used in both approximation algorithms. We will sepa-

rately evaluate the accuracy loss that is contributed by each source of error in order

to understand the behavior of the proposed approximation algorithms.

Consider a 5, 000× 5, 000 random density matrix and let m (the number of terms

retained in the Taylor series approximation or the degree of the polynomial used in

the Chebyshev polynomial approximation) range between five and 30 in increments

of five. Let s, the number of random Gaussian vectors used to estimate the trace,

be set to {50, 100, 200, 300}. Recall that our error bounds for Algorithms 10 and 12

depend on u, an estimate for the largest eigenvalue of the density matrix. We used

the power method to estimate the largest eigenvalue (let λ̃max be the estimate) and
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we set u to λ̃max and 6λ̃max. Figures 4.1 and 4.2 show the relative error (out of 100%)

for all combinations of m, s, and u for the Taylor and Chebyshev approximation

algorithms. It is worth noting that we also report the error when no trace estimation

(NTE) is used in order to highlight that most of the accuracy loss is due to the

Taylor/Chebyshev approximation and not the trace estimation.

We observe that the relative error is always small, typically close to 1-2%, for

any choice of the parameters s, m, and u. The Chebyshev algorithm returns better

approximations when u is an overestimate for λmax while the two algorithms are

comparable (in terms of accuracy) where u is very close to λmax, which agrees with our

theoretical results. We also note that estimating the largest eigenvalue incurs minimal

computational cost (less than one second). The NTE line (no trace estimation) in the

plots serves as a lower bound for the relative error. Finally, we note that computing

the exact Von Neumann entropy took approximately 1.5 minutes for matrices of this

size.

The second dataset that we experimented with was a much larger density matrix

of size 30, 000 × 30, 000. This matrix was the largest matrix for which the memory

was sufficient to perform operations like the full SVD. Notice that since the increase

in the matrix size is six-fold compared to the previous one and SVD’s running time

grows cubically with the input size, we expect the running time to compute the

exact SVD to be roughly 63 · 90 seconds, which is approximately 5.4 hours; indeed,

the exact computation of the Von Neumann entropy took approximately 5.6 hours.

We evaluated both the Taylor and the Chebyshev approximation schemes by setting

the parameters m and s to take values in the sets {5, 10, 15, 20} and {50, 100, 200},

respectively. The parameter u was set to λ̃max, where the latter value was computed

using the power method, which took approximately 3.6 minutes. We report the wall-

clock running times and relative error (out of 100%) in Figures 4.5 and 4.4.

We observe that the relative error is always less than 1% for both methods, with

the Chebyshev approximation yielding almost always slightly better results. Note that

our Chebyshev-polynomial-based approximation algorithm significantly outperformed
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Figure 4.1.: Relative error for 5, 000× 5, 000 density matrix using the Taylor and the
Chebyshev approximation algorithms with u = λ̃max.

the exact computation: e.g., for m = 5 and s = 50, our estimate was computed in

less than ten minutes and achieved less than .2% relative error.

The third dataset we experimented with was the tridiagonal matrix from [HMS15,

Section 5.1]:

A =



2 −1 0 . . . 0

−1 2 −1
. . .

...

0
. . . . . . . . . 0

...
. . . −1 2 −1

0 . . . 0 −1 2


(4.34)

This matrix is the coefficient matrix of the discretized one-dimensional Poisson equa-

tion:

f(x) = −d
2vx
dx
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Figure 4.2.: Relative error for 5, 000× 5, 000 density matrix using the Taylor and the
Chebyshev approximation algorithms with u = 6λ̃max.

defined in the interval [0, 1] with Dirichlet boundary conditions v(0) = v(1) = 0.

We normalize A by dividing it with its trace in order to make it a density matrix.

Consider the 5, 000 × 5, 000 normalized matrix A and let m (the number of terms

retained in the Taylor series approximation or the degree of the polynomial used in

the Chebyshev polynomial approximation) range between five and 30 in increments

of five. Let s, the number of random Gaussian vectors used for estimating the trace

be set to 50, 100, 200, or 300. We used the formula

λi =
4

2n
sin2

(
iπ

2n+ 2

)
, i = 1, . . . , n (4.35)

to compute the eigenvalues of A (after normalization) and we set u to λmax and 6λmax.

Figures 4.6 and 4.7 show the relative error (out of 100%) for all combinations of m,
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Figure 4.3.: Time (in seconds) to run the approximate algorithms for the 5, 000 ×
5, 000 density matrix for m = 5. Exactly computing the Von Neumann entropy took
approximately 90 seconds, designated by the straight horizontal line in the figure.

s, and u for the Taylor and Chebyshev approximation algorithms. We also report the

error when no trace estimation (NTE) is used.

We observe that the relative error is higher than the one observed for the 5, 000×

5, 000 random density matrix. We report wall-clock running times in Figure 4.8. The

Chebyshev-polynomial-based algorithm returns better approximations for all choices

of the parameters and, in most cases, is faster than the Taylor-polynomial-based

algorithm, e.g. for m = 5, s = 50 and u = λmax, our estimate was computed in about

two seconds and achieved less than .5% relative error.

We further considered a 108 × 108 tridiagonal matrix of the form of eqn. (4.34).

Although an exact computation of the singular values of A is not feasible (at least with

our computational resources), such a computation is not necessary since eqn. (4.35)
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Figure 4.4.: Relative error for 30, 000 × 30, 000 density matrix using the Taylor and
the Chebyshev approximation algorithms with u = λ̃max.

provides a closed formula for its eigenvalues and, thus, its entropy. Let m (the number

of terms retained in the Taylor series approximation or the degree of the polynomial

used in the Chebyshev polynomial approximation) be equal to five or ten and let s,

the number of random Gaussian vectors used to estimate the trace be equal to 50

or 100. Figures 4.9 and 4.10 show the relative error (out of 100%) and the runtime,

respectively, for all combinations of m and s for both the Taylor and Chebyshev

approximation algorithms. We observe that in both cases we estimated the entropy

in less than ten minutes with a relative error below 0.15%.

The fourth dataset we experimented with includes 5, 000 × 5, 000 density matri-

ces whose first top-k eigenvalues follow a linear decay and the remaining 5, 000 − k

a uniform distribution. Let k, the number of eigenvalues that follow the linear de-

cay, take values in the set {50, 1000, 3500, 5000}. Let m, the number of terms
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Figure 4.5.: Wall-clock times: Taylor approximation (blue) and Chebyshev approxi-
mation (red) for u = λ̃max. Exact computation needed approximately 5.6 hours.

retained in the Taylor series approximation or the degree of the polynomial used in

the Chebyshev polynomial approximation, range between five and 30 in increments

of five. Let s, the number of random Gaussian vectors used to estimate the trace,

be set to {50, 100, 200, 300}. The estimate of the largest eigenvalue u is set to λ̃max.

Figures 4.11 to 4.14 show the relative error (out of 100%) for all combinations of k,

m, s, and u for the Taylor and Chebyshev approximation algorithms.

We observe that the relative error is decreasing as k increases. It is worth noting

that when k = 3, 500 and k = 5, 000 the Taylor-polynomial-based algorithm returns

better relative error approximation than the Chebyshev-polynomial-based algorithm.

In the latter case we observe that the relative error of the Taylor-based algorithm

is almost zero. This observation has a simple explanation. Figure 4.15 shows the
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Figure 4.6.: Relative error for 5, 000 × 5, 000 tridiagonal density matrix using the
Taylor and the Chebyshev approximation algorithms with u = λmax.

distribution of the eigenvalues in the four cases we examine. We observe that for

k = 50 the eigenvalues are spread in the interval (10−2, 10−4); for k = 1, 000 the

eigenvalues are spread in the interval (10−3, 10−4); while for k = 3, 500 or k = 5, 000

the eigenvalues are of order 10−4. It is well known that the Taylor polynomial returns

highly accurate approximations when it is computed on values lying inside the open

disc centered at a specific value u, which, in our case, is the approximation to the

dominant eigenvalue. The radius of the disk is roughly r = λm+1/λm, where m is

the degree of the Taylor polynomial. If r ≤ 1 then the Taylor polynomial converges;

otherwise it diverges. Figure 4.16 shows the convergence rate for various values of k.

We observe that for k = 50 the polynomial diverges, which leads to increased errors

for the Taylor-based approximation algorithm (reported error close to 23%). In all
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Figure 4.7.: Relative error for 5, 000 × 5, 000 tridiagonal density matrix using the
Taylor and the Chebyshev approximation algorithms with u = 6λmax.

other cases, the convergence rate is close to one, resulting in negligible impact to the

overall error.

In all four cases, the Chebyshev-polynomial based algorithm behaves better or

similar to the Taylor-polynomial based algorithm. It is worth noting that when the

majority of the eigenvalues are clustered around the smallest eigenvalue, then to

achieve relative error similar to the one observed for the QETLAB random density

matrices, more than 30 polynomial terms need to be retained, which increases the

computational time of our algorithms. The increase of the computational time as well

as the increased relative error can be justified by the large condition number that these

matrices have (remember that for both approximation algorithms the running time

depends on the approximate condition number u/l). As an example, for k = 50,
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Figure 4.8.: Wall-clock times: Taylor approximation (blue) and Chebyshev approx-
imation (red) for m = 5. Exact computation needed approximately 30 seconds,
designated by the straight horizontal line in the figure.

the condition number is in the order of hundreds which is significant larger than the

roughly constant condition number when k = 5, 000.

4.6.2 Empirical results for the Hermitian case

Our last dataset is a random 5, 000×5, 000 complex density matrix generated using

the QETLAB Matlab toolbox. We used the function RandomDensityMatrix of QET-

LAB and the Haar measure. Let m (the number of terms retained in the Taylor series

approximation or the degree of the polynomial used in the Chebyshev polynomial ap-

proximation) range between five and 30 in increments of five. Let s, the number of

random Gaussian vectors used to estimate the trace, be set to {50, 100, 200, 300}.
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Figure 4.9.: Relative error for the 108 × 108 tridiagonal density matrix using the
Taylor and the Chebyshev approximation algorithms with u = λmax.

Figure 4.17 shows the relative error (out of 100%) for all combinations of m, s, and

u for the Taylor-based and Chebyshev-based approximation algorithms.

We observe that the relative error is always small, typically below 1%, for any

choice of the parameters s and m. The NTE line (no trace estimation) in the plots

serves as a lower bound for the relative error. We note that computing the exact Von

Neumann entropy took approximately 52 seconds for matrices of this size. Finally,

our algorithm seems to outperform exact computation of the Von Neumann entropy

by approximating it in about ten seconds (for the Taylor-based approach) with a

relative error of 0.5% using 100 random Gaussian vectors and retaining ten Taylor

terms (see, Fig. 4.18) or in about 18 seconds (for the Chebyshev-based approach)

with a relative error of 0.2% using 50 random Gaussian vectors and five Chebyshev

polynomials (see, Fig.4.19) .
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Figure 4.10.: Wall-clock times: Taylor approximation (blue) and Chebyshev approxi-
mation (red) for the 108× 108 triadiagonal density matrix. Exact computation using
the Singular Value Decomposition was infeasible using our computational resources.

4.6.3 Empirical results for the random projection approximation algorithms

In order to evaluate our third algorithm, we generated low-rank random density

matrices (recall that the algorithm of Section 4.5 works only for random density

matrices of rank k with k � n). Additionally, in order to evaluate the subsampled

randomized Hadamard transform and avoid padding with all-zero rows, we focused on

values of n (the number of rows and columns of the density matrix) that are powers

of two. Finally, we also evaluated a simpler random projection matrix, namely the

Gaussian random matrix, whose entries are all Gaussian random variables with zero

mean and unit variance.

We generated low rank random density matrices with exponentially (using the

QETLAB Matlab toolbox) and linearly decaying eigenvalues. The sizes of the density
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Figure 4.11.: Relative error for 5, 000×5, 000 density matrix with the top-50 eigenval-
ues decaying linearly using the Taylor and the Chebyshev approximation algorithms
with u = λmax.

matrices we tested were 4, 096×4, 096 and 16, 384×16, 384. We also generated much

larger 30, 000 × 30, 000 random matrices on which we only experimented with the

Gaussian random projection matrix.

We computed all the non-zero singular values of a matrix using the svds function

of Matlab in order to take advantage of the fact that the target density matrix has

low rank. The accuracy of our proposed approximation algorithms was evaluated by

measuring the relative error; wall-clock times were reported in order to quantify the

speedup that our approximation algorithms were able to achieve.

We start by reporting results for Algorithm 15 using the Gaussian, the subsampled

randomized Hadamard transform (Algorithm 4), and the input-sparsity transform

(Algorithm 5) random projection matrices. Consider the 4, 096 × 4, 096 low rank
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Figure 4.12.: Relative error for 5, 000×5, 000 density matrix with the top-1000 eigen-
values decaying linearly using the Taylor and the Chebyshev approximation algo-
rithms with u = λmax.

density matrices and let k, the rank of the matrix, be 10, 50, 100, and 300. Let s,

the number of columns of the random projection matrix, range from 50 to 1, 000 in

increments of 50. Figures 4.20 and 4.21 depict the relative error (out of 100%) for all

combinations of k and s. We also report the wall-clock running times for values of s

between 300 and 450 at Figure 4.22.

We observe that in the case of the random matrix with exponentially decaying

eigenvalues and for all algorithms the relative error is under 0.3% for any choice of the

parameters k and s and, as expected, decreases as the dimension of the projection

space s grows larger. Interestingly, all three random projection matrices returned

essentially identical accuracies and very comparable wall-clock running time results.

This observation is due to the fact that for all choices of k, after scaling the matrix to



117

5 10 15 20 25 30

Taylor terms

0%

0.5%

1%

R
e

la
ti

v
e

 e
rr

o
r

u  
max

NTE

s=50

s=100

s=200

s=300

5 10 15 20 25 30

Chebyshev terms

0%

0.5%

1%

R
e

la
ti

v
e

 e
rr

o
r

u  
max

NTE

s=50

s=100

s=200

s=300

Figure 4.13.: Relative error for 5, 000×5, 000 density matrix with the top-3500 eigen-
values decaying linearly using the Taylor and the Chebyshev approximation algo-
rithms with u = λmax.

unit trace, the only eigenvalues that were numerically non-zero were the 10 dominant

ones.

