Purdue University Graduate School
AnnMarieKaris_M_Thesis.pdf (2.99 MB)

Rarefied Plume Modeling for VISORS Mission

Download (2.99 MB)
posted on 2022-05-03, 13:33 authored by Ann Marie KarisAnn Marie Karis

 The Virtual Super-resolution Optics with Reconfigurable Swarms (VISORS) mission  aims to produce high-resolution images of solar release sites in the solar corona using a  distributed telescope. The collected data will be used to investigate the existence of underlying  energy release mechanisms. The VISORS telescope is composed of two spacecraft flying in a  formation configuration. The optics spacecraft (OSC) hosts the optic system, while the detector  spacecraft (DSC) is located behind the OSC in alignment with the Sun and houses a detector.  The two modes of operation for the CubeSats are Science Operations Mode and Standby Mode.  In Science Operations Mode, the two spacecraft are at a close distance which may make the plume impingement an issue. The cold gas thruster propulsion systems in both the OSC and  DSC use R-236fa (HFC) refrigerant. The plume from the system is modeled using SPARTA  Direct Simulation Monte Carlo (DSMC) Simulator while the refrigerant itself is modeled using  an equivalent particle that closely matches viscosity and specific heat. This work aims to  investigate plume propagation for two different flow inputs. The DSMC simulations are  performed with the input parameters acquired using the isentropic relations and CFD simulations  of the 2D axisymmetric nozzle flow. Additionally, the DSMC results are compared to the  Boynton-Simons, Roberts-South, and Gerasimov analytical plume models. 


Collaborative Research: CubeSat Ideas Lab: VIrtual Super-resolution Optics with Reconfigurable Swarms (VISORS)

Directorate for Geosciences

Find out more...


Degree Type

  • Master of Science in Aeronautics and Astronautics


  • Aeronautics and Astronautics

Campus location

  • West Lafayette

Advisor/Supervisor/Committee Chair

Alina A. Alexeenko

Additional Committee Member 2

Tom Shih

Additional Committee Member 3

Aaron Morris