Purdue University Graduate School
Browse
REAL-TIME TRAJECTORY OPTIMIZATION BY SEQUENTIAL CONVEX PROGRAMMING FOR ONBOARD OPTIMAL CONTROL.pdf (1.98 MB)

REAL-TIME TRAJECTORY OPTIMIZATION BY SEQUENTIAL CONVEX PROGRAMMING FOR ONBOARD OPTIMAL CONTROL

Download (1.98 MB)
thesis
posted on 2021-08-04, 14:35 authored by Benjamin M. TackettBenjamin M. Tackett
Optimization of atmospheric flight control has long been performed on the ground, prior to mission flight due to large computational requirements used to solve non-linear programming problems. Onboard trajectory optimization enables the creation of new reference trajectories and updates to guidance coefficients in real time. This thesis summarizes the methods involved in solving optimal control problems in real time using convexification and Sequential Convex Programming (SCP). The following investigation provided insight in assessing the use of state of the art SCP optimization architectures and convexification of the hypersonic equations of motion[ 1 ]–[ 3 ] with different control schemes for the purposes of enabling on-board trajectory optimization capabilities.
An architecture was constructed to solve convexified optimal control problems using direct population of sparse matrices in triplet form and an embedded conic solver to enable rapid turn around of optimized trajectories. The results of this show that convexified optimal control problems can be solved quickly and efficiently which holds promise in autonomous trajectory design to better overcome unexpected environments and mission parameter changes. It was observed that angle of attack control problems can be successfully convexified and solved using SCP methods. However, the use of multiple coupled controls is not guaranteed to be successful with this method when they act in the same plane as one another. The results of this thesis demonstrate that state of the art SCP methods have the capacity to enable onboard trajectory optimization with both angle of attack control and bank angle control schemes.

History

Degree Type

  • Master of Science

Department

  • Aeronautics and Astronautics

Campus location

  • West Lafayette

Advisor/Supervisor/Committee Chair

Michael J. Grant

Additional Committee Member 2

William A. Crossley

Additional Committee Member 3

Ran Dai