In the case of the random matrix with linearly decaying eigenvalues (and for

all algorithms) the relative error increases as the rank of the matrix increases and

decreases as the size of the random projection matrix increases. This is expected:

as the rank of the matrix increases, a larger random projection space is needed to

capture the “energy” of the matrix. Indeed, we observe that for all values of k, setting

s = 1, 000 guarantees a relative error under 1%. Similarly, for k = 10, the relative

error is under 0.3% for any choice of s.

The running time depends not only on the size of the matrix, but also on its

rank, e.g. for k = 100 and s = 450, our approximation was computed in about 2.5
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Figure 4.14.: Relative error for 5, 000×5, 000 density matrix with the top-5000 eigen-
values decaying linearly using the Taylor and the Chebyshev approximation algo-
rithms with u = λmax.

seconds, whereas for k = 300 and s = 450, it was computed in less than one second.

Considering, for example, the case of k = 300 exponentially decaying eigenvalues,

we observe that for s = 400 we achieve relative error below 0.15% and a speedup

of over 60 times compared to the exact computation. Finally, it is observed that

all three algorithms returned very comparable wall-clock running time results. This

observation could be due to the fact that matrix multiplication is heavily optimized

in Matlab and therefore the theoretical advantages of the Hadamard transform did

not manifest themselves in practice.

The second dataset we experimented with was a 16, 384 × 16, 384 low rank den-

sity matrix. We set k = 50 and k = 500 and we let s take values in the set

{500, 1000, 1500, . . . , 3000, 3500}. We report the relative error (out of 100%) for all
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combinations of k and s in Figure 4.23 for the matrix with exponentially decaying

eigenvalues and in Figure 4.24 for the matrix with linearly decaying eigenvalues. We

also report the wall-clock running times for s between 500 and 2, 000 in Figure 4.25.

We observe that the relative error is typically around 1% for both types of matrices,

with running times ranging between ten seconds and four minutes, significantly out-

performing the exact entropy computation which took approximately 1.6 minutes for

the rank 50 approximation and 20 minutes for the rank 500 approximation.

The last dataset we experimented with was a 30, 000×30, 000 low rank density ma-

trix on which we ran Algorithm 15 using a Gaussian random projection matrix. We set

k = 50 and k = 500 and we let s take values in the set {500, 1000, 1500, . . . , 3000, 3500}.

We report the relative error (out of 100%) for all combinations of k and s in Fig-
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Figure 4.16.: Convergence radius of the Taylor polynomial for the 5, 000×5, 000 den-
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ure 4.26 for the matrix with exponentially decaying eigenvalues and in Figure 4.27

for the matrix with the linearly decaying eigenvalues. We also report the wall-clock

running times for s ranging between 500 and 2, 000 in Figure 4.28. We observe that

the relative error is typically around 1% for both types of matrices, with the running

times ranging between 30 seconds and two minutes, outperforming the exact entropy

which was computed in six minutes for the rank 50 approximation and in one hour

for the rank 500 approximation.



121

5 10 15 20 25 30
Taylor terms

0%

0.5%

1%

1.5%

R
e

la
ti

v
e

 e
rr

o
r

u=
max

NTE

s=50

s=100

s=200

s=300

5 10 15 20 25 30

Chebyshev terms

0%

1%

2%

3%

R
e

la
ti

v
e

 e
rr

o
r

u=
max

NTE

s=50

s=100

s=200

s=300

Figure 4.17.: Relative error for 5, 000 × 5, 000 Hermitian density matrix using the
Taylor and Chebyshev approximation algorithms.
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Figure 4.20.: Relative error for the 4, 096 × 4, 096 rank-k density matrix with ex-
ponentially decaying eigenvalues using Algorithm 15 with the Gaussian (red), the
subsampled randomized Hadamard transform (blue), and the input sparsity trans-
form (black) random projection matrices.
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Figure 4.21.: Relative error for the 4, 096× 4, 096 rank-k density matrix with linearly
decaying eigenvalues using Algorithm 15 with the Gaussian (red), the subsampled
randomized Hadamard transform (blue), and the input sparsity transform (black)
random projection matrices.
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Figure 4.22.: Wall-clock times: Algorithm 15 on 4, 096 × 4, 096 random matrices,
with the Gaussian (blue), the subsampled randomized Hadamard transform (red)
and the input sparsity transform (orange) projection matrices. The exact entropy
was computed in 1.5 seconds for the rank-10 approximation, in eight seconds for the
rank-50 approximation, in 15 seconds for the rank-100 approximation, and in one
minute for the rank-300 approximation as depicted by the straight horizontal lines in
the figure.
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Figure 4.23.: Relative error for the 16, 384 × 16, 384 rank-k density matrix with
exponentially decaying eigenvalues using Algorithm 15 with the Gaussian (red), the
subsampled randomized Hadamard transform (blue), and the input sparsity transform
(black) random projection matrices.
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Figure 4.24.: Relative error for the 16, 384×16, 384 rank-k density matrix with linearly
decaying eigenvalues using Algorithm 15 with the Gaussian (red), the subsampled
randomized Hadamard transform (blue), and the input sparsity transform (black)
random projection matrices.
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Figure 4.25.: Wall-clock times of Algorithm 15 for the 16, 384×16, 384 rank-k density
matrix with linearly decaying eigenvalues using the Gaussian (blue), the subsampled
randomized Hadamard transform (red) and the input sparsity transform (orange)
projection matrices. The exact entropy was computed in 1.6 minutes for the rank 50
approximation and in 20 minutes for the rank 500 approximation, as depicted by the
straight horizontal lines in the figure.
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Figure 4.26.: Relative error for the 30, 000 × 30, 000 rank-k density matrix with
exponentially decaying eigenvalues using Algorithm 15 with the Gaussian random
projection matrix for k = 50 (red) and for k = 500 (blue).
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Figure 4.27.: Relative error for the 30, 000×30, 000 rank-k density matrix with linearly
decaying eigenvalues using Algorithm 15 with the Gaussian random projection matrix
for k = 50 (red) and for k = 500 (blue).
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5 A RANDOMIZED ROUNDING ALGORITHM FOR SPARSE PRINCIPAL

COMPONENT ANALYSIS (PCA)

Chapter 5 presents our two-step randomized rounding algorithm to estimate sparse

principal components. We further analyze our algorithm providing an additive-error

guarantee to the optimal solution of eqn. (1.14).

This chapter is structured as follows: in Section 5.1 we provide the setting under

which we will work through out the chapter. In Section 5.2 we present our algorithm

and its analysis. In Section 5.3 we provide an extensive empirical evaluation to

emphasize the applicability and competitiveness of our algorithm.

Sections of chapter 5 have been published in [FKKD17]

A Randomized Rounding Algorithm for Sparse PCA, K. Fountoulakis, A. Kundu, E-

M. Kontopoulou, P. Drineas, in the ACM Transactions on Knowledge Discovery from

Data (2017), Vol. 11(3), No. 38, pp. 1-26

5.1 Setting

We focus on real input matrices X ∈ Rm×n with covariance matrix A = X>X ∈

Rn×n. Our goal is to compute a sparse vector x̂opt that will approximate, given certain

guarantees, the solution, x̃opt, of eqn. (5.1) that follows. First, notice that the min-

imization problem of eqn. (1.13) although convex, features a non-convex constraint.
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In our problem setting we relax constraint (1.14b) to the tighter `1 constraint (see,

eqn. (5.1b)).

Z̃opt = max
x ∈ Rn

x>A x (5.1a)

s.t. ‖x‖1 ≤
√
k (5.1b)

‖x‖2 ≤ 1 (5.1c)

5.2 Randomized rounding algorithm

It is important to mention that problem (5.1) is difficult and all we can hope in

practice is to calculate a stationary point. However, one should not discount the qual-

ity of stationary points. In Section 5.3 we show that by calculating stationary points

we capture as much of the variance as computationally expensive convex relaxations.

Having said that, the theoretical analysis of Section 5.2.2 assumes that we work with

the globally optimal solution of problem (5.1c).

5.2.1 Algorithm

Let x̃opt be a vector that achieves the optimal value Z̃opt for problem (5.1). Clearly,

x̃opt is not necessarily sparse. Therefore, we employ a randomized rounding strategy

to sparsify it by keeping larger entries of x̃opt with higher probability. Specifically,

we employ Algorithm 16 on the vector x̃opt to get a sparse vector x̂opt that is our

approximate solution to the sparse PCA formulation of eqn. (1.14).

Algorithm 16 Vector sparsification
Input: x ∈ Rn, integer s > 0.
Output: x̂ ∈ Rn with E [‖x̂‖0] ≤ s.

1: for i = 1, . . . , n do

2: pi = min
{
s|xi|
‖x‖1 , 1

}
3: x̂i =

{
1
pi

xi, with probability pi.

0, otherwise.
4: end for
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Surprisingly, this simple randomized rounding approach has not been analyzed in

prior work on Sparse PCA. Theorem 12 is our main theoretical result and guarantees

an additive error approximation to the NP-hard problem of eqn. (1.14).

Algorithm 17 sketches our algorithm for sparse PCA. Steps 2,-4 describe the ap-

proach we followed to compute the stationery point, that is a solution to problem (5.1).

This procedure can also be described as a projected gradient ascent (see, [JNRS10,

Section 4]).

Algorithm 17 Sparse PCA with vector sparsification

Input: A ∈ Rn×n, integer k > 0, u estimation to the dominant eigenvalue.
Output: x̂ ∈ Rn, the solution to the relaxed Problem (5.1)

1: x̃ = 1n. . initialize x̃ to all ones.
2: repeat
3: Compute the gradient: g = −A>Ax̃.
4: Make a gradient step: x̃ = x̃− u−1g.
5: Project x̃ onto the `1 ball with radius

√
k.

6: until convergence
7: Use Algorithm 16 with input x̃ and k and return x̂. . sparsification step.
8: return x̂.

5.2.2 Error bound

For simplicity of presentation, we will assume that the rows (and therefore columns)

of the matrix A have at most unit norms1. In words, Theorem 12 states that our

sparse vector x̂opt is almost as good as the optimal vector xopt in terms of capturing

(with constant probability) almost as much of the spectrum of A as xopt does. This

comes at a penalty: the sparsity of xopt, which is equal to k, has to be relaxed to

O (k/ε2). This provides an elegant trade-off between sparsity and accuracy2. It is

worth emphasizing that one should not worry about the small success probability of

our approach: by repeating the rounding t times and keeping the vector x̂opt that

1We can relax this assumption by increasing s – our sampling factor – by a factor that depends on
the upper bound of the row and column norms of A.
2A less important artifact of our approach is the fact that the Euclidean norm of the vector x̂opt is
slightly larger than one.
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satisfies the second bound and maximizes x̂>optAx̂opt, we can immediately guarantee

that we will achieve both bounds with probability at least 1− 2−t.

Theorem 12. Let xopt be the optimal solution of the Sparse PCA problem of eqn. (1.14)

satisfying ‖xopt‖2 = 1 and ‖xopt‖0 ≤ k. Let x̂opt be the vector returned when Al-

gorithm 16 is applied on the optimal solution x̃opt of the optimization problem of

eqn. (5.1), with s = 200k/ε2, where ε ∈ (0, 1] is an accuracy parameter. Then, x̂opt

has the following properties:

1. E [‖x̂opt‖0] ≤ s.

2. With probability at least 3/4,

‖x̂opt‖2 ≤ 1 + 0.15ε.

3. With probability at least 3/4,

x̂>optAx̂opt ≥ x>optAxopt − ε. (5.2)

Proof. We begin the proof of Theorem 12 by proving a bound for E [‖x̂opt‖0]. We

continue by bounding ‖x̂opt‖2, and we conclude by proving eqn. (5.2). For simplicity

of notation we will drop the subscript opt from xopt, x̃opt and x̂opt in all proofs of this

section.

A bound for E [‖x̂‖0] By definition (see, Algorithm 16) , pi ≤ s |x̃i| /‖x̃‖1, therefore

E [‖x̂‖0] =
n∑
i=1

pi ≤
n∑
i=1

s |x̃i|
‖x̃‖1

= s. (5.3)

which proves the first bound in Theorem 12.

A bound for ‖x̂‖2 The following lemma immediately implies the second bound of

Theorem 12 by setting s = 200k/ε2.
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Lemma 15. Given our notation, with probability at least 3/4,

‖x̂‖2 ≤ 1 + 2

√
k

s
.

Proof. Consider the indicator random variables Di for all i = 1 . . . n which take the

following values:

Di =

 1
pi

,with probability pi

0 , otherwise

It is easy to see that x̂i = Dix̃i for all i = 1 . . . n. The following trivial properties

hold for all i and will be used repeatedly in the proofs: E [Di] = 1, E [1− Di] = 0,

and E [1− Di]
2 = p−1

i − 1.

It is more intuitive to provide a bound on the expectation of ‖x̂ − x̃‖2
2 and then

leverage the triangle inequality in order to bound ‖x̂‖2. Using the indicator variables

Di and linearity of expectation, we get

E
[
‖x̂− x̃‖2

2

]
= E

[
n∑
i=1

(1− Di)
2 x̃2

i

]

=
n∑
i=1

x̃2
iE [1− Di]

2

=
n∑
i=1

(
1

pi
− 1

)
x̃2
i .

We will now prove the following inequality, which will be quite useful in later proofs:

n∑
i=1

(
1

pi
− 1

)
x̃2
i ≤

k

s
. (5.4)

Towards that end, we will split the set of indices {1 . . . n} in two subsets: the set I=1

corresponding to indices i such that pi = 1 and the set I<1 corresponding to indices

i such that pi < 1. Note that for all i ∈ I<1 it must be the case that

pi =
s |x̃i|
‖x̃‖1

.
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We now proceed as follows:

E
[
‖x̂− x̃‖2

2

]
=
∑
i∈I=1

(
1

pi
− 1

)
x̃2
i +

∑
i∈I<1

(
1

pi
− 1

)
x̃2
i

=
∑
i∈I<1

(
1

pi
− 1

)
x̃2
i

≤
∑
i∈I<1

1

pi
x̃2
i

=
∑
i∈I<1

‖x̃‖1

s |x̃i|
x̃2
i

≤ ‖x̃‖1

s

n∑
i=1

|x̃i|

=
‖x̃‖2

1

s
≤ k

s
. (5.5)

For the inequality of eqn. (5.5) we used the fact that ‖x̃‖1 ≤
√
k. We now use

Markov’s inequality to conclude that, with probability at least 3/4,

‖x̂− x̃‖2
2 ≤

4k

s
. (5.6)

To conclude the proof note that, from the triangle inequality,

‖x̂− x̃‖2 ≥ |‖x̂‖2 − ‖x̃‖2|

and thus

‖x̂‖2 ≤ ‖x̃‖2 + ‖x̂− x̃‖2 ≤ 1 + ‖x̂− x̃‖2. (5.7)

Combining eqn. (5.6) with eqn. (5.6), after taking the square root of both sides,

concludes the proof of the lemma.

Proving eqn. (5.2) The following lemma states that the solution of problem (5.1)

is at least as good as the solution of problem (1.14).
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Lemma 16. Given our notation, x is a feasible solution of the relaxed Sparse PCA

formulation of eqn. (5.1). Thus, Z̃opt = x̃>Ax̃> ≥ x>Ax.

Proof. Recall that x is a unit norm vector whose zero norm is at most k. Then, if we

let sgn(x) denote the vector of signs for x (with the additional convention that if xi

is equal to zero then the i-th entry of sgn(x) is also set to zero), we get

‖x‖1 =
∣∣∣sgn(x)>x

∣∣∣ ≤ ‖sgn(x)‖2‖x‖2 ≤
√
k.

The second inequality follows since sgn(x) has at most k non-zero entries. Thus, x

is feasible for the optimization problem of eqn. (5.1) and the conclusion of the lemma

follows immediately.

Getting a lower bound for x̂>Ax̂ is the toughest part of Theorem 12. Towards

that end, the next lemma bounds the error
∣∣x̃>Ax̃− x̂>Ax̂

∣∣ as a function of two

other quantities which will be easier to bound.

Lemma 17. Given our notation,

∣∣x̃>Ax̃− x̂>Ax̂
∣∣ ≤ 2

∣∣x̃>A (x̃− x̂)
∣∣+ | (x̂− x̃)>A (x̃− x̂) |.

Proof. We start with

∣∣x̃>Ax̃− x̂>Ax̂
∣∣ =

∣∣x̃>Ax̃− x̂>Ax̃ + x̂>Ax̃− x̂>Ax̂
∣∣

≤
∣∣∣(x̃− x̂)>Ax̃

∣∣∣+
∣∣x̂>A (x̃− x̂)

∣∣ . (5.8)

Next,

∣∣∣(x̂− x̃)>A (x̃− x̂)
∣∣∣ =

∣∣x̂>A (x̃− x̂)− x̃>A (x̃− x̂)
∣∣

≥
∣∣∣∣x̂>A (x̃− x̂)

∣∣− ∣∣x̃>A (x̃− x̂)
∣∣∣∣ , (5.9)
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which implies

∣∣x̂>A (x̃− x̂)
∣∣ ≤ ∣∣x̃>A (x̃− x̂)

∣∣+
∣∣∣(x̂− x̃)>A (x̃− x̂)

∣∣∣ . (5.10)

We now combine eqns. (5.8) and (5.9) to get

∣∣x̃>Ax̃− x̂>Ax̂
∣∣ ≤ ∣∣∣(x̃− x̂)>Ax̃

∣∣∣+
∣∣x̃>A (x̃− x̂)

∣∣+
∣∣∣(x̂− x̃)>A (x̃− x̂)

∣∣∣
= 2

∣∣x̃>A (x̃− x̂)
∣∣+
∣∣∣(x̂− x̃)>A (x̃− x̂)

∣∣∣ .

Our next lemma will provide a bound for the first of the two quantities of interest

in Lemma 17.

Lemma 18. Given our notation, with probability at least 7/8,

∣∣x̃>optA (x̃opt − x̂opt)
∣∣ ≤√8k/s.

Proof. Let D ∈ Rn×n be a diagonal matrix with entries Dii = Di for all i = 1 . . . n.

Hence, we can write x̂ = Dx̃. We have that

(x̃− x̂)>Ax̃ = x̃> (In −D) Ax̃ = x̃>


(1− D1)A1∗x̃

(1− D2)A2∗x̃
...

(1− Dn)An∗x̃

 =
n∑
i=1

(1− Di) x̃iAi∗x̃,

where Ai∗ is the i-th row of the matrix A as a row vector. Squaring the above

expression, we get

(
(x̃− x̂)>Ax̃

)2
n∑
i=1

n∑
j=1

(
x̃iA

>
i∗x̃
)

(x̃jAj∗x̃) (1− Di) (1− Dj) . (5.11)
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Recall that E [1− Di] = 0 for all i; thus, for all i 6= j, 1 − Di and 1 − Dj are

independent random variables and therefore the expectation of their product is equal

to zero. Thus, we can simplify the above expression as follows:

E
[
(x̃− x̂)>Ax̃

]2

=
n∑
i=1

E [1− Di]
2 (x̃iAi∗x̃)2

=
n∑
i=1

(
1

pi
− 1

)
x̃2
i (Ai∗x̃)2

≤
n∑
i=1

(
1

pi
− 1

)
x̃2
i .

In the last inequality we used |Ai∗x̃| ≤ ‖Ai∗‖2‖x̃‖2 ≤ 1. The last term in the above

derivation can be bounded as shown in eqn. (5.4), and thus we conclude

E
[
(x̃− x̂)>Ax̃

]2

≤ k/s.

Markov’s inequality now implies that with probability at least 7/8

(
(x̃− x̂)>Ax̃

)2

≤ 8k/s.

Our next lemma will provide a bound for the second of the two quantities of

interest in Lemma 17. The proof of the lemma is tedious and a number of cases need

to be considered.

Lemma 19. Given our notation, with probability at least 7/8,

∣∣∣(x̃opt − x̂opt)
>A (x̃opt − x̂opt)

∣∣∣ ≤ (24k2/s2 + 6k2/s3 + 54
√
k/s
)1/2

.
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Proof. Using the indicator variables Di and linearity of expectation, we get

E
[
(x̃− x̂)>A (x̃− x̂)

]2

= E

[
n∑

i,j=1

Aij (1− Di) x̃i (1− Dj) x̃j

]2

=

n∑
i1,j1,i2,j2=1

Ai1j1Ai2j2x̃i1x̃i2x̃j1x̃j2 × E [(1− Di1) (1− Di2) (1− Dj1) (1− Dj2)] . (5.12)

Recall that E [1− Di] = 0 for all i. Notice that if any of the four indices i1, i2, j1, j2

appears only once, then the expectation E [(1− Di1) (1− Di2) (1− Dj1) (1− Dj2)] cor-

responding to those indices equals zero. This expectation is non-zero if the four indices

are paired in couples or if all four are equal. That is, non-zero expectation happens if

(A) : i1 = i2 6= j1 = j2 (n2 − n terms)

(B) : i1 = j1 6= i2 = j2 (n2 − n terms)

(C) : i1 = j2 6= i2 = j1 (n2 − n terms)

(D) : i1 = i2 = j1 = j2 (n terms).

For case (A), let i1 = i2 = k and let j1 = j2 = `, in which case the corresponding

terms in eqn. (5.12) become (notice that Dk and D` are independent random variables

since k 6= `):

n∑
k,`=1, k 6=`

A2
k`x̃

2
kx̃

2
`E
[
(1− Dk)

2 (1− D`)
2] =

n∑
k,`=1, k 6=`

A2
k`x̃

2
kx̃

2
`

(
1

pk
− 1

)(
1

p`
− 1

)
≤

n∑
k=1

x̃2
k

(
1

pk
− 1

) n∑
`=1

x̃2
`

(
1

p`
− 1

)
=(

n∑
k=1

x̃2
k

(
1

pk
− 1

))2

≤ k2

s2
. (5.13)
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In the first inequality we used |Ak`| ≤ 1 for all k and ` and added extra positive

terms (corresponding to k = `), which reinforce the inequality. The last inequality

follows from eqn. (5.4).

For case (B), let i1 = j1 = k and let i2 = j2 = `, in which case the corresponding

terms in eqn. (5.12) become (notice that Dk and D` are independent random variables

since k 6= `):

n∑
k,`=1, k 6=`

AkkA``x̃
2
kx̃

2
`E
[
(1− Dk)

2 (1− D`)
2] =

n∑
k,`=1, k 6=`

AkkA``x̃
2
kx̃

2
`

(
1

pk
− 1

)(
1

p`
− 1

)
≤

n∑
k=1

x̃2
k

(
1

pk
− 1

) n∑
`=1

x̃2
`

(
1

p`
− 1

)
=(

n∑
k=1

x̃2
k

(
1

pk
− 1

))2

≤ k2

s2
. (5.14)

In the first inequality we used Akk ≤ 1 for all k and the fact that the diagonal entries

of a symmetric positive definite matrix are non-negative, which allows us to add extra

positive terms (corresponding to k = `) to reinforce the inequality. The remainder of

the derivation is identical to case (A).

For case (C), let i1 = j2 = k and let i2 = j1 = `, in which case the corresponding

terms in eqn. (5.12) become (notice that Dk and D` are independent random variables

since k 6= `):

n∑
k,`=1, k 6=`

Ak`A`kx̃
2
kx̃

2
`E
[
(1− Dk)

2 (1− D`)
2] =

n∑
k,`=1, k 6=`

A2
k`x̃

2
kx̃

2
`

(
1

pk
− 1

)(
1

p`
− 1

)
≤ k2

s2
. (5.15)

In the first equality we used the fact that A is symmetric; the remainder of the

derivation is identical to case (A).
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Finally, for case (D), let i1 = i2 = j1 = j2 = k, in which case the corresponding

terms in eqn. (5.12) become:

n∑
k=1

A2
kkx̃

4
kE [1− Dk]

4 =
n∑
k=1

A2
kkx̃

4
k

(
6

pk
− 4

p2
k

+
1

p3
k

− 3

)
≤

n∑
k=1

x̃4
k

(
6

pk
− 4

p2
k

+
1

p3
k

− 3

)
=

∑
k∈I<1

x̃4
k

(
6

pk
− 4

p2
k

+
1

p3
k

− 3

)
≤

∑
k∈I<1

x̃4
k

(
6

pk
+

1

p3
k

)
.

In the above derivation, we used |Akk| ≤ 1. We also split the set of indices {1 . . . n}

in two subsets: the set I=1 corresponding to indices k such that pk = 1 and the set

I<1 corresponding to indices k such that pk < 1. Note that for all k ∈ I<1 it must be

the case that pk = s |x̃i| /‖x̃‖1. Thus,

n∑
k=1

A2
kkx̃

4
kE [1− Dk]

4 ≤
∑
k∈I<1

x̃4
k

(
6‖x̃‖1

s |x̃k|
+
‖x̃‖3

1

s3 |x̃k|3

)

≤
n∑
k=1

x̃4
k

(
6‖x̃‖1

s |x̃k|
+
‖x̃‖3

1

s3 |x̃k|3

)
=

6‖x̃‖1

s

n∑
k=1

|x̃k|3 +
‖x̃‖3

1

s3

n∑
k=1

|x̃k|

=
6‖x̃‖1 ‖x̃‖3

3

s
+
‖x̃‖4

1

s3
.

Recall that ‖x̃‖q ≤ ‖x̃‖p for any 1 ≤ p ≤ q ≤ ∞ and use ‖x̃‖2 ≤ 1 and ‖x̃‖1 ≤
√
k to

get
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n∑
k=1

A2
kkx̃

4
kE [1− Dk]

4 ≤ 6‖x̃‖1‖x̃‖3
2

s
+
‖x̃‖4

1

s3

≤ 6
√
k

s
+
k2

s3
. (5.16)

Combining all four cases (i.e., eqns. (5.13), (5.14), (5.15), and (5.16)), we get

E
[
(x̃− x̂)>A (x̃− x̂)

]2

≤ 3k2/s2 + k2/s3 + 6
√
k/s.

Using Markov’s inequality and taking square roots concludes the proof of the lemma.

We can now complete the proof of the lower bound for x̂>optAx̂opt. First, combine

Lemmas 17, 18, and 19 to get

∣∣x̃>optAx̃opt − x̂optAx̂opt
∣∣ ≤ 2

√
8k/s+

(
24k2/s2 + 6k2/s3 + 54

√
k/s
)1/2

.

Since each of Lemmas 18 and 19 fail with probability at most 1/8, it follows from the

union bound that the above inequality holds with probability at least 1−2(1/8) = 3/4.

Therefore, setting s = 200k/ε2 guarantees (after some algebra) that with probability

at least 3/4, ∣∣x̃>optAx̃opt − x̂>optAx̂opt
∣∣ ≤ ε.

Using the triangle inequality and Lemma 16 we get that with probability at least 3/4

x̂>optAx̂opt ≥ x̃>optAx̃opt − ε ≥ x>optAxopt − ε,

which concludes the proof of eqn. (5.2).

Running time The running time of Algorithm 17 is variable and decreases as the

sparsity ratio increases. This is an artifact of the projected gradient ascent, we have
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implemented in steps 2 - 4 of Algorithm 17 to find a stationary point. The smaller the

sparsity ratio is, the harder the problem (5.1) becomes for projected gradient ascent.

This is also apparent from our empirical evaluation (see, Section 5.3).

5.3 Empirical evaluation

We perform experiments on both real and synthetic datasets. We chose to com-

pare our algorithm with the solution returned by the state-of-the-art Spasm toolbox

of [SCLE18], which implements the approach proposed in [ZHT06]. We also compare

our solution with the simple MaxComp heuristic [CJ95]: this method computes the top

singular vector of matrix A and returns a sparse vector by keeping the top k largest

components (in absolute value) and setting the remaining ones to zero.

Let X ∈ Rm×n with n � m denote the object-feature data matrix, where every

column has zero mean, and recall that A = X>X in eqn. (5.1). We use the following

function to measure the quality of an approximate solution x ∈ Rn to the sparse PCA

problem:

f(x) =
x>Ax

‖A‖2
2

. (5.17)

Notice that 0 ≤ f(x) ≤ 1 for all x which satisfy ‖x‖2 ≤ 1. The closer f(x) is to

one the more the vector x is parallel to the top singular vector of A, or, equivalently,

the closer f(x) is to one the more x captures the variance of the matrix A that

corresponds to its top singular value. Our goal is to calculate sparse vectors x with

f(x) ≈ 1.

Our approach first finds a stationary point of the optimization problem of eqn. (5.1)

and then uses Algorithm 16 (with s = k) to obtain a sparse solution vector x̂opt ∈ Rn.

We note that the chosen value of s is much smaller than the O (k/ε2) value stipulated

by Theorem 12. Also, in practice, our choice of s works very well and results in

solutions that are comparable or better than competing methods in our data.

We note that in our use of Spasm, we used soft thresholding by setting the STOP

parameter to −‖x̂opt‖0 and δ = −∞ (both STOP and δ are parameters of Spasm
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toolbox). This implies that the solutions obtained by Spasm and our approach will

have the same number of non-zeros, thus making the comparison fair. Similarly, for

MaxComp, after computing the top singular vector of A, we select the ‖x̂opt‖0 largest

(in absolute value) coordinates to form the sparse solution. A final technical note

is that the solutions obtained using either our method or MaxComp may result in

vectors with non-unit Euclidean norms. In order to achieve a fair comparison in

terms of eqn. (5.17), there are two options. The first one (naive approach) is to

simply normalize the resulting vectors. However, a better approach (SVD-based) is

possible: given a sparse solution vector x̂opt, we could keep the rows and columns of

A that correspond to the non-zero entries in x̂opt and compute the top singular vector

of the induced matrix. Note that the induced matrix would be a ‖x̂opt‖0 × ‖x̂opt‖0

matrix and its top singular vector would be a ‖x̂opt‖0-dimensional vector. Obviously,

this latter vector would be a unit norm vector and it could be padded with zeros to

derive a unit norm vector in Rn with the same sparsity pattern as x̂opt. It is straight-

forward to argue that this vector would improve the value of f compared to the naive

normalized vector x̂opt/‖x̂opt‖2. In our experimental evaluation, we will evaluate both

the naive and the SVD-based normalization methods.

We also compare the methods based on their wall-clock running times. All exper-

iments were run on a Intel(R) Core(TM) i7-6700 machine running at 3.40GHz, with

16 GB of RAM.

In some of our experiments we will need to extract more than one sparse singu-

lar vectors. Towards that end, we can use a deflation approach (Algorithm 18) to

construct more than one sparse singular vectors by first projecting the residual ma-

trix into the space that is perpendicular to the top sparse singular vector and then

computing the top sparse singular vector of the residual matrix. In Algorithm 18,

rspca refers to the solution of the optimization problem of eqn. (5.1) followed by

Algorithm 16).



148

Algorithm 18 Computing k sparse principal components

Input: X ∈ Rm×n, integer k.
Output: U = {u1, . . . ,uk}, V = {v1, . . . ,vk}.

1: Y = X>

2: v1 = rspca(X) and u1 = rspca(Y)
3: for i = 2, . . . , k do
4: X = X−Xvi−1v

>
i−1 and Y = Y −Yui−1u

>
i−1

5: vi = rspca(X) and ui = rspca(Y)
6: end for

5.3.1 Empirical results for real datasets

We used 22 matrices (one for each chromosome) emerging from population genetics

that encode all autosomal genotypes that are available in both the Human Genome

Diversity Panel [Con07] and the HAPMAP [LAT+08] project. Each of these matrices

has approximately 2,500 samples (objects) described with respect to tens of thousands

of features (Single Nucleotide Polymorphisms or SNPs); see [PLJD10] for details.

We also used a gene expression dataset (GSE10072, lung cancer gene expression

data) from the NCBI Gene Expression Omnibus database. This dataset includes 107

samples (58 lung tumor cases and 49 normal lung controls) measured using 22,215

probes (features) from the GPL96 platform annotation table. Both the population

genetics and the gene expression datasets are interesting in the context of sparse PCA

beyond numerical evaluations, since the sparse components can be directly interpreted

to identify small sets of SNPs or genes that capture the data variance.

We present the performance of the different methods in Figures 5.1(a), 5.1(b),

and 5.1(c). We note that in the population genetics data, our method has approxi-

mately the same or better performance compared to both MaxComp and Spasm. Not

surprisingly, the naive normalization approach is consistently worse than the SVD-

based one. It is worth noting that our SVD-based normalization approach easily

improves the output of Spasm. This is because Spasm does detect the correct spar-

sity pattern but fails to compute the appropriate coefficients of the resulting sparse

vectors.
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(a) HapMap+HGDP data (chromosome 1):
n = 37493.
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(b) HapMap+HGDP data (chromosome 2):
n = 40844.
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(c) Lung cancer gene expression data: n =
22, 215.

Figure 5.1.: f(x) vs. sparsity ratio ‖x̂opt‖0/n for HapMap+HGDP chromosomes one
and two datasets and lung cancer gene expression dataset.

In Figure 5.2 we plot (in the y-axis) the running time for our method (rspca),

the Spasm software, and the MaxComp heuristic on HapMap+HGDP chromosomes one

up to four data. We also note that for each of the methods we use the SVD-based

approach. The x-axis shows the sparsity ratio of the resulting vector. In practice we

observed that the smaller k is the more iterations were needed for projected gradient

ascent to converge since the algorithm balances between the standard PCA objective

and the sparsity constraint. Notice that MaxComp is the fastest method, but it is less

accurate. The running time of MaxComp and Spasm appears to be constant. This is
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because both methods require computation of the principal components. MaxComp

is computing the first principal component which is then sparsified, while Spasm is

computing the economy size SVD, to initialize the algorithm.
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(a) HapMap+HGDP data (chromosome 1):
n = 37493.
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(b) HapMap+HGDP data (chromosome 2):
n = 40844.
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(c) HapMap+HGDP data (chromosome 3):
n = 34258.
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(d) HapMap+HGDP data (chromosome 4):
n = 30328.

Figure 5.2.: Running time vs. sparsity ratio ‖x̂opt‖0/n for HapMap+HGDP chromo-
somes one to four data.

The performance plots for chromosomes three up to 22 and the running time plots

for chromosomes five up to 22, can be found in [FKKD17, Appendix].

Our second real dataset comes from the field of text categorization and infor-

mation retrieval. In such applications, documents are often represented as a “bag

of words” and a vector space model is used. We use a subset of the Classic-33

3ftp://ftp.cs.cornell.edu/pub/smart/

ftp://ftp.cs.cornell.edu/pub/smart/
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document collection, which we will call Classic-2. This subset consists of the CISI

(Comités Interministériels pour la Société de l’Information) collection (1,460 informa-

tion science abstracts) and the CRANFIELD collection (1,398 aeronautical systems

abstracts). We created a document-by-term matrix using the Text-to-Matrix Gener-

ator (TMG) [ZG06]4; the final matrix is a sparse 2, 858× 12, 427 matrix with entries

between zero and one, representing the weight of each term in the corresponding

document.

First, we run Algorithm 18 to obtain two sparse singular vectors and we use the

number of their non-zero entries to compute two sparse singular vectors for MaxComp

and Spasm5. This way we can guarantee the same sparsity levels for all three pairs

of singular vectors. We repeat this procedure for eight different values of k (sparsity

parameter in eqn. (1.13)). Figure 5.3 depicts, for each k, the variance and the sparsity

captured by the top two principal components using PCA, randomized sPCA (rspca),

MaxComp heuristic and Spasm or solving eqn. (5.1c) (cvx).

It seems that Spasm and MaxComp capture less variance than the rspca. Further-

more, the variance captured by rspca is constantly close to the one captured by the

solution of eqn. (5.1c), but with a sparser component as Figure 5.3 indicates.

Table 5.1 summarizes the terms with non-zero weights in rspca principal compo-

nents with sparsity parameter k = 100. The terms are ranked in descending order

with respect to their weights. Notice that the first principal component reveals terms

that appear more often in the CRANFIELD collection while the second principal

component reveals terms that appear mostly in the CISI collection. CRANFIELD’s

terms are more singular than these of CISI’s and they tend to dominate the singular

vectors since they tend to appear more in the documents associated with the CRAN-

FIELD collection than in the entire Classic-2 collection (e.g., the word “boundary”

has one appearance in CISI and 459 in CRANFIELD). The exact opposite happens

for terms in CISI: a significant amount of these terms appear with high weights in

4The matrix was created using the stoplist provided by TMG, the tf-idf weighting scheme, and
document normalization. We removed numbers and alphanumerics and we didn’t use stemming.
5Spasm does not support sparse input matrices.
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Figure 5.3.: Variance and sparsity captured by the principal components. PCA results
in dense principal components, while Spasm and MaxComp share the same sparsity with
rspca.

both collections (e.g., the word “information” has 664 appearances in CISI and 44 in

CRANFIELD). This indicates that these terms will appear in singular vectors that

do not separate the two collections.

Table 5.1.: Non-zero terms of the rspca when k = 100

1st Principal Component 2nd Principal Component

boundary information

layer library

continued on next page
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Table 5.1.: continued

heat retrieval

flow systems

transfer system

laminar scientific

plate science

shock libraries

turbulent research

hypersonic layer

pressure services

temperature boundary

wall indexing

flat search

surface literature

mach heat

friction university

compressible documents

velocity users

reynolds classification

stagnation technology

skin

number

stream

equations

transition

solution

viscous

continued on next page
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Table 5.1.: continued

layers

separation

solutions

gradient

injection

dimensional

incompressible

fluid

edge

cylinder

shear

point

interaction

numbers

body

wave

method

leading

region

bodies

supersonic

gas

measurements

approximate

local

equation

continued on next page
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Table 5.1.: continued

case

constant

5.3.2 Empirical results for synthetic datasets

Our synthetic dataset has been carefully designed in order to highlight a setting

where the MaxComp heuristic will fail. More specifically, the absolute values of the

entries of the largest singular vector of a matrix in this family of matrices is not a

good indicator of the importance of the respective entry in a sparse PCA solution.

Instead, the vector that emerges from the optimization problem of eqn. (5.1) is a

much better indicator. In order to generate our synthetic dataset, we generated the

following matrix:

X = UΣVᵀ + Eσ,

where U ∈ Rm×m and V ∈ Rn×n are orthonormal. The matrix Σ ∈ Rm×n has m

distinct singular values σi in its diagonal and the matrix Eσ ∈ Rm×n is a noise matrix

parameterized by σ > 0.

We set U to be a Hadamard matrix with normalized columns; we set Σ to have

entries σ1 = 100 and σi = 1/ei for all i = 2, . . . ,m. The entries of the matrix Eσ

follow a zero-mean normal distribution with standard deviation σ = 10−3. We now

describe how to construct the matrix V: we set V = Gd(θ)Ṽ, where Ṽ is also a

Hadamard matrix with normalized columns. Here Gn(θ) is a composition of Givens

rotations. In particular, Gn(θ) is a composition of n/4 Givens rotations with the
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same angle θ for every rotation. More precisely, let G(i, j, θ) ∈ Rn×n be a Givens

rotation matrix, which rotates the plane i-j by an angle θ:

G(i, j, θ) =



1 · · · 0 · · · 0 · · · 0
...

. . .
...

...
...

0 · · · c1 · · · −c2 · · · 0
...

...
. . .

...
...

0 · · · c2 · · · c1 · · · 0
...

...
...

. . .
...

0 · · · 0 · · · 0 · · · 1


,

where i, j ∈ {1, . . . , n}, c1 = cos θ and c2 = sin θ. We define the composition as

follows:

Gn(θ) = G(i1, j1, θ)G(i2, j2, θ) · · · · · · ,G(ik, jk, θ), · · · ,G(in/4, jn/4, θ)

with

ik =
n

2
+ 2k − 1, jk =

n

2
+ 2k for k = 1, . . . ,

n

4
.

The matrix Gn(θ) rotates (in a pairwise manner) the bottom n/2 components of

the columns of Ṽ. Since the Hadamard matrix has entries equal to +1 or -1 (up

to normalization), we will pick a value of θ that guarantees that, after rotation, n/4

components of the columns of Ṽ will be almost zero. Thus, the resulting matrices

will have about a quarter of components set at a large value, a quarter of their

components set at roughly zero, and the rest set at a moderate value. For example,

let n = 212 and θ ≈ 0.27π; then, the difference between the first column of matrix

V and Ṽ is presented in Figure 5.4, where we plotted the (sorted) absolute values of

the components of the first column of the matrices V and Ṽ.

First we compare the performance of the different methods on the synthetic

dataset, using the data generator described earlier with m = 27, n = 212, and

θ ≈ 0.27π. In Figure 5.5 we plot (in the y-axis) the value of the performance ra-
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Figure 5.4.: The red dashed line corresponds to the sorted absolute values of the
components of the first column of matrix V. Similarly, the blue line corresponds to
the first column of Ṽ.

tio f(x) (as defined in eqn. (5.17)) for our method (rspca), the Spasm software, and

the MaxComp heuristic. We also note that for each of the three methods, we use

two different approaches to normalize the resulting sparse vector: the naive and the

SVD-based ones. As a result, we have a total of six possible methods to create and

normalize a sparse vector for sparse PCA. The x-axis shows the sparsity ratio of the

resulting vector, namely ‖x̂opt‖0/n. We remark that all six methods produce sparse

vectors with exactly the same sparsity in order to have a fair comparison. Notice

that in Figure 5.5, the MaxComp heuristic has worse performance when compared to

either our approach or to Spasm: this is expected, since we constructed this family

of matrices in order to precisely guarantee that the largest components of the top

singular vector would not be good elements to retain in the construction of a sparse

vector. To further visualize this, we look at the sparse vectors, returned by the dif-

ferent methods, in Figure 5.6. In this figure, we present the resulting sparse vectors

for each of the three methods (normalization, obviously, is not relevant in Figure 5.6)
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for a particular choice of the sparsity ratio (‖x̂opt‖0/n ≈ 0.1). Notice that MaxComp

fails to capture the right sparsity pattern, whereas our method and Spasm succeed.
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Figure 5.5.: f(x) vs. sparsity ratio ‖x̂opt‖0/n for the synthetic dataset.
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(a) Actual eigenvector (b) rspca

(c) Spasm (d) MaxComp

Figure 5.6.: Sparse PCA solution vectors for the synthetic dataset.
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6 STRUCTURAL CONVERGENCE RESULTS FOR APPROXIMATION OF

DOMINANT SUBSPACES FROM BLOCK KRYLOV SPASES

We present and prove our bounds for the distance between the Krylov space and

the dominant left singular space and the distance between the dominant left singular

space and a particular dominant subspace approximation from the aforementioned

Krylov space

This chapter is organized as follows: In Section 6.1 we provide the setting under

which we will work throughout the chapter. We also provide the mathematical back-

ground needed for building our bounds. In Section 6.2 we state and prove our bound

for the angle between the block Krylov subspace and the dominant left singular space.

