Purdue University Graduate School
Browse
Marie_dissertation_final.pdf (6.58 MB)

Remote Sensing as a Window into Planetary Volcanic Eruption Styles

Download (6.58 MB)
thesis
posted on 2021-07-28, 23:36 authored by Marie J HendersonMarie J Henderson
Evidence of past volcanic activity has been found on many planets and moons in our Solar System, and volcanism represents a common process that ties together the geologic history of planetary bodies. Volcanic eruptions are a unique geologic process that link the planet’s interior to the surface and the atmosphere/exosphere. A key planetary science objective described in the 2013-2022 Decadal Survey is to characterize planetary surfaces and understand their modification by geologic processes, including volcanism. The Earth, Moon, and Mars have evidence of past effusive and explosive volcanic eruptions, creating a range of volcanic edifices, landforms, flows, and pyroclastic deposits. This dissertation strives to understand the composition and eruption style of explosive volcanic deposits on the terrestrial bodies of the Earth, the Moon, and Mars. These deposits provide critical insights into the volcanic and volatile histories of the bodies and may provide in situ resources for future planetary explorers. I utilize data from orbital and laboratory spectrometers to analyze volcanic tephras across the solar system. My dissertation uses new techniques from lab studies to inform orbital spectroscopy and geomorphology comparisons of explosive volcanic deposits. By identifying glass and other igneous minerals in the visible/near-infrared and thermal infrared orbital spectra of volcanic deposits we can infer volcanic eruption style and constrain the history of explosive volcanism of planetary bodies. With remote sensing, I investigated a large and ancient volcanic complex, the Marius Hills, with significant implications for the early volcanic history of the Moon and the pyroclastic deposits of a single impact basin, Schrödinger, that has been selected as a landing site for robotic missions in 2024. This dissertation expands on the previous limited understanding of explosive vs effusive volcanism on the Moon, with the ability to further constrain eruption styles with remote sensing. The results presented in this dissertation are directly relevant to the future goals of NASA and the effort to return humans to the lunar surface and have increased the science return of lunar missions like the ISRO/NASA Moon Mineralogy Mapper.

Funding

THE GOAL OF THIS NEW, 3 YEAR RESEARCH PROGRAM IS TO ADVANCE OUR UNDERSTANDING OF THE NUMBER, DISTRIBUTION, COMPOSITION AND ERUPTION CHARACTERISTICS OF PYROCLASTIC DEPOSITS ON THE MOON. MATERIALS IN SOME OF THESE EXPLOSIVE VOLCANIC DEPOSITS ARE THOUGHT TO

National Aeronautics and Space Administration

Find out more...

Graduate Research Fellowship Program (GRFP)

Directorate for Education & Human Resources

Find out more...

History

Degree Type

  • Doctor of Philosophy

Department

  • Earth, Atmospheric and Planetary Sciences

Campus location

  • West Lafayette

Advisor/Supervisor/Committee Chair

Michelle S. Thompson

Additional Committee Member 2

Briony H.N. Horgan

Additional Committee Member 3

Lisa Gaddis

Additional Committee Member 4

Michael Sori

Additional Committee Member 5

H. Jay Melosh

Usage metrics

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC