
 

 

SEQUENCING-BASED GENE DISCOVERY AND GENE REGULATORY 

VARIATION EXPLORATION IN PEDIGREED POPULATIONS 

by 

Robert Ebow McEwan 

 

A Dissertation 

Submitted to the Faculty of Purdue University 

In Partial Fulfillment of the Requirements for the degree of 

 

Doctor of Philosophy 

 

 

Department of Horticulture 

West Lafayette, Indiana 

August 2022 

  



 

 

2 

THE PURDUE UNIVERSITY GRADUATE SCHOOL 

STATEMENT OF COMMITTEE APPROVAL 

Dr. Brian P. Dilkes, Chair 

Department of Biochemistry 

Dr. Joshua R. Widhalm 

Department of Horticulture and Landscape Architecture 

Dr. Jody Banks 

Department of Botany and Plant Pathology 

Dr. Kranthi Varala 

Department of Horticulture and Landscape Architecture 

 

Approved by: 

Dr. Linda S. Prokopy 

 

 



 

 

3 

Dedicated to my family, for being there through thick and thin: My mom Felicia Mary Ghansah, 

my sisters Patricia and Nana Afariwa McEwan, my loving wife Nana Ama McEwan, and my 

adorable daughter Natalie Aba Nyarkoa McEwan. 



 

 

4 

 

ACKNOWLEDGMENTS 

Foremost thanks to my major advisor Dr. Brian Dilkes for his invaluable support, 

motivation, and patience. 

 

I would also like to offer my sincere thanks to my other committee members, Dr. Jody 

Banks, Dr. Josh Widhalm, and Dr. Kranthi Varala. Without your support this work would not have 

been completed. 

 

I also owe a debt of gratitude to Dr. Steve Rounsley, my former manager and mentor, for 

encouraging me to pursue this degree and introducing me to Dr. Brian Dilkes.  

 

Last, but not the least, I thank successive leadership at Corteva Agriscience, especially my 

current manager Dr. John A. Crow, for giving me the financial support and cheering me over the 

finish line. 



 

 

5 

 

TABLE OF CONTENTS 

LIST OF TABLES .......................................................................................................................... 7 

LIST OF FIGURES ...................................................................................................................... 10 

ABSTRACT .................................................................................................................................. 17 

 introduction ......................................................................................................... 19 

1.1 Signal processing of sequence information ...................................................................... 19 

1.2 Signal Processing in Differentially Expressed Genes (DEG) ........................................... 20 

1.3 Study of natural variation in transcript accumulation via eQTL ...................................... 22 

1.4 The hypersensitive response of maize as a case study of transcriptome remodeling ....... 25 

 the uses and detection of error by replication in sequencing experiments .......... 29 

2.1 Introduction to the scientific problem ............................................................................... 29 

2.2 Methods............................................................................................................................. 31 

2.3 Results ............................................................................................................................... 34 

2.3.1 Case Study 1: Mutant mapping in a multiple mutant pharmacogenomics experiment.

 34 

2.3.2 Case Study 2: Informatic experimental design robust to alternative explanations: 

CRISPR off – target and pedigree errors in heterozygous mapping experiments ................. 45 

2.3.3 Case Study 3. Experimental design robust to alternative explanations: T-DNA 

integration induced INDELs .................................................................................................. 50 

2.3.4 Case Study 4. Robust removal of false positive insertion deletion calls improves 

mutant allele discovery and comparison of mutagenesis effectiveness across mutagens. .... 51 

2.4 Conclusions ....................................................................................................................... 59 

 Elucidating transcriptional control of Rp1-D21-induced hr ............................... 61 

3.1 Introduction ....................................................................................................................... 61 

3.2 Methods............................................................................................................................. 64 

3.3 Results ............................................................................................................................... 65 

3.3.1 Production of biological material and experimental design ...................................... 65 

3.3.2 Raw read mapping, count-per-gene estimation and differential gene expression 

analysis .................................................................................................................................. 67 



 

 

6 

 

3.3.3 Biological insight in HR ............................................................................................ 68 

3.4 Conclusions ..................................................................................................................... 151 

 DISSECTION OF REGULATORY VARIATION AFFECTING Rp1-D21/+ 

INDUCED HR VIA eqtl analysis ............................................................................................... 152 

4.1 Introduction ..................................................................................................................... 152 

4.2 Methods........................................................................................................................... 155 

4.2.1 Plant material and RNA sequencing data ................................................................ 155 

4.2.2 Genotypic data ......................................................................................................... 156 

4.2.3 Reads mapping and processing of expression data .................................................. 156 

4.2.4 eQTL Mapping ........................................................................................................ 157 

4.3 Results ............................................................................................................................. 161 

4.3.1 Analysis of cis-eQTL in the RIL x H95;Rp1-D21/+ families identifies HR modulated 

genes as targets for cis – regulatory variation ..................................................................... 161 

4.3.2 Analysis of trans-eQTL in the RIL x H95;Rp1-D21/+ families identifies an outsized 

role for HR – modulated regulatory hotspots at the top of the regulatory hierarchy ........... 169 

4.4 Conclusions ..................................................................................................................... 179 

 Testing the molecular mechanism of cis-eqtl through allele specific expression as 

validation of cis-regulatory variants affected by Rp1-D21/+ induced hr ................................... 182 

5.1 Introduction ..................................................................................................................... 182 

5.2 Methods........................................................................................................................... 185 

5.2.1 SNP calling .............................................................................................................. 185 

5.2.2 B73 x H95;Rp1-D21/+ ASE analysis ...................................................................... 186 

5.2.3 NC350 x H95;Rp1-D21/+ ASE analysis ................................................................. 187 

5.2.4 Relative ASE by comparison to a common reference ............................................. 189 

5.3 Results ............................................................................................................................. 190 

5.3.1 B73 x H95;Rp1-D21/+ ASE analysis ...................................................................... 190 

5.3.2 NC350 x H95;Rp1-D21/+ (NH) ASE analysis ....................................................... 196 

5.3.3 Three-way ASE, by comparison to a common reference, matches B73-NC350 eQTL 

with ASE as a test of cis-eQTL mechanism ........................................................................ 202 

5.4 Conclusions ..................................................................................................................... 204 

REFERENCES ........................................................................................................................... 206 



 

 

7 

 

LIST OF TABLES 

Table 2-1. Description of materials used for sequencing in the multiple-mutant pharmacogenomics 

experiment..................................................................................................................................... 36 

Table 2-2. Summary results from sequencing, variant calling and false-positive SNP removal in 

the multiple-mutant pharmacogenomics experiment. ................................................................... 37 

Table 2-3. Predicted effects of variants on gene expression in the multiple-mutant 

pharmacogenomics experiment. ................................................................................................... 38 

Table 2-4. Description of plant materials used for sequencing. ................................................... 47 

Table 2-5. Summary results from sequencing, variant calling and false-positive SNP removal.. 48 

Table 2-6. Summary results from variant calling and false-positive INDEL exclusion using GATK 

and custom script. ......................................................................................................................... 53 

Table 2-7. Summary results from variant calling and false-positive INDEL removal using 

SAMtools and custom script. ........................................................................................................ 54 

Table 2-8. Summary results from variant calling and false-positive INDEL exclusion using 

LUMPY and custom script. .......................................................................................................... 55 

Table 2-9. Annotation of GATK Deletions using SnpEff. ........................................................... 57 

Table 2-10. Annotation of SAMtools Deletions using SnpEff. .................................................... 58 

Table 2-11. Annotation of LUMPY Deletions using SnpEff. ...................................................... 59 

Table 3-1. Mapping statistics for B73;Rp1-D21/+ versus wildtype. ............................................ 69 

Table 3-2. Similarity of read counts between B73;Rp1-D21/+ versus wildtype (BR) replicates as 

measured by Pearson correlation coefficient. ............................................................................... 70 

Table 3-3. Annotation for top 30 most up or down-regulated differentially expressed genes in 

B73;Rp1-D21/+ versus wildtype (BR) samples. ........................................................................... 76 

Table 3-4. GO annotations for down-regulated genes in the B73;Rp1-D21/+ versus wildtype 

background. ................................................................................................................................... 77 

Table 3-5. GO annotations for up-regulated genes in the B73;Rp1-D21/+ versus wildtype 

background. ................................................................................................................................... 78 

Table 3-6. Mapping statistics for H95;Rp1-D21/+ versus wildtype. ............................................ 85 

Table 3-7. Similarity of read counts between H95;Rp1-D21/+ versus wildtype replicates as 

measured by Pearson correlation coefficient. ............................................................................... 85 

Table 3-8. Annotation for top 30 most up or down-regulated differentially expressed genes in 

H95;Rp1-D21/+ versus wildtype samples. ................................................................................... 89 



 

 

8 

 

Table 3-9. GO annotations for down-regulated genes from the H95;Rp1-D21/+ versus wildtype 

background. ................................................................................................................................... 91 

Table 3-10. GO annotations for up-regulated genes from the H95;Rp1-D21/+ versus wildtype 

background. ................................................................................................................................... 91 

Table 3-11. Mapping statistics for NC350 x H95;Rp1-D21/+  versus wildtype. ......................... 96 

Table 3-12. Similarity of read counts between NC350 x H95;Rp1-D21/+ versus wildtype (NHR) 

replicates as measured by Pearson correlation coefficient. .......................................................... 97 

Table 3-13. Annotation for top 30 most up or down-regulated differentially expressed genes in 

NC350 x H95;Rp1-D21/+ versus wildtype (NHR) samples. ...................................................... 101 

Table 3-14. Gene Ontology (GO) annotations for down-regulated genes in the NC350 x H95;Rp1-

D21/+ versus wildtype. ............................................................................................................... 103 

Table 3-15. Gene Ontology (GO) annotations for up-regulated genes in the NC350 x H95;Rp1-

D21/+ versus wildtype. ............................................................................................................... 105 

Table 3-16. Mapping statistics for B73 x H95;Rp1-D21/+ versus wildtype. ............................. 111 

Table 3-17. Similarity of read counts between B73 x H95;Rp1-D21/+ versus wildtype (BHR) 

replicates as measured by Pearson correlation coefficient. ........................................................ 113 

Table 3-18. Annotation for top 30 most up or down-regulated differentially expressed genes in 

B73 x H95;Rp1-D21/+ versus wildtype (BHR) samples. ........................................................... 117 

Table 3-19. GO annotations for down-regulated genes from the B73 x H95;Rp1-D21/+ versus 

wildtype background. .................................................................................................................. 119 

Table 3-20. GO annotations for up-regulated genes from the B73 x H95;Rp1-D21/+ versus 

wildtype background. .................................................................................................................. 121 

Table 3-21. Annotation for top 30 most up or down-regulated differentially expressed genes in 

B73:NC350RIL x H95;Rp1-D21/+ versus wildtype (BNRIL_HR) samples. ............................ 136 

Table 3-22. GO annotation for down-regulated genes from the B73:NC350RIL x H95;Rp1-D21/+ 

versus wildtype. .......................................................................................................................... 138 

Table 3-23. GO annotations for up-regulated genes from the B73:NC350RIL x H95;Rp1-D21/+ 

versus wildtype. .......................................................................................................................... 141 

Table 3-24. Expression direction of most consistent genes. ....................................................... 150 

Table 4-1. Summary results from cis-eQTL and their relationship with genes affected by Rp1-

D21/+ in NC350 x H95 (NH) hybrids. ....................................................................................... 162 

Table 4-2. Summary results from cis-eQTL and their relationship with genes affected by Rp1-

D21/+ in B73 x H95 (BH) hybrids. ............................................................................................ 163 

Table 4-3. Summary results from cis-eQTL and their relationship with DEGs in F1 progeny from 

the H95;Rp1-D21 and B73xNC350 recombinant inbred lines (BNRIL) cross progenies. ......... 164 



 

 

9 

 

Table 4-4. Comparison of effect direction of cis-eQTL and differentially expressed genes. ..... 167 

Table 4-5. Summary of trans-eQTL analysis results in different phenotypic backgrounds. ...... 169 

Table 4-6. Trans-eQTL hotspots in mutants and their relationship with DEGs in both BH and NH 

backgrounds. ............................................................................................................................... 177 

Table 5-1. Results from aligning B73 x H95;Rp1-D21/+ (BH) RNA-seq reads to H95-anonymized 

AGPv4 reference genome. .......................................................................................................... 191 

Table 5-2. Number of genes showing allelic imbalance and direction of bias. Within the B73 x 

H95;Rp1-D21/+ background. ...................................................................................................... 191 

Table 5-3. Results from aligning NC350 x H95;Rp1-D21 (NH) RNA-seq reads to an NC350-

anonymized AGPv4 reference genome. ..................................................................................... 197 

Table 5-4. Number of genes showing allelic imbalance and direction of bias within the NC350 x 

H95;Rp1-D21/+ background. ...................................................................................................... 197 

Table 5-5. Assessing effect direction of cis-eQTL in plants with wildtype phenotype using 

common ASE and cis-eQTL genes. ............................................................................................ 204 

Table 5-6. Assessing effect direction of cis-eQTL in plants with mutant phenotype using common 

ASE and cis-eQTL genes. ........................................................................................................... 204 

  



 

 

10 

 

LIST OF FIGURES 

Figure 1-1. eQTL classification. Regulatory variants are usually classified in two ways: first, based 

on their location relative to the gene(s) they affect into local and distant eQTLs, and second, 

according to their mode of action into cis- and trans-eQTLs. Adapted from (Albert & Kruglyak, 

2015). ............................................................................................................................................ 23 

Figure 1-2. Mode of allele-specific gene expression in the F1. The inbred 1 allele is more highly 

expressed in comparison to the allele of inbred 2, the thickness of the arrows reflects this difference 

in expression. The allelic ratio in the F1 would be tilted toward inbred 1 if the gene is under the 

influence cis-eQTLs. On the other hand, if the gene is under trans-eQTL control then both parental 

alleles would be balanced. Adapted from (Waters et al., 2017). .................................................. 24 

Figure 2-1. Mapping of the causative mutation in D5R to chromosome 5. Plot of allele frequency 

(y-axis) along chromosomal positions in bp (x-axis). Point where plot touches the x-axis indicates 

location of the causative polymorphism. ...................................................................................... 39 

Figure 2-2. Mapping of the causative mutation in ES3R_no_root to chromosome 2. Plot of allele 

frequency (y-axis) along chromosomal positions in bp (x-axis). Point where plot touches the x-

axis indicates location of the causative polymorphism. ................................................................ 40 

Figure 2-3. Mapping of the causative mutation in 5.9_MP to the chromosome 1. Plot of allele 

frequency (y-axis) along chromosomal positions in bp (x-axis). Point where plot touches the x-

axis indicates location of the causative polymorphism. ................................................................ 43 

Figure 2-4. Mapping of the causative mutation in 6.5_MP to chromosome 5. Plot of allele 

frequency (y-axis) along chromosomal positions in bp (x-axis). Point where plot touches the x-

axis indicates location of the causative polymorphism. ................................................................ 44 

Figure 2-5. Mapping of the causative mutation in 14.40_MP to chromosome 4. Plot of allele 

frequency (y-axis) along chromosomal positions in bp (x-axis). Point where plot touches the x-

axis indicates location of the causative polymorphism. ................................................................ 45 

Figure 2-6. Genomic sequencing of Arabidopsis accession SALK_015201 uncovered the phyB-ss 

allele, a 1 bp deletion at position 3,370 of PHYTOCHROME B which leads to a premature stop 

codon immediately after L1125 amino acid located inside the histidine kinase-related (HKR) 

domain (Cartoon adapted from (Dash et al., 2021)). .................................................................... 51 

Figure 3-1. Mapping of HR modulators using 99 members of the 200-line NC350 NAM RIL 

population. The H95;Rp1-D21/+ line carrying the Rp1-D21 mutation in a heterozygous state is 

crossed to each member of the NC350 NAM RILs. The F1 families generated segregate 1:1 for 

mutant and wildtype sibs. ............................................................................................................. 66 

Figure 3-2. Comparison between untransformed and log2-transformed read count distribution of 

B73;Rp1-D21/+ versus wildtype (BR) samples showing the effect of transformation in reducing 

skewness. ...................................................................................................................................... 70 



 

 

11 

 

Figure 3-3. Dendrogram showing results of hierarchical clustering of B73;Rp1-D21/+ versus 

wildtype (BR) samples. Replicates displayed greater similarity whereas the two phenotypes were 

clearly separated............................................................................................................................ 71 

Figure 3-4. PCA on rlog-transformed read counts for B73;Rp1-D21/+ versus wildtype (BR) 

samples. Differences between phenotypes account for greater proportion of variance. .............. 72 

Figure 3-5. Volcano plot of B73;Rp1-D21/+ versus wildtype (BR) DGE results depicting statistical 

significance (p-value) versus magnitude of change (fold change). Black dots are genes that are not 

statistically significant (adjusted p-value > 0.05), orange dots are statistically significant genes 

(adjusted p-value < 0.05), green dots are statistically significant genes with absolute log2 fold 

change of 2. ................................................................................................................................... 73 

Figure 3-6. Heatmap of log2-transformed read counts for top 30 most up or down-regulated genes 

after DGE analysis of B73;Rp1-D21 (BR) samples. Genes are sorted based on hierarchical 

clustering. ...................................................................................................................................... 74 

Figure 3-7. Comparison between untransformed and log2-transformed read count distribution of 

Rp1-D21/+;H95 samples showing the effect of transformation in reducing skewness. ............... 85 

Figure 3-8. Dendrogram showing results of hierarchical clustering of H95;Rp1-D21/+ versus 

wildtype samples. Replicates displayed greater similarity whereas the two phenotypes were clearly 

separated. ...................................................................................................................................... 86 

Figure 3-9. PCA on rlog-transformed read counts for H95;Rp1-D21/+ versus wildtype samples. 

Differences between phenotypes account for greater proportion of variance. ............................. 87 

Figure 3-10. Volcano plot of H95;Rp1-D21/+ versus wildtype DGE results depicting statistical 

significance (p-value) versus magnitude of change (fold change). Black dots are genes that are not 

statistically significant (adjusted p-value > 0.05), orange dots are statistically significant genes 

(adjusted p-value < 0.05), green dots are statistically significant genes with absolute log2 fold 

change of 2. ................................................................................................................................... 87 

Figure 3-11. Heatmap of log2-transformed read counts for top 30 most up or down-regulated genes 

after DGE analysis of H95;Rp1-D21/+ versus wildtype samples. Genes are sorted based on 

hierarchical clustering. .................................................................................................................. 88 

Figure 3-12. Comparison between untransformed and log2-transformed read count distribution of 

NC350 x H95;Rp1-D21/+ versus wildtype (NHR) samples showing the effect of transformation in 

reducing skewness. ....................................................................................................................... 97 

Figure 3-13. Dendrogram showing results of hierarchical clustering of NC350 x H95;Rp1-D21/+ 

versus wildtype (NHR) samples. Replicates displayed greater similarity whereas the two 

phenotypes were clearly separated................................................................................................ 98 

Figure 3-14. PCA on rlog-transformed read counts for NC350 x H95;Rp1-D21/+ versus wildtype 

(NHR) samples. Differences between phenotypes account for greater proportion of variance. .. 98 

Figure 3-15. Volcano plot of NC350 x H95;Rp1-D21/+ versus wildtype (NHR) DGE results 

depicting statistical significance (p-value) versus magnitude of change (fold change). Black dots 

are genes that are not statistically significant (adjusted p-value > 0.05), orange dots are statistically 



 

 

12 

 

significant genes (adjusted p-value < 0.05), green dots are statistically significant genes with 

absolute log2 fold change of 2. ...................................................................................................... 99 

Figure 3-16. Heatmap of log2-transformed read counts for top 30 most up or down-regulated genes 

after DGE analysis of NC350 x H95;Rp1-D21/+ versus wildtype (NHR) samples. Genes are sorted 

based on hierarchical clustering. ................................................................................................... 99 

Figure 3-17. Comparison between untransformed and log2-transformed read count distribution of 

B73 x H95;Rp1-D21/+ versus wildtype (BHR) samples showing the effect of transformation in 

reducing skewness. ..................................................................................................................... 113 

Figure 3-18. Dendrogram showing results of hierarchical clustering of B73 x H95;Rp1-D21/+ F1 

mutants versus wildtype sibling samples. Replicates displayed greater similarity whereas the two 

phenotypes were clearly separated.............................................................................................. 114 

Figure 3-19. PCA on rlog-transformed read counts for B73 x H95;Rp1-D21/+ versus wildtype 

sibling samples. Differences between phenotypes account for greater proportion of variance. . 114 

Figure 3-20. Volcano plot of B73 x H95;Rp1-D21/+ versus wildtype DGE results depicting 

statistical significance (p-value) versus magnitude of change (fold change). Black dots are genes 

that are not statistically significant (adjusted p-value > 0.05), orange dots are statistically 

significant genes (adjusted p-value < 0.05), green dots are statistically significant genes with 

absolute log2 fold change of 2. .................................................................................................... 115 

Figure 3-21. Heatmap of log2-transformed read counts for top 30 most up or down-regulated genes 

after DGE analysis of B73 x H95;Rp1-D21/+ versus wildtype (BHR) samples. Genes are sorted 

based on hierarchical clustering. ................................................................................................. 116 

Figure 3-22. Comparison between untransformed and log2-transformed read count distribution of 

B73:NC350RIL x H95;Rp1-D21/+ versus wildtype (BNRIL_HR) samples showing the effect of 

transformation in reducing skewness. ......................................................................................... 132 

Figure 3-23. Dendrogram showing results of hierarchical clustering of B73:NC350RIL x 

H95;Rp1-D21/+ versus wildtype (BNRIL_HR). Each leaf of the tree is a single RIL hybrid either 

WT at the Rp1 locus or carrying Rp1-D21 as a heterozygote. The entire set of WT RIL hybrids 

grouped tother (green bar) and the set of Rp1-D21/+ RIL hybrids group together (blue bar). .. 133 

Figure 3-24. PCA on rlog-transformed read counts for B73:NC350RIL x H95;Rp1-D21/+ versus 

wildtype (BNRIL_HR) samples. Differences between phenotypes account for greater proportion 

of variance. .................................................................................................................................. 133 

Figure 3-25. Volcano plot of B73:NC350RIL x H95;Rp1-D21/+ versus wildtype (BNRIL_HR) 

DGE results depicting statistical significance (p-value) versus magnitude of change (fold change). 

Black dots are genes that are not statistically significant (adjusted p-value > 0.05), orange dots are 

statistically significant genes (adjusted p-value < 0.05), green dots are statistically significant 

genes with absolute log2 fold change of 2. ................................................................................. 134 

Figure 3-26. Heatmap of log2-transformed read counts for top 30 most up or down-regulated genes 

after DGE analysis of B73:NC350RIL x H95;Rp1-D21/+ versus wildtype (BNRIL_HR) samples. 

Genes are sorted based on hierarchical clustering. ..................................................................... 135 



 

 

13 

 

Figure 3-27. Venn diagram of differentially expressed genes among the assessed genotypes. . 148 

Figure 3-28. Upset plot of differentially expressed genes across genotypes showing interactions 

among groups. ............................................................................................................................. 149 

Figure 3-29. Overlap in expression direction among genes whose expression was opposite to 

BNRIL_HR. ................................................................................................................................ 150 

Figure 4-1. Overview of eQTL analysis workflow. RNA-seq reads was mapped to the B73 v4 

reference genome and read count per gene computed. Raw count data was normalized prior eQTL 

analyses. ...................................................................................................................................... 158 

Figure 4-2. Illustration of the cross between H95:Rp1-D21 and 99 members of B73 x NC350 

recombinant inbred lines (RILs). F1 offspring from H95:Rp1-D21 and B73 x NC350 cross 

segregate 1:1 ratio for F1 offspring carrying Rp1-D21 allele (mutant constitutive HR F1 progeny) 

and F1 offspring carrying the wildtype H95 allele at the Rp1 locus (non-autoactive phenotype). 

The F1 offspring are nearly isogenic except at the Rp1 locus. .................................................... 159 

Figure 4-3. Illustration of eQTL mapping criteria for defining cis-eQTL (A) and trans-eQTL (B). 

cis-eQTL analysis searches within 1 Mb of SNP for significant associations to target genes 

whereas trans-eQTL were only identified if the target gene and SNP were on different 

chromosomes or more than 50 Mb when encoded on the same chromosome............................ 161 

Figure 4-4. Quantile-quantile (QQ -plot) of observed against expected p-values from cis-eQTL 

analysis in wild-type RIL F1s (A), Rp1-D21/+ RIL F1s (B), difference between wildtype and Rp1-

D21/+ RIL F1s (C), ratio of the wildtype to Rp1-D21/+ RIL F1s (D) and the Log of the ratio of 

wildtype to Rp1-D21/+ RIL F1s (E). The x-axis denotes the theoretical p-value whilst the y-axis 

shows observed p-value. Local p-values are from SNP-gene associations within 1 Mb; distant p-

values are from SNP associations with genes more than 50 Mb away. ...................................... 165 

Figure 4-5. Effect direction of differentially expressed genes between wildtype and mutant 

progeny from NC350 x H95;Rp1-D21 (NH) in cis-eQTL analysis. Cis-eQTL analyses were 

performed in wildtype (WT) and Rp1-D21 (MU) F1 progeny from the H95;Rp1-D21 and B73 x 

NC350 recombinant inbred lines (RIL) cross. MIN corresponds to cis-eQTL analysis using the 

difference in each gene’s expression between wildtype and Rp1-D21 F1. Dark brown denotes 

proportion of DEGs between wildtype and mutant NH F1, for which the NC350 allele has the same 

effect direction as Rp1. Orange represents the proportion of DEGs, between wildtype and mutant 

NH F1, for which the B73 allele has the same effect as Rp1. The numbers used in this chart are 

drawn from Table 4-4. ................................................................................................................ 167 

Figure 4-6. Effect direction of differentially expressed genes between wildtype and mutant 

progeny from B73 x H95;Rp1-D21 (BH) in cis-eQTL analysis. Cis-eQTL analyses were performed 

in wildtype (WT) and Rp1-D21 (MU) F1 progeny from the H95;Rp1-D21 and B73 x NC350 

recombinant inbred lines (RIL) cross. MIN corresponds to cis-eQTL analysis using the difference 

in each gene’s expression between wildtype and Rp1-D21 F1. Green denotes proportion of DEGs 

between wildtype and mutant BH F1, for which the NC350 allele has the same effect direction as 

Rp1. Yellow represents the proportion of DEGs, between wildtype and mutant BH F1, for which 

the B73 allele has the same effect as Rp1. The numbers used in this chart are drawn from Table 4-

4................................................................................................................................................... 168 



 

 

14 

 

Figure 4-7. Trans-eQTL results in F1 progeny from the cross between H95;Rp1-D21/+ and B73 x 

NC350 recombinant inbred lines (RIL) showing wildtype (WT) phenotype. X-axis represents 

chromosome number; y-axis is the number of genes influenced by each SNP. Dotted red line is at 

200 and represents the minimum number of genes a SNP must influence to be considered a hotspot.

..................................................................................................................................................... 170 

Figure 4-8. Trans-eQTL results in F1 progeny from the cross between H95;Rp1-D21/+ and B73 x 

NC350 recombinant inbred lines (RIL) showing Rp1-D21 (MU) phenotype. X-axis represents 

chromosome number; y-axis is the number of genes influenced by each SNP. Dotted red line 

represents the minimum number of genes a SNP must influence to be considered a hotspot. ... 172 

Figure 4-9. Trans-eQTL results using the difference (MIN) between the expression values of Rp1-

D21 and wildtype F1 progeny from the cross between H95:Rp1-D21 and B73 x NC350 

recombinant inbred lines (RIL). X-axis represents chromosome number; y-axis is the number of 

genes influenced by each SNP. Dotted red line represents the minimum number of genes a SNP 

must influence to be considered a hotspot. ................................................................................. 173 

Figure 4-10. Trans-eQTL results using the ratio (DIV) between the expression values of wildtype 

and Rp1-D21 F1 progeny from the cross between H95;Rp1-D21/+ and B73 x NC350 recombinant 

inbred lines (RIL). X-axis represents chromosome number; y-axis is the number of genes 

influenced by each SNP. Dotted red line represents the minimum number of genes a SNP must 

influence to be considered a hotspot. .......................................................................................... 174 

Figure 4-11. Trans-eQTL results using the log (LOG) of the ratio between the expression values 

of wildtype and Rp1-D21 F1 progeny from the cross between H95;Rp1-D21/+ and B73 x NC350 

recombinant inbred lines (RIL). X-axis represents chromosome number; y-axis is the number of 

genes influenced by each SNP. Dotted red line represents the minimum number of genes a SNP 

must influence to be considered a hotspot. ................................................................................. 175 

Figure 4-12. Effect direction of differentially expressed genes (DEGs) between wildtype and 

mutant F1 progeny from cross between NC350 and H95;Rp1-D21/+ (NH) by trans-eQTL hotspots. 

Trans-eQTL analyses were performed in Rp1-D21 F1 progeny from the cross between H95;Rp1-

D21/+ and B73 x NC350 recombinant inbred lines (RIL). Dark brown denotes proportion of DEGs 

between wildtype and mutant NH F1, for which the NC350 allele has the same effect direction as 

Rp1-D21. Orange represents the proportion of DEGs, between wildtype and mutant NH F1, for 

which the B73 allele has the same effect as Rp1-D21. The numbers used in this chart are drawn 

from Table 4-6. ........................................................................................................................... 178 

Figure 4-13. Effect direction of differentially expressed genes (DEGs) between wildtype and 

mutant progeny from cross between B73 and H95;Rp1-D21/+ (BH) by trans-eQTL hotspots. 

Trans-eQTL analyses were performed in Rp1-D21 F1 progeny from the cross between H95;Rp1-

D21/+ and B73 x NC350 recombinant inbred lines (RIL). Green denotes proportion of DEGs 

between wildtype and mutant BH F1, for which the NC350 allele has the same effect direction as 

Rp1-D21. Yellow represents the proportion of DEGs, between wildtype and mutant BH F1, for 

which the B73 allele has the same effect as RP1-D21. The numbers used in this chart are drawn 

from Table 4-6. ........................................................................................................................... 179 

Figure 5-1. Allele-specific expression effects from cis-regulatory variants. Heterozygous cis-

eQTL generates transcript-level differences between the two haplotypes which is detectable by 



 

 

15 

 

counting of reads contained in the SNP position. SNP, single nucleotide polymorphism; cis-eQTL, 

cis-acting expression quantitative trait locus. ............................................................................. 182 

Figure 5-2. Overview of ASE analysis in B73 x H95:Rp1-D21/+ (BH) F1 hybrids. RNA-seq reads 

are aligned to a H95 SNP anonymized AGPv4 reference genome. H95 homozygous SNPs were 

used to generate read counts at each SNP position from merged BH alignment files generated by 

mapping RNA-seq reads to H95-anonymized AGPv4 reference. Allele read counts per gene were 

then computed and used to assess ASE via a binomial test. ....................................................... 187 

Figure 5-3. Schematic showing an overview of NC350 x H95:Rp1-D21/+ (NH) ASE analysis. 

B73:NC350 (BN) and B73:H95 (BH) homozygous SNPs were compared to exclude common 

SNPs from each. Private BN and BH SNPs were separately used to generate allele counts from 

NH alignment files produced by mapping RNA-seq reads to H95 and NC350 anonymized AGPv4 

reference genome. Allele read counts per gene were then computed and used to assess ASE via a 

binomial test. ............................................................................................................................... 188 

Figure 5-4. Overview of the B73-NC350 (B-N) ASE analysis. Significant ASE genes from BH 

and NH were compared to identify common genes. Allele counts for overlapping genes were 

joined to produce a single file. A Fisher-exact test was then conducted between the pairs of 

reference and alternative allele read counts for each overlapping gene. .................................... 189 

Figure 5-5. ASE analysis results from B73 x H95;Rp1-D21/+ (BH) hybrid F1 plants showing 

wildtype (left) or Rp1-D21 (right) phenotype. The x-axis represents allele counts for B haplotype 

for each gene tested whilst the y-axis denotes the counts for H haplotype. Red dots are genes 

showing significant allelic imbalance (FDR ≤ 0.05), whereas black dots represent genes with 

balanced expression. ................................................................................................................... 192 

Figure 5-6. Overlap between genes identified from ASE analysis in B73 x H95;Rp1-D21/+ (BH) 

hybrid F1 plants showing wildtype (left) or Rp1-D21/+ (right) phenotype versus differentially 

expressed genes between plants showing wildtype or Rp1-D21 phenotype............................... 193 

Figure 5-7. Integrating results from ASE in B73 x H95;Rp1-D21/+ (BH) hybrid F1 and cis-eQTL 

analyses. Orange bars indicate results from plants showing Rp1-D21 phenotype, and blue bars are 

results from plants showing wildtype phenotype. X-axis shows the different comparisons carried 

out whereas the y-axis shows the number of genes identified. ................................................... 194 

Figure 5-8. Comparison of gene expression among cis-eQTL and ASE genes in B73 x H95;Rp1-

D21 (BH) hybrid F1 plants displaying wilt-type (A) or RPI-D21 (B) phenotype. X-axis represents 

unique or overlapping genes from ASE and eQTL analyses. Y-axis is the mean of log2-normalized 

expression values across three replicates. ASE_in_cis-eQTL group denote significant genes from 

ASE and cis-eQTL analyses; ASE_only represent genes significant in ASE but not significant in 

cis-eQTL analysis; cis-eQTL_only designate genes significant in cis-eQTl analysis but not 

significant in ASE analysis. A t-test was performed between ASE_in_cis-eQTL group and the 

other two groups to assess whether a significant difference in mean expression values exists.. 195 

Figure 5-9. ASE analysis results from NC350 x H95;Rp1-D21/+ (NH) hybrid F1 plants showing 

wildtype (left) or Rp1-D21 (right) phenotype. The x-axis represents allele counts for N haplotype 

for each gene tested whilst the y-axis denotes the counts for H haplotype. Red dots are genes 



 

 

16 

 

showing significant allelic imbalance (FDR ≤ 0.05), whereas black dots represent genes with 

balanced expression. ................................................................................................................... 198 

Figure 5-10. Overlap between genes identified from ASE analysis in NC350 x H95;Rp1-D21/+ 

(NH) hybrid F1 plants showing wildtype (left) or RPI-D21 (right) phenotype and differentially 

expressed genes between plants showing wildtype versus RPI-D21 phenotype. ....................... 199 

Figure 5-11. Integrating results from ASE in NC350 x H95;Rp1-D21/+ (NH) hybrid F1 and cis-

eQTL analyses. Orange bars indicate results from plants showing Rp1-D21 (right) phenotype, and 

blue bars are results from plants showing wildtype phenotype. X-axis shows the different 

comparisons carried out whereas the y-axis shows the number of genes identified. ................. 199 

Figure 5-12. Comparison of gene expression among cis-eQTL and ASE genes in NC350 x 

H95:Rp1-D21/+ (NH) hybrid F1 plants displaying wilt-type (A) or RPI-D21 (B) phenotype. X-

axis represents unique or overlapping genes from ASE and eQTL analyses. Y-axis is the mean of 

log2-normalized expression values across three replicates. ASE_in_cis-eQTL group denote 

significant genes from ASE and cis-eQTL analyses; ASE_only represent genes significant in ASE 

but not significant in cis-eQTL analysis; cis-eQTL_only designate genes significant in cis-eQTl 

analysis but not significant in ASE analysis. A t-test was performed between ASE_in_cis-eQTL 

group and the other two groups to assess whether a significant difference in mean expression 

values exists. ............................................................................................................................... 201 

Figure 5-13. Comparison between B73-NC350 (B-N) ASE and cis-eQTL analysis results. Orange 

bars indicate results from plants showing Rp1-D21 phenotype, and blue bars are results from plants 

showing wildtype phenotype. X-axis shows the different comparisons carried out whereas the y-

axis shows the number of genes identified. ................................................................................ 202 

  



 

 

17 

 

ABSTRACT 

Forward genetics discovery of the molecular basis of induced mutants has fundamentally 

contributed to our understanding of basic biological processes such as metabolism, cell dynamics, 

growth, and development. Advances in Next-Generation Sequencing (NGS) technologies enabled 

rapid genome sequencing but also come with limitations such as sequencing errors, dependence 

on reference genome accuracy, and alignment errors. By incorporating pedigree information to 

help correct for some errors I optimized variant calling and filtering strategies to respond to 

experimental design. This led to the identification of multiple causative alleles, the detection of 

pedigree errors, and an ability to explore the mutational spectrum of multiple mutagens in 

Arabidopsis. Similar to the problems in forward genetic discovery of mutant alleles, variation in 

genomes complicates the analysis of gene expression affected by natural variation. The plant 

hypersensitive response (HR) is a highly localized and rapid form of programmed cell death that 

plants use to contain biotrophic pathogens. Substantial natural variation exists in the mechanisms 

that trigger and control HR, yet a complete understanding of the molecular mechanisms 

modulating HR is lacking. I explored the gene expression consequences of the plant HR in maize 

using a semi-dominant mutant encoding a constitutively active HR-inducing Nucleotide Binding 

Site Leucine Rich Repeat protein, Rp1-D21, derived from the receptor responsible for perceiving 

certain strains of the common rust Puccinia sorghi. Differentially expressed genes (DEG) in 

response to Rp1-D21 were identified in different genetic backgrounds and hybrids that exhibit 

divergent enhancing (NC350) or suppressing (H95, B73) effects on the visual manifestations of 

HR. To enable this analysis, I created anonymized reference genomes for each comparison, so that 

the reference genome induced less bias in the mapping steps. Comprehensive identification of 

DEG corroborated the visual phenotypes and provided the identities of genes influential in plant 

hypersensitive response for further studies. The locations of expression quantitative trait loci 

(eQTL) that determined the differential response of NC350 and B73 were identified using 198 F1 

families generated by crossing B73 x NC350 RIL population and Rp1-D21/+ in H95. This 

identified 3514 eQTL controlling the variability in differential expression between mutant versus 

wild-type. Trans-eQTL were dramatically arranged in the genome and identified 17 hotspots with 

more than 200 genes influenced by each locus. A single locus significantly affected expression 
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variation in 5700 genes, 5396 (94.7%) of which were DGE. An allele specific expression analysis 

of NC350 x H95 and B73 x H95 F1 hybrids with and without Rp1-D21 identified cis-eQTL and 

ASE at a subset of these genes. Bias in the confirmation of eQTL by ASE was still present despite 

the anonymized reference genomes indicating that additional efforts to improve signal processing 

in these experiments is needed. 
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 INTRODUCTION 

1.1 Signal processing of sequence information 

 Forward genetics screens are the gold standard for understanding how genes control basic 

biological processes such as growth and development. The basic principles underlying forward 

genetics approaches are remarkably consistent across many biological systems (Candela & Hake, 

2008; Forsburg, 2001; Jorgensen & Mango, 2002; Kile & Hilton, 2005; Page & Grossniklaus, 

2002; Patton & Zon, 2001; Shuman & Silhavy, 2003; St Johnston, 2002). Briefly, mutations are 

induced in a population of individuals, typically in an accession or variety with a well-

characterized genetic background, using physical or chemical mutagens. A screening of this 

mutant collection then identifies individuals with alterations in phenotypes of interest. Identifying 

the causative mutation behind the phenotype of interest entails mapping it to a chromosomal region 

through genetic linkage analysis and combing through candidate mutations within the mapped area. 

Confirming a mutated locus within a candidate gene as the causal variant behind the phenotype is 

a multistep procedure involving first genotyping wild type as well as mutants at the putative locus 

followed by complementation tests to demonstrate that a transgenic wild-type allele of the 

candidate gene can rescue the phenotype (Schneeberger, 2014). 

 Advances in Next-Generation Sequencing (NGS) technologies have spurred a rapid 

evolution in the methods of mapping and cloning mutations in most model organisms (Doitsidou 

et al., 2010; Minevich et al., 2012; Moresco et al., 2013; Obholzer et al., 2012; Schneeberger, 2014; 

Schneeberger et al., 2009). Consequently, the process of identifying causative mutations has been 

greatly simplified, and the length of time and effort required has also been significantly reduced 

(Doitsidou et al., 2016). Along with these advancements have also come new limitations and 

pitfalls. Error rates inherently associated with commercially available NGS platforms range from 

0.1% to as high as 30% (Goodwin et al., 2016). Often this error affects a predictable subset of sites 

in the genome. For example, the sequence-by-ligation approach used by the SOLiD sequencing 

system, which enables a class-leading accuracy of about 99.99%, produces substitution errors and 

an under-representation of coverage at AT and GC-rich regions (Harismendy et al., 2009). 

Similarly, the sequence-by-synthesis approach of cyclic reversible termination utilized by the 

Illumina platforms affords it an overall accuracy of more than 99.5% but it too is limited by under-
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representation in AT-rich and GC-rich regions (Harismendy et al., 2009; Minoche et al., 2011). 

Sequences produced through nucleotide addition approaches, as used by the Ion Torrent System 

and others, are riddled with insertion and deletion (indel) errors (Goodwin et al., 2016), and 

inaccuracies in homopolymer regions over 6-8 bp (Loman et al., 2012). Error rates on long-read 

sequencing instruments are even higher. For the PacBio platform ― the most popular long-read 

sequencing technology — the rates of errors, mostly indels, have been as high as 15% (Carneiro 

et al., 2012). Moreover, the Oxford Nanopore technology has difficulties sequencing 

homopolymer regions and error rates for 1D reads that can go as high 30% (Jain et al., 2015) 

 Additional errors arise from sequence data analysis and are independent of the sequencing 

technology used to generate the data. These tend to only affect specific positions within the genome, 

rendering them prone to errors during variant calling. These sources of errors include misalignment 

of reads harboring indels and other structural variants or reads from genomic locations that have 

greatly diverged from the reference (R. Li et al., 2009). Others are reference assembly errors and 

poor performance of mapping tools (A. Y. Cheng et al., 2014), mapping to duplicated regions in 

the reference, and mapping reads from genomic regions that are poorly assembled or otherwise 

missing from the reference genome (Teo et al., 2012). While errors associated with sample 

processing and sequencing can usually be corrected through additional and costly deep sequencing 

(Addo-Quaye et al., 2017), errors from sequence processing, which collectively can result in 

erroneous inference, must be controlled to improve mapping and cloning procedures. The absence 

of efficient mitigation strategies and tools to exclude these errors often results in the production of 

false positives more than the actual changes induced by mutagenesis. We hypothesize that the rate 

of detecting false-positive variants can be limited through a combination of improved experimental 

design and optimized variant calling and filtering strategies. Reducing the false-positive rate will 

lead to a reduction in the number of time-consuming and costly validation experiments and render 

the process of identifying genes from mutants robust and rapid. 

1.2 Signal Processing in Differentially Expressed Genes (DEG) 

 For over a decade now RNA-sequencing (RNA-seq), defined as massively parallel 

sequencing of RNA-derived cDNA libraries, has replaced microarrays as the tool to study 

differential expression of genes between conditions. RNA-seq simultaneously provides sequence 
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information on the entire transcriptome and if provided with an annotated reference sequence of 

all the genes can quantify transcript abundance (Stevenson et al., 2013). Specifically, sequence 

reads are mapped to the part of the genome that it is most similar to and through based on the 

positions of the genome annotated as corresponding to each gene the number of sequence reads 

associated with a gene is counted and used as a representation for transcript abundance (Mortazavi 

et al., 2008). The use of a single linear reference however has its limitations. Reads containing 

non-reference alleles, especially reads from hypervariable sections in the genome (Brandt et al., 

2015), can be incorrectly mapped and confound downstream results. (Slabaugh et al., 2019) 

reported that the choice of reference not only impacted read alignment and identification of spliced 

variants but also affected differential gene expression analysis significantly. This was due to the 

occurrence of single nucleotide polymorphisms (SNPs) between the individual used for the 

transcriptome experiment and the reference as well as differences in annotation, both of which 

affect the number of sequence reads aligning to a gene. Graph aligners, which utilize genetic 

variation across a population to create bidirected DNA sequence graphs to serve as references, 

have been developed to decrease reference bias (Chen et al., 2020; Garrison et al., 2018). 

Furthermore, the use of “reference flow”, which relies on multiple population reference genomes, 

has been proposed as a means of simultaneously increasing alignment accuracy and reducing 

reference bias (Chen et al., 2020).  

 Two major issues associated with using RNA-seq for Differential Gene Expression are 

deciding the optimal number of biological replicates per treatment and the ideal library sizes (or 

sequencing depth). Using insufficient number of biological replicates and sequencing depth results 

in low statistical power in detecting differentially expressed (DE) genes and inefficient use of 

sequencing resources (Y. Liu et al., 2014). A number of studies that deeply analyzed the impact of 

number of replicates and library size on the power and FDR of DE analysis have concluded that 

replicate number is more impactful to the power of DE analysis than library size generally, 

however for lowly expressed genes both factors have the same level of influence (Ching et al., 

2014; Lamarre et al., 2018; Y. Liu et al., 2014; Schurch et al., 2016). Optimal library size for 

efficient DE analysis has been found to between 10 million (Y. Liu et al., 2014) and 20 million 

(Ching et al., 2014) reads per sample. (Lamarre et al., 2018) recommended an optimization for the 

number replicates as it was dependent on the FDR a study wished to achieve to be roughly 2 -r, 

where r is the replicate number. They further found that sensitivity of gene ontology (GO) 
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enrichment analysis is greatly improved by increasing the replicate number whilst increasing 

library size was found to enhance specificity. Based on a study with 48 biological replicates per 

treatment, (Schurch et al., 2016) propose using at least six biological replicates for each condition 

to generally discover significantly differentially expressed genes, and additionally recommend this 

number to be increased to at least 12 biological replicates per treatment if the desire is to identify 

significant DE genes across all fold changes. 

1.3 Study of natural variation in transcript accumulation via eQTL 

 Expression quantitative trait loci (eQTL) are genomic loci that influence the expression of 

genes. The first genome-wide eQTL mapping was undertaken in yeast. Using expression data of 

all genes expressed among recombinant offspring of two yeast parental strains genomic regions 

containing variants that control gene expression were identified(Brem et al., 2002). Examples of 

eQTL mapping applications in plants can be found in Arabidopsis, maize, soybean, among others 

(Bolon et al., 2014; Cubillos et al., 2012; X. Wang et al., 2018). Classification of eQTLs is usually 

based both on their locations relative to the gene or genes they affect and the type of mechanism 

through which they affect gene expression. The latter classifies eQTLs into cis- and trans-acting 

while the former splits eQTLs into local and distant (Figure 1-1). Local eQTLs are located near, 

linked to, the genes they influence while distant eQTLs are unlinked or poorly linked to the genes 

they influence. The exact distance for classifying eQTL as local or distant varies by study 
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Figure 1-1. eQTL classification. Regulatory variants are usually classified in two ways: first, based on their location relative to the 

gene(s) they affect into local and distant eQTLs, and second, according to their mode of action into cis- and trans-eQTLs. Adapted from 

(Albert & Kruglyak, 2015). 
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 Minimum distances of 2 Mb between eQTL and gene were used to distinguish local and 

distant eQTL classification in one study (Stranger et al., 2007). In another (Göring et al., 2007), 

distant eQTLs were only classified as such if they were found on different chromosomes than the 

genes they affected. With ever improving understanding of the consequences of gene expression 

at the organismal level eQTL analysis have the potential to uncover the precise biological 

mechanism through which DNA variation controls traits in the organism. Thus, eQTL studies can 

further aid prioritization of potential causal polymorphism among several candidates discovered 

through GWA. 

 A complementary method for identifying cis-regulatory changes is allele specific 

expression (ASE), which is characterized by differences in the expression of parental alleles within 

an F1 hybrid (Edsgärd et al., 2016; Springer & Stupar, 2007; Wittkopp et al., 2004). A cis-

regulatory allele can only alter the accumulation of the gene product encoded by the same DNA 

molecule as the allele (Figure 1-2). When ASE is detected in heterozygous individuals this 

provides proof for cis-regulatory changes between alleles by quantifying expression differences of 

the two alleles (Albert & Kruglyak, 2015).  

 

 

Figure 1-2. Mode of allele-specific gene expression in the F1. The inbred 1 allele is more highly 

expressed in comparison to the allele of inbred 2, the thickness of the arrows reflects this difference 

in expression. The allelic ratio in the F1 would be tilted toward inbred 1 if the gene is under the 

influence cis-eQTLs. On the other hand, if the gene is under trans-eQTL control then both parental 

alleles would be balanced. Adapted from (Waters et al., 2017). 
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 It is possible for genetic interactions to occur between cis-acting regions (such as promoters 

and enhancers) and trans-acting elements (such as transcription factors), these interactions are 

often difficult to distinguish from cis effects (León-Novelo et al., 2018). ASE has been found to 

play pivotal roles in abiotic stress response (Ereful et al., 2016; Waters et al., 2017), genomic 

imprinting and parent-of-origin effects (Springer & Stupar, 2007; Zhuo et al., 2017), and 

divergence in gene expression between species (Wittkopp et al., 2004). Like eQTL, ASE analysis 

can produce information that can help reduce the number of candidate genes to be investigated 

from GWA, and hence an important approach towards enhancing our understanding of the 

influence of genetic variation on molecular processes. 

1.4 The hypersensitive response of maize as a case study of transcriptome remodeling 

 Plant cell death happens during normal growth and development but can also be instigated 

during pathogen invasion and upon exposure to adverse environmental stimuli such as toxicity. 

The process which is orderly and determined by a genetically controlled program is known as 

programmed cell death (PCD). Hypersensitive response (HR) is a subclass of PCD characterized 

by the killing of cells immediately surrounding the infection point (Coll et al., 2011). It is an 

effective defense response to several classes of plant pests and pathogens such as insects, 

nematodes, bacteria, fungi, and viruses (Wu & Baldwin, 2010).  

 Plants use high-affinity transmembrane pattern-recognition receptors (PRR)—typically 

leucine-rich repeat and lysine motif (LRR and LysM) kinases—to detect pathogen/microbial-

associated molecular patterns (PAMPs or MAMPs). Detection of PAMPs triggers PRR-mediated 

immunity (PTI) leading to signaling for the transcription of immunity-related genes to inhibit the 

spread of the microbe. To be successful, pathogens must first circumvent the PTI response. This 

is achieved through the secretion of virulence effector proteins to plant cell apoplast to inhibit 

recognition of PAMP/MAMPs. Effectors are also delivered into host cells to block the PTI 

pathway. Plants use dominant resistance genes (R genes) to code for members of an extremely 

polymorphic superfamily of nucleotide-binding leucine-rich repeat (NLR) receptors as a second 

layer of immunity response known as effector-triggered immunity (ETI). ETI re-activates the 

effector–inhibited PTI pathway resulting in the expression of defense-related genes (Dangl et al., 

2013). The process eventually results in localized cell death at the point of infection to hinder 
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further colonization by pathogens. The genetic control of PTI and ETI is not fully understood, 

hence further studies are needed to uncover the precise regulatory mechanism that ultimately leads 

to plant immunity (Chakraborty et al., 2018). 

 This immune machinery is kept in an inactive state in the absence of effector proteins. 

However, mutants have been discovered that show constitutive activation of NLRs in a pathogen 

independent manner resulting in autoimmunity. These autoimmune mutants can be identified by 

their stunted growth and characteristic disease lesions (patches of dead or damaged cells) on leaves 

and stalks (Chakraborty et al., 2018). Among early reports of autoactive R genes in plants was that 

of the rp1 locus of maize (Chintamanani et al., 2010). The locus found on maize chromosome 10, 

is comprised of several tandemly. 

 Repeated R gene paralogs are shown to confer resistance to specific races of Puccinia 

sorghi Schwein, which causes common rust in maize. Frequent unequal crossovers between 

paralogs have rendered the locus highly unstable meiotically (Sudupak et al., 1993). One such 

unequal crossover and subsequent recombination event produced Rp1-D21 (Collins et al., 1999; 

Smith et al., 2010). Recognition and elicitation functions in the resulting Rp1-D21 protein are 

separated, leading to spontaneous activation and production of disease-resembling lesions 

independent of pathogen recognition. The Rp1-D21 gene exerts partially dominant action in the 

display of its lesion phenotype, and factors including genetic background, developmental stage, 

and the environment all affect the intensity of the phenotype. Using autoactive R genes to study 

etiology and genetics of HR removes the confounding effects from the pathogen (Chaikam et al., 

2011; Chintamanani et al., 2010). This approach, named mutant-assistant gene identification and 

characterization (MAGIC) analysis, is an effective forward genetics method that makes use of the 

phenotype of a mutant as a reporter to discover and analyze naturally undetectable genetically-

controlled variation (Johal et al., 2008). 

 The nested association mapping (NAM) population is the most extensive public collection 

of maize lines developed by the Maize Diversity Group to enable the systematic dissection of 

complex traits (McMullen et al., 2009). The 5000 recombinant inbred line (RIL) population 

comprising 25 subpopulations, each 200-line strong, was designed to allow linkage analysis and 

association mapping in a single integrated mapping population. This comprehensive mapping 

population was developed by crossing a common parent (B73) to 25 other diverse maize founder 

lines, namely Tzi8, Tx303, P39, Oh7B, Oh43, NC358, NC350, MS71, Mo18W, M162W, M37W, 



 

 

27 

 

Ky21, Ki11, Ki3, Il14H, Hp301, CML333, CML322, CML277, CML247, CML228, CML103, 

CML69, CML52, and B97. Subsequently, the F1s were selfed to produce 25 individual segregating 

F2 populations. Each F2 population was then selfed to the F6 generation through single-seed 

descent to generate 200 RILs (J. Yu et al., 2008). The NAM population has been used as a powerful 

resource to dissect and map QTL for flowering time control (Buckler et al., 2009), resistance to 

northern leaf blight (Poland et al., 2011), leaf traits such as angle and size (F. Tian et al., 2011), 

leaf flecking (Olukolu et al., 2016), as well as drought tolerance (C. Li et al., 2016), to name a few.  

 Although HR is a vital plant immune mechanism, much remains unknown about how it is 

triggered and controlled. Attempts to reveal the genetic determinants of HR have been hampered 

by the rapid and highly localized nature of the response. Previously, (Olukolu et al., 2013) used a 

combined genome-wide association (GWA) and mutant-assistant gene identification and 

characterization (MAGIC) approach in maize to assess the phenotypes of segregating F1 progenies 

created by crossing a collection of 231 diverse inbred lines to an inbred line H95 carrying the Rp1-

D21 mutation (denoted H95;Rp1-D21/+). The strategy successfully identified six significant 

single nucleotide polymorphisms (SNPs) associated with Rp1-D21-induced HR. The methodology 

was subsequently expanded substantially by crossing H95;Rp1-D21/+ to the 5000 NAM RIL 

population; 32 additive quantitative trait loci (QTL) were detected through joint linkage analysis, 

whereas GWA analysis with 7000 SNPs identified 44 significantly associated loci, 36 of which 

overlapped with the QTL identified with joint linkage analysis (Olukolu et al., 2014). 

 In the two studies described above, the closest genes to the significant SNPs or QTLs were 

proposed as candidate genes through which the variants act to generate the phenotype. However, 

the closest gene to an associated SNP may not always be the causative gene because variants can 

also act in trans. Thus, while these two previous studies and others have contributed immensely to 

a greater understanding of the genetic control of plant HR, a mechanistic understanding of how 

the identified loci influence HR is still lacking. As such, novel approaches are needed to fill these 

gaps in our knowledge. We propose a novel strategy that combines the MAGIC technique with 

eQTL and DGE analyses to reveal the precise biological mechanism through which DNA 

polymorphisms affect HR. This approach of conducting a genome-wide analysis of mRNA 

accumulation patterns in segregating populations can help re-construct the biochemical pathways 

of connected genes underlying HR. Since eQTL analysis treats gene expression as quantitative 

traits in a segregating population the mapped variants directly affect gene expression levels, 
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making it possible to draw conclusions about the functional consequences of the significant SNP 

loci. It is possible, with eQTL analysis, to uncover complex connections such as trans-acting gene 

interactions whereby one gene regulates the level of expression of another. We will further utilize 

allele-specific expression (ASE) analysis to cross-validate the cis-acting regulatory variation 

observed using eQTL analysis. 
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  THE USES AND DETECTION OF ERROR BY 

REPLICATION IN SEQUENCING EXPERIMENTS 

2.1 Introduction to the scientific problem 

 Isolating genes responsible for mutant phenotypes, a process commonly referred to as 

forward genetics, has been vital in unearthing a wide array of biological processes. Traditionally, 

positional cloning was used to localize a causal mutation and then a limited number of genes were 

sequenced to provide molecular identity of the allele. This technique was expensive, time-

consuming, and tedious mainly because as the limits of recombination-based mapping are reached, 

thousands of individuals must be genotyped to narrow the genomic region of interest containing 

the causative allele (Lukowitz et al., 2000; Sahu et al., 2020). Shotgun-sequencing and other 

sequencing-based approaches are relatively less costly and less time-consuming and have been 

used to successfully identify spontaneous (Ossowski et al., 2010) as well as induced mutations 

(Schneeberger et al., 2009) responsible for interesting phenotypes. Compared to spontaneous 

mutagenesis, induced mutagenesis has the added benefit of producing an increased number of 

mutations providing a source of genetic variation that can be harnessed for fundamental discovery 

of gene function and crop improvement efforts (Kumawat et al., 2019; Sahu et al., 2020). The 

ability to assess all positions in a genome for mutations has created a fantastic opportunity for gene 

function discovery but carries the problem of distinguishing the causative polymorphism for a 

change in phenotype from all other mutations visible in the data. 

 The ease of discovering the specific induced mutation responsible for a phenotype can be 

hampered by the massive number of variants produced, which increases with genome size. Typical 

treatments of plant genomes with the chemical mutagen ethyl methanesulfonate (EMS) generates 

thousands of mutations per individual (Comai & Henikoff, 2006). Thus, methodologies that can 

efficiently distinguish candidate causal variants from noncausal ones are key to the success and 

efficiency of forward genetics efforts. One approach, similar to positional cloning, is to use 

mapping information to narrow down the genomic region harboring the causative variant (Sarin et 

al., 2008). Another approach that uses recombination as well, but does not require the tedium of 

traditional mapping, relies on bulked segregant analysis to map causative mutation in a single 

sequencing run through alignments of short reads derived from DNA pooled from a large 
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segregating population to a reference sequence (Schneeberger et al., 2009). A third approach 

neither relies on prior mapping information nor a reference sequence. Rather, k-mers in whole-

genome sequences of backcrossed recombinants are compared to discover homozygous induced 

mutations behind phenotypes of interest (Nordström et al., 2013). In this case, as with the bulked 

segregant analysis case, recombination in an experimental population will result in unique k-mers 

associated with the causative polymorphism in the sequencing data from a pool of affected 

individuals.  

 Extensive pedigree information is often available for mutants in crop species and can be 

recorded in model organisms. Such data can be leveraged in the service of mapping variants to 

eliminate preexisting variation and thereby exclude large genomic regions as candidate locations 

for causative mutations. If an organism is self-fertile, then crossing the mutant to a non-mutant 

plant followed by recurrent selfing of heterozygous F1 plants produces advanced single-lineage 

families with all loci driven to homozygosity except for the causal variant. This results in 

phenotypically-affected and unaffected siblings that only differ at the mutant locus and tightly 

linked sites. An approach that utilizes exclusion of variants common to affected and unaffected 

siblings as well as the elimination of previously identified variation to remove confounding 

noncausal mutations has been successfully demonstrated in Sorghum (Addo-Quaye et al., 2017) 

and Arabidopsis (Dolan et al., 2017; Silva-Guzman et al., 2016). 

 The plant species Arabidopsis thaliana has been the model system of choice for plant 

functional analysis for several reasons. First, it is suitable for classical genetics experiments due 

to its small stature, quick generation time of 5-6 weeks, ability to produce an abundance of 

offspring, relative ease of cultivation in controlled environmental conditions, and simplicity of 

maintaining mutants either through self-fertilization or out-crossing (Page & Grossniklaus, 

2002).Second, the fully sequenced genome of Arabidopsis (125 Mb) is among the smallest (Kaul 

et al., 2000) and harbors relatively few repeats as compared to other plant genetics models (Page 

& Grossniklaus, 2002). Third, and perhaps most significant, Arabidopsis is amenable to 

Agrobacterium-mediated transformation. This has allowed for the generation of thousands of 

induced mutants that are available to the research community, serving as invaluable tools for 

experimental investigation of gene function. For these reasons Arabidopsis is an exceptional model 

to test the effectiveness of a strategy for the rapid and efficient detection of causative alleles in 

phenotypically affected mutants. This approach speeds up forward genetic screens in Arabidopsis 
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and can potentially be extended to more complex eukaryotic systems to aid the functional 

characterization of genes. 

 I leveraged the availability of extensive sequence data and collaborator’s pedigree 

information in Arabidopsis to eliminate pre-existing polymorphisms and accelerate the discovery 

of causal polymorphisms in phenotypically affected mutants. By using whole-genome sequence 

information from phenotypically unaffected individuals from EMS populations and whole-

genome sequence data from previously published unrelated mutants I was able to create a portable 

bioinformatics approach that can be implemented by anyone to greatly reduce the number of false-

positive candidate variants. In addition, the inclusion of pedigree information and the very low rate 

of false positive variant positions allowed me to test the presumed pedigrees of lines, rather than 

rely on the reported pedigree as an assumption. This allowed me to discover errors in biological 

material handling. Early successes in this approach led me to explore the methods originally 

developed for EMS mutagenesis and point mutations for ionizing radiation mutagenesis and the 

discovery of insertion and deletion (indel) polymorphisms. The flexibility and robustness of this 

approach allows a test of the assumptions about the material and to save substantial effort for bench 

scientists by eliminating from further analysis materials that were assumed to be novel but are not.  

2.2 Methods 

 A standard pipeline that used paired reads as input to produce high-quality variants as 

output was developed and applied to Case Studies 1 - 6 described below. Briefly, paired-end reads 

were mapped to the TAIR10.29 reference genome downloaded from The Arabidopsis Information 

Resource (TAIR) using BWA-MEM (H. Li & Durbin, 2009). Mapping statistics such as the 

number of QC-passed/failed reads, properly paired reads, and singleton reads were generated with 

SAMtools (H. Li et al., 2009) using the flagstat command with default options. Possible PCR 

duplicates, which are artifacts that can be introduced into the sample during library construction, 

were removed with the rmdup command of SAMtools. SNP and small indel calling was carried 

out in a two-step process. Summary information retrieval from the aligned files as well as 

computation of genotype likelihood was carried out by SAMtools mpileup command and 

subsequently the BCFtools view command was used to perform variant calling. Initial variant 

quality filtering was achieved using the varFilter command of the vcfutils.pl script with the -D100 
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option to produce an initial list of variants in a Variant Call Formatted (VCF) file. This option not 

only excluded variants with coverage depth of greater than 100 reads or less than 2 reads, it also 

eliminated variants with root mean square quality of less than 10 as well as variants detected within 

three bases of a gap (R. Li et al., 2009) Additional filtering was performed with SnpSift (Cingolani, 

Patel, et al., 2012) to further keep only variants that have a phred-scale quality of at least 20. 

 Several additional case study-specific processing steps were carried out to meet the goals 

of the specific experiment. For case studies 1 and 2 the causative mutation was expected to be a 

SNP, as such, indels were eliminated from the list of high-quality variants using the VCFtools 

remove-indels command to retain only SNPs. Contrastingly, in case study 3, an indel was expected 

to encode the causative mutation, hence VCFtools --keep-only-indels command was additionally 

executed to generate a set of high-quality indel variants. To further keep only homozygous SNPs 

(case studies 1 – 3, where a homozygous mutation was expected), the SnpSift command filter 

"( (( DP4[0] = 0 ) & ( DP4[1] = 0 )) & (( DP4[2] > 1 ) & ( DP4[3] > 1 )) )" was used. On the 

other hand, when the expected mutation is heterozygous (majority of mutations in case study 2), 

the SnpSift command filter "((countHet() > 0) && (DP >= 25))" was run to retain only 

heterozygous SNPs with a depth of at least 25 reads. 

 To create an experiment-specific false-positive SNP list (case study 1 – 3), a custom 

program was written and used to identify SNPs present in phenotypically unaffected pools of 

individuals. All individuals descended from seeds that were independently mutagenized with EMS, 

or phenotypically unaffected individuals were used to construct a collection of non-causative SNPs. 

These SNPs are considered false positives because SNPs present in multiple lineages or unaffected 

individuals cannot be causative for a phonotype only observed in one lineage. The VCFtools 

exclude-positions command was then used to exclude these positions from candidate mutations. 

The TAIR10.29-associated annotation files were retrieved from TAIR and used in predicting the 

effects of SNPs on gene function using the SnpEff computer program (Cingolani, Platts, et al., 

2012).  

 An analysis workflow was developed to identify likely locations of causative 

polymorphisms. Plants carrying the induced mutation were outcrossed to derive F2 populations 

containing pools of phenotypically affected individuals. In case study 1 for example, the mutation 

was induced in Col background, hence, to narrow down its location a Ler x Col F2 population was 

created and required analysis. In the pools of phenotypically affected F2s the frequency of the Ler 
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SNPs will approach zero as their position gets more tightly linked to the causative mutation. DNA 

from pools of mutant F2 individuals were sequenced and analyzed as follows. A modification to 

the variant calling step in the standard pipeline was made to output all positions by piping the 

output of SAMtools mpileup step to bcftools view with the -Ncg option to generate a new VCF. 

This new file was then filtered with a list of known SNPs from the outcross genotype to retain only 

positions polymorphic in the outcross genotype. Allele counts from the VCF’s DP4 column were 

retrieved and processed to compute allele frequencies. Allele frequency per position was computed 

as (DP4[2]) + (DP4[3]) / (DP4[0]) + (DP4[1]) + (DP4[2]) + (DP4[3]). These values were then used 

in the construction of allele frequency plots for each chromosome from each mutant. 

 A comparison of three indel calling tools was carried out in case study 4 to assess their 

accuracy for detecting indels of varying size ranges. SAMtools, which was our preferred software 

package for SNP detection, was again used here by virtue of the fact that it can detect small indels 

(≤10 bp) (Kim et al., 2017). GATK HaplotypeCaller (GATK HC) (Poplin et al., 2018), was chosen 

for its ability to detect indels of up to 50 bp size (Wang et al., 2022), and LUMPY (Layer et al., 

2014) was used for the detection of large (>100 bp) structural variants including insertions, 

deletions, inversions, duplications, and translocations (Layer et al., 2014; D. X. Liu et al., 2021). 

Indel calling with SAMtools used the standard pipeline described above followed by exclusion of 

SNPs from the VCF output.  

 The GATK HC indel calling pipeline first converted paired reads to unmapped BAM files 

and marked adapter sequences using picard-tools FastqToSam and MarkIlluminaAdapters 

packages, respectively. Mapping was carried out with BWA-MEM using MostDistant option as 

the primary alignment strategy to designate alignments giving the largest insert size with the mate 

as primary. Duplicate reads were identified with MarkDuplicates command from picard-tools and 

excluded from alignment files. The HaplotypeCaller from GATK version 3.5 was subsequently 

utilized for SNP and indel calling with options “-stand_call_conf 30 -stand_emit_conf 10” as 

initial filters for writing variants to VCF. Initial list of indels were used as basis for realignment 

using IndelRealinger and recalibration with BaseRecalibrator (both GATK packages) to improve 

original alignments before re-running the variant calling step.  

 LUMPY was utilized for variant calling as follows. Paired reads were aligned to the 

reference with BWA-MEM to produce alignment files. These were then processed with SAMtools 

view command in three separate steps to obtain insert size statistics, and to extract discordant 
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paired-end and split-read alignments for use in the variant calling step. These three files were used 

as input for the lumpy command which was executed with “-tt 0” option to skip read trimming 

and “-mw 4” option to set the minimum weight for a call at 4 across all samples.  

 To create an experiment-specific false-positive indel list, a custom program was written 

and used to identify indels present in phenotypically unaffected pools of individuals. All sequenced 

individuals descended from seeds that were independently mutagenized or phenotypically 

unaffected individuals were used to construct a collection of non-causative indels. These indels 

are considered false positives because indels present in multiple lineages or unaffected individuals 

cannot be causative for a phonotype only observed in one lineage. The VCFtools exclude-positions 

command was then used to exclude these positions from candidate mutations. The TAIR10.29-

associated annotation files were retrieved from TAIR and used in predicting the effects of SNPs 

on gene function using the SnpEff computer program. 

2.3 Results 

 Often, bioinformatics work occurs post-hoc as a consultant or in collaboration with field 

breeders, molecular biologists, or other owners of biological material. As a result, creativity and 

flexibility in analysis approach is required to both maintain quality control of the data in a post-

hoc scenario or to provide design advice in an advance collaboration. Various implementations of 

my approach are presented here as a series of case studies with best practices demonstrated by the 

discoveries. The approaches for informatic processing of genomic data vary dependent on the 

pedigrees and experimental design. In all cases, the output includes causative polymorphisms and 

genes for phenotypically affective variation as well as quality control insights into experimental 

errors or better practices upstream of the analysis. 

2.3.1 Case Study 1: Mutant mapping in a multiple mutant pharmacogenomics experiment. 

 In this case, our collaborators in the Chunhua Zhang Lab at Purdue University utilized a 

specially constructed line for mutant discovery. Their design involved generating a reporter line 

carrying the Green fluorescent protein of Aqueoria fused to the PIN-FORMED2 (PIN2) auxin 

transporter. They previously identified novel chemicals that altered the localization of this fusion 

protein. Their mutant screen was carried out to find A. thaliana mutants that modified the PIN2-
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GFP localization during drug treatment. The intent was to identify the genes encoding these 

mutants and use the identity of these genes to develop hypotheses about the drug’s function. 

 To accelerate this, the non-causative SNPs present in the progenitor line were identified by 

sequencing the PIN2-GFP line (Table 2-1). After removal of error-prone positions the only SNPs 

altering coding sequences via GA/CT changes in the PIN2-GFP line were in the genes 

AT1G07110/FKFBP, AT2G17700, and AT2G30500/NET4B. This is a demonstration of the 

power of the subtraction of error-prone positions as this line began with 4382 high-quality SNP 

calls but only 137 SNPs remained after subtraction. These SNPs were excluded from consideration 

as causative polymorphisms for EMS mutants derived from this line with novel phenotypes. These 

were included along with additional known and previously reported error-prone SNP positions in 

Col (Silva-Guzman et al., 2016) and independently EMS mutagenized Col (Dolan et al., 2017) in 

a subtraction file specific to this project. 

 The steps described above for read mapping, variant calling, indel exclusion and allele 

frequency mapping were conducted for the F2 samples. However, for D5R, ES3R long root, ES3R 

no root, exo70a1-3, rml2-10, and rml2-3 very few polymorphisms were identified as possible 

causative polymorphisms, and a larger number of variants with a small number of reference reads 

were present. Discussion with the Zhang lab indicated that phenotyping the mutant was difficult, 

and certainty that the mutant pool only contained mutant individuals was low. As a result, I relaxed 

the criterion for homozygosity for those samples to allow one read on the forward and/or reverse 

reference reads due to poor phenotype certainty in collaborators lab. Allele frequency plots were 

generated per chromosome for each F2 as described above. For sequence data derived from M2 

mutant samples, data were processed as described above but the SNP positions present in the PIN2-

GFP progenitor line were excluded as possible causative polymorphisms. 
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Table 2-1. Description of materials used for sequencing in the multiple-mutant 

pharmacogenomics experiment 

Sample ID Experiment 

14.40_MP DNA form a pool of 500 seedlings from a mapping population of 14.40 mutant 

5.23_M2 DNA from a single M2 seedling of 5.23 mutant 

5.9_MP DNA from a pool of 500 seedlings from a mapping population of 5.9 mutant 

6.5_M2 DNA from a single M2 seedling of 6.5 mutant 

6.5_MP DNA from a pool of 100 seedlings from a mapping population of 6.5 mutant 

PIN2_GFP 

DNA from PIN2:GFP, serves as reference sequence as the mutation was 

generated from this background 

D5R_mutant_MP 

DNA from a pool of ~100 seedlings from D5R mutant. Mutant was crossed to 

Ler and resistant seedlings from F2 selected 

ES3R_long_root_M

P 

DNA from a pool of ~100 seedlings from a mapping population of ES3R long 

root mutant 

ES3R_no_root_MP 

DNA from a pool of ~100 seedlings from a mapping population of ES3R no root 

mutant 

exo70a1-3 DNA from pooled seedlings of an exo70a1-3 homozygous mutant. 

rml2-10 

DNA from a pool of ~100 seedlings from rml2-10 mutant allele in Col 

background 

rml2-3 DNA from a pool of ~100 seedlings from rml2-3 mutant allele in Col background 
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Table 2-2. Summary results from sequencing, variant calling and false-positive SNP removal in 

the multiple-mutant pharmacogenomics experiment. 

Sample ID PE reads Coverage (X) 
Mappe

d % 

SNPs 

+ 

Indels 

SNPs 
HQ 

SNPs 

FP-

subtracte

d SNPs 

% 

(FP/HQ) 

14.40_MP 41,830,141 31 99% 
595,81

5 

527,73

5 

458,91

4 
98 99.98 

5.23_M2 44,843,011 33 90% 8,531 6,587 5,012 534 89.35 

5.9_MP 38,234,989 28 99% 
629,37

2 

558,83

6 

484,04

3 
117 99.98 

6.5_M2 47,302,778 35 97% 7,791 5,877 4,677 372 92.05 

6.5_MP 41,884,572 31 90% 
568,26

2 

505,73

2 

417,29

4 
46 99.99 

PIN2_GFP 45,857,647 34 99% 7,572 5,652 4,393 137 96.88 

D5R_mutant_MP 70,176,552 52 99% 
679,17

8 

599,74

3 

547,70

6 
2812 99.49 

ES3R_long_root_

MP 

104,484,19

7 
77 99% 

590,67

2 

525,14

7 

467,00

2 
682 99.85 

ES3R_no_root_M

P 
63,525,351 47 99% 

514,27

8 

459,44

1 

373,65

4 
781 99.79 

exo70a1-3 34,993,517 26 99% 8,896 6,535 4,415 593 86.57 

rml2-10 50,939,235 38 98% 8,856 6,603 4,412 686 84.45 

rml2-3 72,197,625 53 97% 8,304 5,962 4,616 696 84.92 
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Table 2-3. Predicted effects of variants on gene expression in the multiple-mutant 

pharmacogenomics experiment. 

Sample ID 

FP-

subtracte

d SNPs 

G/A C/T 

%(G/

A or 

C/T) 

Silen

t 

Stop 

gaine

d 

Missens

e 
Splice  

14.40_MP 98 22 34 57.1 2 2 8 2 

5.23_M2 534 135 287 79 49 11 134 14 

5.9_MP 117 18 37 47 1 1 7 0 

6.5_M2 372 130 116 66.1 36 4 79 12 

6.5_MP 46 14 14 60.9 1 2 0 0 

PIN2_GFP 137 7 12 13.9 6 0 23 2 

D5R_mutant_MP 2812 388 376 27.2 141 3 160 0 

ES3R_long_root_

MP 
682 57 63 17.6 18 1 56 0 

ES3R_no_root_M

P 
781 79 100 22.9 6 0 7 0 

exo70a1-3 593 50 53 17.4 16 1 56 0 

rml2-10 686 54 81 19.7 3 0 6 0 

rml2-3 696 58 82 20.1 17 1 65 0 

 

 Read coverage and mapping rate averaged 41X and 97%, respectively, across the 12 

samples analyzed in this experiment (Table 2-2). This was sufficient to call high-confidence SNPs. 

The number of SNPs discovered in samples derived from mapping populations was nearly 85-fold 

higher than those of samples from single plants. Filtering and false-positive SNP exclusion 

produced a reduced number of candidates causative polymorphisms among the high-quality SNP 

positions by 98% on average.  

 Seedlings derived from rml2-10 and rml2-3 mutant alleles in the Col background (Table 

2-1) were utilized for DNA sequencing to identify the causative mutation responsible for the root 

meristemless phenotype. Reads alignment, variant calling, and variant filtering were all carried out 

as described in above. Both of these mutant samples’ sequence data had a large majority of SNPs  
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Figure 2-1. Mapping of the causative mutation in D5R to chromosome 5. Plot of allele frequency 

(y-axis) along chromosomal positions in bp (x-axis). Point where plot touches the x-axis indicates 

location of the causative polymorphism. 

 

in common. Of the 686 SNPs identified in the rml2-10 mutant 632 (92.1%) were also found in 

rml2-3 (Table 2-3), indicating they are not independently derived EMS mutants, but rather were 

segregants from the same M1 individual or inadvertent stock duplicates in the lab. This 

demonstrates, again, that the analysis process is robust to errors in pedigree assignment. Had we 

subtracted SNPs from within this experiment and proceeded under the assumption that the pedigree 
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was correct, we would lose true SNPs as a result of the non-independence and subtraction 

procedure. As the causative SNP must be present in both rml2-3 and rm2-10, we annotated all 632 

of the shared SNP positions for effects on protein coding genes. Limiting our consideration to G 

to A or C to T SNPs, likely induced by EMS, identified only four mutations altering a protein 

coding gene in the two rml2 mutants including AT1G17230, AT3G56550 (PCMP-H80), 

AT4G13490, and AT5G44940.  

 

 

Figure 2-2. Mapping of the causative mutation in ES3R_no_root to chromosome 2. Plot of allele 

frequency (y-axis) along chromosomal positions in bp (x-axis). Point where plot touches the x-

axis indicates location of the causative polymorphism. 
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 To map causative polymorphisms our collaborators produced F2 mapping populations 

(denoted with the suffix “MP” in Table 2- 6) by outcrossing to Landsberg erecta followed selection 

of affected individuals displaying the respective phenotype. Sequencing was carried out on six 

DNA pools from about 100-500 seedlings derived from each mapping population (Table 6). The 

location of likely causative polymorphisms was narrowed using allele frequency plots and only 

those changes present at or near the maximum Col-0 allele frequency were considered.  

 Map positions for the other mutants were clearer and provided smaller windows with a 

limited number of candidate polymorphisms. The causative allele in D5R clearly maps to the tail-

end of chromosome 5 (Figure 2-1). This region contained protein-coding changes consistent with 

EMS mutagenesis in AT5G62890 (NAT6), AT5G63850 (AAP4) or AT5G64740 (CESA6). Thus, 

all three were equally possibly responsible for the mutant phenotype. The phenotype in D5R is 

characterized by longer roots in the presence of the drug which causes plants to display a reduced 

cellulose content, strongly implicating CESA6 as the causative gene. Having identified this as the 

causative polymorphism, a large number of other mutants with the same drug sensitivity were 

tested for polymorphisms in CESA6 and fifteen different alleles of CESA6 were identified as 

responsible for this drug sensitivity (Huang et al., 2020). Of note in this project, requiring only 

non-reference reads for homozygosity missed the causative SNP. The iterative discussion with the 

collaborating lab and modification of the SNP calling protocol to match the lab conditions and 

pedigree certainty was required for the success of this approach 

 The mutation in ES3R no root maps clearly to chromosome 2 position 1.4 x 107 (Figure 2-

2). Within the mapped window mutations affecting protein-coding sequences were identified in 

AT2G30320, AT2G31190 (RUS2), AT2G31900 (XI-F), AT2G32460 (MYB101), and 

AT2G33680 (PCMP-E19). Drug ES3 disrupts endoplasmic reticulum (ER)-protein stability 

(Zhang et al., 2016), however target of the drug is unknown. The phenotype is no roots upon 

treatment with the ES3 drug. It has also been observed that the line segregates for no roots when 

not grown in the presence of the drug, indicating that the phenotype is not drug dependent. 

Although line appears to segregate for long roots, it did not map to any locus and may be a 

dominant phenotype at any position, linked or unlinked. Presumably, homozygous mutants can 

grow to maturity on soil albeit small and unhappy. 

 The causative polymorphism in line 5.9 maps to top of chromosome 1 (Figure 2-3). This 

region contained protein-coding mutations in AT1G01510 (Angustifolia), AT1G02340 (HFR1), 
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AT1G02590, AT1G03590 (PPC6-6), or AT1G04040. Consistent with the known phenotype of 

loss-of-function alleles at Angustifolia, which affects trichome morphology (Bai et al., 2013), and 

knock-out allele encoded in line 5.9 this mutant displays the an1 loss-of-function phenotype. It is 

conceivable that ANGUSTIFOLIA is required for PIN2-GFP localization, and this mutant should 

permit testing of that by further linkage analysis in subsequent experiments. The causative 

polymorphism in line 6.5 maps to the bottom end of chromosome 5 (Figure 2-4) and likely impacts 

AT5G56369, AT5G57210, AT5G59710 (VIP2), AT5G63570 (GSA1), AT5G64760 (RPN5B), 

AT5G64950. The causative polymorphism in sample 14.40 has a clear map position at 

approximately 9.0 x 106 bp on chromosome 4 (Figure 2-5); list of candidates includes AT4G13650 

(PCMP-H42), AT4G16650, AT4G16950 (RPP5), AT4G17300 (SYNO) AT4G18670 (LRX5). No 

map position was identifiable for the 5.23 through sequencing. The list of putative causative genes 

is as follows: AT1G18335, AT1G22410, AT1G70630, AT3G10490 (ANAC052), AT3G27040, 

AT3G57420, AT4G02250, AT4G29180,  and AT5G32590. 
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Figure 2-3. Mapping of the causative mutation in 5.9_MP to the chromosome 1. Plot of allele 

frequency (y-axis) along chromosomal positions in bp (x-axis). Point where plot touches the x-

axis indicates location of the causative polymorphism. 
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Figure 2-4. Mapping of the causative mutation in 6.5_MP to chromosome 5. Plot of allele 

frequency (y-axis) along chromosomal positions in bp (x-axis). Point where plot touches the x-

axis indicates location of the causative polymorphism. 
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Figure 2-5. Mapping of the causative mutation in 14.40_MP to chromosome 4. Plot of allele 

frequency (y-axis) along chromosomal positions in bp (x-axis). Point where plot touches the x-

axis indicates location of the causative polymorphism. 

2.3.2 Case Study 2: Informatic experimental design robust to alternative explanations: 

CRISPR off – target and pedigree errors in heterozygous mapping experiments 

 The lab of Dr. Sharon Kessler was seeking to utilize sequencing to permit the study of 

mutants altering the performance of gametophytes. A set of mutants, independently mutagenized 

with EMS in Wassilewskija background, were screened in an attempt to map by segregation 

distortion in a Col x Ws hybrid background. F1 hybrids were used to generate two F1BC1 pools 

consisting of 150 individuals each, to be analyzed to check for segregation distortion (Table 2-4). 

A second mutant with an unexpected phenotype was recovered in a CRISPR screen from the same 
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project. The gene targeted by the guide-RNA construct, MLO8, was not mutated and so the Kessler 

lab was interested in identifying the causative polymorphism for the loss of stigmatic papillae 

observed in their mutant. Unlike with EMS mutagenesis, this was likely an indel polymorphism 

and required a different analysis.  

 Paired-end reads from all samples were aligned to TAIR10 Arabidopsis reference 

sequences, followed by variant calling and filtering as described in the above Methods section. 

High-quality homozygous SNPs common to SK1, SK2, SK4, SK5, SK6, SK23, SK25, SK26, 

SK27, SK28 were removed from each sample. The unique set of SNPs for each sample were then 

annotated using SnpEff functional prediction tool. A set of reliable Ws SNPs was generated by 

compiling a list of SNPs common among SK1, SK2, SK4, SK5, SK6, SK27, and SK28. Read 

coverage at these reliable Ws positions were extracted for samples SK21, SK22, SK25, SK26, and 

used to create allele frequency plots. Unfortunately, causative loci could not be clearly seen on any 

of the plots. High-quality heterozygous SNPs common to SK1, SK2, SK4, SK5, SK6, SK27, and 

SK28 were compiled and excluded from all samples. Unique heterozygous SNPs for each sample 

were then annotated with SnpEff. 
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Table 2-4. Description of plant materials used for sequencing. 

Sample ID NL number Mutant Background/ experiment 

Expected 

mutation type Genotype 

SK1 NL84-23 ntaE 14E-6 nta-1/nta-1 (Ws) enhancer mutant EMS Heterozygous for mutation 

SK2 NL87-D ntaE 13C-5 nta-1/nta-1 (Ws) enhancer mutant EMS Heterozygous for mutation 

SK4 NL88-9 ntaE 9D-4 nta-1/nta-1 (Ws) enhancer mutant EMS Heterozygous for mutation 

SK5 NL89-11 ntaE 6H-7 nta-1/nta-1 (Ws) enhancer mutant EMS Heterozygous for mutation 

SK6 NL90-17 ntaE 11H-1 nta-1/nta-1 (Ws) enhancer mutant EMS Heterozygous for mutation 

SK21 NL100-5 X Col-0 ntaE NL-4-27 

nta-1/nta-1 (Ws) enhancer mutant 

outcrossed with nta-3 (Col-0) EMS 150 F1BC1 seedlings pooled 

SK22 NL102-4 X Col-0 ntaE NL-1R 

nta-1/nta-1 (Ws) enhancer mutant 

outcrossed with nta-3 (Col-0) EMS 150 F1BC1 seedlings pooled 

SK23 TCD 258-1 dsp mutant 

Col-0, mutant arose in a CRISPR 

construct against MLO8 deletion? Homozygous for mutation 

SK25 NL 102-4 ntaE NL-1R 

F1 mother plant used for segregation 

distortion cross (seq sample SK22) 

(Ws/Col hybrid) EMS  Heterozygous for mutation 

SK26 NL100-5 ntaE NL-4-27 

F1 Mother plant used for segregation 

distortion cross (seq sample SK21) 

(Ws/Col hybrid) EMS Heterozygous for mutation 

SK27 ELK56 ntaE 18G-6 

nta-1/nta-1 (Ws) enhancer mutant, pool 

of 50 BC3 plants  EMS Heterozygous for mutation 

SK28 ELK40 ntaE 3E-1 

nta-1/nta-1 (Ws) enhancer mutant, pool 

of 50 BC3 plants  EMS Heterozygous for mutation 
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Table 2-5. Summary results from sequencing, variant calling and false-positive SNP removal. 

Sample 

ID PE reads 

Coverage 

(X) 

% 

Mapped 

Total 

Indels 

Total 

SNPs 

HQ 

SNPs 

Homoz. 

HQ 

SNPs 

FP-

subtracted 

Homoz. 

SNPs 

HQ Het. 

SNPs 

with 

DP>=25 

FP-

subtracted 

Het. SNPs 

SK1 82,705,575 61 98.46 98,859 667,059 631,671 448,416 5,153 46,859 3,927 

SK2 53,717,057 40 98.31 99,159 694,251 653,732 463,810 3,069 70,318 3,776 

SK4 46,251,002 34 98.37 98,778 697,671 655,717 467,186 3,138 74,488 6,335 

SK5 53,321,285 39 98.47 99,279 692,357 653,174 469,723 3,031 69,479 3,807 

SK6 52,672,323 39 98.35 99,095 694,902 654,304 463,891 3,173 70,784 4,000 

SK21 55,033,628 41 99.19 42,229 341,310 263,641 585   259,196 244,397 

SK22 68,811,775 51 99.57 2,086 4,575 3,652 611   2,717 1,885 

SK23 54,539,323 40 99.23 2,003 4,965 3,909 682 78 2,870 1,983 

SK25 64,865,107 48 97.04 2,042 4,297 3,373 608 18 2,414 1,651 

SK26 59,476,834 44 98.61 75,154 552,374 516,004 581 18 507,778 463,245 

SK27 55,155,445 41 98.37 99,499 693,657 654,296 464,883 3,292 69,068 3,949 

SK28 66,684,774 49 98.41 99,720 680,056 643,120 460,517 3,982 56,360 3,439 
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 An inconsistent number of heterozygous SNPs was observed across the expected Col x Ws 

hybrids in samples SK21, SK22, SK25, and SK26 (Table 2-5). These indicated that multiple 

populations were constructed from non-segregating material resulting in a low number of 

heterozygous SNPs in lines SK22 and SK25. This is indicative of pedigree errors in the mapping 

and phenotyping of the mutant resources and resulted in the collaborating lab refocusing efforts. 

Again, this demonstrates the value of informatic processing of sequencing data in a pedigree aware 

manner and interaction between informatics and bench scientist efforts. 

 For sample SK23, I took an approach more similar to the identification of recessive mutants 

described in the previous cases studies. This line carried a recessive mutation that blocked 

stigmatic papillae production which arose spontaneously in a plant carrying a guide-RNA and 

Cas9 protein expression cassette targeting the MLO8 gene (Table 2-4). Alignment of reads and 

SNPs calling was done as described previously. As this mutant was generated in the Col-0 

background, known error-prone SNP positions in Col were excluded from the high-quality 

homozygous SNPs followed by annotation with SnpEff. Because this mutant was generated in a 

Cas9 expressing plant, I suspected that genome editing by this nuclease resulted in an indel 

polymorphism, perhaps at an off-target site, responsible for the phenotype.  

 Indels were called from the alignments using SAMtools and filtered to exclude indels with 

a pred-scaled quality score below 20. Indel positions were identified in all previously sequence 

Col samples in the Dilkes lab by following the same procedure and these positions  were excluded 

as error-prone positions from the high-quality indels. The remaining indels, found only in the SK23 

mutant, were then annotated using SnpEff. Two high-impact deletions were observed; the first was 

an AG -> A on chromosome 4 start position 12059494 affecting the AT4G23000 gene and the 

second was a GTCCTGCGTCAAAAGGTT -> GT on chromosome 5 start position 18404413 

resulting in splice acceptor variant, splice region variant, 3 prime UTR variant and an intron variant 

in the AT5G45420 gene. Additionally, a moderate impact deletion of 

TTCCTTCCCGCATTTTATCCAG -> T was detected on chromosome 5 start position 16821238, 

causing an in-frame change in DL1 (AT5G42080). This last gene is likely to encode the causative 

polymorphism in the SK23 mutant as stigma papillae also failed to elongate in a previously 

described loss of function allele (Collings et al., 2008; Kang et al., 2003) . This once again 

demonstrates the value of informatics approaches to distinguish called polymorphisms that can 
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and cannot possibly encode causative polymorphisms and then integrating biological information 

from the literature. 

2.3.3 Case Study 3. Experimental design robust to alternative explanations: T-DNA 

integration induced INDELs 

 The strategy of false-positive exclusion demonstrably worked well with SNPs and was 

extended to indels in the previous case study. I extended the SNPs approach and created an analytic 

pipeline to produce a list of indels found in individuals derived from seeds that were independently 

mutagenized, or phenotypically unaffected pools of individuals. Just as with the SNPs analyses, 

these indels are deemed false positives, or not phenotypically relevant, because indels harbored in 

multiple lineages or unaffected individuals cannot be the determinants of a phenotype only seen 

in a single lineage. The effectiveness and limitations of this approach was further explored in this 

and the next case study. 

 In this experiment, our collaborators in the Kelly lab at Iowa State University sought to 

identify the causative mutation behind a long hypocotyl phenotype (termed slim shady) observed 

in a T-DNA insertional line SALK_015201. This line had been previously published as a result of 

it encoding a disruption allele at IMMUNOREGULATORY RNA-BINDING PROTEIN (Dressano 

et al., 2020). However, transgenic plants overexpressing IRR retained the long hypocotyl 

phenotype and additional knock out alleles of IRR showed wild-type hypocotyl length, 

demonstrating that the long hypocotyl phenotype was likely due to an unrelated mutation. This 

prompted experiments to discover the true genetic basis for the long hypocotyl phenotype. This 

line was used as a control in an unrelated study of transposon dynamics (Hu et al., 2019). Genomic 

sequence data for Arabidopsis thaliana accessions SALK_015201 and the phenotypically 

unaffected Ds line CS85255 were previously characterized in an unrelated study (Hu et al., 2019). 

The paired-end 150-bp reads from these lines were retrieved from the Sequence Read Archive and 

mapped to the TAIR10 reference genome and taken through the variant calling steps described 

above.  

 I produced a list of indels present in both SALK_015201 and the phenotypically unaffected 

CS85255. Variants found in both lines cannot be responsible for the long hypocotyl phenotype 

observed only in SALK_015201. Exclusion of these false-positive indels from the candidate 

causative variants and subsequent annotation were carried out as described above. This re-
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processing of publicly available whole-genome data for SALK_015201 and subsequent use of our 

filtering strategy identified a 1-bp deletion of “T” at the phyB locus inside the last exon of the gene 

(Figure 2-6). This deletion at the 3,370 position in the PHYB coding sequence results in a nonsense 

codon that converts a leucine codon to a premature stop codon and truncated the last 48 amino 

acids. Given the phenotype of the slim shady mutant strongly resembled prior PHYB loss of 

function alleles, this candidate gene was reported to the collaborating lab. Additional, targeted, 

follow-up experiments demonstrated that my informatics approach was successful and the deletion 

allele in PHYB was the causative polymorphism for the long hypocotyl phenotype in this line. 

Additional details on this collaborative work can be found in (Dash et al., 2021).  

 

 

Figure 2-6. Genomic sequencing of Arabidopsis accession SALK_015201 uncovered the phyB-ss 

allele, a 1 bp deletion at position 3,370 of PHYTOCHROME B which leads to a premature stop 

codon immediately after L1125 amino acid located inside the histidine kinase-related (HKR) 

domain (Cartoon adapted from (Dash et al., 2021)). 

2.3.4 Case Study 4. Robust removal of false positive insertion deletion calls improves 

mutant allele discovery and comparison of mutagenesis effectiveness across 

mutagens. 

 In this case study, I assessed the performance of the false-positive exclusion strategy in 

detecting indels of varying size ranges. Mutants derived following treatment with three different 

mutagenic agents with varying mutational patterns were used. Two physical mutagens, fast 

neutron (FN) and gamma irradiation, and the chemical agent EMS were used. FN bombardment 

has been reported to generate deletions ranging from a single base to 18 Mb in rice, with a majority 

falling within the 1 – 4 kb size range (X. Li et al., 2001). In Arabidopsis, it has been demonstrated 

that these mutagens produce 1 bp substitutions at higher rate than the large deletions (Belfield et 

al., 2012). These single base substitutions were also observed to be the predominant mutations 

NTE PAS GAF PHY PAS-A PAS-B HKRD

N-terminal domain C-terminal domain

phyB-ss

L1125stop
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when Li et al (2016) sequenced 41 rice lines exposed to FN irradiation. Gamma irradiation is 

known to be the predominantly used ionizing radiation for mutant production (Hase et al., 2020; 

F. Li et al., 2019). Even though gamma rays induce mostly small indels and point mutations(Hase 

et al., 2020; S. Li et al., 2018; Tan et al., 2019), large indels, including whole chromosomes have 

also been reported (Henry et al., 2015). EMS, a commonly used chemical alkylation agent, is the 

major means of mutagenesis in Arabidopsis (Page & Grossniklaus, 2002). The overwhelming 

proportion of the mutations induced by EMS are G/C to A/T transitions randomly distributed 

across the genome (Greene et al., 2003). 

 I profiled multiple indel calling software packages to enhance our ability to detect the wide 

size ranges of indels possibly induced by these three mutagens. Three commonly used indel callers 

with different size detection ranges were employed: GATK HaplotypeCaller (GATK HC); 

SAMtools; LUMPY. GATK HC calls variants through local re-assembly and is known to be 

effective at calling small indels smaller than 50 bp (Wang et al., 2022). SAMtools was developed 

for manipulating alignment files in the SAM/BAM format and includes both SNP and indel calling 

capacities. It relies on a Bayesian model for local realignment to call indels mostly ≤ 10 bp (Kim 

et al., 2017). Of the three callers used here LUMPY calls the largest variations. LUMPY uses a 

probabilistic framework for detecting large (>100 bp) structural variants (Layer et al., 2014; D. X. 

Liu et al., 2021). 

 The largest number of raw variants were discovered by GATK (23,990 on average), whilst 

SAMtools and LUMPY produced mean counts of 8353 and 384 respectively (Table 2-6 to 2-8). It 

is worth noting that SNPs accounted for 42% and 27% of raw variant counts for GATK and 

SAMtools respectively whereas LUMPY did not call SNPs. The proportion of FPs found and 

removed from LUMPY variants was smallest across the three methods evaluated (average FP in 

LUMPY = 41.7% compared with 90% for SAMtools and 87.9% for GATK).  

 Since EMS is known to mostly create single-base changes in contrast to FN and Gamma 

mutagenesis techniques that additionally produce indels we conducted pairwise t-tests of the 

number of indels between EMS and the latter two methods to ascertain how well the three indel 

callers performed. For the indels called by GATK, there was no statistical difference between EMS 

and the other two mutagenesis techniques post FP exclusion (p-value EMS vs. FN = 0.07; EMS 

vs. Gamma = 0.06) indicating that at these doses the two physical mutagens induce relatively few 

indel polymorphisms more that alkylation by EMS. Similarly, indels discovered by LUMPY did 
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not show a statistically significant difference between EMS and the other treatments (p-value EMS 

vs. FN = 0.14; EMS vs. Gamma = 0.1). We only observed a statistically significant difference 

between EMS and FN for indels produced by SAMtools after FP removal (p-value = 0.03) but not 

between EMS and Gamma (p-value = 0.9).  

 

Table 2-6. Summary results from variant calling and false-positive INDEL exclusion using 

GATK and custom script. 

Sample Treatment 

Raw 

variants 

Raw 

indels 

Refined 

indels 

HQ refined 

indels 

Indel count 

without FPs % FPs 

193 

FN 

22,859 8,259 6521 4420 495 88.8 

194 21,531 8,555 6512 4427 417 90.6 

195 22,834 8,643 6859 4599 532 88.4 

196 21,454 8,159 6448 4335 475 89.0 

197 22,274 9,284 7218 4944 622 87.4 

198 24,913 11,333 8645 6083 840 86.2 

199 

EMS 

24,311 9,980 7525 5198 643 87.6 

200 25,448 10,488 8154 5714 692 87.9 

201 25,802 11,101 8228 5866 721 87.7 

202 25,929 11,323 8450 6004 755 87.4 

203 24,473 10,680 8002 5643 656 88.4 

204 25,416 11,248 8395 5917 755 87.2 

205 

GAMMA 

24,758 11,114 8236 5777 744 87.1 

206 25,332 11,729 8670 6144 776 87.4 

207 24,398 10,195 8009 5601 738 86.8 

208 22,578 9,692 7519 5165 594 88.5 

209 25,387 11,929 9101 6529 898 86.2 

210 22,119 9,231 6902 4676 486 89.6 
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Table 2-7. Summary results from variant calling and false-positive INDEL removal using 

SAMtools and custom script. 

Sample Treatment Total variants  

Indel 

count 

Quality 

filtered 

indels 

Indel count 

without FPs % FPs 

193 

FN 

10196 2431 1835 236 87.1 

194 8736 2116 1654 154 90.7 

195 9995 2376 1805 216 88.0 

196 9877 2391 1854 243 86.9 

197 8603 2418 1829 219 88.0 

198 8341 2469 1949 258 86.8 

199 

EMS 

9277 2524 1897 233 87.7 

200 8144 2436 1862 197 89.4 

201 7700 2102 1687 125 92.6 

202 7812 2115 1701 134 92.1 

203 7987 2175 1708 137 92.0 

204 8043 2236 1752 134 92.4 

205 

GAMMA 

7422 2345 1838 183 90.0 

206 6921 2178 1730 133 92.3 

207 7802 2480 1884 203 89.2 

208 8203 2297 1778 168 90.6 

209 6898 2060 1674 112 93.3 

210 8414 2132 1667 140 91.6 
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Table 2-8. Summary results from variant calling and false-positive INDEL exclusion using 

LUMPY and custom script. 

Sample Treatment Total variants  Indel count without FPs  % FPs 

193 

FN 

497 362  27.2 

194 268 149  44.4 

195 332 196  41.0 

196 181 83  54.1 

197 231 108  53.2 

198 431 298  30.9 

199 

EMS 

372 233  37.4 

200 809 605  25.2 

201 615 413  32.8 

202 473 293  38.1 

203 378 229  39.4 

204 347 187  46.1 

205 

GAMMA 

335 185  44.8 

206 302 148  51.0 

207 585 401  31.5 

208 215 100  53.5 

209 346 194  43.9 

210 204 90  55.9 

 

I estimated the relative expected phenotypic impacts of the different mutagens. To do this, 

I used SnpEff to examine the effects of the indel variants on genes, transcripts, and protein 

sequences. Coding sequences are more likely to be unique and are less expected to result in errant 

calls from reads mismapping and other artifacts. If the lack of indel differences across treatments 

was the result of false positive indel calling, limiting our view to coding sequences should improve 

the signal to noise. Because FN and Gamma both produce deletions whereas EMS almost 

exclusively generates base substitutions, I limited the initial EMS analysis to count of deletions in 

the EMS-treated samples. As with the total indels observed, no statistical difference was observed 

between the number of indels detected by GATK with high or moderate effects on coding 

sequences generated by EMS as compared to FN or Gamma (p-value EMS vs. FN = 0.18; EMS 

vs. Gamma = 0.72) (Table 2-9). Similar results were observed for deletions identified by LUMPY 



  

 

56 

 

(p-value EMS vs. FN = 0.35; EMS vs. Gamma = 0.6) (Table 2-11). Similar to the observation for 

total indel counts, the count of deletions with high or moderate effect detected by SAMtools 

differed between EMS and FN (p-value 0.03) but not between EMS and Gamma (p-value = 0.6) 

(Table 2-10).  

Across the tools tested the number of high-impact effects of deletions rose with increasing 

size. Deletions detected by SAMtools had an average length of 3.7 bp and produced on average 

4.3 high-impact effects (Table 2-10). Similarly, GATK revealed deletions, with an average length 

of 7.8 bp, generating an average of 8.9 high-impact effects (Table 2-9). It was no surprise that 

LUMPY, which identified the largest deletions (2.7 kb on average), detected the largest number 

of high-impact effects averaging 448.9 (Table 2-11). These high-impact effects outnumbered 

moderate-impact effects because they were scored large-scale deletions of gene models. We 

further assessed the performance of the tools used here by testing whether the expected size 

difference of the deletions produced by the different mutagens could be detected. Only GATK 

produced deletions with detectable size difference between treatments, however, that was only 

between EMS and FN (p-value = 0.027 for test of mean size) but not between EMS and Gamma 

(p-value = 0.065 for test of mean size). Both SAMtools- and LUMPY-produced deletions did not 

show differences between mean sizes across the three mutagenesis agents. 
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Table 2-9. Annotation of GATK Deletions using SnpEff. 

Sample Treatment 

Indel 

count 

without 

FPs 

Number of 

Deletions 

with 

moderate to 

high effect 

Deletion annotations Deletion size 

Number 

of high 

impact  

Number 

of 

moderate 

impact 

Average 

(bp) 

Median 

(bp) 

Range 

(bp) 

193 

FN 

495 8 6 2 19 2 1 - 97 

194 417 15 11 7 19 5 1 - 176 

195 532 12 11 3 23 3 1 - 179 

196 475 10 11 1 2 1 1 - 3 

197 622 12 9 8 9 4 1 - 35 

198 840 16 9 11 6 3 1 - 31 

199 

EMS 

643 12 7 5 3 3 1 - 6 

200 692 11 6 5 4 3 1 - 16 

201 721 12 15 2 2 2 1 - 3 

202 755 11 12 2 2 1 1 - 10 

203 656 7 6 2 2 2 1 - 3 

204 755 5 5 1 1 1 1 - 3 

205 

GAMMA 

744 13 16 2 17 2 1 - 178 

206 776 13 9 5 12 1 1 - 111 

207 738 5 2 3 9 4 1 - 29 

208 594 11 9 4 6 2 1 - 35 

209 898 12 11 5 2 1 1 - 3 

210 486 8 5 3 2 2 1 - 3 
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Table 2-10. Annotation of SAMtools Deletions using SnpEff. 

Sample Treatment 

Indel count 

without 

FPs 

Number of 

Deletions 

with 

moderate to 

high effect 

Deletion annotations Deletion size 

Number 

of high 

impact  

Number 

of 

moderate 

impact 

Average 

(bp) 

Median 

(bp) 

Range 

(bp) 

193 

FN 

236 27 4 28 3 3 2 - 17 

194 154 30 5 31 4 3 2 - 21 

195 216 24 6 30 4 3 1 - 27 

196 243 30 7 33 3 3 1 - 15 

197 219 20 7 20 5 3 1 - 32 

198 258 32 5 37 5 3 2 - 24 

199 

EMS 

233 31 2 38 3 3 1 - 4 

200 197 12 3 13 4 3 2 - 16 

201 125 16 6 14 3 3 1 - 3 

202 134 16 6 17 3 3 2 - 3 

203 137 20 2 21 3 3 2 - 3 

204 134 9 3 8 2 3 1 - 3 

205 

GAMMA 

183 27 7 26 4 3 1 - 24 

206 133 12 2 16 5 3 1 - 27 

207 203 19 2 17 3 3 1 - 3 

208 168 24 3 28 5 3 2 - 35 

209 112 16 3 16 3 3 1 - 3 

210 140 20 4 16 4 3 1 - 31 

 

 

 

 

 

 

 

 

 

 



  

 

59 

 

Table 2-11. Annotation of LUMPY Deletions using SnpEff. 

Sample Treatment 

Indel 

count 

without 

FPs 

Number 

of 

deletions 

with 

moderate

-high 

impact 

Annotation of deletions Size of deletions 

Number of 

high impact 

changes 

Number 

of 

moderate 

impact 

changes 

Ave. 

(kb) 
Median (kb) Range (kb) 

193 

FN 

362 5 19 0 2.7 1.9 0.1 - 7.0 

194 149 4 16 0 6.6 3.1 1.4 - 18.9 

195 196 5 605 2 281.7 1.5 
0.0 - 

1404.3 

196 83 6 47 3 7.7 1.1 0.7 - 37.2 

197 108 7 600 2 206.4 3.0 
0.0 - 

1404.4 

198 298 7 13 3 3.2 1.1 0.0 - 15.4 

199 

EMS 

233 6 20 1 7.4 2.3 0.8 - 22.4 

200 605 7 823 0 360.0 3.3 
0.7 - 

2489.8 

201 413 4 7 0 8.9 8.1 0.7 - 18.8 

202 293 8 835 0 320.3 6.2 
0.7 - 

2489.8 

203 229 10 610 4 147.1 3.3 
0.7 - 

1404.3 

204 187 5 599 0 336.3 22.3 
3.0 - 

1404.4 

205 

GAMMA 

185 11 2242 2 538.9 15.4 
0.7 - 

2489.8 

206 148 6 609 1 238.0 1.7 
0.7 - 

1404.3 

207 401 8 837 0 257.2 9.5 
0.7 - 

1957.1 

208 100 6 14 1 9.2 1.9 0.0 - 35.6 

209 194 8 171 1 76.8 17.0 0.7 - 494.9 

210 90 5 13 1 8.2 1.4 0.4 - 22.4 

 

2.4 Conclusions 

Indel calling from short read data still an issue for most available tools. This is evidenced 

by the lack of consistency across tools and the detection of substantial indel count in EMS 

compared to FN and Gamma treated samples regardless of tool used. Size differences and ranges 

of deletions among the three treatments could also not be consistently detected by the three tools. 

False positive indel exclusion for SAMtools and GATK indels remove 80-90% of all initially 

called variants. On the one hand this indicates a very high rate of noisy positions relative to any 
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signal resulting from true indels. On the other, it indicates that the employed subtraction approach 

can identify and remove errantly called indels. This case study only relied on data from these 18 

samples, and we’ve previously shown from SNP analysis that the false positive exclusion greatly 

benefits from inclusion of extensive data from unrelated individuals. Expansion of the analysis to 

run these tools on a larger number of mutagenized individuals may improve the detection of false 

positive positions and improve the signal to noise. Greater confidence in the tools, interpretation 

of their indels, would be warranted if they detected differences between treatments. By this 

criterion, of the three methods employed GATK showed the best performance as it detected 

expected deletion size differences between the treatments. 

The false positive correction strategy developed here was extremely efficient in reducing 

noise and amplifying true biological signal from experimental data. The minimal number of 

candidate genes produced as end-product greatly cuts the cost and time needed for follow-up 

molecular validation experiments, speeding up the pace of forward genetics projects. The 

workflow was additionally able to detect pedigree errors as well as errors associated with non-

independent mutagenesis and provided explanations to previously failed experiments. Comparison 

of different mutagenesis agents revealed EMS to be the best. It generated a comparable number of 

indels, albeit small in size, with similar mutational impact to the two physical mutagens. Together 

with the large number of transitions generated by DNA alkylation, this mutagen is the most likely 

to result in a gene disruption or modification and provides the best chance at causing mutations in 

the greatest number of genes for further studies. The comparatively small numbers of indels 

produced by FN and gamma suggest these mutagens should only be preferred if alkylating agents 

are not tolerated by a study organism. This work also brought forth more evidence that indel calling 

with short read data is still a challenge despite advancements over the years. If indels are of interest 

in a given experiment, then perhaps new methods or alternative reads technologies are needed.  
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 ELUCIDATING TRANSCRIPTIONAL CONTROL OF 

RP1-D21-INDUCED HR 

3.1 Introduction 

 Plants use an extreme immunity response, the hypersensitive response (HR), to protect 

themselves from pathogens. HR is defined as a quick death of cells that is limited to the area 

immediately surrounding the point of pathogen invasion to slow down disease progression (Balint-

Kurti, 2019; Goodman & Novacky, 1994; Mur et al., 2008). This defends the individual at the cost 

of a vital metabolic response and localized cell death. The importance of this phenomena to plant 

success and crop protection is enormous. A variety of signaling components and responses  (el 

Kasmi, 2021; Lolle et al., 2020; van Wersch et al., 2020)are known, including a growing 

complement of host-encoded plant pathogen sensors that can initiate HR (Adachi et al., 2020; 

Leonetti et al., 2021) . Yet, the molecular control of this phenomenon is not fully elucidated. A 

more complete understanding the genetic control of plant HR, including the mechanisms that 

attenuate it’s spread and carry out the metabolic and transcriptional remodeling of cellular activity, 

will both deepen our understanding of organismal interactions and be leveraged to further crop 

improvement via breeding for resistance to diseases. 

 One set of host-encoded plant pathogen sensors that has been well characterized is the 

Nucleotide binding-site leucine-rich-repeat coiled-coil domain proteins encoded at the Resistance 

to puccina1 (Rp1) gene cluster in maize. This cluster encodes a wide diversity of gene 

complements (Collins et al., 1999) and is responsible for resistance of many maize varieties to 

Puccinia sorghii, or common rust. A mutant version of this NLR cluster, Rp1-D21 (Sun et al., 

2001), derived from unequal crossing over between two paralogs in the gene cluster. Rp1-D21 

encodes a hyperactive NLR that induces HR even in the absence of pathogens (Richter et al., 1996). 

This hyperactive NLR has been the subject of extensive research into the mechanism, regulation, 

and consequences of HR, as resistance is triggered in the absence of any additional effects of the 

pathogen. Multiple studies have explored the metabolic (Ge et al., 2021; G. F. Wang & Balint-

Kurti, 2015), transcriptional (Ge et al., 2021; Karre et al., 2021; Murphree et al., 2020), and growth 

effects (Negeri et al., 2013) of constitutive HR in maize. 
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 Because Rp1-D21 is semi-dominant, multiple studies have explored the effects of natural 

variation in modulating or determining the effects of HR in maize.  The phenotype of a mutant 

gene can be used as a reporter to unearth previously undetectable genetic modifiers of that mutant 

in crosses to diverse genetic backgrounds (Chintamanani et al., 2010). By using this approach with 

Rp1-D21, alleles that control the HR can be discovered without exposure to pathogens, thereby 

eliminating the confounding effects of pathogen variation. An additional advantage of this 

approach for the discovery of genes important for the HR is that it relies on a mutant gene that 

autoactively produces HR throughout the plant. This allows for easy, reliable, detection of a 

phenotype that is otherwise difficult to measure due to its rapid nature and that is only induced 

locally in a subset of pathogen-host combinations. 

 Both RIL and GWAS approaches have identified numerous chromosomal loci encoding 

natural variants that can modify the Rp1-D21-induced HR phenotypes. Candidate genes, resulting 

from the combination of RNAseq and GWAS data (Olukolu et al., 2014)  have been described. 

Genes that colocalized with the associated SNPs were presented as the most likely causative genes. 

For a small number of loci, the genes through which these loci manifest their influence have been 

validated by molecular assays in later studies and they surprisingly encode enzymes. (He et al., 

2016; Luan et al., 2021; G. F. Wang et al., 2015; G. F. Wang & Balint-Kurti, 2015). Thus far, all 

of the successfully validated candidates encode genes that were differentially expressed during 

Rp1-D21-induced HR. Thus, differential expression affected by the hyperactive NLR allele Rp1-

D21 was an effective complementary analysis to GWAS for the severity of Rp1-D21 lesions to 

identify genes capable of modulating HR in maize. 

 Discovering the relationship between the allele at a variant locus and transcription levels 

of genes, such as through eQTL analysis, provides a hypothesis for a direct link between the 

observation of a genetic association and an understanding of the molecular mechanisms 

responsible for trait variation. Past work in the regulation of HR in maize, demonstrated successful 

validation of candidate genes linked to genetic associations that were also increased in their 

expression during HR (Kim et al., 2021; Wang et al., 2015). eQTL analysis treats transcription 

levels as quantitative traits in a segregating population and maps genetic variants that influence 

transcription in vivo, thus allowing the direct biological interpretation of the consequence of 

variation. In some cases, changes in gene expression are the result of a variant that exerts its 

influence in cis. These only influence the expression of the gene located on the same physical 
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chromosome with it. One such example is the cis-eQTL identified on maize chromosome 4 found 

to be associated with control of the rubisco activase gene (ZmRCAβ) (Y. Zhang et al., 2019). In 

the case of HR-regulated cis-variants, this identifies genes with cis-regulatory variation that 

modulates that gene’s response to the transcriptional regulators that control HR. Variants that 

control signaling, or transcription can also affect an eQTL at a gene but do so in trans, meaning 

that the QTL maps to a position distinct from the gene whose expression is being measured. Indeed, 

trans-eQTL can regulate gene anywhere in the genome. For example, a polymorphism affecting 

the expression of a transcription factor can affect the expression of one or many genes. Liu et al., 

(2017) identified a trans-eQTL hotspot on maize chromosome 1, immediately upstream of A-type 

R2R3 Myb-like transcription factor, that regulated the expression of 11 flavonoid metabolism 

genes. A gene which increases or decreases HR-signal intensity might alter the expression of all 

genes that respond during HR. Such a scenario would result in what is referred to as a trans-

regulatory hotspot, because many genes are affected in trans by a polymorphism at one position. I 

expect that during HR, polymorphisms at transcription factors downstream in the regulatory 

hierarchy might affect hotspots at a subset of HR-responsive genes while variation in HR signaling 

acting upstream of transcriptional changes, might affect all HR-responsive genes in an eQTL 

experiment.  

 The methodology in eQTL experiments is subject to a special limitation that can confuse 

the meanings of cis and trans as they are used in molecular biology. Because eQTL mapping relies 

on linkage mapping, any trans regulator (e.g., transcription factor) that happens to bind and 

regulate the expression of a tightly linked gene would be identified as a “cis-eQTL” according to 

the criteria in mapping. Such special cases of local trans regulation are best considered as false 

positive detection of cis variation and false negative detection of trans regulation. Given the 10 

chromosomes of maize and lack of linkage between chromosome arms, so long as transcription 

factors and their targets are randomly distributed across the chromosomes 95% of the true trans-

regulatory changes are unlinked their targets and cannot result in local trans eQTL that would be 

mistaken placed in a cis-eQTL set. The size of this problem is further diminished as the 

recombination resolution of the mapping population increases. For example, given an average 

centimorgan length of 75 for each of the 20 chromosome arms, and a conservative resolution of 

30 cM for a QTL confidence interval, this would cut the expected number of local trans cases by 

another factor of 2. So, while local trans cases do happen, and identification of cis-eQTL cannot 
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be taken unequivocally as evidence of cis-regulatory polymorphism in the molecular sense, local 

trans false positives are expected to be rare. 

 One way to unequivocally test for cis-regulatory alleles is by comparing two alleles in the 

same individual for allele-specific expression (ASE) differences. ASE analyzes gene expression 

between parental alleles within an F1 hybrid. An imbalance in the relative abundance of transcripts 

encoded by the two alleles provides a demonstration of cis-regulatory differences between the two 

alleles. I propose that a combination of ASE and traditional eQTL analysis can be used to cross 

validate cis-regulatory variants. ASE will be explored directly in Chapter 5. 

 I set out to combine, for the first time, the study of the hypersensitive response with eQTL, 

ASE, and DGE analyses to systematically exploit genetic variation to identify the genetic 

determinants of this plant disease response. To do this I used the Rp1-D21-induced transcriptional 

phenotype in combination with previously generated crosses of Rp1-D21/+ to B73 and NC350 

inbred lines which have divergent intensities of HR responses (Chintamanani et al., 2010b; 

Olukolu et al., 2014b, 2016) and for which a RIL population is available (McMullen et al., 2009; 

J. Yu et al., 2008). In this chapter, differential gene expression (DGE) analysis was used to identify 

those genes affected by Rp1-D21 across and those only altered in one of the two parents and to 

explore the intensity of expression differences. Identification of genes and pathways through which 

these genetic variants influence the HR will provide a launching point for the design of future 

experiments that will uncover the precise molecular mechanism underpinning HR and further 

allow exploitation for crop improvement. 

3.2 Methods 

Reads were first assessed for quality with Fast QC (Andrews 2010, available online at 

http://www.bioinformatics.babraham.ac.uk/projects/fastqc/). This helped check for low quality 

bases as well as sequence length distribution, the level of GC, base N and duplicate sequences 

present in reads. Since reads already been taken through a preprocessing step by our collaborators, 

low-quality bases and sequencing adapters had already been removed. This preprocessing step is 

important since adapter and low-quality sequences can interfere with downstream steps such as 

mapping to the reference. Reads were subsequently aligned to the B73RefGen_v4 (Jiao et al., 2017) 

with STAR RNA-seq aligner (Dobin et al., 2013). Duplicate reads within alignment files were 
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identified and marked with Picard Toolkit MarkDuplicates command (Langmead & Salzberg, 

2012). HTSeq (Anders et al., 2015) was used to compute raw read count per gene from alignment 

files and B73RefGen_v4-associated genome annotation.  

Raw read counts were imported into DESeq2 for differential gene expression analysis. 

However, prior to this, a series of exploratory analyses were conducted to ascertain whether global 

gene expression followed expected patterns based on what was known about the samples. To do 

this, raw read counts per gene were first transformed with the variance stabilization transformation 

to produce log2-transformed data that’s also been normalized by library size (Anders & Huber, 

2010) These transformed data were then used for hierarchical clustering based on Euclidean 

distances and visualized with the “plot” function in R. Principal component analysis were also 

carried out using the transformed data with the “plotPCA” function of ggplot2 (Wickham, 2016).  

Differential gene testing using the raw gene counts was carried out with the “DESeq” 

wrapper script within the “DESeq2” R package, and genes were designated differentially 

expressed if they had a false discovery rate (FDR) lower than 0.05. Visualization of Differential 

gene expression between groups was visualized with heatmaps using “pheatmap”(Kolde, 2015) 

and with volcano plots using the “plot” functions in R. Venn diagram and upset plots used to depict 

the interaction among differentially expressed genes (DEGs) from the different genetic 

backgrounds were generated with web-based “InteractiVenn” 

(http://www.interactivenn.net/index.html) and UpSetR (Conway et al., 2017) respectively. 

Gene functional annotations were assigned using Phytozome v13 (https://phytozome-

next.jgi.doe.gov/phytomine) before gene ontology (GO) enrichment analysis was carried out with 

PANTHER (Mi et al., 2019; Thomas et al., 2003), to understand functional relationships among 

genes. 

3.3 Results  

3.3.1 Production of biological material and experimental design 

In previous work (Olukolu et al., 2013), Rp1-D21 was introgressed into the H95 maize 

inbred line to create H95;Rp1-D21/+. This was accomplished by repeated backcrossing to H95 to 

the backcross four (BC4) generation, each time only choosing progenies displaying disease-like 

https://phytozome-next.jgi.doe.gov/phytomine
https://phytozome-next.jgi.doe.gov/phytomine
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lesion phenotype. Due to the sterility of homozygous mutants, the H95;Rp1-D21/+ genotype must 

be kept as a heterozygote. Seeds from this stock were crossed as a pollen-parent to the maize inbred 

lines B73 and NC350 as well as each member of the 200-line B73 x NC350 Recombinant Inbred 

Line (RIL) population. Each cross-produced an F1 family segregating 1:1 for wild-type and mutant 

phenotypes (Figure 3-1). The B73 x NC350 RIL population is a subset of the Nested Association 

Mapping population of maize (McMullen et al., 2009; Olukolu et al., 2014b, 2016; J. Yu et al., 

2008) and has available pedigree and genotypic information. The decision to use this population 

was informed by the previous work demonstrating that NC350 strongly enhanced the HR 

phenotype in Rp1-D21/+ hybrids (Chintamanani et al., 2010). In addition, the B73 x NC350 

population was one of the families among the 24 NAM subpopulations previously crossed to Rp1-

D21/+ that showed the highest allelic effect size values for lesion-related traits (Olukolu et al., 

2014). 

 

 

Figure 3-1. Mapping of HR modulators using 99 members of the 200-line NC350 NAM RIL 

population. The H95;Rp1-D21/+ line carrying the Rp1-D21 mutation in a heterozygous state is 

crossed to each member of the NC350 NAM RILs. The F1 families generated segregate 1:1 for 

mutant and wildtype sibs. 
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3.3.2 Raw read mapping, count-per-gene estimation and differential gene expression 

analysis 

FastQC was used to perform quality control of input reads which were 125 bp in length. 

This involved assessing GC content, k-mer representation as well as sequencing adapter 

contamination. Reads were mapped to the B73RefGen_v4 (Jiao et al., 2017) with STAR splice-

aware aligner. The output was processed with Picard to mark duplicate reads using the 

MarkDuplicates command. Raw counts per gene were computed with HTSeq by projecting de-

deduplicated alignment files to B73RefGen_v4 gene annotation using the htseq-count function.  

An additional QC step was conducted prior to DGE analysis to check whether global 

expression patterns meet expectations. For example, biological replicates are expected to show 

similar expression patterns whilst different conditions should be dissimilar. Samples that fail to 

meet these checks would be excluded from downstream analyses. To improve the performance of 

these QC analyses and to make results from these easily interpretable, raw reads were read-depth-

normalized and transformed to the log2 scale. The similarity of read counts between replicates was 

examined by plotting counts in a pairwise manner. Hierarchical clustering was used to ascertain 

whether samples from different conditions could be separated in an unsupervised manner. This 

was achieved through pairwise comparison of samples based on Pearson correlation coefficient 

(r). Principal component analysis (PCA) was carried out to complement hierarchical clustering to 

determine whether samples from different conditions showed more variability than replicates from 

the same condition.  

Raw read counts per gene from the replicates of each treatment and genotype were analyzed 

for DEG using DESeq2. This allowed pair-wise identification of differentially expressed genes 

between mutant/wildtype phenotypes. This assessed whether observed read count differences 

between samples are more than what would be expected by random chance. DESeq2 estimates this 

difference by fitting the gene counts to a negative binomial distribution followed by a test of the 

null hypothesis that the conditions cannot explain differences in gene expression. This tests all 

genes independently, so I also calculated adjusted p-values to account for multiple hypothesis 

testing using the Benjamini-Hochberg procedure to reduce false positives (Benjamini and 

Hochberg, 1995). A gene was considered significantly differentially expressed if its FDR-

corrected p-value ≤ 0.05. For each gene a fold change, depicted as a logarithm to base 2 (log2FC) 

of the mutant/wildtype expression ratio, was additionally computed. This was estimated using 
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average read counts across replicates per phenotype, after read counts for all genes for a given 

sample had been summed and used as basis for sample-specific normalization. Volcano plots were 

then used to visualize p-values against fold change to allow for quick discovery of statistically 

significant genes that have large fold changes between conditions. As a sanity check, a heatmap 

was used to visualize the expression values of the top 15 most up-regulated and the top 15 most 

down-regulated genes across samples. This was done to determine whether the direction of fold 

change observed matched what was reported in the DEG results table. These 30 most up or down-

regulated genes were analyzed using Phytozome v13 to obtain their functional annotations. Lastly, 

GO enrichment analysis was carried out with PANTHER for all DEGs (upregulated and 

downregulated analyzed separately) to identify biological processes they are involved in. 

3.3.3 Biological insight in HR 

Differential gene expression analysis in the parents of the mapping population B73;Rp1-D21/+ 

versus wildtype 

To assess the impact of Rp1-D21 in the B73 inbred background, a heterozygote for Rp1-

D21 was crossed to B73 to produce F1 plants segregating 1:1 for wild-type and mutant phenotypes. 

RNA from three biological replicates from each phenotype was converted to cDNA, libraries for 

sequencing prepared, and sequenced for differential gene expression analysis by our collaborator 

at the USDA-ARS, Dr. Peter Balint-Kurti, on the campus of North Carolina State University. 

Reads depths varied from 16.6 – 33.7M per sample. These reads were aligned to the maize 

reference genome version 4 (Jiao et al., 2017), and 71.1 – 79.67% uniquely mapped (Table 3-1). 

This indicated high-quality sample preparation and data processing steps. 
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Table 3-1. Mapping statistics for B73;Rp1-D21/+ versus wildtype. 

Sample Background Phenotype Raw reads 

Average 

read length 

(bp) 

Uniquely 

mapped 

reads % 

Multi-

mapped 

reads % 

Unmapped 

reads % 

BRwt_rep1 
B73:Rp1-

D21 wildtype 17,366,148 125 71.08% 25.87% 3.04% 

BRwt_rep2 
B73:Rp1-

D21 wildtype 17,938,638 125 75.29% 21.38% 3.33% 

BRwt_rep3 
B73:Rp1-

D21 wildtype 16,600,257 125 79.67% 18.00% 2.34% 

BRmu_rep1 
B73:Rp1-

D21 Rp1-D21 30,515,726 125 76.66% 21.17% 2.17% 

BRmu_rep2 
B73:Rp1-

D21 Rp1-D21 33,755,029 125 75.76% 22.29% 1.95% 

BRmu_rep3 
B73:Rp1-

D21 Rp1-D21 24,529,243 125 76.71% 21.30% 1.99% 

 

Alignment files were processed together with a reference annotation file to generate read 

counts per gene for each sample. These counts were higher in the wildtype samples compared to 

the mutants (Figure 3-2). I do not have a ready explanation for this pattern, but it is consistent with 

either the normal, healthy wildtype plants exhibiting higher expression of genes or that the HR-

affected plant samples were smaller due to the growth-impairment of constitutive disease response 

and somehow this led to poorer library construction from the mutant plants. Although raw read 

counts are initially input to DESeq2 for DGE analysis, the assessment of differential expression 

includes normalization that should remove the effects of these reads distribution effects across the 

two sample types. The quality control analyses that preceded DGE also relies on transformed 

counts. The effect of size-factor normalization followed by log2-transformation on reducing 

skewness in these samples was clear. This greatly improved the accuracy of algorithms used for 

clustering and principal component analysis used as a quality control check. 
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Figure 3-2. Comparison between untransformed and log2-transformed read count distribution of 

B73;Rp1-D21/+ versus wildtype (BR) samples showing the effect of transformation in reducing 

skewness. 

 

It’s been long established that replicates are required to provide the statistical power needed 

to reliably discover differentially expressed genes (Schurch et al., 2016). However, this is only 

possible if replicates show high correlation of gene expression. Biological replicates with poorly 

correlated gene expression usually signal mistakes or other problems at some stage during the 

experiment. In this experiment, replicates showed more than 97% similarity in pairwise 

comparisons as measured by Pearson correlation, r (Table 3-2). This was above the 90% 

correlation threshold recommended by the ENCODE consortium (Standards, Guidelines and Best 

Practices for RNA-Seq V1.0) and is an indication of the quality of experimental procedures from 

tissue collection through the library preparation and sequencing. 

 

Table 3-2. Similarity of read counts between B73;Rp1-D21/+ versus wildtype (BR) replicates as 

measured by Pearson correlation coefficient. 

Pairwise comparison Pearson Correlation coefficient 

BRwt_1 vs. BRwt_2 0.979 

BRwt_2 vs. BRwt_3 0.979 

BRmu_1 vs. BRmu_2 0.977 

BRmu_2 vs. BRmu_3 0.984 
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Hierarchical clustering was performed to group similar samples using the pairwise 

correlations calculated above. The distance measure (Height) was computed as 1- r and the results 

rendered as a dendrogram. As expected from the Pearson correlations, hierarchical clustering 

revealed greater gene expression variability between wildtype and mutant phenotypes than among 

replicates of the same phenotype (Figure 3-3). 

 

 

Figure 3-3. Dendrogram showing results of hierarchical clustering of B73;Rp1-D21/+ versus 

wildtype (BR) samples. Replicates displayed greater similarity whereas the two phenotypes were 

clearly separated. 

 

 Principal components confirmed the results of hierarchical clustering and also unearthed 

greater gene expression variability between wild-type and mutant phenotypes than what was 

observed among replicates of the same phenotype. In fact, 92% of variation observed across all 

samples could be explained by differences between mutant and wild type. Differences among 

replicates only accounted for 4% of total variation (Figure 3-4). 
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Figure 3-4. PCA on rlog-transformed read counts for B73;Rp1-D21/+ versus wildtype (BR) 

samples. Differences between phenotypes account for greater proportion of variance. 

 

Neither hierarchical clustering nor PCA identified outliers, so an analysis of differential 

gene expression was carried out. The three biological replicates per condition (mutant or wildtype) 

were analyzed using DESeq2, with wild type set as control, to identify differentially expressed 

genes (DEG). A total of 6,685 DEG were identified as significantly differently expressed between 

mutant and wild type. Almost twice as many genes increased expression as part of the 

hypersensitive response triggered by Rp1-D21 than were decreased (Figure 3-5); 4,211 (15%) 

expressed genes were significantly increased in accumulation as opposed to 2,474 (8.9%) that were 

decreased. 
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Figure 3-5. Volcano plot of B73;Rp1-D21/+ versus wildtype (BR) DGE results depicting statistical 

significance (p-value) versus magnitude of change (fold change). Black dots are genes that are not 

statistically significant (adjusted p-value > 0.05), orange dots are statistically significant genes 

(adjusted p-value < 0.05), green dots are statistically significant genes with absolute log2 fold 

change of 2. 

 

The heatmap of log2-transformed read counts of the top 30 up or down-regulated genes 

(Figure 3-6) was similar to the direction of fold-change displayed in the DGE results table. Several 

defense or stress related genes were among the top up-regulated genes (Table 3-3). The most up-

regulated gene, Zm00001d025200 (Indolin-2-one monooxygenase), was over a thousand-fold 

higher in expression in the mutant compared to the wildtype. This enzyme is a critical component 

of the 2,4-dihydroxy-1,4-benzoxazin-3-one (DIBOA) biosynthesis pathway by converting indolin-

2-one to 3-hydroxyindolin-2-one. DIBOA is part of a chemical defense mechanism against insects 

and pathogenic microbes in the grasses (Frey et al., 1997; Niemeyer, 1988).  
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Figure 3-6. Heatmap of log2-transformed read counts for top 30 most up or down-regulated genes 

after DGE analysis of B73;Rp1-D21 (BR) samples. Genes are sorted based on hierarchical 

clustering. 

 

Another defense related gene is Zm00001d023811, a gene from the Pathogenesis-related 

protein Bet v I family, known to be a part of host response triggered upon infection or under 

stressful conditions (Radauer et al., 2008) Zm00001d048087 (Flavonoid O-methyltransferase 4, 

FOMT4) was recently characterized in maize to play a role in defense. Similar to another flavonoid 

OMT2 located on maize chromosome 9, this enzyme is vital to the biosynthesis of xilonenin, which 

has antifungal activity against maize pathogens, Fusarium graminearum and Fusarium 

verticillioides (Förster et al., 2022). Earlier, a closely related enzyme in rice, Naringenin 7-O-

methyltransferase (OsNOMT), was reported to be involved in catalyzing the biosynthesis of 

flavanone phytoalexins, such as sakuranetin, which is accumulated in rice which is produced in 

response to pathogen invasion and other stresses (Rakwal et al., 2000). Other stress/defense genes 

identified among the top up-regulated genes include the salt stress response/antifungal gene 

(Zm00001d006531), Zm00001d021266 (BON1-ASSOCIATED PROTEIN 1-RELATED), 

Zm00001d022593 (Ornithine decarboxylase / L-ornithine carboxy-lyase). Conversely, several 

growth-related genes were found in the top 15 most down-regulated genes. One of these was 

Zm00001d034099 (Ferredoxin NADP reductase or FNR), an enzyme that catalyzes an important 

step in photosynthesis which is the conversion of light energy to chemical energy (Morales et al., 
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2000). Another example in this category is Zm00001d025957 (B-box zinc finger), which encodes 

a transcription factor known to regulate growth, development, and ripening in grapevine (Wei et 

al., 2020). These examples suggest that whilst defense-related activities are turned up in the cell 

as a result of autoimmunity triggered by Rp1-D21, normal growth and developmental processes 

are turned down. 

This observation is further supported by the results of the GO enrichment analysis of all 

down- and up-regulated gene sets (Table 3-4). Down-regulated genes were enriched for growth 

and developmental processes such as photosynthesis, mitotic cytokinesis, response to light 

stimulus, among others. Out of the 52 photosynthetic genes present in maize 16 were found in our 

list of down-regulated genes, more than nine times what was expected by random chance. Genes 

involved in mitotic cytokinesis and light stimulus were also overrepresented more than five times. 
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Table 3-3. Annotation for top 30 most up or down-regulated differentially expressed genes in 

B73;Rp1-D21/+ versus wildtype (BR) samples. 

Gene Length Chromosome Description log2FoldChange padj 

Zm00001d025200 1978 10 Indolin-2-one monooxygenase / CYP71C2 9.927645441 3.0576E-14 

Zm00001d012024 6401 8 

Nucleotide-diphospho-sugar transferase 

(Nucleotid_trans) 9.30893196 1.53954E-12 

Zm00001d023811 1063 10 

Pathogenesis-related protein Bet v I family 

(Bet_v_1) 9.169621403 9.9857E-116 

Zm00001d048087 1418 9 Naringenin 7-O-methyltransferase 8.87713028 3.74515E-11 

Zm00001d050805 7071 4 

Protein kinase domain (Pkinase) // Mlo family 

(Mlo) 8.872157982 7.54956E-11 

Zm00001d023774 958 10 

ERGOSTEROL BIOSYNTHETIC PROTEIN 

28-RELATED 8.839560206 1.54075E-13 

Zm00001d031157 534 1 Thaumatin family (Thaumatin) 8.812819136 4.20238E-11 

Zm00001d053001 1257 4 Nepenthesin / Nepenthes aspartic proteinase 8.801794158 2.80339E-11 

Zm00001d006531 3407 2 Salt stress response/antifungal (Stress-antifung) 8.775827859 4.7311E-11 

Zm00001d043947 1596 3 

Phosphatidate phosphatase / Phosphatidic acid 

phospphatase 8.717184604 3.24612E-10 

Zm00001d012430 636 8 C2H2-type zinc finger (zf-C2H2_6) 8.600907369 7.91851E-10 

Zm00001d048913 606 4 

CALCIUM-BINDING PROTEIN CML30-

RELATED 8.549993886 1.31143E-09 

Zm00001d021266 588 7 

BON1-ASSOCIATED PROTEIN 1-

RELATED 8.53644582 6.72476E-10 

Zm00001d022593 1300 7 

Ornithine decarboxylase / L-ornithine carboxy-

lyase 8.496473309 2.13816E-08 

Zm00001d037113 3790 6 ANNOTATION UNKOWN -5.751225654 0.013236692 

Zm00001d015330 375 5 ANNOTATION UNKOWN -5.837793989 0.015357573 

Zm00001d025957 1542 10 B-box zinc finger (zf-B_box) -5.879912291 0.040201114 

Zm00001d045357 871 9 ANNOTATION UNKOWN -5.886704519 0.021188721 

Zm00001d034415 1275 1 Probable lipid transfer (LTP_2) -5.896929462 0.010377257 

Zm00001d024978 6071 10 

LEUCINE-RICH REPEAT-CONTAINING 

PROTEIN  -5.90409775 0.012842413 

Zm00001d033605 2212 1  uncharacterized protein (K06966) -5.90409775 0.012842413 

Zm00001d051630 2685 4 

MPS ONE BINDER KINASE ACTIVATOR-

LIKE  MOB  -5.960261087 0.038297049 

Zm00001d012280 1017 8 Dof domain, zinc finger (zf-Dof) -6.288788231 0.018412169 

Zm00001d051739 453 4 BZIP PROTEIN (ATBZIP48)-RELATED -6.327099625 0.00114791 

Zm00001d053065 5108 4 MLO-LIKE PROTEIN 4 -6.517401825 0.000489942 

Zm00001d009772 786 8 

CYSTEINE-RICH SECRETORY PROTEIN-

RELATED  -6.635951101 0.000384312 

Zm00001d040627 2405 3 Cation transport protein (TrkH) -6.860999772 5.18163E-05 

Zm00001d021501 1786 7 ANNOTATION UNKOWN -7.012486393 4.35218E-05 

Zm00001d034099 3966 1  Ferredoxin--NADP(+) reductase -8.674283109 1.42698E-09 
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Table 3-4. GO annotations for down-regulated genes in the B73;Rp1-D21/+ versus wildtype 

background. 

GO-Slim Biological Process 

Zea mays - 

REFLIST Actual Expected 

Fold 

Enrichment 

Raw P-

value FDR 

photosynthesis (GO:0015979) 52 16 1.77 9.03 

5.17E-

10 

7.71E

-07 

mitotic cytokinesis 

(GO:0000281) 35 6 1.19 5.03 

2.12E-

03 

4.72E

-02 

cytoskeleton-dependent 

cytokinesis (GO:0061640) 35 6 1.19 5.03 

2.12E-

03 

4.65E

-02 

response to light stimulus 

(GO:0009416) 108 16 3.68 4.35 

3.39E-

06 

2.41E

-04 

response to radiation 

(GO:0009314) 123 16 4.19 3.82 

1.49E-

05 

6.73E

-04 

response to abiotic stimulus 

(GO:0009628) 189 19 6.44 2.95 

6.59E-

05 

2.52E

-03 

multicellular organism 

development (GO:0007275) 165 15 5.62 2.67 

9.70E-

04 

2.37E

-02 

generation of precursor 

metabolites and energy 

(GO:0006091) 233 21 7.94 2.65 

1.18E-

04 

3.99E

-03 

multicellular organismal process 

(GO:0032501) 169 15 5.76 2.61 

1.21E-

03 

2.78E

-02 

anatomical structure 

development (GO:0048856) 195 17 6.64 2.56 

7.13E-

04 

1.90E

-02 

developmental process 

(GO:0032502) 262 21 8.93 2.35 

5.83E-

04 

1.70E

-02 

 

On the other hand, up-regulated genes were overwhelmingly involved in defense-related 

processes. Biological processes with the highest fold enrichment from this list notably included 

defense response to fungus, innate immune responses, immune system process, and programmed 

cell death. Six out of eight maize genes implicated in defense response to fungi were present in our list of 

up-regulated genes, almost six times what would be expected by chance. Similarly, half of the genes 
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involved in programmed cell death or cell death generally were present in our list and were almost four 

times more enriched in mutants than in wild-type plants (Table 3-5).  

 

Table 3-5. GO annotations for up-regulated genes in the B73;Rp1-D21/+ versus wildtype 

background. 

GO-Slim 

Biological Process 

Zea mays - 

REFLIST 
Actual Expected 

Fold 

Enrichment 

Raw P-

value 
FDR 

defense response 

to fungus 

(GO:0050832) 

8 6 1.06 5.69 
3.26E-

03 

3.83E-

02 

innate immune 

response 

(GO:0045087) 

11 8 1.45 5.51 
7.77E-

04 

1.30E-

02 

immune system 

process 

(GO:0002376) 

14 8 1.85 4.33 
2.38E-

03 

3.12E-

02 

immune response 

(GO:0006955) 
14 8 1.85 4.33 

2.38E-

03 

3.09E-

02 

organic anion 

transport 

(GO:0015711) 

19 10 2.51 3.99 
1.12E-

03 

1.78E-

02 

programmed cell 

death 

(GO:0012501) 

18 9 2.37 3.79 
2.58E-

03 

3.29E-

02 

cell death 

(GO:0008219) 
18 9 2.37 3.79 

2.58E-

03 

3.26E-

02 

glutathione 

metabolic process 

(GO:0006749) 

51 24 6.73 3.57 
2.42E-

06 

1.50E-

04 

tricarboxylic acid 

cycle 

(GO:0006099) 

34 15 4.48 3.35 
3.15E-

04 

6.18E-

03 

maturation of 

LSU-rRNA from 

tricistronic rRNA 

transcript (SSU-

rRNA, 5.8S rRNA, 

LSU-rRNA) 

(GO:0000463) 

25 11 3.3 3.34 
1.97E-

03 

2.65E-

02 

cell surface 

receptor signaling 

pathway 

(GO:0007166) 

60 25 7.91 3.16 
8.20E-

06 

3.50E-

04 
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Table 3-5 continued 

glucose 6-phosphate metabolic process 

(GO:0051156) 
27 11 3.56 3.09 

3.18E-

03 

3.82E-

02 

maturation of LSU-rRNA (GO:0000470) 32 13 4.22 3.08 
1.42E-

03 

2.14E-

02 

ribosomal large subunit assembly (GO:0000027) 32 13 4.22 3.08 
1.42E-

03 

2.11E-

02 

cellular modified amino acid metabolic process 

(GO:0006575) 
72 29 9.5 3.05 

2.76E-

06 

1.52E-

04 

response to unfolded protein (GO:0006986) 40 16 5.28 3.03 
4.80E-

04 

8.84E-

03 

cellular response to unfolded protein 

(GO:0034620) 
40 16 5.28 3.03 

4.80E-

04 

8.73E-

03 

ribosomal large subunit biogenesis 

(GO:0042273) 
95 37 12.53 2.95 

3.22E-

07 

2.83E-

05 

aromatic amino acid family metabolic process 

(GO:0009072) 
57 22 7.52 2.93 

7.02E-

05 

2.01E-

03 

monocarboxylic acid catabolic process 

(GO:0072329) 
37 14 4.88 2.87 

1.63E-

03 

2.38E-

02 

lipid oxidation (GO:0034440) 44 16 5.8 2.76 
1.68E-

03 

2.42E-

02 

cytoplasmic translation (GO:0002181) 105 37 13.85 2.67 
2.17E-

06 

1.47E-

04 

secretion by cell (GO:0032940) 78 27 10.29 2.62 
8.55E-

05 

2.32E-

03 

export from cell (GO:0140352) 78 27 10.29 2.62 
8.55E-

05 

2.28E-

03 

secretion (GO:0046903) 78 27 10.29 2.62 
8.55E-

05 

2.24E-

03 

vesicle fusion to plasma membrane 

(GO:0099500) 
68 22 8.97 2.45 

7.19E-

04 

1.25E-

02 
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Table 3-5 continued 

exocytic process (GO:0140029) 68 22 8.97 2.45 7.19E-04 1.23E-02 

exocytosis (GO:0006887) 68 22 8.97 2.45 7.19E-04 1.22E-02 

cellular amine metabolic process 

(GO:0044106) 
50 16 6.59 2.43 3.47E-03 4.04E-02 

cellular biogenic amine metabolic process 

(GO:0006576) 
50 16 6.59 2.43 3.47E-03 4.01E-02 

response to external biotic stimulus 

(GO:0043207) 
136 43 17.94 2.4 3.31E-06 1.76E-04 

response to other organism (GO:0051707) 136 43 17.94 2.4 3.31E-06 1.70E-04 

response to biotic stimulus (GO:0009607) 136 43 17.94 2.4 3.31E-06 1.65E-04 

defense response to other organism 

(GO:0098542) 
136 43 17.94 2.4 3.31E-06 1.59E-04 

biological process involved in interspecies 

interaction between organisms (GO:0044419) 
137 43 18.07 2.38 3.71E-06 1.73E-04 

monocarboxylic acid metabolic process 

(GO:0032787) 
215 64 28.36 2.26 9.58E-08 1.19E-05 

carbohydrate catabolic process 

(GO:0016052) 
121 36 15.96 2.26 8.10E-05 2.28E-03 

cellular response to topologically incorrect 

protein (GO:0035967) 
68 20 8.97 2.23 3.86E-03 4.33E-02 

response to topologically incorrect protein 

(GO:0035966) 
68 20 8.97 2.23 3.86E-03 4.30E-02 

defense response (GO:0006952) 219 64 28.88 2.22 1.93E-07 2.22E-05 

carboxylic acid catabolic process 

(GO:0046395) 
93 27 12.27 2.2 8.29E-04 1.37E-02 
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Table 3-5 continued 

response to endoplasmic reticulum stress 

(GO:0034976) 
93 27 12.27 2.2 

8.29E-

04 

1.36E-

02 

amine metabolic process (GO:0009308) 73 21 9.63 2.18 
3.16E-

03 

3.84E-

02 

fatty acid metabolic process (GO:0006631) 78 22 10.29 2.14 
2.75E-

03 

3.42E-

02 

small molecule catabolic process (GO:0044282) 174 47 22.95 2.05 
5.06E-

05 

1.64E-

03 

organic acid catabolic process (GO:0016054) 105 28 13.85 2.02 
1.67E-

03 

2.42E-

02 

response to external stimulus (GO:0009605) 169 45 22.29 2.02 
9.64E-

05 

2.48E-

03 

endoplasmic reticulum to Golgi vesicle-mediated 

transport (GO:0006888) 
115 29 15.17 1.91 

3.75E-

03 

4.27E-

02 

sulfur compound metabolic process (GO:0006790) 176 41 23.21 1.77 
1.92E-

03 

2.60E-

02 

carboxylic acid metabolic process (GO:0019752) 569 132 75.05 1.76 
2.69E-

08 

4.46E-

06 

carbohydrate derivative metabolic process 

(GO:1901135) 
411 95 54.21 1.75 

2.61E-

06 

1.49E-

04 

oxoacid metabolic process (GO:0043436) 572 132 75.44 1.75 
4.04E-

08 

6.03E-

06 

organic acid biosynthetic process (GO:0016053) 245 56 32.31 1.73 
4.01E-

04 

7.57E-

03 

protein folding (GO:0006457) 254 58 33.5 1.73 
3.57E-

04 

6.83E-

03 

carboxylic acid biosynthetic process (GO:0046394) 228 52 30.07 1.73 
7.02E-

04 

1.23E-

02 

ribosome biogenesis (GO:0042254) 342 78 45.11 1.73 
3.25E-

05 

1.10E-

03 
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Table 3-5 continued 

cellular response to chemical stimulus 

(GO:0070887) 
282 64 37.19 1.72 

1.93E-

04 

4.30E-

03 

organic acid metabolic process 

(GO:0006082) 
591 134 77.95 1.72 

6.46E-

08 

8.77E-

06 

Golgi vesicle transport (GO:0048193) 199 45 26.25 1.71 
1.80E-

03 

2.46E-

02 

carbohydrate metabolic process 

(GO:0005975) 
410 92 54.07 1.7 

1.25E-

05 

4.92E-

04 

purine-containing compound metabolic 

process (GO:0072521) 
210 47 27.7 1.7 

1.70E-

03 

2.39E-

02 

nucleobase-containing small molecule 

metabolic process (GO:0055086) 
316 70 41.68 1.68 

1.68E-

04 

3.97E-

03 

cellular response to organic substance 

(GO:0071310) 
226 50 29.81 1.68 

1.76E-

03 

2.43E-

02 

purine ribonucleotide metabolic process 

(GO:0009150) 
181 40 23.87 1.68 

4.38E-

03 

4.81E-

02 

purine nucleotide metabolic process 

(GO:0006163) 
195 43 25.72 1.67 

3.21E-

03 

3.83E-

02 

transmembrane transport (GO:0055085) 306 67 40.36 1.66 
3.34E-

04 

6.47E-

03 

small molecule metabolic process 

(GO:0044281) 
1020 223 134.53 1.66 

4.58E-

11 

6.83E-

08 

response to organic substance 

(GO:0010033) 
299 63 39.43 1.6 

1.26E-

03 

1.97E-

02 

response to chemical (GO:0042221) 401 84 52.89 1.59 
2.03E-

04 

4.46E-

03 

cellular amide metabolic process 

(GO:0043603) 
666 139 87.84 1.58 

2.20E-

06 

1.43E-

04 

carbohydrate derivative biosynthetic 

process (GO:1901137) 
255 53 33.63 1.58 

4.14E-

03 

4.57E-

02 
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Table 3-5 continued 

cellular carbohydrate metabolic process 

(GO:0044262) 
258 53 34.03 1.56 

4.42E-

03 

4.81E-

02 

lipid metabolic process (GO:0006629) 492 100 64.89 1.54 
1.35E-

04 

3.26E-

03 

cellular lipid metabolic process (GO:0044255) 406 82 53.55 1.53 
6.41E-

04 

1.14E-

02 

peptide metabolic process (GO:0006518) 596 119 78.61 1.51 
6.15E-

05 

1.95E-

03 

ribonucleoprotein complex biogenesis 

(GO:0022613) 
418 83 55.13 1.51 

9.64E-

04 

1.55E-

02 

small molecule biosynthetic process 

(GO:0044283) 
356 70 46.95 1.49 

3.01E-

03 

3.68E-

02 

organonitrogen compound biosynthetic 

process (GO:1901566) 
1108 215 146.13 1.47 

4.19E-

07 

3.47E-

05 

vesicle-mediated transport (GO:0016192) 516 100 68.06 1.47 
6.18E-

04 

1.11E-

02 

response to stress (GO:0006950) 919 177 121.21 1.46 
7.01E-

06 

3.07E-

04 

nitrogen compound transport (GO:0071705) 503 96 66.34 1.45 
1.30E-

03 

2.00E-

02 

organophosphate metabolic process 

(GO:0019637) 
458 87 60.41 1.44 

2.44E-

03 

3.14E-

02 

organic substance transport (GO:0071702) 551 103 72.67 1.42 
1.69E-

03 

2.40E-

02 

amide biosynthetic process (GO:0043604) 573 106 75.57 1.4 
1.70E-

03 

2.37E-

02 

protein localization (GO:0008104) 558 103 73.59 1.4 
2.21E-

03 

2.95E-

02 

transport (GO:0006810) 1349 246 177.92 1.38 
4.63E-

06 

2.09E-

04 

establishment of localization (GO:0051234) 1365 246 180.03 1.37 
9.05E-

06 

3.75E-

04 
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Table 3-5 continued 

localization (GO:0051179) 1556 270 205.22 1.32 
3.49E-

05 

1.16E-

03 

cellular response to stimulus 

(GO:0051716) 
1139 195 150.22 1.3 

8.41E-

04 

1.36E-

02 

response to stimulus (GO:0050896) 1619 277 213.53 1.3 
6.58E-

05 

1.96E-

03 

organic substance catabolic process 

(GO:1901575) 
1070 181 141.12 1.28 

2.34E-

03 

3.09E-

02 

catabolic process (GO:0009056) 1153 191 152.07 1.26 
3.79E-

03 

4.29E-

02 

organonitrogen compound metabolic 

process (GO:1901564) 
3226 510 425.48 1.2 

9.95E-

05 

2.52E-

03 

biological_process (GO:0008150) 9681 1491 1276.82 1.17 
2.06E-

10 

1.54E-

07 

cellular process (GO:0009987) 8516 1283 1123.17 1.14 
6.54E-

07 

5.14E-

05 

 

Rp1-D21/+ versus wildtype in the H95 inbred background 

DGE analysis was also carried out on H95;Rp1-D21/+ F1 plants segregating 1:1 for wildtype 

and mutant phenotypes to examine the impact of Rp1-D21 in the H95 background. Single-end 

reads from three biological replicates each from wild-type and mutant phenotypes were processed 

to identify genes that differ in expression between the two phenotypes. Input read counts ranged 

from 17.8 – 30.3M per sample were mapped to an H95-anonymized B73RefGen_v4 reference 

genome (Table 3-6). DNA sequence from the H95 background was used to identify 

polymorphisms between this inbred background and the B73 reference genome. All 

polymorphisms were then converted to an ambiguous “N” and a new reference that did not score 

as mis-matched reads with H95 polymorphisms in the mapping step was saved. This anonymized 

reference improved mapping rate of the H95 alleles. The proportion of uniquely mapped reads was 

between 71.2 – 76.02%. These alignment rates were comparable to those of the B73 samples, 

suggesting that anonymizing the reference prior to mapping was a valuable step. Such a step is not 

commonplace in RNA-seq experiments, but certainly in species with high rates of nucleotide 

substitution between accessions, such as maize, reference bias has the potential to alter the 

effectiveness of alignment-based genomics approaches.  
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Table 3-6. Mapping statistics for H95;Rp1-D21/+ versus wildtype. 

Sample Background Phenotype Raw reads 

Average 

read length 

(bp) 

Uniquely 

mapped 

reads % 

Multi-

mapped 

reads % 

Unmapped 

reads % 

HRwt_rep1 H95;Rp1-D21 wildtype 22,549,312 125 76.02% 18.96% 5.02% 

HRwt_rep2 H95;Rp1-D21 wildtype 19,216,656 125 71.23% 23.28% 5.50% 

HRwt_rep3 H95;Rp1-D21 wildtype 21,524,749 125 72.90% 21.52% 5.58% 

HRmu_rep1 H95;Rp1-D21 Rp1-D21 18,265,368 125 76.88% 19.17% 3.94% 

HRmu_rep2 H95;Rp1-D21 Rp1-D21 30,354,314 125 72.43% 23.40% 4.17% 

HRmu_rep3 H95;Rp1-D21 Rp1-D21 17,899,060 125 75.17% 19.93% 4.90% 

 

 

Figure 3-7. Comparison between untransformed and log2-transformed read count distribution of 

Rp1-D21/+;H95 samples showing the effect of transformation in reducing skewness. 

 

Table 3-7. Similarity of read counts between H95;Rp1-D21/+ versus wildtype replicates as 

measured by Pearson correlation coefficient. 

Pairwise comparison Pearson Correlation coefficient 

HRwt_1 vs. HRwt_2 0.979 

HRwt_2 vs. HRwt_3 0.973 

HRmu_1 vs. HRmu_2 0.984 

HRmu_2 vs. HRmu_3 0.968 
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Read count per gene was again observed to be higher in the wildtype samples compared to 

mutants (Figure 3-7), perhaps reflecting that a healthier plant will have higher accumulation of 

mRNA per ng of total RNA. Replicates showed great similarity (Table 3-7), and hierarchical 

clustering and PCA did not uncover the presence of outliers (Figures 3-8 and 3-9). Untransformed 

read counts were analyzed for differential expression with DESeq2 using wild-type samples as 

control. A greater proportion of the DEGs were up-regulated by Rp1-D21/+ (Figure 3-10). 

Specifically, 3767 (13%) out of the total expressed genes went up in the mutant relative to the 

wildtype control. In contrast, 2887 (10%) DEGs were downregulated. Normalized read counts for 

the top 30 up or downregulated genes were extracted and visualized on a heatmap to get an idea 

of their expression among the mutant and wildtype samples (Figure 3-11). The heatmap also 

confirmed the direction of fold change reported in the DEG presented in Table 3-8. Analyses of 

the top 30 up or downregulated genes with Phytozome v13 identified several defense-related genes 

to be upregulated.  

 

 

Figure 3-8. Dendrogram showing results of hierarchical clustering of H95;Rp1-D21/+ versus 

wildtype samples. Replicates displayed greater similarity whereas the two phenotypes were clearly 

separated. 
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Figure 3-9. PCA on rlog-transformed read counts for H95;Rp1-D21/+ versus wildtype samples. 

Differences between phenotypes account for greater proportion of variance. 

 

 

Figure 3-10. Volcano plot of H95;Rp1-D21/+ versus wildtype DGE results depicting statistical 

significance (p-value) versus magnitude of change (fold change). Black dots are genes that are not 

statistically significant (adjusted p-value > 0.05), orange dots are statistically significant genes 

(adjusted p-value < 0.05), green dots are statistically significant genes with absolute log2 fold 

change of 2. 

A number of defense related genes are observed in the upregulated list of genes. One of 

the genes most increased in accumulation in the mutants compared to the wildtype plants were 

Zm00001d042934 and Zm00001d045211 (C2H2-type zinc finger, zf-C2H2_6). These zinc finger 

protein genes play a key role in stress resistance in plants (Han et al 2020). Another notable 

accumulated gene was Zm00001d048913 (CALCIUM-BINDING PROTEIN). These proteins are 

Ca2+ sensors that work in conjunction with mitogen activated protein kinases (MAPKs) to regulate 
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expression of defense genes (Yuan et al., 2022). Zm00001d043622 and Zm00001d011737 

(Leucine-rich repeat-containing protein genes) which were accumulated in mutants to 724- and 

362-times the levels of wild-type samples, respectively, have been reported to be involved in 

mediating defense response to fungal pathogens (Block et al., 2021). Down regulated genes 

included Zm00001d039397 (Very-long-chain 3-oxoacyl-CoA reductase / Very-long-chain beta-

ketoacyl-CoA reductase), which plays a role in the formation of cell membranes of higher plants 

and algae and by extension affect cell division and differentiation (Haslam & Kunst, 2013; Zhukov 

& Popov, 2022). Zm00001d022098 (tRNA pseudouridine (55) synthase), which converts uridine 

to pseudouridine is vital for translation efficiency (Xie et al., 2022) was also among the top 

downregulated genes. Again, as genes implicated in defense response were overexpressed in the 

Rp1-D21/+ plants whereas genes required for normal cellular functions were generally 

downregulated. 

 

 

Figure 3-11. Heatmap of log2-transformed read counts for top 30 most up or down-regulated genes 

after DGE analysis of H95;Rp1-D21/+ versus wildtype samples. Genes are sorted based on 

hierarchical clustering. 

 

 



  

 

89 

 

Table 3-8. Annotation for top 30 most up or down-regulated differentially expressed genes in 

H95;Rp1-D21/+ versus wildtype samples. 

Gene Length Chromosome Description log2FoldChange padj 

Zm00001d043994 2431 3 ANNOTATION UNKOWN 10.11111 1.78E-14 

Zm00001d042934 1077 3 
 C2H2-type zinc finger (zf-

C2H2_6) 
9.922837 2.20E-13 

Zm00001d048913 606 4 
CALCIUM-BINDING 

PROTEIN CML30-RELATED 
9.726615 2.16E-13 

Zm00001d043622 1569 3 
LEUCINE-RICH REPEAT-

CONTAINING PROTEIN  
9.531791 2.64E-13 

Zm00001d036647 3883 6 
speckle-type POZ protein 

(SPOP) 
9.299148 4.39E-12 

Zm00001d030343 1608 1 

Very-long-chain 3-oxoacyl-

CoA synthase / Very-long-

chain beta-ketoacyl-CoA 

synthase 

8.9287 8.21E-11 

Zm00001d023774 958 10 

ERGOSTEROL 

BIOSYNTHETIC PROTEIN 

28-RELATED 

8.858192 7.80E-15 

Zm00001d037909 522 6 
NPR1 interacting 

(NPR1_interact) 
8.667048 3.35E-09 

Zm00001d012430 636 8 
C2H2-type zinc finger (zf-

C2H2_6) 
8.661254 5.36E-10 

Zm00001d045211 537 9 
C2H2-type zinc finger (zf-

C2H2_6) 
8.654814 1.60E-20 

Zm00001d032858 6183 1 
Ent-pimara-8(14),15-diene 

synthase 
8.574602 3.27E-09 

Zm00001d011737 1560 8 
LEUCINE-RICH REPEAT-

CONTAINING PROTEIN  
8.482656 8.26E-09 

Zm00001d002178 4112 2 

Non-specific serine/threonine 

protein kinase / Threonine-

specific protein kinase 

8.464001 9.94E-14 

Zm00001d046811 2907 9 

Dihydrokaempferol 4-

reductase / NADPH-

dihydromyricetin reductase 

8.443807 4.61E-09 

Zm00001d041662 982 3 ANNOTATION UNKOWN -5.726324 0.048819 
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Table 3-8 continued. 

Zm00001d023839 11013 10 
condensin-2 complex subunit D3 

(NCAPD3) 
-5.729652 0.022818 

Zm00001d012670 3440 8 ANNOTATION UNKOWN -5.759316 0.003137 

Zm00001d030822 7782 1 LANOSTEROL SYNTHASE  -5.813583 0.041367 

Zm00001d029607 1893 1 PROTEIN SHORT-ROOT -5.813604 0.021851 

Zm00001d028317 3478 1 

on-specific serine/threonine 

protein kinase / Threonine-specific 

protein kinase 

-5.928997 0.001453 

Zm00001d008196 997 8 ANNOTATION UNKOWN -5.983376 0.012158 

Zm00001d010435 721 8 ANNOTATION UNKOWN -6.085148 0.022842 

Zm00001d022098 4867 7 
tRNA pseudouridine(55) synthase / 

tRNA Psi(55) synthase 
-6.09893 0.004397 

Zm00001d047680 3370 9 
Calmodulin binding protein-like 

(Calmodulin_bind) 
-6.155122 0.004097 

Zm00001d039397 2124 3 

Very-long-chain 3-oxoacyl-CoA 

reductase / Very-long-chain beta-

ketoacyl-CoA reductase 

-6.15786 0.01938 

Zm00001d032003 978 1 
Arabidopsis protein of unknown 

function (DUF241) 
-7.365104 4.17E-05 

 

Similar to what was observed in the B73 background downregulated genes were enriched 

for growth and developmental genes whereas upregulated genes were predominantly defense 

genes (Table 3-9). Five out of the six GO categories enriched in the downregulated genes were 

related to cell division. Mitosis, cytoskeleton, and cytokinesis were overrepresented almost seven 

times in the downregulated genes. Out of the 35 genes reportedly involved in cell division in maize, 

eight were found in our list of downregulated genes, almost five times more than expected. Genes 

involved in the transport of potassium (K+)─an ion required for cellular functions such as keeping 

electrical potential and gradients within cell membranes as well as maintenance of turgor and 

enzyme activation (Britto & Kronzucker, 2008)─were enriched about six times more in the 

wildtype plants than mutants. Upregulated genes were mostly involved in defense, as has been 

noted in the previous experiments (Table 3-10). GO terms with most significant hits included 

defense response to fungus, immune fungus, program cell death, cell surface signaling. 
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Table 3-9. GO annotations for down-regulated genes from the H95;Rp1-D21/+ versus wildtype 

background. 

GO-Slim Biological Process 

Zea mays - 

REFLIST Actual Expected 

Fold 

Enrichment 

Raw P-

value FDR 

mitotic cytokinesis (GO:0000281) 35 7 1.05 6.68 1.91E-04 

1.35E-

02 

cytoskeleton-dependent cytokinesis 

(GO:0061640) 35 7 1.05 6.68 1.91E-04 

1.29E-

02 

potassium ion transport (GO:0006813) 38 7 1.14 6.15 2.97E-04 

1.71E-

02 

membrane fission (GO:0090148) 43 7 1.29 5.44 5.77E-04 

2.46E-

02 

cytokinesis (GO:0000910) 43 7 1.29 5.44 5.77E-04 

2.39E-

02 

cell division (GO:0051301) 54 8 1.62 4.95 4.18E-04 

1.95E-

02 

 

Table 3-10. GO annotations for up-regulated genes from the H95;Rp1-D21/+ versus wildtype 

background. 

GO-Slim Biological Process 
Zea mays - 

REFLIST 
Actual Expected 

Fold 

Enrichment 

Raw P-

value 
FDR 

defense response to fungus 

(GO:0050832) 
8 7 0.52 13.58 1.23E-05 9.69E-04 

innate immune response 

(GO:0045087) 
11 6 0.71 8.47 3.39E-04 9.72E-03 

immune system process 

(GO:0002376) 
14 6 0.9 6.65 9.06E-04 2.22E-02 

immune response 

(GO:0006955) 
14 6 0.9 6.65 9.06E-04 2.18E-02 

programmed cell death 

(GO:0012501) 
18 7 1.16 6.04 5.39E-04 1.46E-02 

cell death (GO:0008219) 18 7 1.16 6.04 5.39E-04 1.44E-02 

cell surface receptor 

signaling pathway 

(GO:0007166) 

60 21 3.87 5.43 9.77E-09 1.82E-06 

ribosomal large subunit 

assembly (GO:0000027) 
32 11 2.06 5.33 3.70E-05 1.90E-03 

double-strand break repair 

via break-induced 

replication (GO:0000727) 

21 7 1.35 5.17 1.13E-03 2.48E-02 
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Table 3-10 continued. 

endoplasmic reticulum unfolded protein 

response (GO:0030968) 
22 7 1.42 4.94 1.41E-03 2.89E-02 

glutathione metabolic process 

(GO:0006749) 
51 14 3.29 4.26 2.80E-05 1.60E-03 

ceramide biosynthetic process 

(GO:0046513) 
34 9 2.19 4.11 9.28E-04 2.20E-02 

ceramide metabolic process (GO:0006672) 35 9 2.26 3.99 1.10E-03 2.46E-02 

xylan biosynthetic process (GO:0045492) 37 9 2.38 3.78 1.54E-03 3.06E-02 

cellular modified amino acid metabolic 

process (GO:0006575) 
72 17 4.64 3.66 2.17E-05 1.29E-03 

response to external biotic stimulus 

(GO:0043207) 
136 32 8.76 3.65 6.99E-09 3.47E-06 

response to other organism (GO:0051707) 136 32 8.76 3.65 6.99E-09 2.61E-06 

response to biotic stimulus (GO:0009607) 136 32 8.76 3.65 6.99E-09 2.08E-06 

defense response to other organism 

(GO:0098542) 
136 32 8.76 3.65 6.99E-09 1.74E-06 

biological process involved in interspecies 

interaction between organisms 

(GO:0044419) 

137 32 8.83 3.63 8.12E-09 1.73E-06 

response to unfolded protein 

(GO:0006986) 
40 9 2.58 3.49 2.44E-03 4.44E-02 

cellular response to unfolded protein 

(GO:0034620) 
40 9 2.58 3.49 2.44E-03 4.38E-02 

sphingolipid biosynthetic process 

(GO:0030148) 
47 10 3.03 3.3 2.05E-03 3.82E-02 

ribosomal large subunit biogenesis 

(GO:0042273) 
95 20 6.12 3.27 1.82E-05 1.18E-03 

ubiquitin-dependent ERAD pathway 

(GO:0030433) 
56 11 3.61 3.05 2.17E-03 4.00E-02 
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Table 3-10 continued. 

defense response (GO:0006952) 219 43 14.11 3.05 2.55E-09 3.81E-06 

response to endoplasmic reticulum stress 

(GO:0034976) 
93 18 5.99 3 1.20E-04 4.26E-03 

response to external stimulus (GO:0009605) 169 32 10.89 2.94 5.32E-07 6.10E-05 

cytoplasmic translation (GO:0002181) 105 19 6.77 2.81 1.70E-04 5.41E-03 

ribonucleoprotein complex assembly 

(GO:0022618) 
152 26 9.79 2.65 4.28E-05 2.06E-03 

non-membrane-bounded organelle assembly 

(GO:0140694) 
137 23 8.83 2.61 1.47E-04 4.87E-03 

ribonucleoprotein complex subunit 

organization (GO:0071826) 
157 26 10.12 2.57 5.64E-05 2.55E-03 

hormone-mediated signaling pathway 

(GO:0009755) 
154 24 9.92 2.42 2.14E-04 6.53E-03 

cellular response to hormone stimulus 

(GO:0032870) 
154 24 9.92 2.42 2.14E-04 6.39E-03 

cellular response to endogenous stimulus 

(GO:0071495) 
157 24 10.12 2.37 4.11E-04 1.16E-02 

cellular response to organic substance 

(GO:0071310) 
226 34 14.56 2.33 3.41E-05 1.89E-03 

response to organic substance (GO:0010033) 299 44 19.27 2.28 3.27E-06 2.87E-04 

cellular response to chemical stimulus 

(GO:0070887) 
282 40 18.17 2.2 1.70E-05 1.21E-03 

response to hormone (GO:0009725) 177 25 11.4 2.19 8.78E-04 2.18E-02 

response to endogenous stimulus 

(GO:0009719) 
180 25 11.6 2.16 9.66E-04 2.25E-02 

ribosome biogenesis (GO:0042254) 342 45 22.04 2.04 3.55E-05 1.89E-03 
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Table 3-10 continued. 

signal transduction (GO:0007165) 627 82 40.4 2.03 
2.69E-

08 

4.46E-

06 

signaling (GO:0023052) 634 82 40.85 2.01 
3.31E-

08 

4.95E-

06 

cell communication (GO:0007154) 650 82 41.88 1.96 
1.12E-

07 

1.52E-

05 

response to chemical (GO:0042221) 401 50 25.84 1.94 
3.87E-

05 

1.93E-

03 

ribonucleoprotein complex biogenesis 

(GO:0022613) 
418 50 26.93 1.86 

1.20E-

04 

4.09E-

03 

cellular amide metabolic process (GO:0043603) 666 78 42.91 1.82 
2.65E-

06 

2.47E-

04 

peptide metabolic process (GO:0006518) 596 66 38.4 1.72 
7.28E-

05 

2.94E-

03 

cellular response to stimulus (GO:0051716) 1139 123 73.39 1.68 
2.12E-

07 

2.64E-

05 

response to stimulus (GO:0050896) 1619 171 104.32 1.64 
3.39E-

09 

2.53E-

06 

protein phosphorylation (GO:0006468) 493 52 31.77 1.64 
1.44E-

03 

2.90E-

02 

response to stress (GO:0006950) 919 96 59.22 1.62 
1.79E-

05 

1.21E-

03 

amide biosynthetic process (GO:0043604) 573 59 36.92 1.6 
9.95E-

04 

2.28E-

02 

phosphorylation (GO:0016310) 579 58 37.31 1.55 
2.44E-

03 

4.33E-

02 

organonitrogen compound biosynthetic process 

(GO:1901566) 
1108 100 71.39 1.4 

1.74E-

03 

3.33E-

02 

biological_process (GO:0008150) 9681 695 623.79 1.11 
1.73E-

03 

3.35E-

02 
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NC350 x H95;Rp1-D21/+ versus wild type 

NC350 x H95;Rp1-D21/+ wildtype and mutant F1 plants were also analyzed to identify 

genes differentially expressed in presence of the NC350 genotype. This genotype was previously 

found to strongly enhance the phenotype of Rp1-D21/+ relative to B73 (Chintamanani et al., 2010). 

I expect this to result in the strongest expression effects of the genotypes assessed here, due to the 

enhanced effects of the genetic background on Rp1-D21/+ and provide the clearest insight into the 

pathways and molecular functions altered by the HR affected by Rp1-D21/+. Three biological 

replicates from each phenotype were sequenced for differential gene expression analysis. Again, 

an anonymized reference was generated. This time DNA sequence from the H95 and NC350 

backgrounds were used to identify polymorphisms between these inbred backgrounds and the B73 

reference genome. All polymorphisms were then converted to an ambiguous “N” and a new 

reference that did not bias against reads with either NC350 or H95 polymorphisms at the mapping 

step was saved. This anonymized reference was used for all alignments. Input reads ranging from 

21.3 – 26.7M per sample were aligned to the NC350-anonymized reference genome, out of which 

71.4 – 76.91% were uniquely mapped (Table 3-11). This is an indication of high-quality sample 

preparation and data processing steps and again indicated the value of this novel preprocessing 

step. 

Alignment files were processed together with the reference annotation file to generate read 

counts per gene for each sample. These counts were higher in the wildtype samples compared to 

the mutants (Figure 3-12), indicating that the normal, healthy wildtype plants recorded greater 

reads numbers per library than the growth-impaired mutant plants. Although raw read counts were 

used for DGE analysis, the quality control analyses that preceded DGE relied on transformed 

counts. The effect of size-factor normalization followed by log2-transformation on reducing 

skewness was clear. This greatly improved the accuracy of algorithms used for clustering and 

principal component analysis used as a quality control check.  

Biological replicates with poorly correlated gene expression usually signal mistakes or 

other problems at some stage during the experiment. Replicates showed remarkable similarity, 

more than 97% in pairwise comparisons as measured by Pearson correlation (r; Table 3-12). This 

was above the 90% correlation threshold recommended by the ENCODE consortium (Standards, 

Guidelines and Best Practices for RNA-Seq V1.0) and is an indication of the quality of 

experimental procedures from tissue collection through the library preparation and sequencing.  
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Table 3-11. Mapping statistics for NC350 x H95;Rp1-D21/+  versus wildtype. 

Sample Background Phenotype Raw reads 

Average 

read length 

(bp) 

Uniquely 

mapped 

reads % 

Multi-

mapped 

reads % 

Unmappe

d reads % 

NHRwt_rep1 

NC350 x 

H95;Rp1-

D21 wildtype 21,399,539 125 75.62% 19.37% 5.00% 

NHRwt_rep2 

NC350 x 

H95;Rp1-

D21 wildtype 25,645,653 125 76.86% 17.62% 5.52% 

NHRwt_rep3 

NC350 x 

H95;Rp1-

D21 wildtype 22,179,388 125 71.43% 23.28% 5.29% 

NHRmu_rep1 

NC350 x 

H95;Rp1-

D21 Rp1-D21 25,567,445 125 72.99% 23.13% 3.88% 

NHRmu_rep2 

NC350 x 

H95;Rp1-

D21 Rp1-D21 26,775,218 125 72.63% 23.19% 4.17% 

NHRmu_rep3 

NC350 x 

H95;Rp1-

D21 Rp1-D21 26,373,971 125 72.19% 23.95% 3.86% 

 

Hierarchical clustering was performed to group similar samples using the pairwise 

correlations calculated above. The distance measure (Height) was computed as 1- r and the results 

rendered as a dendrogram. As expected, hierarchical clustering revealed greater gene expression 

variability between wildtype and mutant phenotypes than among replicates of the same phenotype 

(Figure 3-13). 

Principal components confirmed the results of hierarchical clustering and also unearthed 

greater gene expression variability between wild-type and mutant phenotypes than what was 

observed among replicates of the same phenotype. In fact, 99% of variation observed across all 

samples could be explained by differences between mutant and wild type. Differences among 

replicates only accounted for less than 1% of total variation (Figure 3-14). This observation is not 

surprising considering the range of mutant impacts observed in the other backgrounds (Figures 3-
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8 and 3-13) and to the fact that mutant phenotype is more severe in the NC350 background than 

the other backgrounds studied (Chintamanani et al., 2010). 

Neither hierarchical clustering nor PCA detected outliers. As a result, the three biological 

replicates per genotype (mutant or wildtype) were analyzed for DEG using DESeq2. Wildtype 

samples were set as controls to identify differentially expressed genes. A total of 14,753 genes 

were identified as significantly differently expressed between mutants and wildtypes. Up-

regulated genes marginally outnumbered down-regulated genes (Figure 3-15). Indeed, 7,835 (26%) 

expressed genes were accumulated to a greater degree by mutants as compared to the 6,918 (23%) 

that were turned down. 

 

 

Figure 3-12. Comparison between untransformed and log2-transformed read count distribution of 

NC350 x H95;Rp1-D21/+ versus wildtype (NHR) samples showing the effect of transformation in 

reducing skewness. 

Table 3-12. Similarity of read counts between NC350 x H95;Rp1-D21/+ versus wildtype (NHR) 

replicates as measured by Pearson correlation coefficient. 

Pairwise comparison Pearson Correlation coefficient 

NHRwt_1 vs. NHRwt_2 0.979 

NHRwt_2 vs. NHRwt_3 0.979 

NHRmu_1 vs. NHRmu_2 0.985 

NHRmu_2 vs. NHRmu_3 0.982 
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Figure 3-13. Dendrogram showing results of hierarchical clustering of NC350 x H95;Rp1-D21/+ 

versus wildtype (NHR) samples. Replicates displayed greater similarity whereas the two 

phenotypes were clearly separated. 

 

 

Figure 3-14. PCA on rlog-transformed read counts for NC350 x H95;Rp1-D21/+ versus wildtype 

(NHR) samples. Differences between phenotypes account for greater proportion of variance. 
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Figure 3-15. Volcano plot of NC350 x H95;Rp1-D21/+ versus wildtype (NHR) DGE results 

depicting statistical significance (p-value) versus magnitude of change (fold change). Black dots 

are genes that are not statistically significant (adjusted p-value > 0.05), orange dots are statistically 

significant genes (adjusted p-value < 0.05), green dots are statistically significant genes with 

absolute log2 fold change of 2. 

 

 

Figure 3-16. Heatmap of log2-transformed read counts for top 30 most up or down-regulated genes 

after DGE analysis of NC350 x H95;Rp1-D21/+ versus wildtype (NHR) samples. Genes are sorted 

based on hierarchical clustering. 
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The heatmap of log2-transformed read counts of the top 30 up- or down-regulated genes 

(Figure 3-16) confirmed the direction of fold-change displayed in the DGE results table. Several 

defense or stress related genes were among the top up-regulated genes (Table 3-13). Indeed, the 

upregulated gene with the biggest fold change was Zm00001d024210 ((S)-beta-bisabolene 

synthase // (S)-beta-macrocarpene synthase). This gene encodes a known terpene in maize β-

bisabolene, a secondary metabolite class involved in chemical defense against insect herbivores 

(Block et al., 2019). Another highly upregulated gene was Zm00001d031155 encoding a 

Thaumatin family protein. This group of pathogenesis-related (PR) genes play a key function in 

plant defense (van Loon et al., 2006). They have been known to be key in controlling tolerance to 

the fungal pathogen Verticillium dahlia and drought in several cotton species (Z. Li et al., 2020) 

Similar studies with transgenic Arabidopsis have revealed that these proteins confer tolerance to 

two fungi Scleretonia sclerotiorum and Botrytis cinerea as well as to salinity and dehydration 

(Misra et al., 2016). Zm00001d049957 which encodes ent-kaurene synthase was also 

overexpressed in the plants showing the mutant phenotype. Although this enzyme is known for 

the part it plays in the biosynthesis of the phytohormone gibberellin (GA), it also plays additional 

roles in diterpenoid metabolism (Fu et al., 2016) including secondary metabolites long reported to 

be overproduced in maize seedlings in response to several pathogenic fungi (Mellon2 & West, 

1979). Another gene from this list of Rp1-D21/+ upregulated genes was Zm00001d023768 which 

encodes the omega-6 fatty acid desaturase, FAD2. FAD2 facilitates the biosynthesis of the 

polyunsaturated linoleic acid from the monounsaturated oleic acid (Mikkilineni & Rocheford, 

2003; Ohlroggeav’ & Browseb, 1995; Shanklin & Cahoon, 1998) Linoleic acids are known to be 

used by plants in defense signaling in response to pathogen attack and wounding (Dar et al., 2017; 

Farmer, 1994). A gene encoding a protein similar to the Hyoscymus muticus premnaspirodiene 

oxygenase (Zm00001d023625), was also highly upregulated. This enzyme is notable for 

conversion of premnaspirodiene into the phytoalexin solavetivone, known for its strong antifungal 

properties (Takahashi et al., 2007). 
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Table 3-13. Annotation for top 30 most up or down-regulated differentially expressed genes in 

NC350 x H95;Rp1-D21/+ versus wildtype (NHR) samples. 

Gene Length Chromosome Description log2FoldChange padj 

Zm00001d024210 3192 10 
(S)-beta-bisabolene synthase // 

(S)-beta-macrocarpene synthase 
14.60499 

9.06E-

34 

Zm00001d036539 1023 6 CHITINASE-RELATED  14.01831 
3.68E-

31 

Zm00001d031155 534 1 Thaumatin family (Thaumatin) 13.53141 
4.97E-

29 

Zm00001d050021 5574 4 
(+)-abscisic acid 8'-hydroxylase / 

ABA 8'-hydroxylase 
13.16385 

2.91E-

27 

Zm00001d049957 3697 4 
Ent-kaurene synthase / Ent-

kaurene synthetase B 
13.05143 

5.35E-

27 

Zm00001d039520 2267 3 
Cytokinin dehydrogenase / 

Cytokinin oxidase 
12.94706 

1.36E-

26 

Zm00001d030558 1490 1 ANNOTATION UNKOWN 12.93233 
1.43E-

26 

Zm00001d029359 2083 1 O-METHYLTRANSFERASE  12.21468 
1.97E-

60 

Zm00001d023768 1155 10 
omega-6 fatty acid desaturase 

(delta-12 desaturase) (FAD2) 
12.07258 

8.02E-

20 

Zm00001d012281 753 8 
Late embryogenesis abundant 

protein (LEA_2) 
11.99491 

7.24E-

23 

Zm00001d023625 1786 10 

Premnaspirodiene oxygenase / 

Hyoscymus muticus 

premnaspirodiene oxygenase 

11.90385 
4.56E-

22 

Zm00001d011208 1680 8 

Aminocyclopropanecarboxylate 

oxidase / Ethylene-forming 

enzyme // Non-specific 

serine/threonine protein kinase / 

Threonine-specific protein kinase 

11.83811 
8.67E-

22 

Zm00001d040071 2612 3 
Protein O-GlcNAc transferase / 

OGTase 
11.81396 

3.77E-

22 

Zm00001d008853 3691 8 

STEROL REGULATORY 

ELEMENT-BINDING 

PROTEIN  

11.73954 
6.94E-

22 

Zm00001d050705 1341 4 ANNOTATION UNKOWN -8.313803 
1.22E-

09 

Zm00001d038181 3297 6 
 OLIGOPEPTIDE 

TRANSPORTER-RELATED  
-8.31821 

2.49E-

20 
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Table 3-13 continued. 

Zm00001d042123 2418 3 SULFOTRANSFERASE  SULT  -8.408998 7.17E-10 

Zm00001d009606 2784 8 ANNOTATION UNKOWN -8.666946 5.92E-11 

Zm00001d032509 1569 1 WD REPEAT DOMAIN 44  -8.875943 0.042973 

Zm00001d044529 2628 3 

OLIGOPEPTIDE TRANSPORTER-

RELATED // PROTEIN NRT1/ PTR 

FAMILY 6.2 

-8.961697 1.70E-11 

Zm00001d013593 394 5 
Protein of unknown function (DUF1677) 

(DUF1677) 
-9.016516 8.36E-12 

Zm00001d012045 900 8 
C3HC4 TYPE RING-FINGER PROTEIN-

RELATED 
-9.063619 4.37E-12 

Zm00001d009425 1190 8 ANNOTATION UNKOWN -9.121169 3.51E-12 

Zm00001d043477 5776 3 
Cellulose synthase (UDP-forming) / UDP-

glucose-cellulose glucosyltransferase 
-9.190374 1.52E-12 

Zm00001d006161 1676 2 
Alpha-L-fucosidase / Alpha-L-fucoside 

fucohydrolase 
-9.200742 2.71E-12 

Zm00001d026500 896 10 ANNOTATION UNKOWN -9.249965 7.42E-13 

Zm00001d010211 2871 8 
ADENINE NUCLEOTIDE ALPHA 

HYDROLASE-LIKE PROTEIN 
-9.939427 3.62E-15 

Zm00001d037382 1428 6 
GLUCOSYL/GLUCURONOSYL 

TRANSFERASES  
-10.01569 5.52E-16 

Zm00001d047671 4233 9 

MYB-LIKE DNA-BINDING PROTEIN 

MYB // MYB DOMAIN PROTEIN 11-

RELATED 

-10.45784 4.22E-17 
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Comparable to what was reported from the GO enrichment analyses in the Rp1-D21/+;B73 

and H95;Rp1-D21/+ backgrounds, NC350 x H95;Rp1-D21/+ exhibited downregulated genes 

enriched for several growth-related biological processes while upregulated genes were mostly 

involved in defense and immunity related activities. For example, in the downregulated genes 

photosynthesis terms were enriched 5.81 times, mitotic and cytoskeleton-dependent cytokinesis 

terms 3.63 times, membrane fission 3.14 times, to name a few (Table 3-14). Among the 

upregulated genes the category defense response to fungus (GO:0050832) was the most enriched 

biological process and was enriched 5.81 times than would have been expected by random chance 

(Table 3-15). Other defense processes overrepresented among the transcripts with increased 

accumulation included innate immune response (GO:0045087) 5.51 times, immune system 

process (GO:0002376) 4.33 times, programmed cell death (GO:0012501) 3.79 times more than 

expected. 

Table 3-14. Gene Ontology (GO) annotations for down-regulated genes in the NC350 x 

H95;Rp1-D21/+ versus wildtype. 

GO-Slim Biological Process 
Zea mays - 

REFLIST 
Actual Expected 

Fold 

Enrichment 

Raw P-

value 
FDR 

photosynthesis 

(GO:0015979) 
52 38 6.54 5.81 

5.52E-

14 

8.23E-

11 

beta-glucan biosynthetic 

process (GO:0051274) 
23 11 2.89 3.8 

8.23E-

04 

1.40E-

02 

mitotic cytokinesis 

(GO:0000281) 
35 16 4.4 3.63 

8.84E-

05 

2.64E-

03 

cytoskeleton-dependent 

cytokinesis (GO:0061640) 
35 16 4.4 3.63 

8.84E-

05 

2.59E-

03 

regulation of multicellular 

organismal development 

(GO:2000026) 

29 13 3.65 3.56 
4.61E-

04 

8.49E-

03 

membrane fission 

(GO:0090148) 
43 17 5.41 3.14 

2.18E-

04 

4.58E-

03 

cytokinesis (GO:0000910) 43 17 5.41 3.14 
2.18E-

04 

4.52E-

03 

 



  

 

104 

 

Table 3-14 continued. 

response to light stimulus (GO:0009416) 108 42 13.58 3.09 1.21E-08 3.01E-06 

pigment biosynthetic process (GO:0046148) 32 12 4.02 2.98 2.55E-03 3.62E-02 

pigment metabolic process (GO:0042440) 35 13 4.4 2.95 1.84E-03 2.74E-02 

chloroplast organization (GO:0009658) 49 18 6.16 2.92 2.99E-04 6.03E-03 

regulation of multicellular organismal process 

(GO:0051239) 
48 17 6.04 2.82 6.11E-04 1.05E-02 

plastid organization (GO:0009657) 57 20 7.17 2.79 3.41E-04 6.70E-03 

response to radiation (GO:0009314) 123 42 15.47 2.71 2.96E-07 3.16E-05 

cell division (GO:0051301) 54 18 6.79 2.65 9.63E-04 1.58E-02 

response to abiotic stimulus (GO:0009628) 189 50 23.77 2.1 1.16E-05 5.11E-04 

regulation of developmental process 

(GO:0050793) 
95 25 11.95 2.09 1.98E-03 2.87E-02 

generation of precursor metabolites and energy 

(GO:0006091) 
233 53 29.3 1.81 2.15E-04 4.58E-03 
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Table 3-15. Gene Ontology (GO) annotations for up-regulated genes in the NC350 x H95;Rp1-

D21/+ versus wildtype. 

GO-Slim Biological 

Process 

Zea mays - 

REFLIST 
Actual Expected 

Fold 

Enrichment 

Raw P-

value 
FDR 

defense response to fungus 

(GO:0050832) 
8 6 1.06 5.69 

3.26E-

03 

3.83E-

02 

innate immune response 

(GO:0045087) 
11 8 1.45 5.51 

7.77E-

04 

1.30E-

02 

immune system process 

(GO:0002376) 
14 8 1.85 4.33 

2.38E-

03 

3.12E-

02 

immune response 

(GO:0006955) 
14 8 1.85 4.33 

2.38E-

03 

3.09E-

02 

organic anion transport 

(GO:0015711) 
19 10 2.51 3.99 

1.12E-

03 

1.78E-

02 

programmed cell death 

(GO:0012501) 
18 9 2.37 3.79 

2.58E-

03 

3.29E-

02 

cell death (GO:0008219) 18 9 2.37 3.79 
2.58E-

03 

3.26E-

02 

glutathione metabolic 

process (GO:0006749) 
51 24 6.73 3.57 

2.42E-

06 

1.50E-

04 

tricarboxylic acid cycle 

(GO:0006099) 
34 15 4.48 3.35 

3.15E-

04 

6.18E-

03 

maturation of LSU-rRNA 

from tricistronic rRNA 

transcript (SSU-rRNA, 

5.8S rRNA, LSU-rRNA) 

(GO:0000463) 

25 11 3.3 3.34 
1.97E-

03 

2.65E-

02 

cell surface receptor 

signaling pathway 

(GO:0007166) 

60 25 7.91 3.16 
8.20E-

06 

3.50E-

04 

glucose 6-phosphate 

metabolic process 

(GO:0051156) 

27 11 3.56 3.09 
3.18E-

03 

3.82E-

02 

maturation of LSU-rRNA 

(GO:0000470) 
32 13 4.22 3.08 

1.42E-

03 

2.14E-

02 

ribosomal large subunit 

assembly (GO:0000027) 
32 13 4.22 3.08 

1.42E-

03 

2.11E-

02 

cellular modified amino 

acid metabolic process 

(GO:0006575) 

72 29 9.5 3.05 
2.76E-

06 

1.52E-

04 
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Table 3-15 continued. 

response to unfolded protein (GO:0006986) 40 16 5.28 3.03 
4.80E-

04 

8.84E-

03 

cellular response to unfolded protein 

(GO:0034620) 
40 16 5.28 3.03 

4.80E-

04 

8.73E-

03 

ribosomal large subunit biogenesis 

(GO:0042273) 
95 37 12.53 2.95 

3.22E-

07 

2.83E-

05 

aromatic amino acid family metabolic 

process (GO:0009072) 
57 22 7.52 2.93 

7.02E-

05 

2.01E-

03 

monocarboxylic acid catabolic process 

(GO:0072329) 
37 14 4.88 2.87 

1.63E-

03 

2.38E-

02 

lipid oxidation (GO:0034440) 44 16 5.8 2.76 
1.68E-

03 

2.42E-

02 

cytoplasmic translation (GO:0002181) 105 37 13.85 2.67 
2.17E-

06 

1.47E-

04 

secretion by cell (GO:0032940) 78 27 10.29 2.62 
8.55E-

05 

2.32E-

03 

export from cell (GO:0140352) 78 27 10.29 2.62 
8.55E-

05 

2.28E-

03 

secretion (GO:0046903) 78 27 10.29 2.62 
8.55E-

05 

2.24E-

03 

vesicle fusion to plasma membrane 

(GO:0099500) 
68 22 8.97 2.45 

7.19E-

04 

1.25E-

02 

exocytic process (GO:0140029) 68 22 8.97 2.45 
7.19E-

04 

1.23E-

02 

exocytosis (GO:0006887) 68 22 8.97 2.45 
7.19E-

04 

1.22E-

02 

cellular amine metabolic process 

(GO:0044106) 
50 16 6.59 2.43 

3.47E-

03 

4.04E-

02 

cellular biogenic amine metabolic process 

(GO:0006576) 
50 16 6.59 2.43 

3.47E-

03 

4.01E-

02 

response to external biotic stimulus 

(GO:0043207) 
136 43 17.94 2.4 

3.31E-

06 

1.76E-

04 
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Table 3-15 continued. 

response to other organism (GO:0051707) 136 43 17.94 2.4 
3.31E-

06 

1.70E-

04 

response to biotic stimulus (GO:0009607) 136 43 17.94 2.4 
3.31E-

06 

1.65E-

04 

defense response to other organism (GO:0098542) 136 43 17.94 2.4 
3.31E-

06 

1.59E-

04 

biological process involved in interspecies 

interaction between organisms (GO:0044419) 
137 43 18.07 2.38 

3.71E-

06 

1.73E-

04 

monocarboxylic acid metabolic process 

(GO:0032787) 
215 64 28.36 2.26 

9.58E-

08 

1.19E-

05 

carbohydrate catabolic process (GO:0016052) 121 36 15.96 2.26 
8.10E-

05 

2.28E-

03 

cellular response to topologically incorrect protein 

(GO:0035967) 
68 20 8.97 2.23 

3.86E-

03 

4.33E-

02 

response to topologically incorrect protein 

(GO:0035966) 
68 20 8.97 2.23 

3.86E-

03 

4.30E-

02 

defense response (GO:0006952) 219 64 28.88 2.22 
1.93E-

07 

2.22E-

05 

carboxylic acid catabolic process (GO:0046395) 93 27 12.27 2.2 
8.29E-

04 

1.37E-

02 

response to endoplasmic reticulum stress 

(GO:0034976) 
93 27 12.27 2.2 

8.29E-

04 

1.36E-

02 

amine metabolic process (GO:0009308) 73 21 9.63 2.18 
3.16E-

03 

3.84E-

02 

fatty acid metabolic process (GO:0006631) 78 22 10.29 2.14 
2.75E-

03 

3.42E-

02 

small molecule catabolic process (GO:0044282) 174 47 22.95 2.05 
5.06E-

05 

1.64E-

03 

organic acid catabolic process (GO:0016054) 105 28 13.85 2.02 
1.67E-

03 

2.42E-

02 

response to external stimulus (GO:0009605) 169 45 22.29 2.02 
9.64E-

05 

2.48E-

03 
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Table 3-15 continued. 

endoplasmic reticulum to Golgi vesicle-

mediated transport (GO:0006888) 
115 29 15.17 1.91 

3.75E-

03 

4.27E-

02 

sulfur compound metabolic process 

(GO:0006790) 
176 41 23.21 1.77 

1.92E-

03 

2.60E-

02 

carboxylic acid metabolic process 

(GO:0019752) 
569 132 75.05 1.76 

2.69E-

08 

4.46E-

06 

carbohydrate derivative metabolic process 

(GO:1901135) 
411 95 54.21 1.75 

2.61E-

06 

1.49E-

04 

oxoacid metabolic process (GO:0043436) 572 132 75.44 1.75 
4.04E-

08 

6.03E-

06 

organic acid biosynthetic process 

(GO:0016053) 
245 56 32.31 1.73 

4.01E-

04 

7.57E-

03 

protein folding (GO:0006457) 254 58 33.5 1.73 
3.57E-

04 

6.83E-

03 

carboxylic acid biosynthetic process 

(GO:0046394) 
228 52 30.07 1.73 

7.02E-

04 

1.23E-

02 

ribosome biogenesis (GO:0042254) 342 78 45.11 1.73 
3.25E-

05 

1.10E-

03 

cellular response to chemical stimulus 

(GO:0070887) 
282 64 37.19 1.72 

1.93E-

04 

4.30E-

03 

organic acid metabolic process (GO:0006082) 591 134 77.95 1.72 
6.46E-

08 

8.77E-

06 

Golgi vesicle transport (GO:0048193) 199 45 26.25 1.71 
1.80E-

03 

2.46E-

02 

carbohydrate metabolic process (GO:0005975) 410 92 54.07 1.7 
1.25E-

05 

4.92E-

04 

purine-containing compound metabolic process 

(GO:0072521) 
210 47 27.7 1.7 

1.70E-

03 

2.39E-

02 

nucleobase-containing small molecule 

metabolic process (GO:0055086) 
316 70 41.68 1.68 

1.68E-

04 

3.97E-

03 

cellular response to organic substance 

(GO:0071310) 
226 50 29.81 1.68 

1.76E-

03 

2.43E-

02 
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Table 3-15 continued. 

purine ribonucleotide metabolic process 

(GO:0009150) 
181 40 23.87 1.68 

4.38E-

03 

4.81E-

02 

purine nucleotide metabolic process 

(GO:0006163) 
195 43 25.72 1.67 

3.21E-

03 

3.83E-

02 

transmembrane transport (GO:0055085) 306 67 40.36 1.66 
3.34E-

04 

6.47E-

03 

small molecule metabolic process 

(GO:0044281) 
1020 223 134.53 1.66 

4.58E-

11 

6.83E-

08 

response to organic substance (GO:0010033) 299 63 39.43 1.6 
1.26E-

03 

1.97E-

02 

response to chemical (GO:0042221) 401 84 52.89 1.59 
2.03E-

04 

4.46E-

03 

cellular amide metabolic process 

(GO:0043603) 
666 139 87.84 1.58 

2.20E-

06 

1.43E-

04 

carbohydrate derivative biosynthetic process 

(GO:1901137) 
255 53 33.63 1.58 

4.14E-

03 

4.57E-

02 

cellular carbohydrate metabolic process 

(GO:0044262) 
258 53 34.03 1.56 

4.42E-

03 

4.81E-

02 

lipid metabolic process (GO:0006629) 492 100 64.89 1.54 
1.35E-

04 

3.26E-

03 

cellular lipid metabolic process 

(GO:0044255) 
406 82 53.55 1.53 

6.41E-

04 

1.14E-

02 

peptide metabolic process (GO:0006518) 596 119 78.61 1.51 
6.15E-

05 

1.95E-

03 

ribonucleoprotein complex biogenesis 

(GO:0022613) 
418 83 55.13 1.51 

9.64E-

04 

1.55E-

02 

small molecule biosynthetic process 

(GO:0044283) 
356 70 46.95 1.49 

3.01E-

03 

3.68E-

02 

organonitrogen compound biosynthetic 

process (GO:1901566) 
1108 215 146.13 1.47 

4.19E-

07 

3.47E-

05 

vesicle-mediated transport (GO:0016192) 516 100 68.06 1.47 
6.18E-

04 

1.11E-

02 



  

 

110 

 

Table 3-15 continued. 

response to stress (GO:0006950) 919 177 121.21 1.46 
7.01E-

06 

3.07E-

04 

nitrogen compound transport 

(GO:0071705) 
503 96 66.34 1.45 

1.30E-

03 

2.00E-

02 

organophosphate metabolic process 

(GO:0019637) 
458 87 60.41 1.44 

2.44E-

03 

3.14E-

02 

organic substance transport 

(GO:0071702) 
551 103 72.67 1.42 

1.69E-

03 

2.40E-

02 

amide biosynthetic process 

(GO:0043604) 
573 106 75.57 1.4 

1.70E-

03 

2.37E-

02 

protein localization (GO:0008104) 558 103 73.59 1.4 
2.21E-

03 

2.95E-

02 

transport (GO:0006810) 1349 246 177.92 1.38 
4.63E-

06 

2.09E-

04 

establishment of localization 

(GO:0051234) 
1365 246 180.03 1.37 

9.05E-

06 

3.75E-

04 

localization (GO:0051179) 1556 270 205.22 1.32 
3.49E-

05 

1.16E-

03 

cellular response to stimulus 

(GO:0051716) 
1139 195 150.22 1.3 

8.41E-

04 

1.36E-

02 

response to stimulus (GO:0050896) 1619 277 213.53 1.3 
6.58E-

05 

1.96E-

03 

organic substance catabolic process 

(GO:1901575) 
1070 181 141.12 1.28 

2.34E-

03 

3.09E-

02 

catabolic process (GO:0009056) 1153 191 152.07 1.26 
3.79E-

03 

4.29E-

02 

organonitrogen compound metabolic 

process (GO:1901564) 
3226 510 425.48 1.2 

9.95E-

05 

2.52E-

03 

biological_process (GO:0008150) 9681 1491 1276.82 1.17 
2.06E-

10 

1.54E-

07 

cellular process (GO:0009987) 8516 1283 1123.17 1.14 
6.54E-

07 

5.14E-

05 
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B73 X H95;Rp1-D21/+ versus wildtype 

B73 x H95;Rp1-D21/+ (BHR) F1 plants segregating 1:1 for wildtype and mutant 

phenotypes were also analyzed to study the effects of Rp1-D21/+ in this hybrid’s genetic 

background. These hybrids represent the other appropriate parental control for B73 x NC350 RIL 

population that was crossed to H95;Rp1-D21/+ and used for DEG analysis and eQTL mapping 

(see later section and chapter 4). Three biological replicates from each phenotype were sequenced 

for differential gene expression analysis. Input reads ranging from 17 – 24.9M per sample were 

aligned to the H95-anonymized reference genome, out of which 71.3 – 75.8% were uniquely 

mapped (Table 3-16). This is an indication of high-quality sample preparation and data processing 

steps. 

 

Table 3-16. Mapping statistics for B73 x H95;Rp1-D21/+ versus wildtype. 

Sample Background Phenotype Raw reads 

Average 

read 

length (bp) 

Uniquely 

mapped 

reads % 

Multi-

mapped 

reads % 

Unmapped 

reads % 

BHRwt_rep1 

B73 x 

H95;Rp1-

D21 wildtype 17,093,161 125 75.84% 20.03% 4.14% 

BHRwt_rep2 

B73 x 

H95;Rp1-

D21 wildtype 22,507,024 125 75.41% 20.69% 3.90% 

BHRwt_rep3 

B73 x 

H95;Rp1-

D21 wildtype 22,991,417 125 74.74% 22.11% 3.15% 

BHRmu_rep1 

B73 x 

H95;Rp1-

D21  Rp1-D21 24,900,357 125 74.63% 22.06% 3.32% 

BHRmu_rep2 

B73 x 

H95;Rp1-

D21  Rp1-D21 21,765,731 125 73.23% 23.46% 3.31% 

BHRmu_rep3 

B73 x 

H95;Rp1-

D21  Rp1-D21 23,434,274 125 71.35% 24.96% 3.68% 
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Alignments files were processed together with reference annotation files to generate read 

counts per gene for each sample. These counts were higher in the wildtype samples compared to 

the mutants (Figure 3-17), indicating that the normal, healthy wild-type plants recorded higher 

expression of genes, most likely related to growth and other developmental activities, than the 

growth-impaired mutant plants. Even though raw read counts per gene were utilized for DGE 

analysis, preceding QC steps utilized normalized counts. Size-factor normalization combined with 

log2-transformation had the desired effect of reducing skewness. This contributed to increased 

accuracy of algorithms relied on for PCA and clustering.  

Biological replicates that show poor correlation of gene expression indicate likely errors at 

some point in the experiment. There was notable similarity among replicates, more than 97% in 

pairwise comparisons as measured by Pearson correlation, r (Table 3-17). This level of similarity 

was above the minimum threshold recommended by ENCODE as best practice and indicated 

exceptional quality of experimental procedures leading up to the generation of RNA-seq data. The 

pairwise correlations estimated above were used in hierarchical clustering to group similar samples. 

Height of clusters were computed with 1-r and the results visualized as a dendrogram. Clusters 

revealed the expected pattern of gene expression. Variability between wildtype and mutant 

phenotypes was greater than among replicates of the same phenotype (Figure 3-18). 

The results of hierarchical clustering was confirmed by PCA (Figure 3-19), and showed 

larger gene expression variation between wild type and mutants than among replicates showing 

the same phenotype. In fact, 95% of variation observed across all samples could be explained by 

differences between mutant and wild type. Differences among replicates only accounted for about 

2% of total variation (Figure 3_19). This observation is not surprising given the results obtained 

earlier from B73 and H95 inbred comparisons between Rp1-D21/+ and wildtype siblings. 

As could be observed from both hierarchical clustering and PCA outliers were not detected 

hence three biological replicates per condition (mutant or wildtype) were analyzed using DESeq2, 

with wildtype set as control, to identify differentially expressed genes. A total of 5563 were 

identified as significantly differentially expressed between mutant and wild type. Up-regulated 

genes outnumbered down-regulated genes (Figure 3-20). Indeed, 3,137 (11%) expressed genes 

were significantly turned up as opposed to 2,426 (8.4%) that were turned down, indicating that 

almost 50% more genes had increased expression as part of the hypersensitive response triggered 

by Rp1-D21 than were decreased. 
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. 

 

Figure 3-17. Comparison between untransformed and log2-transformed read count distribution of 

B73 x H95;Rp1-D21/+ versus wildtype (BHR) samples showing the effect of transformation in 

reducing skewness. 

 

Table 3-17. Similarity of read counts between B73 x H95;Rp1-D21/+ versus wildtype (BHR) 

replicates as measured by Pearson correlation coefficient. 

Pairwise comparison Pearson Correlation coefficient 

BHRwt_1 vs. BHRwt_2 0.978 

BHRwt_2 vs. BHRwt_3 0.983 

BHRmu_1 vs. BHRmu_2 0.975 

BHRmu_2 vs. BHRmu_3 0.976 
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Figure 3-18. Dendrogram showing results of hierarchical clustering of B73 x H95;Rp1-D21/+ F1 

mutants versus wildtype sibling samples. Replicates displayed greater similarity whereas the two 

phenotypes were clearly separated. 

 

 

Figure 3-19. PCA on rlog-transformed read counts for B73 x H95;Rp1-D21/+ versus wildtype 

sibling samples. Differences between phenotypes account for greater proportion of variance. 

 



  

 

115 

 

 

Figure 3-20. Volcano plot of B73 x H95;Rp1-D21/+ versus wildtype DGE results depicting 

statistical significance (p-value) versus magnitude of change (fold change). Black dots are genes 

that are not statistically significant (adjusted p-value > 0.05), orange dots are statistically 

significant genes (adjusted p-value < 0.05), green dots are statistically significant genes with 

absolute log2 fold change of 2. 

 

The heatmap of log2-transformed read counts of the top 30 up or down-regulated genes 

(Figure 3-21) confirmed the direction of fold-change displayed in the DGE results table. Several 

defense or stress-related genes were among the top up-regulated genes (Table 3-18). Notably, 

Zm00001d047440 which encodes Alpha-humulene synthase / ZSS1, a vital enzyme for α-

humulene biosynthesis (F. Yu et al., 2008) was turned up >200 times in the mutant plants than in 

the wildtype. Repellency of α-humulene to insects or pathogens is well known (Chang et al., 2017; 

Suga et al., 1993). Genes coding for C2H2-type zinc finger proteins, which play a vital role in 

stress resistance in plants (Han et al., 2020), were upregulated just as they were in the B73;Rp1-

D21 and H95;Rp1-D21 backgrounds, signifying their importance in the hypersensitive response 

occasioned by Rp1-D21. Differential expression was also observed for Zm00001d005056 (WRKY 

DNA -binding domain). There have been reports of WRKYs facilitating salicylic acid-induced 

defense in tobacco (van Verk et al., 2008) and conferring drought and heat tolerance in transgenic 
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Arabidopsis (C. T. Wang et al., 2018). More recently, (Tang et al., 2021) suggested their 

involvement in response to attack by herbivore Ostrinia furnacalis in maize 

 

 

Figure 3-21. Heatmap of log2-transformed read counts for top 30 most up or down-regulated genes 

after DGE analysis of B73 x H95;Rp1-D21/+ versus wildtype (BHR) samples. Genes are sorted 

based on hierarchical clustering. 

 

Interestingly, Zm00001d038235 which encodes Superoxide dismutase (SOD) was among 

the top downregulated genes. The conversion of superoxide into oxygen and hydrogen 

peroxide─two reactive oxygen species (ROS)─within cells is controlled by SODs. Although ROS 

are central signaling molecules during hypersensitive response to pathogenic attacks in plants their 

overproduction is deleterious and can result in damage to DNA and other cellular macromolecules 

such as lipids and proteins (Ali et al., 2018; Das & Roychoudhury, 2014). The SOD gene is 

therefore turned down in the Rp1-D21/+ mutants to maintain ROS homeostasis. We also observe 

the transcription of Zm00001d019065 which codes for a homolog of Cucumisin, the first purified 

plant subtilisin (Kaneda & Tominaga, 1975), to be downregulated. In addition to their role in 

protein turnover and plant development, subtilisins have been linked to defense response to 

pathogenic attack in plants (Granell et al., 1987; Schaller et al., 2012) (Figueiredo et al., 2018) I 

hypothesize that cucumisin production is turned up initially, however, over time the propeptide 
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produced as by-product accumulates and serves as a negative regulator of cucumisin to turn down 

its further synthesis. 

 

Table 3-18. Annotation for top 30 most up or down-regulated differentially expressed genes in 

B73 x H95;Rp1-D21/+ versus wildtype (BHR) samples. 

Gene Length Chromosome Description log2FoldChange padj 

Zm00001d032240 1293 1 

MYB-LIKE DNA-BINDING 

PROTEIN MYB // SUBFAMILY 

NOT NAMED 

8.591554 
6.73E-

09 

Zm00001d013151 1466 5 

FAMILY NOT NAMED // NAC 

DOMAIN-CONTAINING 

PROTEIN 6-RELATED 

8.528303 
2.20E-

09 

Zm00001d047440 1190 9 Alpha-humulene synthase / ZSS1 8.307973 
9.59E-

09 

Zm00001d024943 1900 10 Cytochrome P450 CYP2 subfamily 8.212377 
2.27E-

08 

Zm00001d009473 3548 8 

Non-specific serine/threonine 

protein kinase / Threonine-specific 

protein kinase 

8.020034 
5.57E-

08 

Zm00001d042934 1077 3 
C2H2-type zinc finger (zf-

C2H2_6) 
7.919239 

1.55E-

08 

Zm00001d004906 1636 2 

Non-specific serine/threonine 

protein kinase / Threonine-specific 

protein kinase 

7.8918 
1.27E-

07 

Zm00001d005056 1451 2 
WRKY DNA -binding domain 

(WRKY) 
7.689155 

5.92E-

07 

Zm00001d014335 1581 5 Cytochrome P450 CYP2 subfamily 7.624764 
8.99E-

08 

Zm00001d027978 1164 1 
Purine nucleobase transmembrane 

transport (PUNUT) 
7.608118 

4.65E-

06 

Zm00001d002178 4112 2 

Non-specific serine/threonine 

protein kinase / Threonine-specific 

protein kinase 

7.539325 
2.61E-

09 
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Table 3-18 continued. 

Zm00001d006053 1814 2 
FAMILY NOT NAMED // NAC 

DOMAIN CONTAINING PROTEIN 38 
7.418086 1.79E-06 

Zm00001d013977 1110 5 ANNOTATION UNKOWN 7.395456 5.00E-07 

Zm00001d018064 2725 5 Laccase / Urishiol oxidase 7.336179 7.20E-14 

Zm00001d024352 1509 10 
Non-specific serine/threonine protein 

kinase / Threonine-specific protein kinase 
7.114913 2.04E-05 

Zm00001d028821 1206 1 F-box domain (F-box) 
-

5.538032 
0.026542 

Zm00001d012957 2431 5 
FAMILY NOT NAMED // EXPANSIN-

A16-RELATED 

-

5.586401 
0.033722 

Zm00001d041712 1334 3 ANNOTATION UNKOWN 
-

5.594714 
0.018584 

Zm00001d038235 1465 6 Superoxide dismutase 
-

5.642482 
0.021125 

Zm00001d028769 4363 1 ETO1-LIKE PROTEIN 2-RELATED 
-

5.691131 
0.018692 

Zm00001d031005 7665 1 
E3 ubiquitin ligase involved in syntaxin 

degradation 

-

5.714519 
0.022493 

Zm00001d019065 3528 7 Cucumisin 
-

5.786646 
0.036175 

Zm00001d006720 798 2 ANNOTATION UNKOWN 
-

6.002681 
0.004518 

Zm00001d044476 1830 3 

ATP-BINDING CASSETTE 

TRANSPORTER // ABC 

TRANSPORTER G FAMILY MEMBER 

10 

-

6.014236 
0.005772 

Zm00001d023325 18680 10 

LEUCINE-RICH REPEAT-

CONTAINING PROTEIN // 

SUBFAMILY NOT NAMED 

-6.33005 0.001216 

Zm00001d027330 1449 1 
Remorin, N-terminal region 

(Remorin_N) 

-

6.506029 
0.000595 

Zm00001d025588 2438 10 Pectinesterase / Pectin methylesterase 
-

20.99175 
2.26E-06 
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As was noted from the GO analysis in the earlier discussed backgrounds (i.e., B73;Rp1-

D21/+, H95;Rp1-D21/+, NC350 x H95;Rp1-D21/+), downregulated genes were principally 

involved in developmental processes within the plant, while upregulated genes mostly participated 

in defense, and with generally higher fold enrichment. Processes such as photosynthesis 

(GO:0015979), response to light stimulus (GO:0009416), regulation of multicellular organismal 

development (GO:2000026), cytokinesis (GO:0061640) and membrane fission (GO:0090148) 

were overrepresented 3.44 – 7.9 times more than would have been expected by random chance 

(Table 3-19). On the other hand, defense related processes including defense response to fungus 

(GO:0050832), immune response (GO:0006955), programmed cell death (GO:0012501), defense 

response to other organism (GO:0098542) were overrepresented 4.78 – 9.63 times in the list of all 

upregulated genes (Table 3-20).   

 

Table 3-19. GO annotations for down-regulated genes from the B73 x H95;Rp1-D21/+ versus 

wildtype background. 

GO-Slim Biological Process 

Zea mays 

- 

REFLIST 

Actual Expected 
Fold 

Enrichment 

Raw 

P-

value 

FDR 

photosynthesis (GO:0015979) 52 25 3.17 7.9 
5.21E-

13 

7.77E-

10 

beta-glucan biosynthetic process 

(GO:0051274) 
23 7 1.4 5 

1.28E-

03 

3.25E-

02 

response to light stimulus 

(GO:0009416) 
108 31 6.58 4.71 

5.57E-

11 

4.16E-

08 

regulation of multicellular 

organismal development 

(GO:2000026) 

29 8 1.77 4.53 
1.00E-

03 

2.83E-

02 

mitotic cytokinesis (GO:0000281) 35 9 2.13 4.22 
7.56E-

04 

2.26E-

02 

cytoskeleton-dependent cytokinesis 

(GO:0061640) 
35 9 2.13 4.22 

7.56E-

04 

2.21E-

02 

response to radiation (GO:0009314) 123 31 7.49 4.14 
8.41E-

10 

4.18E-

07 
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Table 3-19 continued. 

hexose biosynthetic process (GO:0019319) 32 8 1.95 4.11 
1.72E-

03 

3.77E-

02 

membrane fission (GO:0090148) 43 9 2.62 3.44 
2.60E-

03 

4.97E-

02 

cytokinesis (GO:0000910) 43 9 2.62 3.44 
2.60E-

03 

4.91E-

02 

amine metabolic process (GO:0009308) 73 15 4.44 3.38 
1.37E-

04 

6.84E-

03 

cellular amine metabolic process 

(GO:0044106) 
50 10 3.04 3.29 

2.06E-

03 

4.26E-

02 

cellular biogenic amine metabolic process 

(GO:0006576) 
50 10 3.04 3.29 

2.06E-

03 

4.21E-

02 

response to abiotic stimulus (GO:0009628) 189 36 11.51 3.13 
2.50E-

08 

7.45E-

06 

electron transport chain (GO:0022900) 66 12 4.02 2.99 
1.58E-

03 

3.68E-

02 

generation of precursor metabolites and 

energy (GO:0006091) 
233 38 14.19 2.68 

4.61E-

07 

9.82E-

05 

hexose metabolic process (GO:0019318) 86 14 5.24 2.67 
1.71E-

03 

3.81E-

02 

regulation of response to stimulus 

(GO:0048583) 
90 14 5.48 2.56 

2.49E-

03 

4.83E-

02 

small molecule biosynthetic process 

(GO:0044283) 
356 40 21.67 1.85 

6.61E-

04 

2.10E-

02 

carbohydrate metabolic process 

(GO:0005975) 
410 42 24.96 1.68 

2.16E-

03 

4.29E-

02 

small molecule metabolic process 

(GO:0044281) 
1020 93 62.1 1.5 

3.11E-

04 

1.29E-

02 
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Table 3-20. GO annotations for up-regulated genes from the B73 x H95;Rp1-D21/+ versus 

wildtype background. 

GO-Slim Biological Process 

Zea mays 

- 

REFLIST 

Actual Expected 
Fold 

Enrichment 

Raw 

P-

value 

FDR 

protein N-linked glycosylation via 

asparagine (GO:0018279) 
6 5 0.47 10.7 

6.26E-

04 

6.72E-

03 

defense response to fungus 

(GO:0050832) 
8 6 0.62 9.63 

2.56E-

04 

3.21E-

03 

innate immune response 

(GO:0045087) 
11 7 0.86 8.17 

1.59E-

04 

2.16E-

03 

immune system process 

(GO:0002376) 
14 7 1.09 6.42 

4.80E-

04 

5.38E-

03 

immune response (GO:0006955) 14 7 1.09 6.42 
4.80E-

04 

5.34E-

03 

maturation of LSU-rRNA from 

tricistronic rRNA transcript (SSU-

rRNA, 5.8S rRNA, LSU-rRNA) 

(GO:0000463) 

25 12 1.95 6.16 
6.64E-

06 

1.32E-

04 

ribosomal large subunit assembly 

(GO:0000027) 
32 15 2.49 6.02 

6.00E-

07 

1.72E-

05 

programmed cell death 

(GO:0012501) 
18 8 1.4 5.71 

3.52E-

04 

4.27E-

03 

endonucleolytic cleavage of 

tricistronic rRNA transcript (SSU-

rRNA, 5.8S rRNA, LSU-rRNA) 

(GO:0000479) 

18 8 1.4 5.71 
3.52E-

04 

4.24E-

03 

endonucleolytic cleavage involved 

in rRNA processing 

(GO:0000478) 

18 8 1.4 5.71 
3.52E-

04 

4.20E-

03 

cell death (GO:0008219) 18 8 1.4 5.71 
3.52E-

04 

4.17E-

03 

maturation of LSU-rRNA 

(GO:0000470) 
32 14 2.49 5.62 

2.69E-

06 

5.66E-

05 

ribosomal large subunit biogenesis 

(GO:0042273) 
95 40 7.4 5.41 

6.01E-

15 

4.72E-

13 

establishment of protein 

localization to extracellular region 

(GO:0035592) 

12 5 0.93 5.35 
5.81E-

03 

4.66E-

02 

cell surface receptor signaling 

pathway (GO:0007166) 
60 25 4.67 5.35 

8.19E-

10 

4.07E-

08 
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Table 3-20 continued. 

protein secretion (GO:0009306) 12 5 0.93 5.35 
5.81E-

03 

4.64E-

02 

protein localization to extracellular region 

(GO:0071692) 
12 5 0.93 5.35 

5.81E-

03 

4.61E-

02 

retrograde transport, endosome to Golgi 

(GO:0042147) 
22 9 1.71 5.25 

2.47E-

04 

3.18E-

03 

cytosolic transport (GO:0016482) 25 10 1.95 5.14 
1.31E-

04 

1.84E-

03 

protein glycosylation (GO:0006486) 42 16 3.27 4.89 
2.27E-

06 

5.14E-

05 

macromolecule glycosylation (GO:0043413) 42 16 3.27 4.89 
2.27E-

06 

5.06E-

05 

glycosylation (GO:0070085) 42 16 3.27 4.89 
2.27E-

06 

4.99E-

05 

cytoplasmic translation (GO:0002181) 105 40 8.18 4.89 
8.36E-

14 

5.94E-

12 

intra-Golgi vesicle-mediated transport 

(GO:0006891) 
53 20 4.13 4.85 

1.45E-

07 

4.80E-

06 

response to external biotic stimulus 

(GO:0043207) 
136 51 10.59 4.82 

5.80E-

17 

7.86E-

15 

response to other organism (GO:0051707) 136 51 10.59 4.82 
5.80E-

17 

7.21E-

15 

response to biotic stimulus (GO:0009607) 136 51 10.59 4.82 
5.80E-

17 

6.65E-

15 

defense response to other organism 

(GO:0098542) 
136 51 10.59 4.82 

5.80E-

17 

6.18E-

15 

biological process involved in interspecies 

interaction between organisms (GO:0044419) 
137 51 10.67 4.78 

7.40E-

17 

7.36E-

15 

protein N-linked glycosylation (GO:0006487) 30 11 2.34 4.71 
1.14E-

04 

1.62E-

03 

glycoprotein biosynthetic process (GO:0009101) 44 16 3.43 4.67 
3.70E-

06 

7.57E-

05 

endoplasmic reticulum unfolded protein 

response (GO:0030968) 
22 8 1.71 4.67 

1.02E-

03 

1.05E-

02 
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Table 3-20 continued. 

glycoprotein metabolic process (GO:0009100) 59 21 4.59 4.57 
1.59E-

07 

5.15E-

06 

retrograde vesicle-mediated transport, Golgi to 

endoplasmic reticulum (GO:0006890) 
47 16 3.66 4.37 

7.37E-

06 

1.43E-

04 

COPII-coated vesicle budding (GO:0090114) 27 9 2.1 4.28 
8.31E-

04 

8.86E-

03 

tricarboxylic acid cycle (GO:0006099) 34 11 2.65 4.16 
2.80E-

04 

3.45E-

03 

response to external stimulus (GO:0009605) 169 51 13.16 3.88 
7.31E-

14 

5.46E-

12 

defense response (GO:0006952) 219 65 17.05 3.81 
5.79E-

17 

8.65E-

15 

secretion by cell (GO:0032940) 78 23 6.07 3.79 
6.70E-

07 

1.88E-

05 

export from cell (GO:0140352) 78 23 6.07 3.79 
6.70E-

07 

1.85E-

05 

secretion (GO:0046903) 78 23 6.07 3.79 
6.70E-

07 

1.82E-

05 

cleavage involved in rRNA processing 

(GO:0000469) 
38 11 2.96 3.72 

6.14E-

04 

6.64E-

03 

vesicle fusion to plasma membrane 

(GO:0099500) 
68 19 5.29 3.59 

1.16E-

05 

2.06E-

04 

exocytic process (GO:0140029) 68 19 5.29 3.59 
1.16E-

05 

2.04E-

04 

exocytosis (GO:0006887) 68 19 5.29 3.59 
1.16E-

05 

2.02E-

04 

xylan biosynthetic process (GO:0045492) 37 10 2.88 3.47 
1.66E-

03 

1.55E-

02 

ribosome biogenesis (GO:0042254) 342 91 26.63 3.42 
1.76E-

20 

6.58E-

18 

ribosomal small subunit biogenesis 

(GO:0042274) 
129 34 10.04 3.38 

1.74E-

08 

7.63E-

07 
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Table 3-20 continued. 

endoplasmic reticulum to Golgi vesicle-mediated 

transport (GO:0006888) 
115 30 8.95 3.35 

1.42E-

07 

4.80E-

06 

RNA phosphodiester bond hydrolysis, 

endonucleolytic (GO:0090502) 
31 8 2.41 3.31 

5.99E-

03 

4.73E-

02 

Golgi vesicle transport (GO:0048193) 199 51 15.5 3.29 
1.29E-

11 

6.86E-

10 

response to unfolded protein (GO:0006986) 40 10 3.11 3.21 
2.71E-

03 

2.38E-

02 

cellular response to unfolded protein 

(GO:0034620) 
40 10 3.11 3.21 

2.71E-

03 

2.36E-

02 

aromatic amino acid family metabolic process 

(GO:0009072) 
57 14 4.44 3.15 

4.89E-

04 

5.41E-

03 

receptor-mediated endocytosis (GO:0006898) 49 12 3.82 3.15 
1.23E-

03 

1.22E-

02 

lipid transport (GO:0006869) 37 9 2.88 3.12 
5.07E-

03 

4.18E-

02 

response to endoplasmic reticulum stress 

(GO:0034976) 
93 22 7.24 3.04 

2.31E-

05 

3.78E-

04 

glutathione metabolic process (GO:0006749) 51 12 3.97 3.02 
1.65E-

03 

1.56E-

02 

non-membrane-bounded organelle assembly 

(GO:0140694) 
137 32 10.67 3 

4.64E-

07 

1.38E-

05 

maturation of SSU-rRNA from tricistronic rRNA 

transcript (SSU-rRNA, 5.8S rRNA, LSU-rRNA) 

(GO:0000462) 

74 17 5.76 2.95 
2.53E-

04 

3.20E-

03 

translational initiation (GO:0006413) 57 13 4.44 2.93 
1.38E-

03 

1.32E-

02 

ribonucleoprotein complex biogenesis 

(GO:0022613) 
418 95 32.55 2.92 

2.01E-

17 

4.27E-

15 

ribonucleoprotein complex assembly 

(GO:0022618) 
152 34 11.84 2.87 

4.89E-

07 

1.43E-

05 

maturation of SSU-rRNA (GO:0030490) 92 20 7.16 2.79 
1.44E-

04 

2.01E-

03 
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Table 3-20 continued. 

ribonucleoprotein complex subunit 

organization (GO:0071826) 
157 34 12.22 2.78 

1.51E-

06 

3.68E-

05 

RNA phosphodiester bond hydrolysis 

(GO:0090501) 
51 11 3.97 2.77 

4.52E-

03 

3.79E-

02 

cellular response to lipid (GO:0071396) 76 16 5.92 2.7 
8.64E-

04 

9.08E-

03 

cellular modified amino acid metabolic 

process (GO:0006575) 
72 15 5.61 2.68 

1.35E-

03 

1.31E-

02 

rRNA processing (GO:0006364) 229 47 17.83 2.64 
5.74E-

08 

2.20E-

06 

peptide metabolic process (GO:0006518) 596 122 46.41 2.63 
8.71E-

19 

2.17E-

16 

cellular amide metabolic process 

(GO:0043603) 
666 135 51.86 2.6 

2.55E-

20 

7.60E-

18 

cellular response to oxygen-containing 

compound (GO:1901701) 
99 20 7.71 2.59 

4.66E-

04 

5.30E-

03 

translational elongation (GO:0006414) 518 104 40.33 2.58 
9.89E-

16 

9.22E-

14 

translation (GO:0006412) 518 104 40.33 2.58 
9.89E-

16 

8.68E-

14 

amide biosynthetic process (GO:0043604) 573 115 44.62 2.58 
3.79E-

17 

6.28E-

15 

peptide biosynthetic process (GO:0043043) 519 104 40.41 2.57 
1.09E-

15 

9.03E-

14 

rRNA metabolic process (GO:0016072) 236 47 18.38 2.56 
9.12E-

08 

3.17E-

06 

nucleic acid phosphodiester bond hydrolysis 

(GO:0090305) 
73 14 5.68 2.46 

5.18E-

03 

4.23E-

02 

organelle assembly (GO:0070925) 178 34 13.86 2.45 
1.21E-

05 

2.07E-

04 

vesicle fusion (GO:0006906) 110 21 8.57 2.45 
5.18E-

04 

5.68E-

03 
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Table 3-20 continued. 

response to lipid (GO:0033993) 84 16 6.54 2.45 
2.69E-

03 

2.37E-

02 

protein autophosphorylation (GO:0046777) 90 17 7.01 2.43 
2.03E-

03 

1.83E-

02 

vesicle-mediated transport (GO:0016192) 516 97 40.18 2.41 
4.19E-

13 

2.84E-

11 

response to nitrogen compound 

(GO:1901698) 
82 15 6.38 2.35 

4.73E-

03 

3.92E-

02 

organelle membrane fusion (GO:0090174) 115 21 8.95 2.35 
1.20E-

03 

1.20E-

02 

organelle fusion (GO:0048284) 116 21 9.03 2.32 
1.25E-

03 

1.22E-

02 

vesicle organization (GO:0016050) 256 46 19.93 2.31 
1.68E-

06 

4.04E-

05 

membrane fusion (GO:0061025) 118 21 9.19 2.29 
1.37E-

03 

1.32E-

02 

hormone-mediated signaling pathway 

(GO:0009755) 
154 27 11.99 2.25 

4.08E-

04 

4.80E-

03 

cellular response to hormone stimulus 

(GO:0032870) 
154 27 11.99 2.25 

4.08E-

04 

4.76E-

03 

aerobic respiration (GO:0009060) 103 18 8.02 2.24 
3.88E-

03 

3.32E-

02 

vesicle budding from membrane 

(GO:0006900) 
145 25 11.29 2.21 

8.36E-

04 

8.85E-

03 

cellular response to endogenous stimulus 

(GO:0071495) 
157 27 12.22 2.21 

4.65E-

04 

5.34E-

03 

response to organic substance 

(GO:0010033) 
299 51 23.28 2.19 

1.98E-

06 

4.62E-

05 

cellular respiration (GO:0045333) 106 18 8.25 2.18 
4.49E-

03 

3.79E-

02 

protein folding (GO:0006457) 254 43 19.78 2.17 
1.36E-

05 

2.30E-

04 
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Table 3-20 continued. 

ncRNA metabolic process (GO:0034660) 391 66 30.44 2.17 
8.23E-

08 

2.92E-

06 

cellular response to organic substance 

(GO:0071310) 
226 38 17.6 2.16 

6.03E-

05 

9.09E-

04 

energy derivation by oxidation of organic 

compounds (GO:0015980) 
110 18 8.57 2.1 

5.70E-

03 

4.59E-

02 

cellular response to chemical stimulus 

(GO:0070887) 
282 46 21.96 2.09 

1.47E-

05 

2.46E-

04 

organonitrogen compound biosynthetic process 

(GO:1901566) 
1108 179 86.27 2.07 

2.19E-

17 

4.09E-

15 

ncRNA processing (GO:0034470) 323 52 25.15 2.07 
7.48E-

06 

1.43E-

04 

localization within membrane (GO:0051668) 169 27 13.16 2.05 
1.23E-

03 

1.22E-

02 

response to hormone (GO:0009725) 177 28 13.78 2.03 
1.04E-

03 

1.07E-

02 

response to endogenous stimulus (GO:0009719) 180 28 14.02 2 
1.70E-

03 

1.57E-

02 

protein localization to membrane (GO:0072657) 148 23 11.52 2 
4.23E-

03 

3.59E-

02 

signal transduction (GO:0007165) 627 95 48.82 1.95 
1.61E-

08 

7.29E-

07 

protein transport (GO:0015031) 397 60 30.91 1.94 
7.04E-

06 

1.38E-

04 

establishment of protein localization 

(GO:0045184) 
407 61 31.69 1.92 

8.53E-

06 

1.61E-

04 

signaling (GO:0023052) 634 95 49.37 1.92 
2.87E-

08 

1.22E-

06 

response to chemical (GO:0042221) 401 60 31.22 1.92 
1.11E-

05 

1.99E-

04 

protein localization (GO:0008104) 558 82 43.45 1.89 
4.48E-

07 

1.36E-

05 
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Table 3-20 continued. 

cell communication (GO:0007154) 650 95 50.61 1.88 6.67E-08 2.43E-06 

membrane organization (GO:0061024) 397 58 30.91 1.88 2.44E-05 3.96E-04 

carbohydrate derivative metabolic 

process (GO:1901135) 
411 60 32 1.87 2.11E-05 3.50E-04 

carbohydrate derivative biosynthetic 

process (GO:1901137) 
255 37 19.86 1.86 8.85E-04 9.23E-03 

macromolecule localization 

(GO:0033036) 
656 94 51.08 1.84 2.28E-07 7.23E-06 

organic substance transport 

(GO:0071702) 
551 78 42.9 1.82 3.79E-06 7.63E-05 

cellular macromolecule localization 

(GO:0070727) 
517 73 40.26 1.81 8.69E-06 1.62E-04 

nitrogen compound transport 

(GO:0071705) 
503 71 39.17 1.81 9.81E-06 1.81E-04 

cellular protein localization 

(GO:0034613) 
503 71 39.17 1.81 9.81E-06 1.78E-04 

intracellular protein transport 

(GO:0006886) 
360 50 28.03 1.78 3.42E-04 4.18E-03 

response to stress (GO:0006950) 919 127 71.56 1.77 9.91E-09 4.62E-07 

transport (GO:0006810) 1349 185 105.04 1.76 5.74E-12 3.43E-10 

establishment of localization 

(GO:0051234) 
1365 186 106.28 1.75 7.67E-12 4.40E-10 

protein phosphorylation (GO:0006468) 493 67 38.39 1.75 5.03E-05 7.81E-04 

response to stimulus (GO:0050896) 1619 216 126.06 1.71 8.86E-13 5.75E-11 

phosphorylation (GO:0016310) 579 77 45.08 1.71 2.63E-05 4.18E-04 
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Table 3-20 continued. 

intracellular transport (GO:0046907) 597 79 46.49 1.7 
2.46E-

05 

3.95E-

04 

cellular localization (GO:0051641) 802 106 62.45 1.7 
1.03E-

06 

2.70E-

05 

establishment of localization in cell 

(GO:0051649) 
607 80 47.26 1.69 

2.78E-

05 

4.37E-

04 

localization (GO:0051179) 1556 205 121.16 1.69 
9.66E-

12 

5.34E-

10 

cellular response to stimulus (GO:0051716) 1139 147 88.69 1.66 
3.70E-

08 

1.49E-

06 

carboxylic acid metabolic process 

(GO:0019752) 
569 73 44.3 1.65 

1.51E-

04 

2.09E-

03 

oxoacid metabolic process (GO:0043436) 572 73 44.54 1.64 
1.57E-

04 

2.16E-

03 

transmembrane transport (GO:0055085) 306 39 23.83 1.64 
6.23E-

03 

4.89E-

02 

cellular component biogenesis (GO:0044085) 1059 133 82.46 1.61 
6.86E-

07 

1.83E-

05 

organic acid metabolic process (GO:0006082) 591 74 46.02 1.61 
2.67E-

04 

3.32E-

03 

small molecule metabolic process 

(GO:0044281) 
1020 126 79.42 1.59 

2.53E-

06 

5.39E-

05 

phosphorus metabolic process (GO:0006793) 1146 140 89.23 1.57 
1.32E-

06 

3.33E-

05 

phosphate-containing compound metabolic 

process (GO:0006796) 
1126 137 87.68 1.56 

1.90E-

06 

4.49E-

05 

protein metabolic process (GO:0019538) 2503 289 194.89 1.48 
3.77E-

10 

1.94E-

08 

cellular protein metabolic process 

(GO:0044267) 
2407 277 187.42 1.48 

1.28E-

09 

6.16E-

08 

organonitrogen compound metabolic process 

(GO:1901564) 
3226 369 251.19 1.47 

2.65E-

12 

1.65E-

10 
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Table 3-20 continued. 

cellular component organization or 

biogenesis (GO:0071840) 
2104 235 163.83 1.43 

2.58E-

07 

8.03E-

06 

biological_process (GO:0008150) 9681 1048 753.81 1.39 
3.60E-

30 

2.69E-

27 

cellular process (GO:0009987) 8516 906 663.09 1.37 
7.25E-

23 

3.61E-

20 

cellular biosynthetic process 

(GO:0044249) 
2792 291 217.4 1.34 

2.12E-

06 

4.87E-

05 

biosynthetic process (GO:0009058) 2884 300 224.56 1.34 
1.50E-

06 

3.72E-

05 

organic substance biosynthetic process 

(GO:1901576) 
2817 293 219.34 1.34 

2.33E-

06 

5.04E-

05 

macromolecule biosynthetic process 

(GO:0009059) 
2029 211 157.99 1.34 

6.65E-

05 

9.63E-

04 

cellular macromolecule biosynthetic 

process (GO:0034645) 
2005 206 156.12 1.32 

1.69E-

04 

2.25E-

03 

cellular nitrogen compound biosynthetic 

process (GO:0044271) 
2072 208 161.33 1.29 

4.71E-

04 

5.33E-

03 

cellular nitrogen compound metabolic 

process (GO:0034641) 
3262 318 253.99 1.25 

1.03E-

04 

1.47E-

03 

organic substance metabolic process 

(GO:0071704) 
6357 615 494.98 1.24 

3.86E-

08 

1.52E-

06 

cellular metabolic process (GO:0044237) 6194 599 482.29 1.24 
6.62E-

08 

2.47E-

06 

metabolic process (GO:0008152) 6623 638 515.7 1.24 
3.62E-

08 

1.50E-

06 

nitrogen compound metabolic process 

(GO:0006807) 
5331 509 415.1 1.23 

3.64E-

06 

7.55E-

05 

primary metabolic process (GO:0044238) 5922 564 461.11 1.22 
1.23E-

06 

3.16E-

05 

gene expression (GO:0010467) 2415 228 188.04 1.21 
5.17E-

03 

4.24E-

02 
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Table 3-20 continued. 

cellular macromolecule metabolic process 

(GO:0044260) 
3980 364 309.9 1.17 

2.42E-

03 

2.15E-

02 

macromolecule metabolic process 

(GO:0043170) 
4911 443 382.39 1.16 

1.72E-

03 

1.58E-

02 

 

 

B73:NC350RIL x H95;Rp1-D21/+ versus wildtype (BNRIL_HR) 

Greater biological replicates permits the robust detection of differentially expressed genes 

at all fold changes (Pan et al., 2002; Schurch et al., 2016). To further explore the consequences of 

Rp1-D21/+ on gene expression, we performed DEG analysis using F1 families produced by 

crossing 99 members of the B73 x NC350 RIL subpopulation and Rp1-D21/+;H95. Because Rp1-

D21/+;H95is maintained in a heterozygous state for the Rp1-D21 allele the F1 offspring segregate 

1:1 ratio for those carrying the Rp1-D21 allele (mutant F1) and those carrying the wildtype H95 

allele at the Rp1 locus (wildtype F1). The 99 F1 families showing the Rp1-D21 phenotype were 

treated as “biological replicates” and analyzed against those showing the wild-type phenotype for 

differential expression.  

As observed in the genetic backgrounds discussed earlier, read counts per gene were higher 

in the wildtype group than in the mutants (Figure 3-22). Hierarchical clustering showed a clear 

separation between the mutant and wildtype classes (Figure 3-23), meaning global gene expression 

patterns were markedly different between the two groups. This was reinforced by principal 

component analysis (Figure 3-24). PC1 was clearly the Rp1-D21/+ effect and separated mutants 

and wildtype groups, albeit with a single wild-type outlier sample. Since this sample was only one 

out of 99 samples in that group its impact on overall DE analysis was expected to be minimal and 

was thus not excluded from further analysis. PC2, which represented differences among the F1 

families only accounted for about 1% of the total variation across samples. DE analysis identified 

a remarkable 23,911 genes to be differentially expressed between mutant and wildtype. With 99 

“biological replicates” our statistical analysis had enough power to detect genes with even subtle 

fold changes between the two groups hence the large number of DEGs. The volcano plot 

visualizing fold changes depicted a huge skew (Figure 3-25). Upregulated genes with a log2 fold 
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change of at least 2 totaled 2,872, outnumbering downregulated genes at the same threshold (573 

in sum) more than five times. Indicating that genes that saw the biggest difference in expression 

between wildtype and mutants were mostly those that were induced in the mutants in response to 

Rp1-D21/+.  

 

Figure 3-22. Comparison between untransformed and log2-transformed read count distribution of 

B73:NC350RIL x H95;Rp1-D21/+ versus wildtype (BNRIL_HR) samples showing the effect of 

transformation in reducing skewness. 
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Figure 3-23. Dendrogram showing results of hierarchical clustering of B73:NC350RIL x 

H95;Rp1-D21/+ versus wildtype (BNRIL_HR). Each leaf of the tree is a single RIL hybrid either 

WT at the Rp1 locus or carrying Rp1-D21 as a heterozygote. The entire set of WT RIL hybrids 

grouped tother (green bar) and the set of Rp1-D21/+ RIL hybrids group together (blue bar). 

 

 

Figure 3-24. PCA on rlog-transformed read counts for B73:NC350RIL x H95;Rp1-D21/+ versus 

wildtype (BNRIL_HR) samples. Differences between phenotypes account for greater proportion 

of variance. 
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Figure 3-25. Volcano plot of B73:NC350RIL x H95;Rp1-D21/+ versus wildtype (BNRIL_HR) 

DGE results depicting statistical significance (p-value) versus magnitude of change (fold change). 

Black dots are genes that are not statistically significant (adjusted p-value > 0.05), orange dots are 

statistically significant genes (adjusted p-value < 0.05), green dots are statistically significant 

genes with absolute log2 fold change of 2. 

 

Fold-change direction observed on the heatmap of the log2-transformed read counts for the 

top 30 most up or downregulated genes (Figure 3-26) matched up what was displayed in the results 

table (Table 3-21). Furthermore, heatmap showed foldchange differences between wildtype and 

mutant classes to be more extreme for upregulated genes compared to downregulated genes, 

indicating that when genes were turned up in response to Rp1 the magnitude of expression was 

much greater than when they were turned down. Several upregulated genes identified in earlier-

discussed backgrounds were found in this genetic background. Among these were genes encoding 

omega-6 fatty acid desaturase (delta-12 desaturase, FAD2), Pathogenesis-related protein Bet v I 

family, Thaumatin family and (S)-beta-bisabolene synthase. FAD2 functions in the production of 

linoleic acids from oleic acid which are in turn utilized to signal plant defense machinery in 

response to pathogenic attack and wounding (Dar et al., 2017; Farmer, 1994; Mikkilineni & 

Rocheford, 2003). Pathogenesis-related protein Bet v I also plays a role in defense. It is a key 

component of the host response elicited upon pathogen invasion and other abiotic stresses 
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(Radauer et al., 2008). The Thaumatin gene family, another group of PR genes, has been reported 

to confer tolerance to several fungal species and abiotic stresses such as salinity and dehydration 

(Z. Li et al., 2020b; Misra et al., 2016; van Loon et al., 2006). Beta-bisabolene synthase, which 

was also detected previously to be upregulated in the mutants, codes for a maize terpene beta-

bisabolene. This secondary metabolite is known to function in chemical defense against insect 

herbivores (Block et al., 2019; Köllner et al., 2008; Meihls et al., 2012) 

 

 

Figure 3-26. Heatmap of log2-transformed read counts for top 30 most up or down-regulated genes 

after DGE analysis of B73:NC350RIL x H95;Rp1-D21/+ versus wildtype (BNRIL_HR) samples. 

Genes are sorted based on hierarchical clustering. 
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Table 3-21. Annotation for top 30 most up or down-regulated differentially expressed genes in 

B73:NC350RIL x H95;Rp1-D21/+ versus wildtype (BNRIL_HR) samples. 

Gene Length Chromosome Description log2FoldChange padj 

Zm00001d034097 1699 1 
Isoflavone 2'-hydroxylase / 

Isoflavone 2'-monooxygenase 
10.06976 0 

Zm00001d050021 5574 4 

(+)-abscisic acid 8'-

hydroxylase / ABA 8'-

hydroxylase 

10.01578 
7.04E-

305 

Zm00001d047192 1630 9 
O-

METHYLTRANSFERASE  
9.980479 0 

Zm00001d023769 1661 10 
omega-6 fatty acid desaturase 

(delta-12 desaturase) (FAD2) 
9.932205 0 

Zm00001d023811 1063 10 
Pathogenesis-related protein 

Bet v I family (Bet_v_1) 
9.761622 0 

Zm00001d036164 1576 6 
Theobromine synthase / 

MXMT 
9.545794 

4.34E-

299 

Zm00001d027908 3019 1 

Flavin-containing 

monooxygenase / Ziegler's 

enzyme 

9.35757 
3.94E-

266 

Zm00001d031155 534 1 
Thaumatin family 

(Thaumatin) 
9.355874 

1.34E-

232 

Zm00001d024210 3192 10 

(S)-beta-bisabolene synthase 

// (S)-beta-macrocarpene 

synthase 

9.329124 
3.94E-

252 

Zm00001d014134 1803 5 
Ent-isokaurene C2-

hydroxylase / CYP71Z6 
9.322145 0 

Zm00001d014001 5208 5 flotillin (FLOT) 9.311704 0 

Zm00001d028165 4513 1 

LL-diaminopimelate 

aminotransferase / LL-

diaminopimelate transaminase 

9.255103 
1.28E-

300 

Zm00001d029648 3816 1 

Ent-copalyl diphosphate 

synthase / Ent-kaurene 

synthetase A 

9.248359 0 

Zm00001d014121 1940 5 CYTOCHROME P450 76C1 9.233724 0 

Zm00001d013753 2036 5 
Tyrosine N-monooxygenase / 

Tyrosine N-hydroxylase 
-3.245896 

7.41E-

19 

Zm00001d047495 2677 9 

Premnaspirodiene oxygenase / 

Hyoscymus muticus 

premnaspirodiene oxygenase 

-3.257003 
1.61E-

33 
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Table 3-21 continued 

Zm00001d029776 2751 1 Carboxypeptidase D / Carboxypeptidase S1 -3.287136 
1.62E

-07 

Zm00001d033325 945 1 Dof domain, zinc finger (zf-Dof) -3.341792 
5.34E

-27 

Zm00001d010212 6601 8 Beta-galactosidase / Lactase -3.375495 
5.00E

-20 

Zm00001d046491 1934 9 
2-alkenal reductase (NAD(P)(+)) / NADPH:2-

alkenal alpha,beta-hydrogenase 
-3.395784 

1.12E

-55 

Zm00001d009373 2495 8 Peroxidase / Lactoperoxidase -3.475656 
5.82E

-67 

Zm00001d015664 507 5 
CAMP-RESPONSE ELEMENT BINDING 

PROTEIN-RELATED  
-3.520202 

3.98E

-36 

Zm00001d032721 5431 1 Long-chain-alcohol oxidase -3.563823 
7.52E

-69 

Zm00001d022613 1148 7 
CAMP-RESPONSE ELEMENT BINDING 

PROTEIN-RELATED  
-3.580436 

3.41E

-53 

Zm00001d051064 744 4 Predicted E3 ubiquitin ligase -3.642922 
3.79E

-41 

Zm00001d023322 1473 10 
LEUCINE-RICH REPEAT-CONTAINING 

PROTEIN  
-3.90035 

5.45E

-28 

Zm00001d021315 1344 7 RNA uridylyltransferase / TUT -4.171407 
1.04E

-37 

Zm00001d039744 8566 3 ANNOTATION UNKOWN -4.764812 
3.89E

-95 

Zm00001d044376 1207 3 
Non-specific serine/threonine protein kinase / 

Threonine-specific protein kinase 
-4.776343 

3.60E

-77 
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The trend seen in earlier GO analysis results continued; while downregulated genes were 

overwhelmingly involved in growth and developmental processes, upregulated genes were in 

biological processes relating to defense and immunity. Photosynthesis (GO:0015979) saw the highest 

enrichment (5.58 times) among the downregulated genes. Other processes turned down in response to Rp1 

included chlorophyll metabolic process (GO:0015994), response to light stimulus (GO:0009416), flower 

development (GO:0009908), and regulation of multicellular organismal development (GO:2000026) were 

overrepresented 3.06 – 5.13 times (Table 3-22). Upregulated genes were enriched for defense signaling 

processes (Table 3-23); for example, regulation of salicylic acid mediated signaling pathway (GO:2000031), 

transmembrane receptor protein serine/threonine kinase signaling pathway (GO:0007178), and enzyme 

linked receptor protein signaling pathway (GO:0007167) were enriched. Similarly, response to oomycetes 

(GO:0002239), defense response to oomycetes (GO:0002229), defense response to bacterium 

(GO:0042742), defense response to other organism (GO:0098542) were overrepresented among the 

upregulated genes. 

 

Table 3-22. GO annotation for down-regulated genes from the B73:NC350RIL x H95;Rp1-

D21/+ versus wildtype. 

GO-Slim Biological 

Process 

Zea mays - 

REFLIST 
Actual Expected 

Fold 

Enrichment 

Raw P-

value 
FDR 

photosynthesis 

(GO:0015979) 
52 36 6.45 5.58 

5.55E-

13 

8.28E-

11 

chlorophyll metabolic 

process (GO:0015994) 
11 7 1.37 5.13 

2.10E-

03 

1.99E-

02 

beta-glucan 

biosynthetic process 

(GO:0051274) 

23 11 2.85 3.85 
7.44E-

04 

8.54E-

03 

mitotic cytokinesis 

(GO:0000281) 
35 15 4.34 3.45 

2.22E-

04 

2.91E-

03 

cytoskeleton-dependent 

cytokinesis 

(GO:0061640) 

35 15 4.34 3.45 
2.22E-

04 

2.89E-

03 

response to light 

stimulus (GO:0009416) 
108 42 13.4 3.13 

8.55E-

09 

3.99E-

07 

flower development 

(GO:0009908) 
34 13 4.22 3.08 

1.34E-

03 

1.40E-

02 
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Table 3-22 continued 

regulation of multicellular organismal 

development (GO:2000026) 
29 11 3.6 3.06 3.23E-03 2.81E-02 

membrane fission (GO:0090148) 43 15 5.34 2.81 1.25E-03 1.34E-02 

cytokinesis (GO:0000910) 43 15 5.34 2.81 1.25E-03 1.33E-02 

pigment biosynthetic process 

(GO:0046148) 
32 11 3.97 2.77 5.89E-03 4.26E-02 

hexose biosynthetic process (GO:0019319) 32 11 3.97 2.77 5.89E-03 4.24E-02 

pigment metabolic process (GO:0042440) 35 12 4.34 2.76 4.18E-03 3.33E-02 

response to radiation (GO:0009314) 123 42 15.26 2.75 2.51E-07 7.33E-06 

regulation of multicellular organismal 

process (GO:0051239) 
48 16 5.96 2.69 1.85E-03 1.84E-02 

glucose metabolic process (GO:0006006) 59 19 7.32 2.6 7.85E-04 8.94E-03 

cell division (GO:0051301) 54 16 6.7 2.39 3.76E-03 3.06E-02 

response to abiotic stimulus (GO:0009628) 189 55 23.45 2.35 2.87E-07 8.24E-06 

regulation of developmental process 

(GO:0050793) 
95 27 11.79 2.29 3.95E-04 4.83E-03 

hexose metabolic process (GO:0019318) 86 23 10.67 2.16 1.96E-03 1.91E-02 

shoot system development (GO:0048367) 84 22 10.42 2.11 2.97E-03 2.64E-02 

monosaccharide metabolic process 

(GO:0005996) 
98 24 12.16 1.97 5.28E-03 3.96E-02 

multicellular organismal process 

(GO:0032501) 
169 37 20.97 1.76 3.45E-03 2.96E-02 
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Table 3-22 continued 

multicellular organism development 

(GO:0007275) 
165 36 20.48 1.76 

3.21E-

03 

2.82E-

02 

anatomical structure development 

(GO:0048856) 
195 42 24.2 1.74 

2.37E-

03 

2.21E-

02 

generation of precursor metabolites and 

energy (GO:0006091) 
233 50 28.91 1.73 

8.01E-

04 

9.05E-

03 

developmental process (GO:0032502) 262 53 32.51 1.63 
2.02E-

03 

1.93E-

02 

Unclassified (UNCLASSIFIED) 29708 3908 3686.63 1.06 
1.25E-

12 

1.69E-

10 
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Table 3-23. GO annotations for up-regulated genes from the B73:NC350RIL x H95;Rp1-D21/+ 

versus wildtype. 

GO biological process 

complete 

Zea mays 

- 

REFLIST 

Actual Expected 
Fold 

Enrichment 

Raw P-

value 
FDR 

neutral amino acid transport 

(GO:0015804) 
9 7 1.26 5.56 

1.73E-

03 

4.71E-

02 

chorismate biosynthetic 

process (GO:0009423) 
21 14 2.94 4.77 

3.18E-

05 

1.59E-

03 

biological process involved in 

interaction with symbiont 

(GO:0051702) 

15 9 2.1 4.29 
1.44E-

03 

4.09E-

02 

regulation of salicylic acid 

mediated signaling pathway 

(GO:2000031) 

15 9 2.1 4.29 
1.44E-

03 

4.07E-

02 

maturation of LSU-rRNA 

from tricistronic rRNA 

transcript (SSU-rRNA, 5.8S 

rRNA, LSU-rRNA) 

(GO:0000463) 

31 18 4.33 4.15 
1.00E-

05 

5.69E-

04 

transmembrane receptor 

protein serine/threonine 

kinase signaling pathway 

(GO:0007178) 

59 34 8.25 4.12 
1.61E-

09 

2.02E-

07 

enzyme linked receptor 

protein signaling pathway 

(GO:0007167) 

59 34 8.25 4.12 
1.61E-

09 

1.97E-

07 

response to oomycetes 

(GO:0002239) 
60 34 8.39 4.05 

2.22E-

09 

2.65E-

07 

defense response to 

oomycetes (GO:0002229) 
60 34 8.39 4.05 

2.22E-

09 

2.59E-

07 

glucosamine-containing 

compound catabolic process 

(GO:1901072) 

23 13 3.22 4.04 
2.07E-

04 

8.17E-

03 

chitin catabolic process 

(GO:0006032) 
23 13 3.22 4.04 

2.07E-

04 

8.10E-

03 

chitin metabolic process 

(GO:0006030) 
23 13 3.22 4.04 

2.07E-

04 

8.04E-

03 

aminoglycan catabolic 

process (GO:0006026) 
23 13 3.22 4.04 

2.07E-

04 

7.97E-

03 

amino sugar catabolic process 

(GO:0046348) 
23 13 3.22 4.04 

2.07E-

04 

7.90E-

03 

chorismate metabolic process 

(GO:0046417) 
29 16 4.05 3.95 

4.92E-

05 

2.36E-

03 
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Table 3-23 continued 

cell wall macromolecule catabolic process 

(GO:0016998) 
33 17 4.61 3.68 

5.57E-

05 

2.59E-

03 

ribosomal large subunit assembly 

(GO:0000027) 
37 19 5.17 3.67 

2.14E-

05 

1.11E-

03 

double-strand break repair via break-induced 

replication (GO:0000727) 
28 14 3.91 3.58 

3.14E-

04 

1.12E-

02 

DNA replication initiation (GO:0006270) 35 17 4.89 3.47 
9.75E-

05 

4.28E-

03 

aminoglycan metabolic process (GO:0006022) 31 15 4.33 3.46 
2.55E-

04 

9.27E-

03 

aromatic amino acid family catabolic process 

(GO:0009074) 
25 12 3.5 3.43 

1.10E-

03 

3.38E-

02 

ribosome assembly (GO:0042255) 81 38 11.32 3.36 
1.43E-

08 

1.38E-

06 

cell surface receptor signaling pathway 

(GO:0007166) 
150 70 20.97 3.34 

1.89E-

14 

6.75E-

12 

glucosamine-containing compound metabolic 

process (GO:1901071) 
28 13 3.91 3.32 

8.75E-

04 

2.77E-

02 

maturation of LSU-rRNA (GO:0000470) 65 30 9.09 3.3 
5.94E-

07 

4.25E-

05 

ribosomal large subunit biogenesis 

(GO:0042273) 
142 65 19.85 3.27 

3.14E-

13 

7.68E-

11 

cytoplasmic translation (GO:0002181) 146 65 20.41 3.18 
8.34E-

13 

1.94E-

10 

ribosomal small subunit assembly 

(GO:0000028) 
36 16 5.03 3.18 

3.40E-

04 

1.19E-

02 

recognition of pollen (GO:0048544) 68 30 9.51 3.16 
1.24E-

06 

8.38E-

05 

cell recognition (GO:0008037) 68 30 9.51 3.16 
1.24E-

06 

8.26E-

05 

L-phenylalanine metabolic process 

(GO:0006558) 
30 13 4.19 3.1 

1.44E-

03 

4.12E-

02 
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Table 3-23 continued 

erythrose 4-phosphate/phosphoenolpyruvate 

family amino acid metabolic process 

(GO:1902221) 

30 13 4.19 3.1 
1.44E-

03 

4.10E-

02 

ceramide biosynthetic process (GO:0046513) 40 17 5.59 3.04 
3.40E-

04 

1.20E-

02 

benzene-containing compound metabolic 

process (GO:0042537) 
45 19 6.29 3.02 

1.67E-

04 

6.68E-

03 

defense response to bacterium (GO:0042742) 109 45 15.24 2.95 
1.72E-

08 

1.64E-

06 

pollen-pistil interaction (GO:0009875) 76 31 10.63 2.92 
3.88E-

06 

2.34E-

04 

response to bacterium (GO:0009617) 138 55 19.29 2.85 
1.45E-

09 

1.87E-

07 

positive regulation of growth (GO:0045927) 41 16 5.73 2.79 
1.62E-

03 

4.49E-

02 

dicarboxylic acid biosynthetic process 

(GO:0043650) 
44 17 6.15 2.76 

1.15E-

03 

3.49E-

02 

aromatic amino acid family metabolic process 

(GO:0009072) 
103 37 14.4 2.57 

6.32E-

06 

3.72E-

04 

defense response to other organism 

(GO:0098542) 
253 87 35.37 2.46 

1.87E-

11 

3.11E-

09 

multi-multicellular organism process 

(GO:0044706) 
110 37 15.38 2.41 

2.07E-

05 

1.10E-

03 

pollination (GO:0009856) 110 37 15.38 2.41 
2.07E-

05 

1.09E-

03 

response to external biotic stimulus 

(GO:0043207) 
292 97 40.82 2.38 

5.64E-

12 

1.19E-

09 

response to other organism (GO:0051707) 292 97 40.82 2.38 
5.64E-

12 

1.14E-

09 

biological process involved in interspecies 

interaction between organisms (GO:0044419) 
310 101 43.34 2.33 

6.77E-

12 

1.31E-

09 

response to biotic stimulus (GO:0009607) 326 104 45.58 2.28 
7.64E-

12 

1.42E-

09 
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Table 3-23 continued 

aromatic amino acid family biosynthetic 

process (GO:0009073) 
76 24 10.63 2.26 

1.09E-

03 

3.39E-

02 

Golgi to vacuole transport (GO:0006896) 91 27 12.72 2.12 
1.11E-

03 

3.39E-

02 

glutathione metabolic process (GO:0006749) 124 36 17.34 2.08 
2.55E-

04 

9.34E-

03 

ribosomal small subunit biogenesis 

(GO:0042274) 
142 41 19.85 2.07 

1.07E-

04 

4.64E-

03 

defense response (GO:0006952) 570 163 79.69 2.05 
3.12E-

14 

1.04E-

11 

ribonucleoprotein complex assembly 

(GO:0022618) 
200 57 27.96 2.04 

8.69E-

06 

5.06E-

04 

ribonucleoprotein complex subunit 

organization (GO:0071826) 
204 57 28.52 2 

1.60E-

05 

8.85E-

04 

non-membrane-bounded organelle assembly 

(GO:0140694) 
158 44 22.09 1.99 

1.40E-

04 

5.85E-

03 

cell wall macromolecule metabolic process 

(GO:0044036) 
192 51 26.84 1.9 

1.13E-

04 

4.83E-

03 

ribosome biogenesis (GO:0042254) 527 139 73.68 1.89 
2.79E-

10 

4.06E-

08 

translation (GO:0006412) 955 251 133.52 1.88 
2.04E-

17 

1.58E-

14 

peptide metabolic process (GO:0006518) 1130 295 157.99 1.87 
5.58E-

20 

8.66E-

17 

peptide biosynthetic process (GO:0043043) 972 251 135.9 1.85 
1.12E-

16 

6.53E-

14 

polysaccharide catabolic process 

(GO:0000272) 
186 48 26 1.85 

2.97E-

04 

1.06E-

02 

amide biosynthetic process (GO:0043604) 1074 274 150.16 1.82 
1.80E-

17 

1.67E-

14 

cellular amide metabolic process 

(GO:0043603) 
1283 325 179.38 1.81 

3.22E-

20 

7.48E-

17 
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Table 3-23 continued 

response to external stimulus (GO:0009605) 463 117 64.73 1.81 
4.94E-

08 

4.26E-

06 

hydrogen peroxide catabolic process 

(GO:0042744) 
173 43 24.19 1.78 

1.20E-

03 

3.51E-

02 

protein phosphorylation (GO:0006468) 1650 410 230.69 1.78 
6.28E-

24 

2.92E-

20 

hydrogen peroxide metabolic process 

(GO:0042743) 
174 43 24.33 1.77 

1.69E-

03 

4.65E-

02 

ribonucleoprotein complex biogenesis 

(GO:0022613) 
648 159 90.6 1.76 

1.39E-

09 

1.85E-

07 

organic anion transport (GO:0015711) 188 45 26.28 1.71 
1.82E-

03 

4.91E-

02 

carbohydrate catabolic process 

(GO:0016052) 
365 87 51.03 1.7 

1.89E-

05 

1.03E-

03 

detoxification (GO:0098754) 334 76 46.7 1.63 
2.60E-

04 

9.40E-

03 

response to toxic substance (GO:0009636) 357 80 49.91 1.6 
2.35E-

04 

8.69E-

03 

anion transport (GO:0006820) 326 71 45.58 1.56 
1.18E-

03 

3.48E-

02 

rRNA processing (GO:0006364) 373 81 52.15 1.55 
5.30E-

04 

1.78E-

02 

phosphorylation (GO:0016310) 2331 505 325.9 1.55 
1.12E-

18 

1.30E-

15 

rRNA metabolic process (GO:0016072) 384 83 53.69 1.55 
4.92E-

04 

1.66E-

02 

organonitrogen compound biosynthetic 

process (GO:1901566) 
2078 441 290.53 1.52 

4.28E-

15 

1.81E-

12 

carboxylic acid biosynthetic process 

(GO:0046394) 
532 105 74.38 1.41 

1.54E-

03 

4.30E-

02 

organic acid biosynthetic process 

(GO:0016053) 
552 108 77.18 1.4 

1.84E-

03 

4.92E-

02 
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Table 3-23 continued 

cellular response to chemical stimulus 

(GO:0070887) 
908 175 126.95 1.38 

1.41E-

04 

5.87E-

03 

cell communication (GO:0007154) 1482 283 207.2 1.37 
2.06E-

06 

1.35E-

04 

cellular macromolecule biosynthetic process 

(GO:0034645) 
2159 411 301.85 1.36 

1.13E-

08 

1.14E-

06 

macromolecule biosynthetic process 

(GO:0009059) 
2223 423 310.8 1.36 

6.12E-

09 

6.63E-

07 

phosphorus metabolic process (GO:0006793) 3417 650 477.73 1.36 
2.69E-

13 

7.36E-

11 

phosphate-containing compound metabolic 

process (GO:0006796) 
3372 636 471.44 1.35 

1.77E-

12 

3.93E-

10 

response to chemical (GO:0042221) 1424 267 199.09 1.34 
1.34E-

05 

7.54E-

04 

oxoacid metabolic process (GO:0043436) 1135 212 158.69 1.34 
1.43E-

04 

5.91E-

03 

organic acid metabolic process 

(GO:0006082) 
1167 217 163.16 1.33 

1.48E-

04 

6.05E-

03 

signal transduction (GO:0007165) 1319 245 184.41 1.33 
5.21E-

05 

2.45E-

03 

carboxylic acid metabolic process 

(GO:0019752) 
1120 208 156.59 1.33 

2.15E-

04 

8.08E-

03 

signaling (GO:0023052) 1337 245 186.93 1.31 
1.10E-

04 

4.76E-

03 

cellular protein metabolic process 

(GO:0044267) 
5284 957 738.76 1.3 

9.39E-

15 

3.64E-

12 

cellular nitrogen compound biosynthetic 

process (GO:0044271) 
2091 377 292.34 1.29 

5.34E-

06 

3.19E-

04 

cellular biosynthetic process (GO:0044249) 3796 672 530.72 1.27 
6.70E-

09 

7.08E-

07 

transmembrane transport (GO:0055085) 1687 298 235.86 1.26 
2.04E-

04 

8.13E-

03 
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Table 3-23 continued 

organonitrogen compound metabolic 

process (GO:1901564) 
7378 1297 1031.52 1.26 

1.03E-

16 

6.86E-

14 

biosynthetic process (GO:0009058) 4060 708 567.63 1.25 
2.03E-

08 

1.89E-

06 

organic substance biosynthetic process 

(GO:1901576) 
3911 678 546.8 1.24 

8.93E-

08 

6.93E-

06 

protein metabolic process (GO:0019538) 6008 1036 839.98 1.23 
2.88E-

11 

4.62E-

09 

response to stimulus (GO:0050896) 4358 751 609.29 1.23 
3.60E-

08 

3.22E-

06 

organic substance transport (GO:0071702) 1677 287 234.46 1.22 
1.53E-

03 

4.30E-

02 

small molecule metabolic process 

(GO:0044281) 
1971 336 275.57 1.22 

6.99E-

04 

2.29E-

02 

protein modification process (GO:0036211) 3871 656 541.21 1.21 
2.48E-

06 

1.58E-

04 

cellular protein modification process 

(GO:0006464) 
3871 656 541.21 1.21 

2.48E-

06 

1.56E-

04 

macromolecule modification (GO:0043412) 4223 696 590.42 1.18 
2.74E-

05 

1.39E-

03 

cellular macromolecule metabolic process 

(GO:0044260) 
7343 1172 1026.63 1.14 

3.74E-

06 

2.29E-

04 

organic substance metabolic process 

(GO:0071704) 
12384 1959 1731.41 1.13 

9.85E-

10 

1.39E-

07 

primary metabolic process (GO:0044238) 11753 1854 1643.19 1.13 
9.98E-

09 

1.03E-

06 

cellular metabolic process (GO:0044237) 11945 1873 1670.04 1.12 
3.73E-

08 

3.27E-

06 

metabolic process (GO:0008152) 13715 2145 1917.5 1.12 
2.49E-

09 

2.82E-

07 

nitrogen compound metabolic process 

(GO:0006807) 
9947 1541 1390.7 1.11 

1.68E-

05 

9.19E-

04 

biological_process (GO:0008150) 22488 3463 3144.06 1.1 
2.58E-

16 

1.20E-

13 

cellular process (GO:0009987) 17046 2607 2383.21 1.09 
1.42E-

08 

1.40E-

06 
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DEG intersections 

Beyond the assessment of Rp1-D21/+-induced transcriptomic changes within each genetic 

background, I carried out an interaction analysis of DEGs across all five genetic backgrounds. This 

identified genes that were only responsive to Rp1-D21/+ in particular genetic backgrounds as 

candidates for targets of genetic-background effects. In addition, this highlights genes that were 

reliably differentially expressed independently of genetic background. The result from this 

analysis was depicted with two separate visualization methods for ease of intepretation; both with 

a Venn diagram (Figure 3-27) and with an Upset plot (Figure 3-28). 

 

 

 

Figure 3-27. Venn diagram of differentially expressed genes among the assessed genotypes. 
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Figure 3-28. Upset plot of differentially expressed genes across genotypes showing interactions 

among groups. 

 

Genes that were differentially expressed across all five backgrounds totaled 3197 (Figures 

3-27 & 3-28), this represents the core set of genes that respond to Rp1 no matter the genetic 

background within which it was induced. Fascinatingly, almost all these genes were moved in the 

same direction in all genotypes (Table 3-24). This suggests the hypersensitive response triggered 

by Rp1is under similar transcriptional control from genotype to genotype. Among the genes whose 

expression direction was opposite relative to BNRIL_HR only two shared a common direction and 

those were between BHR and BR (Figure 3-29), suggesting that they may not be involved in the 

Rp1-triggered response but rather some other genotype-specific processes. 
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Table 3-24. Expression direction of most consistent genes. 

Genotype Same direction with BNRIL_HR 

Opposite 

BNRIL_HR 

BHR 3194 3 

NHR 3189 8 

HR 3195 2 

BR 3195 2 

 

 

 

 

Figure 3-29. Overlap in expression direction among genes whose expression was opposite to 

BNRIL_HR. 
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3.4 Conclusions 

 Differential gene expression analyses carried in these experiments were successful in 

capturing expression changes brought about by Rp1-D21-induced hypersensitive response. 

Experimental procedure leading up to data generation were void of errors that could have adversely 

impacted data analysis. Gene expression differences between wild-type and mutant plants across 

different genetic backgrounds corresponded with HR severity. For example, the worst affected 

genotype, NC350, displayed the most extreme gene expression variation whilst mildly affected 

backgrounds such as B73 showed less extreme changes. I also demonstrated the power of 

replication in discovering even subtle changes in expression, as has been previously reported by 

others. 

 Analysis techniques developed and applied in these experiments permitted discovery of 

several defense-responsive genes whose expression was elevated as a result of Rp1-D21-induced 

HR. Conversely, many with roles in growth and developmental processes with the cell were 

uncovered to be turned down as a consequence of the Rp1-D21 effect, confirming the huge cost of 

the defense response. Interaction  analysis of DEGs from different genetic backgrounds revealed 

that while the Rp1-D21 effect may be under similar control across genotypes, significant 

background effects exist and may be responsible for varying levels of severity of the phenotype. 
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 DISSECTION OF REGULATORY VARIATION 

AFFECTING RP1-D21/+ INDUCED HR VIA EQTL ANALYSIS 

4.1 Introduction 

Expression quantitative trait loci (eQTL) are genomic regions harboring sequence variants 

that influence transcription of one or more genes. These expression variants are identical to other 

QTL approaches, but the quantitative trait of interest is the transcript abundance of a gene (Albert 

& Kruglyak, 2015a; Nica & Dermitzakis, 2013). Here, expression of a gene is viewed as a 

quantitative assessment of its activity and change between individuals. Detection of eQTL requires 

comparison of transcript abundance to the genotype at molecular markers previously determined 

for all individuals in a mapping population. A change in transcript abundance that is significantly 

associated with the genotype at a molecular marker indicates genetic control of expression 

variation and reflects the underlying genetic variation linked to the molecular marker. As such, 

they can be associated with genomic regions just like any QTL affecting any trait variation (Doerge, 

2002). Genome-wide eQTL, first undertaken in yeast (Brem et al., 2002), has recently been used 

to highlight genetic factors responsible for controlling several biological traits including 

anthocyanin biosynthesis in sweet potato roots ( Zhang et al., 2020), fatty acid composition in 

rapeseed (R. Li et al., 2018), benzoxazinoid biosynthesis in maize (X. Wang et al., 2018), among 

others.  

Since the beginning of our understanding of gene regulation (McClintock, 1949; Jacob & 

Monod, 1961; McClintock, 1956a, 1956b; McClintock, 1961; Peterson, 1953), gene expression 

variation has been classified as being encoded in cis or in trans. Cis-regulation is mediated by 

changes in DNA encoding the control elements at the gene itself, while trans regulation is mediated 

by gene products. An important distinction here is that cis and trans effects are distinguished by 

their molecular mechanisms. This can lead to some confusion in the interpretation of eQTL and 

necessitates some careful vocabulary. eQTL are either classified by their proximity to the gene or 

group of genes they affect into “local” or “distant” eQTL, or by the mechanism through which 

they influence their target genes as cis-acting or trans-acting eQTL (Albert & Kruglyak, 2015) cis-

acting regulatory variants are changes that impact only those genes located on the same physical 

chromosome with it, affecting their expression initiation, rate, and stability in an allele-specific 
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way. Trans-eQTL, on the other hand, influences their target genes by changing the transcription 

of diffusible factors such as transcription factors or microRNAs that interact with cis-regulatory 

elements of the target genes (Wittkopp et al., 2004). Although trans-eQTL are typically encoded 

by a gene located at an unlinked position, such as a different chromosome, to the target gene they 

can be encoded by a linked gene. A genetically linked trans-acting QTL would be “local”, but not 

cis. As a result, all cis-eQTL are local eQTL but not all local eQTL are cis-acting. This becomes 

important when co-locality of an eQTL and the target gene are used to interpret the molecular 

nature of the allele. While local eQTL are likely to be encoded by cis-variants, the eQTL itself is 

not definitive demonstration of this. Unlike true cis-eQTL these local trans-eQTL do not affect 

their target genes in an allele-specific manner and true cis-eQTL can be determined by additionally 

carrying out a test of the molecular mechanism via allele-specific expression analysis (ASE; see 

chapter 5 for more on this). 

eQTL mapping is similar in many ways to traditional QTL analysis and identifies loci 

through the study of genetically diverse individuals. These individuals, drawn either from an 

outbred population or from an experimental cross between genetically different individuals, vary 

at thousands to millions of loci many of which have no impact on gene expression. Two pieces of 

information are needed to identify those variants that affect gene expression. First, the genotype 

of each individual in the population is required. Second, the phenotype, in this case, the expression 

of each gene in each individual within the population, is required. Genotype can be in the form of 

pre-existing molecular marker data, such as SNP data, or the RNA-seq data used for expression 

assessment can be used for variant discovery. Quantitation of gene expression is robustly and cost-

effectively generated by RNA-seq experiments. Genotypes are subsequently compared to 

expression levels in statistical association or linkage analysis. A molecular marker is assessed for 

its effect on the expression of a given gene by first comparing the population of individuals 

according to the allele they carry. The statistical test for differences in the gene’s expression 

between the groups indicates that an allele linked to the molecular marker is responsible for 

regulating the expression of this gene. Each gene is evaluated against all molecular markers in this 

manner to identify expression variants genome-wide (Albert & Kruglyak, 2015).  

Alleles at key regulators of transcription can affect expression at multiple genes and thus 

encode trans-acting eQTL for multiple genes. e-QTL studies often characterize trans-eQTL 

“hotspots”, sometimes referred to as “hubs” or “clusters.” These are segments within the genome 
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that are enriched for trans-acting expression variants (de Koning & Haley, 2005; J. Tian et al., 

2016). There is no accepted threshold for when a location is a “hotspot,” and description of 

hotspots across papers are arbitrary and posthoc. Despite this, they are often quite striking and 

obvious after graphing the number of genes with eQTL linked to each position in the genome. 

These regions are thought to harbor master regulators involved in coordinated control of multiple 

downstream genes  (Kliebenstein, 2009; L. Li et al., 2013). While this is one explanation for such 

hotspots, it is formally possible that hotspots identify positions where many linked genes encode 

multiple trans-acting eQTL. Biological annotation of the genes affected in trans can be used as a 

weak test of the master regulator hypothesis, as coordinated expression of a set of genes of known 

co-regulation is only expected if the hotspot results from many targets affected by a single 

regulator. 

Several thresholds have been set for defining trans-eQTL hotspots. Some authors have 

used an estimate of the background distribution of eQTL for the average location in the genome. 

Some proportion over a number of eQTLs is identified as the basis for determining the location as 

a hotspot. Studies have variously defined trans-eQTL hotspots as regions containing more than 1% 

of all eQTL identified across the genome (Schadt et al., 2003) to 5% of total eQTL discovered as 

the cutoff for deciding a hotspot (Shi et al., 2007). Another technique for defining a hotspot 

threshold permutes the global distribution of eQTL randomly across the genome and identifies 

trans-eQTL hotspots as sliding windows that deviate from this at some threshold (Bolon et al., 

2014; L. Li et al., 2013). A third approach aggregates the number of genes affected by trans-eQTL 

within a specified bin size (e.g., 10 cM) across the genome. Peaks within each bin then define a 

hotspot (Tian et al 2016). Still, other investigators have used an arbitrary numerical threshold (e.g., 

>10 target genes per trans-eQTL) to categorize hotspots (Zhou et al., 2020). 

Using these strategies, the number of genes under the influence of most trans-eQTL 

hotspots identified in maize have ranged from tens to several hundred. In their study into 

transcription regulation in response and tolerance to drought in maize, (Y. Liu et al., 2020), 

identified trans-eQTL hotspots that controlled 21-24 genes. (X. Wang et al., 2018) identified 

hotspots that controlled about 60 target genes on average that were instrumental in a variety of 

metabolic pathways in a maize-teosinte experimental population. Other hotspots have had a wider 

spectrum of influence. The four trans-eQTL hotspots identified for grey leaf spot (GLS) were 

found to each influence between 141-407 genes (Christie et al., 2017). Similarly, 10 trans-eQTL 
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hotspots were highlighted in a study of gene expression variation in shoot apices in a maize 

biparental population which affected the expression of 289 genes on average (L. Li et al., 2013). 

I carried out eQTL mapping using a novel approach (Figure 4-1) that allowed me to 

associate natural variation in gene expression to those changes brought about by Rp1-D21-induced 

hypersensitive response in maize. Our collaborators took a recombinant inbred line population 

resulting from a cross between two parents with divergent sensitivity to Rp1-D21 and crossed it to 

a common parent carrying the Rp1-D21 mutation (introduced in Chapter 3). The common parent 

was the H95 inbred carrying Rp1-D21/+ as a heterozygote (Chintamanani et al., 2010). The 

recombinant inbred population was the 200-line B73 x NC350 subpopulation of the maize 

association mapping (NAM) recombinant inbred lines (RILs)(McMullen et al., 2009; J. Yu et al., 

2008). By carrying out RNA-seq on the Wildtype and Mutant siblings of each RIL x H95;Rp1-

D21/+ F1 family, I was able to map eQTL affecting expression in wildtype maize hybrids, Rp1-

D21/+ mutant hybrids. In addition, by using the difference in transcript abundance between 

wildtype and mutant siblings, I was able to eliminate eQTL resulting from background processes 

unrelated too immunity and identify eQTL specifically affecting expression variation during the 

hypersensitive response. This identified, for the first time, the genome-wide scale of expression 

variation during plant immune signaling and the largest eQTL hotspots in any organism.  

4.2 Methods 

4.2.1 Plant material and RNA sequencing data 

I used RNA-seq data from F1 families produced by crossing 99 members of the B73 x 

NC350 RIL subpopulation and H95;Rp1-D21/+ (Figure 4-2; also see Chapter 3) to map variants 

controlling gene expression in response to HR. The size of this subpopulation coupled with the 

extensive high-density genotype data available enables accurate identification of QTL (F. Tian et 

al., 2011). Since H95;Rp1-D21/+ is heterozygous for the Rp1-D21 allele, the F1 progeny segregate 

1:1 for those carrying Rp1-D21/+ (mutant F1 progeny) and those homozygous for wildtype Rp1 

alleles from the parents (non-autoactive phenotype). With the exception of the Rp1 locus, F1 

siblings are nearly isogenic. RNA was extracted from pools of wildtype and mutant siblings from 
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99 F1 families, converted to cDNA libraries and prepared for sequencing by our collaborator at 

the USDA-ARS, Dr. Peter Balint-Kurti lab, on the campus of North Carolina State University. 

4.2.2 Genotypic data 

I extracted genotype data for the 7,386 SNP positions corresponding to the 200 NC350 

RILs from the set of 4,892 NAM RILs (Olukolu et al., 2014) for use in the eQTL analysis. Since 

these SNPs were originally anchored on the maizeAGPv2 reference genome, I converted their 

locations to the more recent AGPv4 assembly using CrossMap (Zhao et al., 2014)  Some 6,685 

SNPs were successfully converted from AGPv2 and were used in conjunction with gene 

expression data for eQTL mapping. The 701 SNPs that could not be converted were located on 

contigs that only existed in the previous reference version and could thus not be placed on the new 

genome. 

4.2.3 Reads mapping and processing of expression data 

RNA-seq reads were mapped to the B73 v4 reference genome and read counts per gene 

were computed for each of the 99 F1 sibling progeny pairs (Figure 4-1). To reduce mapping bias 

due to the reference genome, the maize AGPv4 reference genome was anonymized with NC350 

SNPs using the bcftools consensus package from SAMtools v1.8 (H. Li, 2011). Single-end RNA-

seq reads were aligned to the anonymized reference using STAR v2.7.9a with a transcript 

annotation (Dobin et al., 2013). Raw read counts mapped to a given gene were computed with 

HTSeq v0.6.1 (Anders et al., 2015). These counts are not comparable among samples due to 

varying library sizes or sequencing depths among samples. Still, raw counts of different genes 

within a single sample cannot be compared due to different transcript lengths; whist longer 

transcript have more reads aligned to them shorter transcripts with similar expression level will 

have fewer reads mapped. For these reasons, raw read count normalization is key to guaranteeing 

accurate comparison of gene expression data (Dillies et al., 2013; Zhao et al., 2020). The 

normalized expression unit, reads per kilobase of transcript per million reads mapped (RPKM), 

was used rather than the raw counts to limit the effects of technical bias introduced during the 

sequencing step. RPKM corrects for library size and transcript length differences and thus allows 

for comparison of expression levels within and across samples (Mortazavi et al., 2008). Raw read 
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counts per gene were normalized with the RPKM normalization procedure as implemented in 

DESeq2 (Love et al., 2014)package for use as input in eQTL analysis. 

4.2.4 eQTL Mapping 

Genetic association was assessed between each SNP and each normalized gene count using 

MatrixEQTL (Shabalin, 2012) under the linear model, 

G = β0 + β1*SNP+ ϵ, 

where G is the normalized expression value of the gene being influenced, β1 is the SNP 

allele substitution effect, SNP is the genotype covariate, β0 is the intercept, ϵ is the residual or error 

term. The genotype covariate is coded as 0 for homozygous B73, 1 for the heterozygote, and 2 for 

homozygous NC350. This means a positive effect at an eQTL (β1>0) indicates that the NC350 

allele increased, and B73 allele decreased the expression level of the gene. A negative effect (β1<0) 

indicates that the NC350 allele decreased the expression of the gene and the B73 allele increased 

that gene’s gene expression.  
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Figure 4-1. Overview of eQTL analysis workflow. RNA-seq reads was mapped to the B73 v4 reference genome and read count per gene 

computed. Raw count data was normalized prior eQTL analyses. 
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Figure 4-2. Illustration of the cross between H95:Rp1-D21 and 99 members of B73 x NC350 

recombinant inbred lines (RILs). F1 offspring from H95:Rp1-D21 and B73 x NC350 cross 

segregate 1:1 ratio for F1 offspring carrying Rp1-D21 allele (mutant constitutive HR F1 progeny) 

and F1 offspring carrying the wildtype H95 allele at the Rp1 locus (non-autoactive phenotype). 

The F1 offspring are nearly isogenic except at the Rp1 locus. 
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Cis-eQTL for each gene were defined as the marker with the maximum QTL test statistic 

within 1 megabase (Mb). The window included all sequence from 1 Mb upstream of the 

transcription start site to 1 Mb downstream of the gene’s termination site (Figure 3A). For each 

gene, I retained and tabulated the most significantly associated SNP located within 1 Mb the cis-

eQTL. Subsequent filtering of this table at any significance threshold permits identification of 

significant associations due to a linked allele altering each target gene’s expression. By only 

retaining the SNP with the lowest p-value, a single cis-eQTL is tabulated for each gene. Since cis-

eQTL mapping is carried out within a 1 Mb window, it is formally possible that locally-encoded 

trans-acting eQTL linked to this region (see introduction and Figure 4-3) may be responsible for 

the association. Identification of trans-eQTL was also undertaken. To avoid errantly scoring cis-

eQTL as trans, no trans eQTL were retained within a window of 50 Mb around each target gene 

(Figure 4-3B). To reduce data tabulated while retaining flexibility in downstream analysis, trans-

eQTLs test statistics were retained for all gene-marker tests with p-values below 2.5 X 10-3. This 

approach identifies all marker-transcript associations at this threshold with a low likelihood of 

spurious linkage with cis-acting variants. This set of associations can be further filtered for 

significance. 

Cis-eQTL and trans-eQTL were performed on RNA-seq estimates of transcript abundance 

from F1 progeny showing the mutant or wildtype phenotype separately. Additionally, to remove 

the effects of background effects on eQTL detection, a series of expression phenotypes were 

derived from these data and used as phenotypic input for eQTL analyses. First, the difference 

between the mutant and wildtype normalized counts was obtained for each gene in each RIL F1 

family. Next, a ratio of wild type to mutant normalized counts was computed per gene in each RIL 

F1 family. Lastly, a log transformation was applied to the ratio of wildtype to mutant normalized 

counts, to reduce the effects of non-normality in the data on eQTL detection. These modified input 

data were then used separately to perform eQTL analyses. Trans-eQTL were identified as 

described above with the same locus definitions and thresholds for all input data, and cis-eQTL 

analysis was carried out only using input data from the wild type, mutant and difference between 

mutant and wild-type expression. 
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Figure 4-3. Illustration of eQTL mapping criteria for defining cis-eQTL (A) and trans-eQTL (B). 

cis-eQTL analysis searches within 1 Mb of SNP for significant associations to target genes 

whereas trans-eQTL were only identified if the target gene and SNP were on different 

chromosomes or more than 50 Mb when encoded on the same chromosome. 

 

4.3 Results 

4.3.1 Analysis of cis-eQTL in the RIL x H95;Rp1-D21/+ families identifies HR modulated 

genes as targets for cis – regulatory variation 

Abundance levels were computed for all maize AGPv4 reference genes for all 198 samples, 

mutant and wildtype, from all 99 RIL x H95;Rp1-D21/+ families. Following quality control steps 

after alignment, 41,474 genes had non-zero read counts for all individuals and were kept for further 

analysis. 6,685 SNPs were used in conjunction with the gene expression data to evaluate 2.8 x 108 

SNP-gene associations for eQTL discovery.  

eQTL mapping tested 454,326 gene-SNP associations for local/cis-eQTL discovery. This 

tests expression variants within a 1 Mb window of each target gene.  A quantile-quantile (QQ -

plot) of observed versus expected p-values showed that p-values for local eQTL broke from the 

diagonal much earlier than those of distant eQTL, demonstrating that distant eQTL were relatively 

more difficult to detect (Figure 4-4). After retaining only the most significantly associated gene-

SNP pairs per chromosome 10,317 and 10,407 significant cis-eQTL were identified for wildtype 

(WT) and mutant (MU) F1 respectively. The test with the difference in expression values between 

wildtype and mutant (MIN) produced 6,209 significant cis-gene-SNP associations. 
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Table 4-1. Summary results from cis-eQTL and their relationship with genes affected by Rp1-

D21/+ in NC350 x H95 (NH) hybrids. 

cis-

eQTL 

Gene 

count 

DE 

NH 

Not 

DE 

DE NH 

expected 

proportiona 

Not DE 

expected 

proportiona 

DE NH 

expected 

Not DE 

expected 

2 pval 

enrich 

WT 10317 5775 4542 0.495 0.505 5106.92 5210.08 1.59E-39 

MU 10407 5528 4879 0.495 0.505 5151.47 5255.53 1.56E-13 

MIN 6209 3567 2642 0.495 0.505 3073.46 3135.54 5.28E-36 

a Proportion is calculated from data in Chapter 3. 

 

Overlap analysis between cis-eQTL target genes and genes differentially expressed 

between wildtype and Rp1-D21/+ mutants in the NC350 x H95 (NH) F1 hybrid backgrounds was 

assessed. Of the genes differentially expressed, 5775 overlapped with cis-eQTL targets in the WT, 

5528 in MU, and 3567 in MIN. All of these were greater than the 5107, 5151 and 3073 expected 

by random chance in the WT, MU, and MIN cis-eQTL targets respectively. Tests of enrichment 

assessed by Chi squared test showed significance for all three groups (Table 4-1).  

Intersection of DEG between wildtype and mutant F1 hybrids from the B73 x H95 cross 

and cis-eQTL target genes was also carried out. There is a lesser impact of Rp1-D21/+ on gene 

expression (see chapter 3) and a suppression of the HR phenotype in these genetic backgrounds. 

Out of the DEGs identified, the number overlapping with cis-eQTL target genes were 2199 in the 

WT, 2049 in the MU, and 1543 in the MIN. These overlapping genes outnumber the expectation 

of 1980.66 in the WT, 1997.93 in the MU, and 1192 in the MIN cis-eQTL targets. However, chi-

square enrichment tests only revealed significant enrichment of DEGs in cis-eQTL gene targets 

for the WT and MIN but not for MU analysis (Table 4-2). 

Since differential expression analysis was additionally carried out between wildtype and 

mutant F1 progeny from the H95;Rp1-D21/+ and B73 x NC350 RIL (BNRIL) cross, there was 

interest in ascertaining how many of these DEGs overlapped with the cis-eQTL targets. Similar to 

our earlier observation in the NH background the cis-eQTL targets were enriched for DEGs. The 

number of DEGs found to be overlapping with cis-eQTL were 8677 for WT, 8668 for MU, and 

5211 for MIN, significantly more than the 6584.89, 6642.33, and 3962.93 expected by random 

chance in the WT, MU, and MIN cis-eQTL targets respectively (Table 4-3). 
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Table 4-2. Summary results from cis-eQTL and their relationship with genes affected by Rp1-

D21/+ in B73 x H95 (BH) hybrids. 

cis-

eQTL 

Gene 

count 

DE 

BH 

Not 

DE 

DE BH 

expected 

proportiona 

Not DE 

expected 

proportiona 

DE BH 

expected 

Not DE 

expected 
2 enrich 

WT 10317 2199 8118 0.192 0.808 1980.66 8336.34 4.82E-08 

MU 10407 2049 8358 0.192 0.808 1997.93 8409.07 2.04E-01 

MIN 6209 1543 4666 0.192 0.808 1192.00 5017.00 1.17E-29 

a Proportion is calculated from data in Chapter 3. 

 

It is not surprising that only a fraction of cis-eQTL target genes overlapped with DEGs. 

We do not expect every gene that is differentially expressed to also encode a cis-acting variant 

allele in the B73 x NC350 cross. There was more consistent enrichment of DEGs in the NH and 

BNRIL backgrounds compared to BH, indicating that the better you are at detecting differentially 

expressed genes the more enriched they are in cis-eQTL. The fact that cis-eQTL targets were 

enriched for differentially expressed genes even in the WT is intriguing. This test may not be 

indicative of an underlying biological phenomenon connected to gene expression changes brought 

by Rp1-D21-induced HR. Rather the slight enrichment observed my indicate that the tests used for 

both cis-eQTL and DEG analyses are more sensitive at the most abundantly expressed genes and 

as a result are non-randomly distributed among the set of expressed genes. That said, the DEG 

analysis using the entire B73xNC350 recombinant inbred line F1 population has 99 replicates, and 

as a result is far less sensitive to such a reads-depth artifact. Yet, it is this overlap list that provided 

the strongest test statistics. This favors a biological explanation, such as genes modulating plant 

immune responses and affected by HR have accumulated more regulatory variation than the 

average gene. This would result in more cis-eQTL, even in the wildtype siblings eQTL experiment, 

being found at HR-affected DEGs than expected by random chance. 
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Table 4-3. Summary results from cis-eQTL and their relationship with DEGs in F1 progeny from 

the H95;Rp1-D21 and B73xNC350 recombinant inbred lines (BNRIL) cross progenies. 

cis-

eQTL 

Gene 

count 

DE 

RIL 

Not 

DE 

DE BH 

expected 

proportiona 

Not DE 

expected 

proportiona 

DE BH 

expected 

Not DE 

expected 
2 enrich 

 
WT 10317 8677 1640 0.638 0.362 6584.89 3732.11 0.00E+00  

MU 10407 8668 1739 0.638 0.362 6642.33 3764.67 0.00E+00  

MIN 6209 5211 998 0.638 0.362 3962.93 2246.07 2.74E-238  

a Proportion is calculated from data in Chapter 3. 
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Figure 4-4. Quantile-quantile (QQ -plot) of observed against expected p-values from cis-eQTL analysis in wild-type RIL F1s (A), Rp1-

D21/+ RIL F1s (B), difference between wildtype and Rp1-D21/+ RIL F1s (C), ratio of the wildtype to Rp1-D21/+ RIL F1s (D) and the 

Log of the ratio of wildtype to Rp1-D21/+ RIL F1s (E). The x-axis denotes the theoretical p-value whilst the y-axis shows observed p-

value. Local p-values are from SNP-gene associations within 1 Mb; distant p-values are from SNP associations with genes more than 

50 Mb away. 
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Integrated analyses using effect direction of DEGs and cis-eQTL were carried out to assess 

which allele (B73 or NC350) more closely resembles the Rp1-D21/+ effect. Any bias would 

indicate a differential accumulation of cis-acting variants promoting greater or lesser immune 

responses in a particular line. For each gene that was significantly differentially expressed, the 

direction of effect observed at each eQTL was compared to the effect of Rp1-D21 had on that 

gene’s expression (analysis in Chapter 3). For WT cis-eQTL, the number of times the NC350 allele 

shared the same effect direction with Rp1-D21 (2818) did not significantly differ from the number 

of times the B73 allele’s effect direction was the same as Rp1-D21 (2957) in the NH background 

(Table 4-4 and Figure 5-5). In the comparison between WT cis eQTL in the mapping experiments 

and DEG in the BH background, the number of times the NC350 allele shared the same effect 

direction as Rp1-D21 (1163) was statistically different from that of Rp1-D21 (1036), though the 

absolute number of differences was quite modest (Table 4-4 and Figure 4-6). The observation of 

no difference and a weak effect are somewhat expected as WT samples did not harbor the Rp1-

D21 allele and consequently sensitivity to Rp1 was not being measured by this set of eQTL.  

In contrast, for cis-eQTL detected in the RIL F1 Rp1-D21/+ mutant samples, statistically 

significant differences could be observed between the number of times the NC350 allele shared 

the same effect direction as Rp1-D21 (3196) and that of the B73 allele (2332) when differential 

expression was assessed in the NH background (Table 4-4 and Figure 4-5). For the BH DEGs the 

same trend was observed, 1081 and 968 for the number of times Rp1-D21 effect direction was the 

same as NC350 and B73 respectively in the MU cis-eQTL targets (Table 4-4 and Figure 4-6). 

Clearly, NC350 alleles more often matched the direction of the Rp1-D21 effect on gene expression 

than the B73 alleles. This suggests that some of the sensitivity to Rp1-D21 previously reported 

(Chintamanani et al., 2010) may result from an accumulation of cis-regulatory variants that 

enhance the effect of Rp1-D21 on gene expression. Alternatively, there may be a substantial and 

surprising contribution of local-trans effects to the set eQTL investigated here.  
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Table 4-4. Comparison of effect direction of cis-eQTL and differentially expressed genes. 

cis-

eQTL 

Gene 

count 

Rp1-D21 in NH effect directiona Rp1-D21 in BH effect directionb 

Effect of 

NC350 allele 

and Rp1 the 

same 

Effect of 

B73 allele 

and Rp1 

the same 

2 enrich 

Effect of 

NC350 allele 

and Rp1 the 

same 

Effect of 

B73 allele 

and Rp1 

the same 

2 

enrich 

WT 10317 2818 2957 0.067 1163 1036 0.0068 

MU 10407 3196 2332 3.24E-31 1081 968 0.013 

MIN 6209 1856 1711 0.015 754 789 0.372 

a Proportion is calculated from data in Chapter 3. 

b Proportion is calculated from data in Chapter 3. 