In section 6.3 we state and prove our bound for the distance between the dominant

left singular space and a particular dominant subspace approximation from the block

Krylov subspace. Finally, in Section 6.6 we present TeraPCA a software package

that computes principal components of terascale genetic data using the randomized

subspace iteration.

Sections of chapter 6 have been published in [DIKMI18]

Structural Convergence Results for Approximation of Dominant Subspaces from Block

Krylov Spaces P. Drineas, I. Ipsen, E-M. Kontopoulou, M. Magdon-Ismail, in SIAM

Journal on Matrix Analysis and Applications (2018), Vol. 39(2), pp. 567-586
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6.1 Setting

The approximation of the dominant left singular vector subspace of a matrix

A ∈ Rm×n, given a starting guess X ∈ Rn×s, is done by constructing the Krylov

space in AA> and AX,

Kq ≡ Kq(AA>,AX) = range
(
AX (AA>)AX · · · (AA>)qAX

)
. (6.1)

The assumption is that the Krylov space Kq has maximal dimension, dim(Kq) =

(q + 1)s.

Let A = UΣV> be the full SVD of A, so that Σ ∈ Rm×n, and U ∈ Rm×m and

V ∈ Rn×n are orthogonal matrices. For a positive integer 1 ≤ k < rank (A), the

dominant subspaces are:

Σ =

Σk

Σk,⊥

 , U =
(
Uk Uk,⊥

)
, V =

(
Vk Vk,⊥

)
,

where the diagonal matrix Σk contains the k largest non-zero singular values, hence

is nonsingular and the rest min{m,n} − k singular values reside on the diagonal of

Σk,⊥. Uk and Vk are the orthonormal matrices of the top-k left and right singular

vectors of A, respectively. Uk,⊥ and Vk,⊥ are the orthonormal matrices of the rest

m−k left and n−k right singular vectors of A respectively. The dominant subspaces

is well-defined when the dominant k singular values of A are strictly larger than the

remaining ones, 1/‖Σ−1
k ‖2 > ‖Σk,⊥‖2 > 0.

Optimal least squares References to optimal solutions for multiple right-hand

side least squares problems in the two norm are hard to find. Lemma 20 below is

easy to prove for the Frobenius norm. An elaborate proof for Schatten-p norms can

be found in [Mah92, Theorems 3.2 and 3.3]. For the sake of completeness, we present

a straightforward proof for the two norm.
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Lemma 20 (Optimal Least Squares). Let A ∈ Rm×n and B ∈ Rm×p. Then A†B

is a solution of

min
X∈Rn×p

‖B−AX‖2

with least squares residual ‖(I−AA†)B‖2 = minX∈Rn×p ‖B−AX‖2.

Proof. Let A = UΣV> be a thin SVD, and let
(
U U⊥

)
∈ Rm×m be an orthogonal

matrix. Any X ∈ Rn×p satisfies

‖B−AX‖2
2 = ‖UU>(B−AX) + U⊥U>⊥(B−AX)‖2

2

= ‖U(U>B−ΣV>X) + U⊥U>⊥B‖2
2

= ‖UT1 + U⊥T2‖2
2,

where T1 ≡ U>B−ΣV>X and T2 ≡ U>⊥B. Let yopt ∈ Rp with ‖yopt‖2 = 1 satisfy

‖U⊥T2yopt‖2
2 = ‖U⊥T2‖2

2. The vector Pythagoras theorem implies

‖B−AX‖2
2 ≥ ‖(UT1 + U⊥T2)yopt‖2

2

= ‖UT1yopt‖2
2 + ‖U⊥T2yopt‖2

2 ≥ ‖U⊥T2yopt‖2
2.

Combining all of the above gives

‖B−AX‖2
2 ≥ ‖(UT1 + U⊥T2)yopt‖2

2 ≥ ‖U⊥T2‖2
2 = ‖U⊥U>⊥B‖2

2.

This lower bound is achieved by Xopt = A†B,

‖B−AXopt‖2
2 = ‖B−AA†B‖2

2 = ‖(I−UU>)B‖2
2 = ‖U⊥U>⊥B‖2

2.

The polynomial φ The elements of the Krylov space Kq in eqn. (6.1) can be ex-

pressed in terms of matrices of the form φ̂(AA>)AX ∈ Rm×s, where φ̂ is a polynomial
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of degree q. However, observe that we need a higher degree polynomial when the point

of interest are the singular values of A,

φ̂(AA>) AX = U φ̂(ΣΣ>)Σ V>X = Uφ(Σ) V>X. (6.2)

In the setting of eqn. (6.2) φ is a polynomial of degree 2q + 1 with odd powers only,

and represents a generalized matrix function (see, [ABF16,HBI73]). Since

Σ = diag
(
σ1 · · · σmin{m,n}

)
∈ Rm×n

is rectangular, the polynomial φ is applied to the diagonal elements of Σ only, and

returns a diagonal matrix of the same dimension,

φ(Σ) ≡ diag
(
φ(σ1) · · · φ(σmin{m,n})

)
∈ Rm×n.

Now, we can define the elements in Kq by

Φ ≡ Uφ(Σ)V>X ∈ Rm×s. (6.3)

Clearly,

range (Φ) ⊂ Kq. (6.4)

The assumption dim(Kq) = (q + 1)s ≤ m in Step 1 of Algorithm 19 guarantees that

UK has exactly (q + 1)s orthonormal columns, which form a basis for Kq.

Angles between subspaces Let Q ∈ Rn×s and Wk ∈ Rn×k, with k ≤ s, be

matrices with orthonormal columns. Hence, the singular values σj(W
>
k Q) lie between

zero and one, and we can write σj(W
>
k Q) = cos (θj), 1 ≤ j ≤ k. The principal or

canonical angles between range (Q) and range (Wk) are [GV13, Section 6.4.3]

0 ≤ θ1 ≤ · · · ≤ θk ≤ π/2,
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where θj = cos−1(σj(W
>
k Q)). Following [SS90, Definition I.5.3], we define the diag-

onal matrix of principal angles between the subspaces spanned by the columns of Q

and the columns of Wk

Θ (Q,Wk) ≡ diag (θ1 · · · θk) .

Hence the singular values of W>
k Q are the diagonal elements of cos [Θ (Q,Wk)].

From [GV13, Section 6.4.3] and [SS90, Section I.5.3] follows that the distance between

range (Wk) and range (Q) in the two and Frobenius norms, respectively, equals

‖sin [Θ (Q,Wk)] ‖2,F = ‖(I−WkW
>
k )Q‖2,F . (6.5)

In particular, ‖sin [Θ (Q,Wk)] ‖2 = sin (θk), so the two norm distance is determined

by the largest principal angle. Assume that range (Wk) and range (Q) are sufficiently

close, so that the largest angle θk < π/2. This is equivalent to cos Θ (Q,Wk) being

nonsingular, and rank
(
W>

k Q
)

= k. Then [ZK13, Section 3] implies that the tangents

of the principal angles satisfy

‖tan [Θ (Q,Wk)] ‖2,F = ‖sin [Θ (Q,Wk)] (cos [Θ (Q,Wk)])
†‖2,F

= ‖(I−WkW
>
k )Q

(
W>

k Q
)† ‖2,F . (6.6)

As above, ‖tan [Θ (Q,Wk)] ‖2 = tan(θk), so the two norm tangent is determined by

the largest principal angle. The following lemma will be used in subsequent deriva-

tions.

Lemma 21 (Theorem 3.1 in [ZK13]). Let Q ∈ Rn×s have orthonormal columns, and

let W ≡
(
Wk Wk,⊥

)
∈ Rn×n be an orthogonal matrix where Wk ∈ Rn×k with

k ≤ s. If rank
(
W>

k Q
)

= k then

‖tan [Θ(Q,Wk)] ‖2,F = ‖(W>
k,⊥Q) (W>

k Q)†‖2,F .
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Proof. From eqn. (6.6) and I = WkW
>
k + Wk,⊥W>

k,⊥ follows

‖tan [Θ (Q,Wk)] ‖2,F = ‖(I−WkW
>
k )Q

(
W>

k Q
)† ‖2,F

= ‖Wk,⊥W>
k,⊥Q

(
W>

k Q
)† ‖2,F

= ‖W>
k,⊥Q

(
W>

k Q
)† ‖2,F . (6.7)

Eqn. (6.7) follows from the unitary invariance of the spectral and the Frobenius

norms.

Gap-amplifying Chebyshev polynomials We generalize the Chebyshev-based

gap-amplifying polynomials in [MM15, Section 4.4], [WZZ15, Section 2.2]. Given an

integer q ≥ 1, define the polynomial

ψq′(x) = ψ2q+1(x) =

q∑
j=0

a2j+1x
2j+1

of degree q′ = 2q + 1 with only odd powers of x. The polynomial ψ is gap-amplifying

if it satisfies three properties:

1. Small input values remain small,

ψq′(1) = 1, and |ψq′(x)| ≤ 1 for x ∈ [0, 1].

2. Large input values are amplified,

ψq′(x) ≥ x c 2q
′ r(x) for x ≥ 1,

where the constant c and the function r(x) are parameters of ψ.

3. Super linear growth for large input values,

ψq′(x)

x
≥ ψq′(y)

y
for x ≥ y ≥ 1.
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The simplest gap-amplifying polynomial is a Chebyshev polynomial.

Lemma 22 ( [MM15, Lemma 5]). The Chebyshev polynomial Tq′(x) of the first

kind contains only odd powers of x and is gap-amplifying with c = 1/4 and r(x) =

min{
√
x− 1, 1}.

Proof. We give a quick sketch of the proof of [MM15, Lemma 5]). Clearly, the Cheby-

shev polynomial Tq′(x) satisfies Property 1. To prove Property 3, it suffices to show

T ′q′(z) ≥ Tq′(y)

y
for some z ≥ y ≥ 1, (6.8)

because the mean value theorem implies there exists a z ∈ [y, x] with

Tq′(x) = Tq′(y + x− y) = Tq′(y) + T ′q′(z)(x− y)

≥ Tq′(y) +
Tq′(y)

y
(x− y) = x

Tq′(y)

y
.

Our proof of Property 2 corrects a small typo in a similar proof in [MM15]. Although

a bound equivalent to Property 2 is claimed in [MM15, Lemma 5] it is only proved

that Tq′(x) ≥ c 2q
′ r(x). However, only a slight modification is required for the stronger

result. The proof of [MM15, Lemma 5] shows that

Tq′(x) ≥ 1
2

2q
′√x−1 for 1 ≤ x ≤ 2.

To derive a lower bound on Tq′(x)/x for x ≥ 1, first consider 1 ≤ x ≤ 2, where

Tq′(x)

x
≥ Tq′(x)

2
≥ 1

4
2q
′√x−1.

For the remaining case x > 2, Property 3 implies

Tq′(x)

x
≥ Tq′(2)

2
≥ 1

4
2q
′
.

Hence Tq′(x) ≥ x
4

2q
′ min{

√
x−1,1}.
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For our analysis, we use a rescaled version of the gap-amplifying polynomial Tq′(x),

which has similar properties to the original.

Lemma 23. Let

φ(x) =
(1 + γ)α

ψq′ (1 + γ)
ψq′(x/α) (6.9)

be the rescaled gap-amplifying polynomial. Then

|φ(x)| ≤ 4α

2q
′ min{√γ,1} for 0 ≤ x ≤ α.

Proof. The proof is immediate since |ψq′(x/α)| ≤ 1 for 0 ≤ x ≤ α, and Property 2

implies

ψq′ (1 + γ) ≥ (1 + γ)

4
2q
′ min{√γ,1}.

Lemma 24. The rescaled gap-amplifying polynomial φ(x) in eqn. (6.9) satisfies

φ(x) ≥ x for x ≥ (1 + γ)α.

Proof. Property 3 implies

ψq′(x/α)

x/α
≥ ψq′(1 + γ)

1 + γ
for x ≥ (1 + γ)α.

If we rearrange terms and apply the definition of φ(x) in eqn. (6.9) then we get

Lemma 24.

6.2 Krylov space angles

We present bounds for the distance between the Krylov space Kq and the dominant

left singular vector space range (Uk). Theorem 13 bounds the distance between Kq
and the whole space, while Theorem 14 bounds the distance between Kq and an
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individual left singular vector. The distances are represented by principal angles and

they are bounded by generalized matrix functions in the sense of [ABF16,HBI73].

6.2.1 A bound for the whole space

Theorem 13 below is in the spirit of Rayleigh-Ritz bounds [BD09, Drm96]. It

indicates how well the Krylov space Kq captures the targeted dominant left singu-

lar vector space range (Uk) in both the two norm and the Frobenius norms. De-

note by Θ(Kq,Uk) ∈ Rk×k the diagonal matrix of principal angles between Kq and

range (Uk), and by Θ(X,Vk) ∈ Rk×k the diagonal matrix of the principal angles

between range (X) and range (Vk).

Theorem 13. Let φ(x) be a polynomial of degree 2q + 1 with odd powers only, such

that φ(Σk) is nonsingular. If rank
(
V>k X

)
= k, then

‖sin [Θ(Kq,Uk)] ‖2,F ≤ ‖φ(Σk,⊥)‖2 ‖φ(Σk)
−1‖2 ‖V>k,⊥X(V>k X)†‖2,F .

If, in addition, X has orthornomal or linearly independent columns, then

‖V>k,⊥X(V>k X)†‖2,F = ‖tan [Θ(X,Vk)] ‖2,F

and

‖sin [Θ(Kq,Uk)] ‖2,F ≤ ‖φ(Σk,⊥)‖2 ‖φ(Σk)
−1‖2 ‖tan [Θ(X,Vk)] ‖2,F .

Proof. We focus on the case where X is a general matrix, or has orthonormal columns.

