Purdue University Graduate School
Rohit Kandakatla - Dissertation - Post Defence.pdf (2.8 MB)
Download file

Reimagining Course Design Using Technology: A Case-Study on How Faculty in India Learn to Integrate Technology Tools into Engineering Courses

Download (2.8 MB)
posted on 2019-05-14, 17:13 authored by Rohit KandakatlaRohit Kandakatla

In the last two decades, higher education researchers have reported numerous benefits of integrating technology tools in course instruction and their subsequent impact on the students’ learning process. In spite of the accumulation of the large amount of evidence and multiple calls to adopt technology tools in instruction, traditional lecturing is observed to dominate and continue being the preferred mode of instruction in STEM courses. One of the major reasons for the shortage of large-scale adoption of technology-based instruction is attributed to the lack of knowledge and skills of STEM instructors on how to effectively integrate technology tools into their courses. Most faculty development programs that are organized to help instructors build the necessary knowledge and skills end up introducing different technology tools to the instructors without truly helping them understand how to contextualize the tools based on the course requirements and learning needs of the study. This study aimed to understand the experiences of how engineering faculty in India learn to integrate technology tools as part of a 6-week faculty development program.

Seven engineering faculty from a single institution attended the 6-week program to redesign a course of their choice by integrating educational technology tools. A conceptual framework called Technological Pedagogical Content Knowledge (TPACK) was used to understand how the instructors learned to integrate technology tools into their respective courses. TPACK is a widely used framework that depicts an instructor’s knowledge of educational technology as a multifaceted construct that is combined with their knowledge of the course content and pedagogy. A qualitative case study approach was used in this study to understand how the engineering faculty developed TPACK and highlight the challenges that they encountered while integrating technology tools into their courses. Thematic analysis was employed to analyze the data that was collected through semi- structured interviews, reflection journals, and final reflections.


The findings from the study indicate that the faculty developed TPACK in three stages. In the first stage, they developed basic knowledge of content, pedagogy, and technology (also called basic sub-domains of TPACK). The faculty in the next stage formed mental models to intersect and understand the interrelations between the three basic sub-domains. In the last stage, the faculty developed TPACK by building a meta-conceptual awareness of how to utilize the knowledge gained in stage two to address the limitations in their current mode of instruction and the learning needs of the students. It was observed that the faculty after developing TPACK started to emphasize on a more student-centric mode of instruction. The faculty reported to encounter challenges while constructing mental models as they were unable to critically reflect on their courses. They faced difficulty while identifying and integrating technology tools as a result of low- technology self-efficacy. Faculty reported to overcome these challenges and receive support from the other participants as a result of a community of practice that was established prior to the start of the faculty development program. The study at the end provides recommendations to faculty developers on how to design and facilitate effective workshops that are aimed to help instructors integrate technology tools. A model which was developed from the findings of the study is provided to promote large scale integration of technology-based instruction in universities.


Degree Type

  • Doctor of Philosophy


  • Engineering Education

Campus location

  • West Lafayette

Advisor/Supervisor/Committee Chair

Jennifer J DeBoer

Additional Committee Member 2

Karl A Smith

Additional Committee Member 3

Ruth Streveler

Additional Committee Member 4

Stephanie M Zywicki

Usage metrics