The first and most critical step of the proof makes a connection between principal

angles and least-squares residuals.
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Let Pq be the orthogonal projector onto the Krylov space Kq. For Φ in eqn. (6.3)

let ΦΦ† be the orthogonal projector onto range (Φ), with range
(
ΦΦ†

)
⊂ range (Pq)

due to eqn. (6.4). Hence, eqn. (6.5) implies

‖sin [Θ(Kq,Uk)] ‖2,F = ‖(I− Pq) Uk‖2,F ≤ ‖(I−ΦΦ†) Uk‖2,F . (6.10)

Lemma 20 implies that ‖(I−ΦΦ†) Uk‖2,F is the residual of the least squares problem

‖(I−ΦΦ†) Uk‖2,F = min
Ψ
‖Uk −ΦΨ‖2,F = ‖Uk −ΦΨopt‖2,F ,

where Ψopt = Φ†Uk is a least squares solution.

Our next step focuses on the target space. Decompose Φ into the target compo-

nent range (Uk) and the complementary subspace, Φ = Φk + Φk,⊥, where

Φk ≡ Ukφ(Σk)V
>
k X, Φk,⊥ ≡ Uk,⊥φ(Σk,⊥)V>k,⊥X. (6.11)

From rank
(
V>k X

)
= k follows that (V>k X)† is a right inverse, (V>k X)(V>k X)† = Ik.

With eqn. (2.8) this gives

Φ†k = (V>k X)†φ(Σk)
−1U>k and ΦkΦ

†
k = UkU

>
k , (6.12)

meaning ΦkΦ
†
k is the orthogonal projector onto the target space range (Uk). The

minimality of the least squares residual implies

‖(I−ΦΦ†) Uk‖2,F = ‖Uk −Φ (Φ†Uk)‖2,F

≤ ‖Uk −Φ (Φ†kUk)‖2,F = ‖(I−ΦΦ†k) Uk‖2,F .
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Now replace the other instance of Φ by eqn. (6.11), and use eqn. (6.12) to simplify

‖(I−ΦΦ†) Uk‖2,F ≤ ‖(I−ΦΦ†k) Uk‖2,F = ‖(I−ΦkΦ
†
k)Uk −Φk,⊥Φ†kUk‖2,F

= ‖(I−UkU
T
k )Uk −Φk,⊥Φ†kUk‖2,F

= ‖Φk,⊥Φ†kUk‖2,F . (6.13)

Combining eqn. (6.10) with eqn. (6.13) gives

‖sin [Θ(Kq,Uk)] ‖2,F ≤ ‖Φk,⊥Φ†kUk‖2,F . (6.14)

The expressions for Φk,⊥ in eqn. (6.11) and Φ†k in eqn. (6.12), and sub-multiplicativity

yield

‖Φk,⊥Φ†kUk‖2,F = ‖Uk,⊥ φ(Σk,⊥) V>k,⊥X(V>k X)† φ(Σk)
−1U>k Uk‖2,F

= ‖φ(Σk,⊥) V>k,⊥X(V>k X)† φ(Σk)
−1‖2,F

≤ ‖φ(Σk,⊥)‖2 ‖φ(Σk)
−1‖2 ‖V>k,⊥X(V>k X)†‖2,F . (6.15)

Combining the inequalities of eqn. (6.14) and eqn. (6.15) gives

‖sin [Θ(Kq,Uk)] ‖2,F ≤ ‖φ(Σk,⊥)‖2 ‖φ(Σk)
−1‖2 ‖V>k,⊥X(V>k X)†‖2,F .

This concludes the proof for general X. The proof for the special case where X has

linearly independent columns follows from Lemma 21.

Theorem 13 is reminiscent of the eigenvalue bounds [Kny87, (2.18)] which contain

a tangent on the left. The term ‖V>k,⊥X(V>k X)†‖2,F already appeared in previous

analyses of randomized algorithms [DM16,DMM08,DMMS11,MD16], and bounds for

it are discussed in Section 6.5. If X is a random starting guess, such as a random sign
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matrix, a random Gaussian matrix1 or a matrix with randomly chosen orthonormal

columns, then state-of-the-art matrix concentration inequalities can be called upon.

In the special case where X has linearly independent columns the bounds admit a

geometric interpretation: They depend on the tangents of angles between range (X)

and the dominant right singular vector space range (Vk). The full-rank assumption

for V>k X means that the spaces range (Vk) and range (X) are sufficiently close, with

all principal angles being less than π/2.

6.2.2 A bound for one singular vector

Theorem 14 bounds the distances between Kq and individual left singular vectors

of A. To this end, distinguish the k dominant singular values and associated left

singular vectors,

Σk = diag (σ1 · · · σk) , Uk =
(
u1 · · · uk

)
.

Theorem 14. Let φ(x) be a polynomial of degree 2q + 1 with odd powers only, such

that φ(Σk) is nonsingular. If rank
(
V>k X

)
= k, then

|sin [Θ(Kq,ui)] | ≤
‖φ(Σk,⊥)‖2

|φ(σi)|
‖V>k,⊥X(V>k X)†‖2, 1 ≤ i ≤ k.

If, in addition, X has orthonormal columns, then

|sin [Θ(Kq,ui)] | ≤
‖φ(Σk,⊥)‖2

|φ(σi)|
‖ tan Θ(X,Vk)‖2, 1 ≤ i ≤ k.

Proof. The proof imitates that of Theorem 13, and simply substitutes the vectors ui

for the matrix Uk. Note that (I−UkU
>
k )ui = 0 for 1 ≤ i ≤ k, which implies

|sin [Θ(Kq,ui)]| ≤ ‖Φk,⊥Φ†kui‖2, 1 ≤ i ≤ k.

1The elements of a random Gaussian matrix are independent identically distributed normal random
variables with mean zero and variance one.
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The expressions for Φk,⊥ in eqn. (6.11) and Φ†k in eqn. (6.12), and submultiplicativity

yield

‖Φk,⊥Φ†kuk‖2 = ‖Uk,⊥ φ(Σk,⊥) V>k,⊥X(V>k X)† φ(Σk)
−1U>k ui‖2

= ‖φ(Σk,⊥) V>k,⊥X(V>k X)† φ(σi)
−1‖2

≤ ‖φ(Σk,⊥)‖2 |φ(σi)
−1| ‖V>k,⊥X(V>k X)†‖2.

Combining the previous two sets of inequalities gives

|sin [Θ(Kq,ui)]| ≤ ‖φ(Σk,⊥)‖2 |φ(σi)
−1| ‖V>k,⊥X(V>k X)†‖2.

This concludes the proof of the case for general X. The proof for the special case

where X has orthonormal columns follows from Lemma 21.

In the special case when X has orthonormal columns, the angle between a single

left singular vector and Kq is bounded by all angles between X and the right singular

vector space range (Vk).

6.3 Low-rank approximations from a Krylov space

The results here are motivated by work in the Theoretical Computer Science

community on Randomized Linear Algebra [DM16]. There, a common objective is

the best rank-k approximation to A with respect to a unitarily invariant norm,

Ak ≡ UkΣkV
>
k .

The particular approximation Ûk computed by Proto-Algorithm 19 guarantees a

strong optimality property in the projection ÛkÛ
>
k A: It is the best rank-k approxi-

mation to A from Kq with respect to the Frobenius norm (see, Lemma 25).
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Algorithm 19 Proto-algorithm for a low-rank approximation of A from Kq
Input: A ∈ Rm×n, starting guess X ∈ Rn×s

1: Target rank k < rank (A), provided σk > σk+1

2: Block dimension q ≥ 1 with k ≤ (q + 1)s ≤ m
Output: Ûk ∈ Rm×k with orthonormal columns

3: Set Kq =
(
AX (AA>)AX · · · (AA>)qAX

)
∈ Rm×(q+1)s,

4: and assume that rank (Kq) = (q + 1)s.
5: Compute an orthonormal basis UK ∈ Rm×(q+1)s for range (Kq).
6: Set W ≡ U>KA ∈ R(q+1)s×n, and assume rank (W) ≥ k.
7: Compute an orthonormal basis UW,k ∈ R(q+1)s×k for the k dominant left singular

vectors of W.
8: return Ûk = UKUW,k ∈ Rm×k.

Theorem 15 presents a quality-of-approximation result for Ûk. To this end we

distinguish the orthonormal columns of Ûk =
(
û1 . . . ûk

)
∈ Rm×k and set

Ûi ≡
(
û1 . . . ûi

)
∈ Rm×i, 1 ≤ i ≤ k, (6.16)

and

∆ ≡ ‖φ(Σk,⊥)‖2 ‖V>k,⊥X (V>k X)†‖F .

Theorem 15. Let φ(x) be a polynomial of degree 2q + 1 with odd powers only, such

that φ(Σk) is nonsingular, and φ(σi) ≥ σi for 1 ≤ i ≤ k. If rank
(
V>k X

)
= k, then

for 1 ≤ i ≤ k,

‖A− ÛiÛ
>
i A‖2

F ≤ ‖A−Ai‖2
F + ∆ (6.17)

‖A− ÛiÛ
>
i A‖2

2 ≤ ‖A−Ai‖2
2 + ∆ (6.18)

σi −∆ ≤ ‖û>i A‖2
2 ≤ σi. (6.19)

If, in addition, X has orthonormal columns, then

∆ = ‖φ(Σk,⊥)‖2 ‖tan [Θ(X,Vk)] ‖F .



174

Proof. This proof is more involved than the ones of Section 6.1, and requires two

auxiliary results, an alternative expression for the error (Section 6.3), and a bound

on its Frobenius norm (Section 6.3).

An alternative expression for the error Algorithm 19 approximates the domi-

nant left singular vectors of A by the orthonormal matrix Ûk ∈ Rm×k. Since bounding

‖A − ÛkÛ
>
k A‖F seems hard, we present an alternative expression that is easier to

analyze.

Lemma 25 (Lemma 8 in [BDMI14]). Let UK be an orthonormal basis for Kq and let

Ûi be as in eqn; (6.16), containing the top i columns of the output of Algorithm 19.

Then

A− ÛiÛ
>
i A = A−UK

(
U>KA

)
i
, 1 ≤ i ≤ k. (6.20)

In addition, UK

(
U>KA

)
i

is a best rank-i approximation to A from Kq in the Frobenius

norm,

‖A−UK

(
U>KA

)
i
‖2
F = min

rank(Y)≤i
‖A−UKY‖2

F , 1 ≤ i ≤ k. (6.21)

Proof. Since the transition to best rank-i approximations is a key component, we

illustrate how it comes about by proving the first assertion for the case i = k.

Algorithm 19 outputs Ûk = UKUW,k, where UW,k is the matrix of the dominant

k left singular vectors of W = U>KA. This means UW,k spans the same range as Wk,

the best rank-k approximation to W. Therefore

A− ÛkÛ
>
k A = A−UKUW,kU

>
W,kU

>
KA

= A−UKWkW
†
kW = A−UKWk = A−UK

(
U>KA

)
k
.

The penultimate equality follows from WkW
†
k being the orthogonal projector onto

range (Wk).
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Lemma 25 shows that eqn. (6.17) in Theorem 15 can be proved by bounding

‖A − UK

(
U>KA

)
i
‖F . Next we transition from the best rank-i approximation of

the ”projected” matrix (U>KA)i to the best rank-i approximation Ai of the original

matrix, by splitting for 1 ≤ i ≤ k,

A = Ai + Ai,⊥ where Ai = UiΣiV
>
i and Ai,⊥ = Ui,⊥Σi,⊥V>i,⊥. (6.22)

Lemma 26. Let UK be an orthonormal basis for Kq, and Ûi in eqn. (6.16) the

columns of the output of Algorithm 19. Then

‖A− ÛiÛ
>
i A‖2

F ≤ ‖Ai −UKU>KAi‖2
F + ‖Ai,⊥‖2

F .

Proof. The optimality of eqn. (6.21) in Lemma 25 implies

‖A− ÛiÛ
>
i A‖2

F = ‖A−UK

(
U>KA

)
i
‖2
F

≤ ‖A−UKU>KAi‖2
F

= ‖Ai −UKU>KAi‖2
F + ‖Ai,⊥‖2

F .

The last equality follows from Lemma 1

Bounding the important part of the error We bound the term in Lemma 26

over which we have control, namely ‖Ai −UKU>KAi‖2
F .

Let Pq be the orthogonal projector onto Kq. For Φ in eqn. (6.3) let ΦΦ† be the

orthogonal projector onto range (Φ), with range
(
ΦΦ†

)
⊂ range (Pq) due to eqn. (6.4).

The leads to the obvious bound

‖Ai −UKU>KAi‖F = ‖Ai − PqAi‖F ≤ ‖Ai −ΦΦ†Ai‖F , 1 ≤ i ≤ k. (6.23)

We don’t stop here, though, but go further and pursue a bound in terms of polyno-

mials.
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Lemma 27. Let φ(x) be a polynomial of degree 2q + 1 with odd powers only that

satisfies φ(σj) ≥ σj for 1 ≤ j ≤ k. Then

‖Ai −UKU>KAi‖F ≤ ‖Uiφ (Σi)−ΦΦ†Uiφ (Σi) ‖F , 1 ≤ i ≤ k.

Proof. We use the abbreviation P⊥φ ≡ I − ΦΦ†, to denote the orthogonal projector

onto range (Φ)⊥. From eqn. (6.22), eqn. (6.23) and the unitary invariance of the

Frobenius norm follows

‖Ai −UKU>KAi‖F ≤ ‖P⊥φ Ai‖F = ‖P⊥q UiΣi‖F , 1 ≤ i ≤ k.

Expressing the squared Frobenius norm as a sum of squared column norms, and then

applying the assumption σj ≤ φ(σj) yields for 1 ≤ i ≤ k,

‖P⊥φ UiΣi‖2
F =

i∑
j=1

σ2
j‖P⊥φ uj‖2

2 ≤
i∑

j=1

φ(σj)
2‖P⊥φ uj‖2

2 = ‖P⊥φ Uiφ(Σi)‖2
F .

From projections to least-squares residuals Now we are ready to apply the

approach from Theorem 13 and view the result of Lemma 27 as a least squares

residual.

Lemma 28. Under the assumptions of Theorem 15,

‖Uiφ (Σi)−ΦΦ†Uiφ (Σi) ‖F ≤ ‖φ(Σk,⊥)‖2 ‖V>k,⊥X(V>k X)†‖F .

Proof. Based on the orthogonality (I−UkU
>
k )Ui = 0 for 1 ≤ i ≤ k, we can deduce

as in eqn. (6.13) that

‖(I−ΦΦ†) Uiφ(Σi)‖F ≤ ‖Φk,⊥Φ†k Uiφ(Σi)‖F .
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The expressions for Φk,⊥ in eqn. (6.11) and Φ†k in eqn. (6.12), along with the strong

submultiplicativity yield

‖Φk,⊥Φ†kUiφ(Σi)‖F = ‖Uk,⊥ φ(Σk,⊥) V>k,⊥X(V>k X)† φ(Σk)
−1U>k Uiφ(Σi)‖F

≤ ‖φ(Σk,⊥)‖2 ‖V>k,⊥X(V>k X)†‖F .

The above inequality is obtained by noting that for i = k we have φ(Σk)
−1U>k Uiφ (Σi) =

Ik, while for 1 ≤ i < k,

φ(Σk)
−1U>k Uiφ (Σi) =

 Ii

0(k−i)×i

 .

We continue by proving each of the three inequalities in turn. Recall that

∆ ≡ ‖φ(Σk,⊥)‖2 ‖V>k,⊥X (V>k X)†‖F .

Proof of eqn. (6.17) Combining Lemmas 26, 27, and 28 and recognizing the ex-

pression for ∆ yields

‖A− ÛiÛ
>
i ‖2

F ≤ ‖Ai,⊥‖2
F + ‖φ(Σk,⊥)‖2

2 ‖V>k,⊥X(V>k X)†‖2
F ,

= ‖Ai,⊥‖2
F + ∆2, 1 ≤ i ≤ k. (6.24)

Inserting ‖Ai,⊥‖F = ‖A−Ai‖F gives

‖A− ÛiÛ
>
i A‖2

F ≤ ‖A−Ai‖2
F + ∆2, 1 ≤ i ≤ k. (6.25)

Taking advantage of the inequality below for scalars α, β ≥ 0,

√
α2 + β2 ≤

√
α2 + β2 + 2αβ =

√
(α + β)2 = α + β, (6.26)
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gives the weaker, but square-free bound of eqn. (6.17).

Bounds of the form of eqn. (6.19) were already proposed in [MM15, Theorem 1]

as a finer, vector-wise, way to capture the quality of approximations to individual left

singular vectors of A. Empirical evidence [MM15] suggests that error metrics of the

form of eqn. (6.17) and eqn. (6.18) indicate the quality of the aggregate approximation

and are therefore coarser than those of eqn. (6.19).

Proof of eqn. (6.18) We use Lemma 29 below, which shows that an additive error

bound for a low-rank approximation in the Frobenius norm implies the same in the

two norm, and apply it to eqn. (6.24). This gives ‖A− ÛiÛ
>
i A‖2

2 ≤ ‖A−Ai‖2
2 + ∆2.

Taking square roots based on eqn. (6.26) produces the desired bound of eqn. (6.18).

Lemma 29 (Theorem 3.4 in [Gu15]). Given A, Ã ∈ Rm×n with rank
(
Ã
)

= k <

rank (A). If ‖A− Ã‖2
F ≤ ‖A−Ak‖2

F + δ, then

‖A− Ã‖2
2 ≤ ‖A−Ak‖2

2 + δ.

Proof of eqn. (6.19) The upper bounds follow from the minimax theorem for sin-

gular values [GV13, Theorem 8.6.1].

This leaves the lower bounds. Recall the non-increasing ordering of the singular

values σ1 ≥ · · · ≥ σk, and the fact that Ûi in eqn. (6.16) has orthonormal columns.

Case i = 1 Apply Lemma 1 to eqn. (6.24)

‖A‖2
F − ‖û>1 A‖2

F = ‖A− û1û
>
1 A‖2

F ≤ ‖A1,⊥‖2
F + ∆2.

From ‖A‖2
F − ‖A1,⊥‖2

F = σ2
1 follows σ2

1 ≤ ‖A− û1û
>
1 A‖2

F + ∆2. Taking square

roots based on eqn. (6.26) proves eqn. (6.19) for i = 1.
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Case 2 ≤ i ≤ k Among all matrices of rank i− 1, the matrix Ai−1 is closest to A in

the Frobenius norm. Hence

‖Ai−1,⊥‖F = ‖A−Ai−1‖F ≤ ‖A− Ûi−1Û
>
i−1A‖F .

The above, together with the outer product representation ÛiÛ
>
i = Ûi−1Û

>
i−1+

ûiû
>
i , Lemma 1 and eqn. (6.24) gives

‖Ai−1,⊥‖2
F − ‖ûiû>i A‖2

F ≤ ‖A− Ûi−1Û
>
i−1A‖2

F − ‖ûiû>i A‖2
F

= ‖A− ÛiÛ
>
i A‖2

F ≤ ‖Ai,⊥‖2
F + ∆2.

At last, applying ‖Ai−1,⊥‖2
F − ‖Ai,⊥‖2

F = σ2
i , and taking square roots based on

eqn. (6.26) proves eqn. (6.19) for 2 ≤ i ≤ k.

This concludes the proof for general X. orthonormal columns follows from Lemma 21.

6.4 Judicious choice of polynomials

We show the existence of and present bounds for the polynomials in Theorems 13,

14, and 15. The strict inequality rank (A) > k in Algorithm 19 allows us to express

the relative singular gap as
σk − σk+1

σk+1

≥ γ > 0, (6.27)

which is equivalent to σk ≥ (1 + γ)σk+1 > 0.

Lemma 30. If eqn. (6.27) holds, then there exists a polynomial φ(x) of degree 2q+ 1

with odd powers only, such that φ (σi) ≥ σi > 0 for 1 ≤ i ≤ k, and

|φ (σi)| ≤
4σk+1

2(2q+1) min{√γ,1} , i ≥ k + 1.
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Hence

‖φ(Σk)
−1‖2 ≤ σ−1

k and ‖φ(Σk,⊥)‖2 ≤
4σk+1

2(2q+1) min{√γ,1} .

Proof. Let φ(x) be the rescaled gap-amplifying polynomial in eqn. (6.9) with α = σk+1

and γ in eqn. (6.27). The inequalities for φ(σi) follow from q′ = 2q + 1, Lemma 23

and Lemma 24.

From φ(σi) > 0 for 1 ≤ i ≤ k and φ(Σk) being a diagonal matrix follows

‖φ(Σk)
−1‖2 = max

1≤i≤k
φ(σi)

−1 ≤ max
1≤i≤k

σi
−1 = σ−1

k .

Furthermore

‖φ(Σk,⊥)‖2 = max
i≥k+1

|φ (σi) | ≤
4σk+1

2(2q+1) min{√γ,1} .

We apply Lemma 30 to the previous results, first for the special case when X has

linearly independent columns. Abbreviate

Γ(Θ, γ, q) ≡ 4
‖tan [Θ(X,Vk)] ‖2

2(2q+1) min{√γ,1} .

To keep things short, we consider only the two-norm bound for Theorem 13.

Corollary 1. Let eqn. (6.27) hold and rank
(
V>k X

)
= k. If X has orthonormal

columns, then

‖sin [Θ(Kq,Uk)] ‖2 ≤ Γ(Θ, γ, q)
σk+1

σk
≤ Γ(Θ, γ, q)

1 + γ
,

and

|sin [Θ(Kq,ui)] | ≤ Γ(Θ, γ, q)
σk+1

σi
, 1 ≤ i ≤ k.

Proof. Apply Lemma 30 to Theorems 13 and 14.



181

Corollary 2. Let eqn. (6.27) hold and rank
(
V>k X

)
= k. If X has orthonormal

columns, then Theorem 15 holds with

∆ ≤ Γ(Θ, γ, q)σk+1,

so that for 1 ≤ i ≤ k

‖A− ÛiÛ
>
i A‖2

F ≤ ‖A−Ai‖2
F + Γ(Θ, γ, q)σk+1,

‖A− ÛiÛ
>
i A‖2

2 ≤ ‖A−Ai‖2
2 + Γ(Θ, γ, q)σk+1,

σi − Γ(Θ, γ, q)σk+1 ≤ ‖û>i A‖2
2 ≤ σi.

Proof. Apply Lemma 30 to Theorem 15.

To achieve an additive error of Γ(Θ, γ, q) ≤ ε, set q to be the smallest integer that

exceeds

q ≥ 1

2 min
{√

γ, 1
} (log2 4 ‖tan [Θ(X,Vk)] ‖2 − log2 ε) . (6.28)

Thus, as the singular value gap γ decreases, the dimension of the space Kq increases.

More specifically, q increases logarithmically with higher target accuracy ε and in-

creasing distance of X from the dominant right singular vector space of A.

If X is rank deficient then Corollaries 1 and 2 still hold with

Γ(Θ, γ, q) = 4
‖V>k,⊥X(V>k X)†‖2

2(2q+1) min{√γ,1} .

6.5 The initial guess

It remains to bound ‖V>k,⊥X (V>k X)†‖2,F . The simplest way might be strong

submultiplicativity,

‖V>k,⊥X (V>k X)†‖2,F ≤ ‖V>k,⊥X‖2,F ‖(V>k X)†‖2 =
‖V>k,⊥X‖2,F

σk(V>k X)
,

followed by separate bounds for the individual factors.
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Ideally, the starting guess X should be close to range (Vk) and far away from

range (Vk,⊥), so that σk(V
>
k X) is large and ‖V>k,⊥X‖2,F is small. The assumption

σk(V
>
k X) > 0 is critical for our results, hence a necessary condition for the user-

specified matrix X ∈ Rn×s is rank (X) ≥ k, while trying to keep the column dimension

s ≥ k small.

If X is a random Gaussian, then σk(V
>
k X) is bounded away from zero with high

probability even for s = k. However, there are many other choices for X that come

with lower bounds for σk(V
>
k X). They include random sign matrices [Ach01,MZ11],

the fast randomized Hadamard transform [AC09,Sar06], the subsampled randomized

Hadamard transform [DMMS11,Tro11], the fast randomized discrete cosine transform

[NDT09], and input sparsity time embeddings [CW13,MM13,NN13].

In contrast, keeping ‖V>k,⊥X‖F small is relatively easy. For typical random ma-

trices X, one can show that, with high probability,

‖V>k,⊥X‖2,F ≤ c ‖Vk,⊥‖F ≤ c
√
n,

where c is a small constant.

For instance, if s = 1 and X is a Gaussian column vector, then

E
[
‖V>k,⊥X‖2

F

]
= ‖V>k,⊥‖2

F ≤ n. (6.29)

Markov’s inequality guarantees that, with probability at least .9,

‖V>k,⊥X‖F ≤
√

10n.

Essentially all randomized embedding matrices satisfy variants of eqn. (6.29), and we

expect the iteration count q in eqn. (6.28) to be logarithmic in n.

From a numerical point of view, a starting guess X with orthonormal columns is

preferable. Thus one could pick a random matrix X and apply a thin QR decompo-

sition X = QR. However, this significantly complicates the derivation of bounds for
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‖V>k,⊥X‖2,F and ‖(V>k X)†‖2, as most matrix concentration inequalities apply only to

the original random matrix X, not to its orthonormal basis Q. For instance, if X is a

random matrix whose entries are ±1 with equal probability, then Q does not inherit

this property. Fortunately, the subsampled Hadamard transform [DMMS11,Tro11] is

one of a few random matrices with orthonormal columns, hence amenable to appli-

cation of matrix concentration inequalities.

6.6 TeraPCA: Principal Component Analysis of genetic data at scale

This section presents a brief introduction into TeraPCA, a software package that

approximates principal components using the power of the randomized subspace it-

eration [Saa11,HMT11]. We refer the interested reader in [BKK+19] for more infor-

mation.

We selected to introduce this topic in Chapter 6 for two reasons; first the ran-

domized subspace iteration is closely related to the block Krylov suspace. Indeed,

the subspace considered in the randomized subspace iteration is the last element of

Kq. Second, the linear-algebraic objective of TeraPCA is the approximation of the

top leading singular vectors of a covariance matrix (see, Section 2.2.3) and the main

concern is how much informative these approximate vectors are (see, [Sai19] for an

analysis of the randomized subspace iteration in terms of principal angles and low

rank approximations).

Sections of the text that follows have been published in [BKK+19]

TeraPCA: a Fast and Scalable Software Package to Study Genetic Variation in Tera-

scale Genotypes, A. Bose, V. Kalantzis, E-M. Kontopoulou, M. Elkady, P. Paschou

and P. Drineas in Oxford Bioinformatics (2019), Vol. 35(19), pp. 3679-3683
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6.6.1 Motivation and design

Motivated by the continuously increasing size of modern datasets as well by the

popularity of PCA in the study of genetic variations, we built TeraPCA, a C++ multi-

threaded library that combines out-of-core operations with the block Randomized

Subspace Iteration (RSI) to accurately compute (up to a given accuracy) top principal

components.

TeraPCA fetches row-wise blocks from the secondary to the main memory (see,

Fig. 6.1) with the goal to reduce the communication between secondary memory and

CPU as much as possible. Algorithm 20 provides a high level sketch of the procedure.

Each product C = A(A>X) that appears in steps 0 and 3 is computed in an out-

of-core manner that is described in Algorithm 21. The full software package can be

downloaded from: https://github.com/aritra90/TeraPCA.

Figure 6.1.: TeraPCA procedure.

https://github.com/aritra90/TeraPCA
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Algorithm 20 TeraPCA scheme for randomized subspace iteration

Input: A> ∈ Rn×m, initial guess matrix X0 ∈ Rm×s with elements drawn i.i.d. from
the normal distribution N (0, 1), k ≥ 1, and s ≥ k.

Output: The k leading approximate left singular vectors of A.
1: C = A(A>X0)
2: repeat
3: Q = orth(C)
4: C = AA>Q
5: M = Q>C
6: Compute the eigenvalue decomposition M = XDX>

7: C = QX
8: until convergence
9: return first k columns of Q

Algorithm 21 Out-of-core matrix-multiVector multiplication for A(A>X)

Input: ζ > 0, X ∈ Rm×s.
Output: C ∈ Rm×s.

1: C = 0
2: for i = 1 : ζ do
3: Fetch the i-th row-block of A>

4: C = C + Ai(A
>
i X)

5: end for

6.6.2 Empirical evaluation

The implementation of the randomized subspace iteration is based on the state-of-

the-art dense linear algebra libraries, BLAS [BDD+02] and LAPACK [ABB+99]. All

our experiments ran at Purdue’s Brown cluster on a dedicated node which features

an Intel Xeon Gold 6126 processor at 2.6 GHz with 96 GB of RAM.

We evaluated TeraPCA on real-world datasets as well as synthetic ones, that were

generated using a genetic data generator we implemented and is heavily based on

the R-script from [GHBS16]. The data generator can be downloaded from https:

//github.com/eugeniamaria/DataSimulator. Table 6.1 summarizes the datasets

and their characteristics, which we used in our empirical evaluation.

We tested TeraPCA against its basic competitor, FlashPCA2 [AQI17]. Tables 6.2

and 6.3 indicate that TeraPCA is an appealing alternative to FlashPCA2.

https://github.com/eugeniamaria/DataSimulator
https://github.com/eugeniamaria/DataSimulator
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Table 6.1.: Simulated and real datasets used for the experiments. The .PED and .BED
filetypes represent compressed files and are ubiquitously used in genetics to describe
genetic data. The number of samples and the number of SNPs (Single Nucleotide
Polymorphism) correspond to the number of rows and the number of columns of the
data matrix respectively.

Dataset Size (.PED file) Size (.BED file) # Samples # SNPs
S1 (simulated) 19 GB 120 MB 5,000 1,000,000
S2 (simulated) 38 GB 239 MB 10,000 1,000,000
S3 (simulated) 373 GB 24 GB 100,000 1,000,000
S4 (simulated) 1.9 TB 117 GB 500,000 1,000,000
S5 (simulated) 3.7 TB 233 GB 1,000,000 1,000,000
S6 (simulated) 38 GB 2.4 GB 100,000 100,000
S7 (simulated) 150 GB 9.4 GB 2,000 20,000,000
HGDP 615 MB 39 MB 1,043 154,417
1000 Genomes 8.4 GB 483 MB 2,504 808,704
PRK 2 GB 126 MB 4,706 111,831
T2D 1.8 GB 111 MB 6,370 72,457

Table 6.2.: Time comparison between TeraPCA and FlashPCA2 when approximating
the top ten principal components. The size of the initial subspace was set to s. In
the table ∗ indicates no convergence after 50 hrs. The maximum RAM size allowed
for both libraries was 2GB.

Dataset TeraPCA FlashPCA2 Speed-up
S1 26.2 mins 33.3 mins 1.27
S2 39.3 mins 87.5 mins 2.22
S3 7.9 hrs 35.6 hrs 4.50
S4 7.3 hrs n/a∗ ∞
S5 13.2 hrs n/a∗ ∞
S6 39.5 mins 141.1 mins 3.57
S7 37.3 mins 106.5 mins 2.86

HGDP 6.5 secs 7.7 secs 1.22
1000 Genomes 4.3 mins 3.5 mins 0.81

T2D 96 secs 119 secs 1.24
PRK 76 secs 73 secs 0.96

We further compared the principal components returned by TeraPCA against

those returned by LAPACK. Figure 6.2 shows that the top principal components

computed by TeraPCA are numerically close to those computed by LAPACK.



187

Table 6.3.: Accuracy of the ten leading eigenvalues computed by TeraPCA and by
FlashPCA2.

eigenvalue relative error eigenvalue relative error
index TeraPCA FlashPCA2 index TeraPCA FlashPCA2

1 9.91E-15 1.74E-03 6 3.01E-06 7.63E-04
2 1.02E-13 1.30E-03 7 3.36E-06 1.47E-03
3 5.65E-11 1.49E-03 8 1.04E-05 6.81E-04
4 2.18E-08 1.31E-03 9 7.11E-05 1.28E-03
5 2.65E-06 1.10E-03 10 1.74E-04 7.44E-04
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Figure 6.2.: Element-wise relative error of the ten leading principal components com-
puted by TeraPCA against those computed by LAPACK for the HGDP dataset.

Finally, we evaluated the qualitative performance of TeraPCA. Figure 6.3 shows

that the top-two principal components computed using TeraPCA can efficiently clus-

ter the various populations.
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Figure 6.3.: The projection of the HGDP dataset along the two leading principal
components computed by TeraPCA.
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7 FUTURE DIRECTIONS

This chapter summarizes future directions for each of the problems we have discussed

in earlier chapters. The structure of the chapter is as follows: Sections 7.1 and 7.2

describe future directions for the logarithm of the determinant of an SPD matrix and

the Von Neumann entropy respectively. Sections 7.3 discusses future directions for

sparse principal component analysis. Finally, Section 7.4 discusses future direction on

the problem of approximating dominant singular spaces from block Krylov subspaces.

7.1 Approximation of the logarithm determinant of a symmetric positive definite

matrix

There are no many open problems in the case of the logarithm of the determinant

of a symmetric positive definite matrix. We can easily extend our approach to the

Hermitian case, using the results from Section 4.4.

An interesting but difficult problem is the extension of methods likes ours on the

approximation of the logarithm determinant of arbitrary nonsingular matrices. The

difficulty lies in the fact that the logarithm of a negative singular value is complex.

This can potentially be a useful extension for problems that need to approximate

determinants of large matrices.

7.2 Estimation of the Von Neumann entropy of density matrices

An interesting open problem would be to consider the estimation of the cross

entropy. The cross entropy is a measure between two probability distributions and

is particularly important in information theory. Algebraically, it can be defined as

H (S,R) = −Tr (S log R), where S ∈ Cn×n and R ∈ Cn×n are density matrices with
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a full set of pure states. One can further extend our polynomial-based approaches

using the Taylor expansion or the Chebyshev polynomials to approximate the matrix

Γ = S log R. The case where both or one of the density matrices have an incomplete

set of pure states is an open problem: if R is low-rank, then our first two approaches

would not work for the reasons discussed in Section 2.5.3. However, if the only low

rank matrix is S, then our first two approaches would still work: S is only appearing

in the trace estimation part, and having eigenvalues equal to zero does not affect

the positive semi-definiteness of Γ. When R is of low rank then one might be able

to use our random projection approaches to reduce its dimensionality and/or the

dimensionality of S.

Another, interesting open problem would be to develop methods similar to ours

for the Rényi entropy. The Rényi entropy is a generalization of mostly all known

entropies like the Shannon entropy, the Von Neumann entropy, the min entropy,

e.t.c. Given an order α ≥ 0 with α 6= 1 and a random variable X with discrete

outcomes 1, 2, . . . , n and corresponding probabilities p1, p2, . . . , pn:

HαX =
1

1− α
log

(
n∑
i=1

pαi

)
. (7.1)

When α = 1 then

H1(X) = lim
α→1
Hα(X) = −

n∑
i=1

pi log (pi)

which is the Shannon (or Von Neumann) entropy. The term log (
∑n

i=1 p
α
i ) of eqn. (7.1)

can be defined as the Tr (log [αΣp (X)]) = log
(
‖Σp‖αα

)
, where Σp is the diagonal

matrix of the probabilities pi, i = 1, . . . , n and ‖Σp‖α is the α-Shatten norm. The

last equality holds since the pi’s are probabilities and thus non-negative. A simple

method would be to use one of the methods that have been described in [UCS17]

and [HMAS17] for the approximation of traces of matrix functions, or methods that

approximate Shatten p-norms like [LW16] or [Bra18].

The most important open problem is to relax (or eliminate) the assumptions as-

sociated with our three key technical results without sacrificing our running time
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guarantees. It would be critical to understand whether our assumptions are, for

example, necessary to achieve relative error approximations and either provide al-

gorithmic results that relax or eliminate our assumptions or provide matching lower

bounds and counterexamples.

Finally, it would be of increased interest, especially in the quantum mechanics

community, if our third approach is extended to the Hermitian case. In reality most

of the quantum systems are not having a full set of pure states; indeed this is an

extremely rare phenomenon. Furthermore, the majority of quantum systems are

described by complex density matrices. In order to extend our third approach to

the Hermitian case, we need to extend the random projection theory to Hermitian

matrices which requires extending matrix concentration inequalities to the complex

space, with the latter being the most demanding step.

7.3 A randomized rounding algorithm for sparse principal component analysis (PCA)

From a theoretical perspective, it would be interesting to explore whether other

relaxations of the sparse PCA problem of eqn. (1.14) e.g. semi-definite relaxations,

combined with randomized rounding procedures, could improve our error bounds in

Theorem 12. It would also be interesting to formally analyze the deflation algorithm

that computes more than one sparse singular vectors in a randomized manner (Algo-

rithm 18). Another interesting aspect would be to somehow enforce orthogonality of

the sparse principal components. This is probably the hardest of the open problems.

Finally, from a complexity theory perspective, we are not aware of any inapproxima-

bility results for the sparse PCA problem; to the best of our knowledge, it is not

known whether relative error approximations are possible (without any assumptions

on the input matrix).
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7.4 Structural convergence results for approximation of dominant subspaces from

block Krylov spaces

A very important issue in this work is the gap between low-rank approximations

and dominant subspace computations, so an important future direction would have

been towards bridging this gap. Furthermore, as we mentioned in Chapter 6, a

singular value gap is demanded for well-posed dominant subspace computations but

it is not necessary for certain starting guesses in the case of low-rank approximations.

To the best of our knowledge, gap-independent results are not known for arbitrary X.

A very interesting future direction would be to understand if it is possible to relax

the full-rank assumption for V>k X. Our proofs require rank
(
V>k X

)
= k, which forces

starting guesses to have at least s ≥ k columns. Thus, even in the presence of the

requisite singular value gaps, our proofs collapse for starting guesses that consist of

a single column.

Finally, it is important to understand if our bounds are tight enough to be infor-

mative and helpful in practical numerical implementations of block Krylov methods

for low-rank approximation and dominant subspace reconstructions.
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8 CONCLUSION

The problems we have selected to investigate appear as computational bottlenecks

in many modern applications, including machine learning, computer graphics, deep

learning, genetics, e.t.c. which directly benefit large scale data analytics. The primal

goal of this work is to encourage the practical use of RandNLA approaches to solve Big

Data bottlenecks at industrial level. The extensive evaluation tests are complemented

by a thorough theoretical analysis that proves their accuracy and highlights their scal-

ability as the volume of data increases. Finally, the targeted low computation time

and the low memory consumption as well as the simple implementation scheme of

the proposed methods (that can easily be extended in parallel or distributed environ-

ments) render them suitable for use in the development of highly efficient real-world

software.



194

REFERENCES

[ABB+99] E. Anderson, Z. Bai, C. Bischof, S. Blackford, J. Demmel, J. Don-
garra, J. Du Croz, A. Greenbaum, S. Hammarling, A. McKenney, and
D. Sorensen. LAPACK Users’ Guide. SIAM, Philadelphia, PA, third
edition, 1999.

[ABF16] F. Arrigo, M. Benzi, and C. Fenu. Computation of Generalized Matrix
Functions. SIAM J. Matrix Anal. Appl., 37(3):836–860, 2016.

[AC09] N. Ailon and B. Chazelle. The Fast Johnson–Lindenstrauss Transform
and Approximate Nearest Neighbors. SIAM J. Comput., 39(1):302–
322, 2009.

[Ach01] D. Achlioptas. Database-friendly Random Projections. In ACM
SIGMOD-SIGACT-SIGART Symposium on Principles of Database
Systems, pages 274–281, 2001.

[AQI17] G. Abraham, Y. Qiu, and M. Inouye. FlashPCA2: Principal Com-
ponent Analysis of Biobank-scale Genotype Datasets. Bioinformatics,
33(17):2776–2778, 2017.

[AT11] H. Avron and S. Toledo. Randomized Algorithms for Estimating the
Trace of an Implicit Symmetric Positive Semi-definite Matrix. J. ACM,
58(2):8, 2011.

[AW08] A. A. Amini and M. J. Wainwright. High-dimensional Analysis of
Semidefinite Relaxations for Sparse Principal Components. In IEEE
International Symposium on Information Theory (ISIT), pages 2454–
2458, 2008.

[BD09] N. Bosner and Z. Drmac̆. Subspace Gap Residuals for Rayleigh-Ritz
Approximations. SIAM J. Matrix Anal. Appl., 31(1):54–67, 2009.

[BDD+02] S. Blackford, J. Demmel, J. Drongarra, I. Duff, S. Hammarling,
G. Henry, M. Heroux, L. Kaufman, A. Lumsdaine, A. Petitet, R. Pozo,
K. Remington, and R. C. Whaley. An Updated Set of Basic Linear Al-
gebra Subprograms (BLAS). ACM Trans. Math. Softw., 28(2):135–151,
2002.

[BDHS11] G. Ballard, J. Demmel, O. Holtz, and O. Schwartz. Minimizing Com-
munication in Numerical Linear Algebra. SIAM J. Matrix Anal. Appl.,
32(3):866–901, 2011.

[BDK+17] C. Boutsidis, P. Drineas, P. Kambadur, E.-M. Kontopoulou, and
A. Zouzias. A Randomized Algorithm for Approximating the Log De-
terminant of a Symmetric Positive Definite Matrix. Linear Algebra
Appl., 533:95–117, 2017.



195

[BDMI11] C. Boutsidis, P. Drineas, and M. Magdon-Ismail. Near-optimal
Column-based Matrix Reconstruction. In Foundations of Computer
Science (FOCS), pages 305–314, 2011.

[BDMI14] C. Boutsidis, P. Drineas, and M. Magdon-Ismail. Near-optimal
Column-based Matrix Reconstruction. SIAM J. Comput., 43(2):687–
717, 2014.

[BER04] C. Beattie, M. Embree, and J. Rossi. Convergence of Restarted
Krylov Subspaces to Invariant Subspaces. SIAM J. Matrix Anal. Appl.,
25(4):1074–1109, 2004.

[BES05] C. Beattie, M. Embree, and D. C. Sorensen. Convergence of Polynomial
Restart Krylov Methods for Eigenvalue Computations. SIAM Rev.,
47(3):492–515, 2005.

[BGS06] S. L. Braunstein, S. Ghosh, and S. Severini. The Laplacian of a Graph
as a Density Matrix: A Basic Combinatorial Approach to Separability
of Mixed States. Ann. Comb, 10:291–317, 2006.
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