 

 

 

Figure 4-5. Effect direction of differentially expressed genes between wildtype and mutant 

progeny from NC350 x H95;Rp1-D21 (NH) in cis-eQTL analysis. Cis-eQTL analyses were 

performed in wildtype (WT) and Rp1-D21 (MU) F1 progeny from the H95;Rp1-D21 and B73 x 

NC350 recombinant inbred lines (RIL) cross. MIN corresponds to cis-eQTL analysis using the 

difference in each gene’s expression between wildtype and Rp1-D21 F1. Dark brown denotes 

proportion of DEGs between wildtype and mutant NH F1, for which the NC350 allele has the same 

effect direction as Rp1. Orange represents the proportion of DEGs, between wildtype and mutant 

NH F1, for which the B73 allele has the same effect as Rp1. The numbers used in this chart are 

drawn from Table 4-4. 
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The results from the MIN cis-eQTL targets were mixed between the NH and BH 

backgrounds. For the NH DEGs that were also targets for cis-eQTL, a statistically significant 

difference was observed between the number of times the effect direction of the NC350 allele was 

the same as Rp1-D21 (1856) and the number of times the effect direction of the B73 allele’s was 

the same as Rp1-D21 (1711) (Table 4-4 and Figure 4-5). However, for the DEGs in the BH 

background that were also targets for MIN cis-eQTL, a statistically-significant difference was not 

seen between NC350 and B73 (Table 4-4 and Figure 4-6). This suggests that controlling for the 

changes in gene expression in the wild-type samples removed the effect observed in the mutant 

samples rather than enhance it. This would be consistent with the observation and interpretation 

of Table 4-3, that genes involved in the HR have accumulated more cis-regulatory variation in 

general.  

 

 

Figure 4-6. Effect direction of differentially expressed genes between wildtype and mutant 

progeny from B73 x H95;Rp1-D21 (BH) in cis-eQTL analysis. Cis-eQTL analyses were performed 

in wildtype (WT) and Rp1-D21 (MU) F1 progeny from the H95;Rp1-D21 and B73 x NC350 

recombinant inbred lines (RIL) cross. MIN corresponds to cis-eQTL analysis using the difference 

in each gene’s expression between wildtype and Rp1-D21 F1. Green denotes proportion of DEGs 

between wildtype and mutant BH F1, for which the NC350 allele has the same effect direction as 

Rp1. Yellow represents the proportion of DEGs, between wildtype and mutant BH F1, for which 

the B73 allele has the same effect as Rp1. The numbers used in this chart are drawn from Table 4-

4. 

0

10

20

30

40

50

60

70

80

90

100

WT MU MIN

NC350-concordant B73-concordant



  

 

169 

 

4.3.2 Analysis of trans-eQTL in the RIL x H95;Rp1-D21/+ families identifies an outsized 

role for HR – modulated regulatory hotspots at the top of the regulatory hierarchy 

Trans-eQTL analysis is useful to identify the long-range effects of an allele. This analysis 

was carried out to discover variants that regulate transcription of remote genes or network of such 

genes as a consequence of HR induced by Rp1-D21/+. I assessed gene-SNP associations at greater 

than 50 Mb from each target gene in the RNA seq data from RIL F1 plants. Wild-type and Rp1-

D21/+ mutant sibling sets from the cross between H95;Rp1-D21/+ and B73xNC350 RIL cross 

were analyzed separately. I also derived values from the expression data so the analysis would 

minimize the effect of background eQTL and to maximize statistical power. The same 

transformations were used as described above: differences between the mutant and wild type 

normalized counts; a ratio of wild type to mutant normalized counts; and a log transformation of 

the ratio of wildtype to mutant normalized counts. All calculated values were also utilized for 

trans-eQTL analysis. 

  

Table 4-5. Summary of trans-eQTL analysis results in different phenotypic backgrounds. 

Background Number of significant SNP-

gene associations 

Number of 

hotspots 

Average number of genes 

per hotspot 

WT 904,211 23 353.0 

MU 2,069,311 17 1,589.9 

MIN 1,436,895 15 1,056.7 

DIV 1,338,677 15 1,118.2 

LOG 1,466,213 16 1,062.2 

 

I assessed associations between SNPs and gene-level expression for 295,060,714 trans-

SNP-gene pairs. This large number of SNP-gene pair associations being tested makes trans-eQTL 

discovery more difficult in comparison with cis-eQTL. To limit the problem of linked loci 

affecting the same gene and reduce the number of false positives retained by the process, for each 

gene only the most significantly associated SNP per chromosome was kept for downstream 

analyses. A threshold of 200 target genes (dotted line in Figures 4-7 to 4-11) was set as an arbitrary 

threshold for the identification of trans-regulatory hotspots and likely to encode alleles at 

regulators controlling the expression of many genes. 
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Figure 4-7. Trans-eQTL results in F1 progeny from the cross between H95;Rp1-D21/+ and B73 x 

NC350 recombinant inbred lines (RIL) showing wildtype (WT) phenotype. X-axis represents 

chromosome number; y-axis is the number of genes influenced by each SNP. Dotted red line is at 

200 and represents the minimum number of genes a SNP must influence to be considered a hotspot. 

 

The trans-eQTL analysis of gene expression variation in the wildtype background detected 

904,211 significant SNP-gene associations (Table 4-5). Using the threshold indicated above, 23 

trans-eQTL hotspots were identified (Figure 4-7). Notably, only one of these trans-eQTL, located 

on chromosome 8, was shared with a trans-eQTL from the mutant background (Figure 4-8). This 

common hotspot, at marker m5923, was the strongest eQTL hotspot in the wildtype siblings 

experiment and significantly affected the expression of 964 genes. On average the hotspots 

detected in the wildtype samples influenced the expression of 353 genes. This demonstrates that 

this cross is a rich source of both cis and trans regulation, including a number of loci with influence 

on a very large number of transcripts consistent with alleles encoded by critical regulators of 

transcription. These wild-type F1 progeny, however, do not in themselves allow insight into the 

regulation of the HR.  
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Trans-eQTL analysis in the F1 progeny showing the mutant (MU) phenotype identified 

2,069,311 significant SNP-gene associations. This was more than twice what was found in the 

wildtype analysis. This suggests that trans-regulatory variation affecting expression differences 

affects the expression of more genes when the hypersensitive response is triggered. One 

mechanism for this would be allelic variation in HR-determinants, perhaps encoded by the alleles 

that altered lesion severity in the NAM population (Olukolu et al., 2016). Based on the minimum 

threshold of 200 target genes, 17 trans-eQTL hotspots were characterized. Only the previously 

mentioned single hotspot at m5923) was shared between the wildtype and mutant samples. This 

hotspot influenced 304 genes in the mutant background (Table 4-6). The fact that this trans-eQTL 

is shared between wildtype and mutant suggests that it is not influencing its target genes in 

response to the Rp1-D21-induced HR but rather maybe acting as part of transcription control of 

normal growth and developmental related activities in the plant. This idea is supported by the fact 

that in the mutant analysis, the number of genes affected by this hotspot is 3-fold lower in 

comparison to the wildtype. We know, from the stunted habit and lesion-like structures on plants 

showing the Rp1-D21 phenotype that normal growth and development is sacrificed to make way 

for a strong hypersensitive response and that GO annotations associated with growth, 

development, and primary metabolism are among the down regulated genes in Rp1-D21 mutants 

(see chapter 3).  
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Figure 4-8. Trans-eQTL results in F1 progeny from the cross between H95;Rp1-D21/+ and B73 x 

NC350 recombinant inbred lines (RIL) showing Rp1-D21 (MU) phenotype. X-axis represents 

chromosome number; y-axis is the number of genes influenced by each SNP. Dotted red line 

represents the minimum number of genes a SNP must influence to be considered a hotspot. 

 

Trans-eQTL hotspots were identified on all chromosomes except for chromosome 4. The 

identified hotspots influenced an average of 1,589.9 genes, 5X the average number of trans-eQTL 

target genes found in the wildtype analysis (Table 4-5). Indeed, the two hotspots with the highest 

number of target genes, m139 located on chromosome 1 and m7076 located on chromosome 10, 

controlled the expression of 6,077 and 5,700 genes respectively (Table 4-6 and Figure 4-8). This 

is indicative of an extremely strong transcription response brought about by these alleles and is 

reminiscent of the numbers of genes detected as affected by Rp1-D21 auto activation (see Chapter 

3). One possible explanation for the extremely large number of genes affected by these trans-eQTL 

hotspots is that they sit upstream in the defense response pathway. Alleles that encode upstream 

modulators of HR would be expected to coordinately modify the accumulation of all HR-

responsive transcripts by increasing, or decreasing, the intensity of the entire host response. 



  

 

173 

 

 

Figure 4-9. Trans-eQTL results using the difference (MIN) between the expression values of Rp1-

D21 and wildtype F1 progeny from the cross between H95:Rp1-D21 and B73 x NC350 

recombinant inbred lines (RIL). X-axis represents chromosome number; y-axis is the number of 

genes influenced by each SNP. Dotted red line represents the minimum number of genes a SNP 

must influence to be considered a hotspot. 

 Trans-eQTL analysis results from the mutant plants remained largely unchanged, in terms 

of the number of hotspots identified, when the analysis was repeated with transformed expression 

data. The number of genes influenced by two hotspots m1970 and m5923 fell below the threshold 

to 199 and 183 respectively in the MIN analysis (Figure 4-9), and to 195 and 129 respectively in 

the DIV analysis (Figure 4-10), hence 15 hotspots were identified in contrast to the MU analysis. 

Similarly, in the LOG analysis, the number of hotspots was reduced to 16 (Figure 4-11); the 

number of genes influenced by m5923 was reduced to 130, hence it was no longer considered a 

hotspot (Table 4-5). Taken together, these are further pieces of evidence that m5923 is background 

trans-eQTL and is not specific to the Rp1-D21 response. The number of significant SNP-gene 

associations and the average number of genes per hotspot reduced in the analyses in the MIN, DIV, 

LOG analysis in comparison to the MU analysis. It appears the additional data transformation steps, 

helped remove a background trans-eQTL, resulted in fewer genes detected overall, but also 
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demonstrate that that trans-eQTL hotspots are not the result of Rp1-D21 amplification of 

regulatory variation visible in the mutant. Rather it is consistent with HR-specific regulation 

driving changes in gene expression at a very large number of transcripts specifically in the Rp1-

D21/+ mutant siblings.  All major trans-eQTL detected in the MU analysis were consistently 

detected across transformed data. The consistent discovery of the 16 major trans-eQTL hotspots 

across the different analyses with Rp1-D21 plants provides further proof of the authenticity of 

these hotspots. Some discontinuity in the test values and number of affected genes are visible on 

chromosomes 2 and 10 in the MU, MIN, DIV, and LOG analyses could be the result of bad 

mapping or the presence of multiple QTL. A large proportion of the clustered diverse nucleotide-

binding leucine-rich repeat (NLR) genes in maize are located on chromosome 10 (Y. Cheng et al., 

2012). Because of this the “hotspot” that makes up the majority of that chromosome may be the 

result of multiple alleles at NLR loci across that chromosome that work with rp1, rather than a 

single QTL and unusual linkage. 

 

 

Figure 4-10. Trans-eQTL results using the ratio (DIV) between the expression values of wildtype 

and Rp1-D21 F1 progeny from the cross between H95;Rp1-D21/+ and B73 x NC350 recombinant 

inbred lines (RIL). X-axis represents chromosome number; y-axis is the number of genes 

influenced by each SNP. Dotted red line represents the minimum number of genes a SNP must 

influence to be considered a hotspot. 
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Figure 4-11. Trans-eQTL results using the log (LOG) of the ratio between the expression values 

of wildtype and Rp1-D21 F1 progeny from the cross between H95;Rp1-D21/+ and B73 x NC350 

recombinant inbred lines (RIL). X-axis represents chromosome number; y-axis is the number of 

genes influenced by each SNP. Dotted red line represents the minimum number of genes a SNP 

must influence to be considered a hotspot. 

 

Intersection analysis between trans-eQTL hotspot target genes and wildtype versus mutant 

DEGs from the NH and BH backgrounds was carried out. A majority of the target genes at the 

mutant-specific trans-eQTL hotspots were also identified as DEG in the NH and BH F1 hybrid 

experiments (Table 4-6). As expected, due to the greater intensity of the Rp1-D21/+ phenotype in 

NH as compared to BH, the degree of trans-eQTL hotspot target gene enrichment was greater 

among the NH DEG than the BH DEG. As an example, of the 6077 genes under the control of 

m139, 5710 (93.9 %) were DE in the NH background as opposed to 2620 (43.1%) in the BH 

background (Table 4-6). 

If these hotspots are the result of alleles affecting HR, or working at the top of the immune 

regulatory hierarchy, then their effects on expression should resemble the induction of HR. On the 
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other hand, if they alter a subset of the HR response, relatively few of the genes affected by HR 

should be altered by the alleles encoding these trans-acting hotspots.  To test this, the direction of 

the effect of each hotspot on gene expression was compared with the effect of Rp1-D21 on gene 

expression (chapter 3). Remarkably, the genes identified as DEG in response to Rp1-D21/+ in the 

NC350 x H95 F1 hybrid families were coordinately regulated by 16 of the 17 trans-eQTL hotspots 

(Table 4-6 and Figure 4-12). More than 80% of the DEG were affected in the same direction in 

each case (Table 4-6). For example, at marker m139 on chromosome one, the NC350 affected the 

direction of expression in the same manner as Rp1-D21 at 9919 of the 10307 DEG detected (96%) 

in NC350 x H95 F1 hybrid families (Table 4-6 and Figure 4-12). Consistent with all previous 

analyses, a repeat of this process using the DEG from BH uncovered an identical pattern (Table 4-

6 and Figure 4-13). For example, at marker m139, 2545 of the 2757 genes (92%) that were DEG 

in BH were affected in the same direction by Rp1-D21 and the NC350 allele at this trans-eQTL 

hotspot (Table 4-6 and Figure 4-13). The one exception to this pattern was the non-HR related 

hotspot on chromosome 8 which showed nearly equal split between which allele more closely 

resembled the Rp1-D21 effect (4854 to 5453; Table 4-6). As indicated above, this hotspot was not 

involved in Rp1-D21-specific transcription responses. In 12 out of the 16 HR-specific hotspots it 

was the NC350 allele that was responsible for the enhanced response (Table 4-6). This indicates 

that the increased severity of Rp1-D21 in NC350 is affected in part by the presence of alleles that 

strongly increase the transcription response to HR, process-wide. These massive trans-eQTL with 

effects on gene expression at nearly all HR-induced DEG indicate upstream master regulators of 

HR. The ability to detect this via eQTL, and thereby investigate the mode of action of these effects 

provides unprecedented detail to this natural variation in immune response. 
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Table 4-6. Trans-eQTL hotspots in mutants and their relationship with DEGs in both BH and NH backgrounds. 

Hotspot Chr. Position 
Gene 

count 

DE 

NH 

Not 

DE 

DE 

BH 

Not 

DE 

NC350 or B73 

enhancement 

Rp1-D21 in NH effect 

direction 

Rp1-D21 in BH effect 

direction 

Effect of 

NC350 

allele 

and Rp1 

the same 

Effect of 

B73 allele 

and Rp1 

the same 

Effect of 

NC350 

allele and 

Rp1 the 

same 

Effect of 

B73 allele 

and Rp1 

the same 

m139 chr1 11719235 6077 5710 367 2620 3457 NC350 9,919 388 2545 212 

m925 chr1 291653311 312 250 62 84 228 NC350 9322 985 2401 356 

m1590 chr2 201856260 1955 1810 145 1068 887 NC350 9725 582 2605 152 

m1726 chr2 200891453 2620 2459 161 1306 1314 NC350 9850 456 2590 167 

m2061 chr3 9761665 888 748 140 299 589 NC350 9434 873 2406 351 

m1970 chr3 3838931 331 246 85 107 224 NC350 9608 699 2555 202 

m2353 chr3 186138473 1771 1617 154 824 947 B73 603 9704 187 2570 

m3611 chr5 10198879 1085 886 199 342 743 NC350 8865 1442 2209 548 

m3813 chr5 148816139 740 506 234 189 551 NC350 8328 1979 1999 758 

m3972 chr5 201868522 388 280 108 122 266 B73 1012 9295 229 2528 

m4454 chr6 124533055 1444 1277 167 627 817 NC350 9759 547 2561 195 

m4908 chr7 5928090 653 538 115 217 436 B73 775 9532 261 2496 

m5022 chr7 27435303 585 417 168 160 425 B73 959 9348 299 2458 

m5707 chr8 21567679 532 371 161 100 432 NC350 9122 1185 2318 439 

m5923 chr8 166652339 304 127 177 60 244 Not Rp1-specific 4854 5453 1173 1584 

m6457 chr9 105751521 1644 1260 384 509 1135 NC350 9080 1227 2323 434 

m7076 chr10 112662547 5700 5396 304 2772 2928 NC350 9978 329 2608 149 



 

 

178 

 

Figure 4-12. Effect direction of differentially expressed genes (DEGs) between wildtype and 

mutant F1 progeny from cross between NC350 and H95;Rp1-D21/+ (NH) by trans-eQTL hotspots. 

Trans-eQTL analyses were performed in Rp1-D21 F1 progeny from the cross between H95;Rp1-

D21/+ and B73 x NC350 recombinant inbred lines (RIL). Dark brown denotes proportion of DEGs 

between wildtype and mutant NH F1, for which the NC350 allele has the same effect direction as 

Rp1-D21. Orange represents the proportion of DEGs, between wildtype and mutant NH F1, for 

which the B73 allele has the same effect as Rp1-D21. The numbers used in this chart are drawn 

from Table 4-6. 
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Figure 4-13. Effect direction of differentially expressed genes (DEGs) between wildtype and 

mutant progeny from cross between B73 and H95;Rp1-D21/+ (BH) by trans-eQTL hotspots. 

Trans-eQTL analyses were performed in Rp1-D21 F1 progeny from the cross between H95;Rp1-

D21/+ and B73 x NC350 recombinant inbred lines (RIL). Green denotes proportion of DEGs 

between wildtype and mutant BH F1, for which the NC350 allele has the same effect direction as 

Rp1-D21. Yellow represents the proportion of DEGs, between wildtype and mutant BH F1, for 

which the B73 allele has the same effect as RP1-D21. The numbers used in this chart are drawn 

from Table 4-6. 

4.4 Conclusions 

Overall, this experiment uncovered an avalanche of expression variation, as evidenced by 

the QQ-plots, and presents powerful tools for describing response to disease signaling. cis-eQTL, 

or at least local eQTL, were detected at about a third of all genes. Given the size of the population 

and variation in maize, such a proportion is perhaps not surprising. Yet, not every gene within the 

genome will be polymorphic between NC350 and B73. The extent of enrichment of DEGs within 

the genes under the influence of cis-eQTL is also not unexpected. We do not expect every DEG to 

be polymorphic between the pair of genotypes. However, a couple of questions arise. Should we 

expect more polymorphisms within the promoters of HR-induced genes? Is selection diversifying 

expression effects for disease-responsive loci? This appears to be the case, and our results provided 

modest evidence in support of this. More cis-eQTL genes were detected at genes that were 

differentially expressed than would be expected by random chance for BH, NH, and BNRIL 

backgrounds. The strength of the Rp1-D21 effect increases as the experiment becomes better 
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powered, with the massive replication and large number of DEG detected in the BNRIL having 

the strongest signal of overlap with the eQTL experiment. This suggests that this is not the result 

of the most responsive genes being differentially subject to selection for expression 

polymorphisms nor an effect disproportionately affecting the most abundant genes. In addition, 

the greater signal of overlap between the stronger NH and BNRIL experiments and the eQTL 

results argues against the overlap being an artifact of a lower-powered experiment. Were this an 

artifact of low power, more abundant genes are more often differentially expressed, and the 

enrichment should have favored the BH and NH comparisons. Rather, thousands of genes appear 

to be contributing to HR severity, some with very tiny effects. Likewise this cannot really be a 

case of “Omnigenetics” (Boyle et al., 2017) in which the entire genome affects variation in a trait 

because enrichment is observed. Still, the large number of genes that are present in this overlap 

present an opportunity for breeding, as selection should enrich for disease modulating alleles, and 

a unique challenge, as so many genes are involved that segregation and linkage will never allow 

selection to accumulate all of the “favorable” alleles. How do you select for thousands of loci 

within a breeding program? Maize breeding for disease resistance is extremely facile and has been 

very successful, consistent with selection favoring beneficial alleles. 

In this context, the trans-eQTL results are quite extraordinary. The number of genes under 

the control of the hotspots were often an order of magnitude more than has been reported in 

previous eQTL studies in maize. The allele effect directions conformed to the expectation for 

NC350 encoding alleles that affect Rp1-D21 sensitivity. This was one possible explanation for the 

greater differential expression and it would appear that these hotspots are contributed by the lesion-

increasing loci in this accession. Indeed, 12:4 of the hotspots are due to NC350 contributing the 

HR-enhancing allele, consistent with a the lesion enhancing QTL study by (Olukolu et al., 2016) 

that used the same RIL population. Strikingly, the whole of chromosome 10 encodes markers with 

low p-values for a very large number of genes. One possible explanation for this is the fact that 

chromosome 10 is replete with many NLR gene clusters. 

Each Rp1-D21-specific hotspot induced nearly all Rp1-D21 responsive genes. Had these 

been encoded by downstream transcription factors, I would expect that the subset of promoters 

bound by that specific transcription factor would be affected by the trans-eQTL hotspot. Instead, 

the entire Rp1-D21 response was either turned up or down. This fits a model where these hotspots 

act high up in the HR regulatory hierarchy, for instance modulating the severity of the lesion 
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response. In addition, the 16 Rp1-D21 specific hotspots require this allele to be observed, 

indicating that Rp1-D21 is epistatic to the variation encoded by the eQTL. I cannot say, however, 

whether the trans-eQTL acts downstream or upstream of Rp1-D21. Rather, they appear to be 

acting in concert with Rp1-D21 to modify HR severity. Previous work has demonstrated exactly 

this for multiple proteins that are both induced by Rp1-D21 and negatively regulated Rp1-D21-

mediated HR via protein-protein interactions (Wang & Balint-Kurti, 2016; Wang et al., 2015).

 There are two artifacts present in the data that are worthy of comment. The first are the 

displacement of SNP from hotspots and patterns of hotspots not consistent with linkage. This 

suggests there are some inconsistencies between the SNP-chromosome map and reality. These 

could be the result of either NC350 vs B73 rearrangements or bad SNP positions present in the 

marker data that was lifted over to the B73 v4 reference used in these analyses. The second is the 

very large number of genes affected by trans-eQTL hotspots and the problem of distinguishing 

local trans-eQTL from cis-eQTL. Since I detected an unprecedented number of trans-eQTL in my 

analysis it seems likely that I will also have a proportionally greater number of local trans eQTL 

currently annotated as “cis” in my analysis. The most efficient way to distinguish these is 

molecularly via an analysis of allele-specific expression. This is the subject of the final chapter of 

my dissertation. 
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 TESTING THE MOLECULAR MECHANISM OF CIS-

EQTL THROUGH ALLELE SPECIFIC EXPRESSION AS VALIDATION 

OF CIS-REGULATORY VARIANTS AFFECTED BY RP1-D21/+ INDUCED 

HR 

5.1 Introduction 

Allele-specific expression (ASE), the differential accumulation of mRNA from alleles at a 

locus (Knight, 2004; Wittkopp et al., 2004) is a powerful approach to understand the genetic basis 

for gene expression variation. ASE can only result from the action of cis-acting variation since 

each allele only affects the expression of the copy of the gene residing on the same physical 

chromosome. This difference can be detected by measuring the relative expression of the parental 

alleles in a heterozygous individual (Figure 5-1). Trans-eQTL, on the other hand, do not influence 

the expression of their target genes in an allele-specific manner. Some combination (e.g. cis x trans 

interactions) can result in trans mediated observation of ASE, but only in the presence of an 

underlying cis-regulatory difference distinguishing the alleles at the target. This is because the 

diffusible element (e.g., transcription factor) whose function is altered by the eQTL is equally 

available to both alleles of the target gene in the heterozygote (Albert et al., 2018; Albert & 

Kruglyak, 2015b; Castel et al., 2015) . 

 

 

Figure 5-1. Allele-specific expression effects from cis-regulatory variants. Heterozygous cis-

eQTL generates transcript-level differences between the two haplotypes which is detectable by 

counting of reads contained in the SNP position. SNP, single nucleotide polymorphism; cis-eQTL, 

cis-acting expression quantitative trait locus. 
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Sequencing-based expression analyses can be used to detect ASE in the presence of 

variation in the transcript sequences. Analyses assign RNA-seq reads spanning heterozygous 

single nucleotide variants to each parental allele and evaluate statistical significance of any 

imbalance in reads from each allele with a binomial test (Castel et al., 2015). Since the detection 

of eQTL in traditional mapping experiments (See Chapter 4) considers markers linked to a gene, 

a cis-eQTL may be confounded by local QTL encoding trans-regulatory determinants of 

expression. For example, in my work in Chapter 3, all significant estimates of expression variants 

within a 1 Mb region of the affected gene were considered as cis-eQTL. While this eliminated 

99.95% of the genome, it is formally possible that the variation detected may not exert influence 

in cis, but rather be a linked, or local, trans-acting factor. Local trans-acting effects can be 

distinguished from true cis-eQTL because only the latter will produce allele-specific expression. 

ASE analysis is a simultaneous test of mechanism and can be used to validate cis-eQTL. Validated 

eQTL and their genes can be prioritized for further studies or use in plant breeding 

 Using RNA-seq to assess ASE presents some interesting computational analysis 

bottlenecks. Chiefly that biased mapping of reads to the allele that resembles the genome reference 

can result in deviation of read numbers from the trivial null hypothesis of equal reads from each 

allele. This is often referred to as reference bias. Transcript abundance estimation from RNA-seq 

involves a number of steps. First, reads are assigned to chromosomal regions showing the highest 

sequence similarity followed by a comparison to an annotated genomic reference. A gene’s 

expression level is subsequently quantified by counting the number of reads mapped to it 

(Mortazavi et al., 2008). Since each polymorphism between an allele and reference decreases the 

mapping score, reads harboring variant positions are frequently imprecisely aligned and more 

frequently fail to meet minimum mapping criteria (Degner et al., 2009; Salavati et al., 2019; 

Stevenson et al., 2013). When reads are assigned to genotype and counted, this leads to systematic 

bias towards the reference allele and consequently high false-positive rates for detecting ASE 

(Degner et al., 2009).  

 Sequencing both parental genomes and aligning reads from the F1 to each genome 

separately is one robust approach to eliminating this bias (Shen et al., 2013). This provides an 

estimate of the counts obtained when a 1:1 mix of reads from the two parental alleles are processed 

by the analytical pipeline for ASE. This approach is costly for organisms with large genomes, as 

reliable estimates of reads proportions requires sequencing to high depth. Alternative methods rely 



 

 

184 

on phased genotype data to supplement or modify the reference (Vijaya Satya et al., 2012) or 

performing mapping and alignment with SNP-tolerant software such as GSNAP (Wu & Baldwin, 

2010) in an effort to reduce the effect of polymorphisms on this bias. These strategies may work 

for organisms with relatively few polymorphisms between individuals, like humans. Attempting 

only to minimize the effects of variants in a species with greater intraspecific variation, such as 

maize, might be challenging as the number of likely haplotypes scales exponentially with a number 

of variants (Stevenson et al., 2013). A third strategy to minimize reference allele bias uses pseudo 

reference sequences with N-masking at the heterozygous positions and has been benchmarked to 

be very robust to the challenges elaborated above (Degner et al., 2009; Salavati et al., 2019; van 

de Geijn et al., 2015). I used such N-masked references in my DEG analyses (Chapter 3) and eQTL 

experiments (Chapter 4) to improve reads mapping. The improvement in reads mapping is exactly 

what we would expect if they were reducing reference bias.  

 The relatively few studies that have described integrated cis-eQTL and ASE analyses have 

found overlaps between the loci identified but also notable differences. For instance, in their 

investigation into expression variation controlling meat quality traits in pigs, Liu et al 2020 

identified a 12.4% overlap between genes discovered with the two approaches. Specifically, 

among the 2098 genes targeted by cis-eQTL only 540 were shared with the 2253 genes that showed 

significant allelic imbalance. Another study that leveraged ASE and cis-eQTL analyses to identify 

determinants of gene expression variation behind complex traits in cattle showed only about 50% 

overlap (Khansefid et al., 2018). Differences in detection power between the two analysis methods 

have been cited as an underlying reason for this observed limited overlap (Khansefid et al., 2018). 

But it is possible that a larger than expected number of local trans-eQTL are encoded in genomes. 

 In maize, genome-wide ASE analyses using RNA-seq have been carried, but none in 

combination with eQTL. ASE has contributed towards elucidating the genetic architecture behind 

complex phenomena such as heterosis (Z. Li et al., 2021; Springer & Stupar, 2007; Wan et al., 

2022). ASE has also enabled a deeper understanding of genetic control underpinning response to 

abiotic stress in maize (Waters et al., 2017). With recent advancements in single-molecule 

sequencing technologies, techniques have been developed to use long reads in ASE analysis. These 

have been used to enhance our understanding of parent of origin effects within different tissues of 

reciprocal hybrids derived from a temperate x tropical maize line cross (T. Wang et al., 2020). 
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 I reanalyzed the data from the F1 hybrids from the B73 X H95 cross and NC350 X H95 

cross for ASE. This allowed me to detect cis-regulatory differences between the alleles of these 

parent-pairs in the presence and absence of HR as induced by Rp1-D21. Comparison of these data 

to the cis eQTL identified in chapter 4 provides remarkable validation of a subset of these QTL. 

In addition, in an effort to make a comparison between NC350 and B73 I created a common-

reference ASE analysis method. While successful at validating a number of cis-eQTL, all 

experiments that included B73 parentage displayed substantial reference bias that was not fully 

corrected by using N-masked reference.  

5.2 Methods 

5.2.1 SNP calling 

 Variant calling from H95 and NC350 whole-genome shotgun data was carried out using 

the standard pipeline described in Chapter 2 to generate SNPs for anonymized reference creation. 

In summary, paired reads were aligned to B73RefGen_v4 (Jiao et al., 2017) using BWA-MEM (H. 

Li & Durbin, 2009; R. Li et al., 2009). SAMtools flagstat command (H. Li et al., 2009) was then 

used to retrieve alignment quality statistics including number of QC-passed/failed reads, number 

of properly paired reads, as well as a number of singletons. This was followed by running of the 

SAMtools rmdup command on alignment files to exclude PCR duplicates which are amplification 

artifacts that could have been introduced during library construction. Combined SNP and small 

indel discovery was performed with BCFtools view command using genotype likelihoods 

computed from de-duplicated alignment files with SAMtools mpileup. First round of variant 

filtering was carried out using varFilter command of the vcfutils.pl script with the – D100 option 

which excludes polymorphisms by the following criteria: coverage less than 2 reads but not 

exceeding 100 reads, root mean square quality less than 10, as well as variants located within three 

bases of a gap (H. Li et al., 2009). Indels were then removed from the list of variants with VCFtools 

to create a VCF with only SNPs. This file was further processed using SnpSift (Cingolani, Patel, 

et al., 2012) to only retain homozygous SNPs with minimum phred-scale quality of 20 and a read 

depth of at least 4. 
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5.2.2 B73 x H95;Rp1-D21/+ ASE analysis  

 The RNA-seq reads used in differential gene expression analysis (see Chapter 3) from B73 

x H95;Rp1-D21/+ (BH) F1 hybrids were used to examine ASE. These single-end reads were 

derived from six individuals (3 biological replicates per wildtype or mutant). I used the H95 SNPs 

generated from variant calling from whole genome sequencing to create an anonymized reference 

by converting the variant positions within AGPv4 to ambiguous (N) bases. Read mapping to the 

SNP-anonymized reference was conducted using STAR aligner (Dobin et al., 2013) to produce 

alignment files which were further processed with Picard tools to assign read group information, 

sort, mark duplicates, and create indices. SAMtools merge was then used to combine alignment 

files from 3 biological replicates prior to the allele counting step. 

 ASEReadCounter within the GATK suite of tools (Depristo et al., 2011; McKenna et al., 

2010) was used to compute B73 (reference) and H95 (alternative) allele counts at each bi-allelic 

heterozygous H95 variant within the merged alignments. The settings used for counting were as 

follows: minimum depth of 10, mapping quality of 10 and a base quality of at least 2. Options to 

count reads only once and filter out duplicate reads were also specified. Allele counts per gene 

were computed by adding allele counts for SNPs within a gene and used to estimate ASE via a 

binomial test carried out under the null hypothesis that each allele is expressed equally (Figure 5-

2). P-values were adjusted using the Benjamini-Hochberg procedure to control for multiple tests 

(Benjamini and Hochberg, 1995). Significance was determined at a False Discovery Rate (FDR) 

of 5%. To identify genes that co-occur in ASE and cis-eQTL experiments, significant ASE genes 

from mutant BH analysis were overlapped with the significant cis-eQTL target genes from the 

mutant RIL analysis. A similar comparison was carried out between wild-type BH significant ASE 

genes and significant cis-eQTL from the wild-type RIL experiment. 
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Figure 5-2. Overview of ASE analysis in B73 x H95:Rp1-D21/+ (BH) F1 hybrids. RNA-seq reads 

are aligned to a H95 SNP anonymized AGPv4 reference genome. H95 homozygous SNPs were 

used to generate read counts at each SNP position from merged BH alignment files generated by 

mapping RNA-seq reads to H95-anonymized AGPv4 reference. Allele read counts per gene were 

then computed and used to assess ASE via a binomial test. 

5.2.3 NC350 x H95;Rp1-D21/+ ASE analysis 

 Patterns for ASE within the NC350 x H95;Rp1-D21/+ (NH) background were assayed by 

first creating an anonymized AGPv4 reference with H95 and NC350 SNP positions converted to 

ambiguous bases. RNA-seq reads produced from six F1 hybrid individuals (3 biological replicates 

per wildtype or mutant) that were used to perform differential gene expression analysis in the NH 

background (see Chapter 3) were again used for this analysis. Single-end read alignment and post-

alignment processing were conducted as described above for the BH analysis. 
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Figure 5-3. Schematic showing an overview of NC350 x H95:Rp1-D21/+ (NH) ASE analysis. 

B73:NC350 (BN) and B73:H95 (BH) homozygous SNPs were compared to exclude common 

SNPs from each. Private BN and BH SNPs were separately used to generate allele counts from 

NH alignment files produced by mapping RNA-seq reads to H95 and NC350 anonymized AGPv4 

reference genome. Allele read counts per gene were then computed and used to assess ASE via a 

binomial test. 

 

 A modified approach was, however, implemented for allele counting as follows. The H95 

and NC350 SNPs discovered from the variant calling step were compared to exclude common 

positions. The non-overlapping SNP positions were then fed into ASEReadCounter to count reads 

per allele using the same parameters specified above. Reference and alternate allele read counts in 

the NC350-private list were reversed before being merged with the counts from H95. The 

combined list was then sorted and processed to produce allele counts per gene. A binomial test 

between allele read counts was used to measure ASE at a significance level of 0.05 FDR (Figure 

5-3). Genes showing ASE from wildtype and mutant experiments were overlapped with cis-eQTL 

target genes from respective eQTL experiments to isolate co-occurring genes.   
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5.2.4 Relative ASE by comparison to a common reference  

 Using H95 (H) as the control, B73-NC350 (B-N) ASE analysis was conducted by first 

comparing ASE genes from BH and NH mutant experiment to identify overlapping genes. Allele 

read counts for these common genes were retrieved and used to create a combined count file. 

Fisher-exact test was subsequently performed between the pairs of reference and alternative allele 

counts for each gene (Figure 5-4). Nominal p-values were FDR corrected with the Benjamini-

Hochberg transformation; significance was set at the 5% threshold. The analysis was repeated for 

significant ASE genes identified from the BH and NH wildtype experiment. 

 

 

Figure 5-4. Overview of the B73-NC350 (B-N) ASE analysis. Significant ASE genes from BH 

and NH were compared to identify common genes. Allele counts for overlapping genes were 

joined to produce a single file. A Fisher-exact test was then conducted between the pairs of 

reference and alternative allele read counts for each overlapping gene. 

 



 

 

190 

5.3 Results 

5.3.1 B73 x H95;Rp1-D21/+ ASE analysis  

 Allelic specific expression (ASE) was assessed between the B73 and H95 alleles in the 

progeny of B73 x H95;Rp1-D21/+ (BH). These F1 hybrids were either heterozygous for the 

wildtype alleles at rp1 from B73 and H95 or carried the Rp1-D21 autoactive HR-inducing allele 

and the wildtype B73 rp1 allele.  The RNA-seq reads used in the differential gene expression 

analysis (see Chapter 3) consisting of single-end reads from six individuals (3 biological replicates 

per wildtype or mutant phenotype) were used for this analysis. An anonymized reference, in which 

all known polymorphisms between H95 and B73 were converted to ambiguous bases, was used to 

reduce bias towards B73 alleles during alignment. Reads were mapped to this H95 single 

nucleotide polymorphism (SNP)-anonymized AGPv4 reference genome using the STAR splice-

aware aligner (Dobin et al., 2013). This produced alignment files that were processed with Picard 

tools to add read group information, sort, mark duplicates, and create indices. Alignment files from 

three biological replicates were then merged to boost read depth and used as input for the allele 

count retrieval step. This step involved the use of ASEReadCounter within the GATK suite of 

tools (Depristo et al., 2011; McKenna et al., 2010) to count reference and alternative allele reads 

at each bi-allelic heterozygous H95 variant with minimum depth of 10, mapping quality of 10 and 

a base quality of at least 2. Each read fragment was counted only once and duplicate reads are 

filtered out. Removal of duplicates and counting reads only once were carried out so that the result 

from the downstream process of aggregating read counts per SNP to produce haplotype counts for 

each gene would not be inflated. 

 Reads from each sample ranged from 17,093,161 to 24,900,357 and were aligned to a 

specially prepared version of maize genome (version 4). An average of 74.28% aligned to a single 

location in the anonymized reference (Table 5-1). To prepare SNPs for allele counting the initial 

H95 SNP call set were filtered to retain only SNPs located within genes. These genic SNPs totaling 

1,793,959 allowed assessments of ASE in 13,954 (30.3% of known maize genes) and 15,470 genes 

(33.7% of known maize genes) in plants showing wildtype and the lesions induced by Rp1-D21 

respectively.  
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Table 5-1. Results from aligning B73 x H95;Rp1-D21/+ (BH) RNA-seq reads to H95-

anonymized AGPv4 reference genome. 

Sample Background Phenotype Raw reads 

Uniquely 

mapped reads 

Uniquely mapped 

reads % 

BHwt_rep1 B73 x H95;Rp1-D21 wildtype 17,093,161 12,974,886 75.91 

BHwt_rep2 B73 x H95;Rp1-D21 wildtype 22,507,024 16,992,485 75.50 

BHwt_rep3 B73 x H95;Rp1-D21 wildtype 22,991,417 17,205,304 74.83 

BHmu_rep1 B73 x H95;Rp1-D21 Rp1-D21 24,900,357 18,600,871 74.70 

Bhmu_rep2 B73 x H95;Rp1-D21 Rp1-D21 21,765,731 15,956,516 73.31 

Bhmu_rep3 B73 x H95;Rp1-D21 Rp1-D21 23,434,274 16,738,254 71.43 

 

 Allele counts for variants within a gene were summed up to produce reference and 

alternative allele counts per gene. To quantify ASE, a binomial test was conducted under the null 

hypothesis that each allele is equally expressed. Nominal P-values were corrected using 

Benjamini-Hochberg adjustment, and genes were considered significant ASE at False Discovery 

Rate (FDR) of 0.05. Of the genes tested, 8590 in wildtype (61.5%) and 10656 in mutant (68.9%) 

displayed significant allelic imbalance (Table 5-2 and Figure 5-5).  A majority of the genes 

showing ASE exhibited bias in the direction of B73; 62.3% for wildtype and 59.7 % for mutants 

(Table 5-2).  

 

Table 5-2. Number of genes showing allelic imbalance and direction of bias. Within the B73 x 

H95;Rp1-D21/+ background. 

Sample B73-bias H95-bias Sum 

BHwt 5,350 3,240 8,590 

Bhmu 6,363 4,293 10,656 

 

 The genes identified as significantly imbalanced from a 1:1 ratio were compared to the 

differentially expressed genes (DEGs) described in Chapter 3. To make the closest comparison 

possible, DEG and ASE sets were compared from analyses carried out on the same RNAseq data. 

The DEG from the comparison of B73 x H95 wildtype to B73 x H95;Rp1-D21/+ (aka BH) F1 

hybrids were intersected with the genes exhibiting ASE. Among the genes identified as showing 
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allelic imbalance in the wildtype samples, only 922 (10%) were differentially expressed (DE) 

between wild type and mutant (Figure 5-6). This was more than the 786 expected by random 

chance (χ2 p-value 1.15E-08). In the mutant samples 1281 (12%) of the ASE genes showed 

differential expression; several hundred more genes than the 964 expected by random chance (χ2 

p-value 1.06E-36) (Figure 5-6). This greater than expected overlap, though modest, indicates some 

cis by trans interaction (Becker et al., 2012; Yang et al., 2017) where the transcriptional 

mechanisms affected by HR interact with cis regulatory differences between the two alleles. 

 

Figure 5-5. ASE analysis results from B73 x H95;Rp1-D21/+ (BH) hybrid F1 plants showing 

wildtype (left) or Rp1-D21 (right) phenotype. The x-axis represents allele counts for B haplotype 

for each gene tested whilst the y-axis denotes the counts for H haplotype. Red dots are genes 

showing significant allelic imbalance (FDR ≤ 0.05), whereas black dots represent genes with 

balanced expression. 

 

 The genes identified as exhibiting ASE were also compared to the cis-eQTL identified in 

Chapter 4. As cis-eQTL, defined in Chapter 3, either result from cis-regulatory differences or from 

local trans effects, ASE can be used a validation and molecular mechanism test. A greater 

proportion of cis-eQTL genes assessed for ASE were validated; 3729 (66.3 %) for the wildtype 

and 4189 (72.2%) for the mutants (Figure 5-7). Since the regulatory variants affecting these genes 

act in an allele-specific manner they are in fact cis-acting and can be considered the true cis-eQTL. 
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Non-validated cis-eQTL could fall into one of two categories. The first group comprises local 

regulatory variants that are trans-acting but were detected as cis-eQTL by virtue of the being 

located within 1 Mb of their target gene. The second category are true cis-eQTL that could not be 

detected in ASE due to a lack of power to detect. To investigate this further, the magnitude of gene 

expression was compared among groups of genes common to ASE and cis-eQTL analyses and 

those that are unique to either methodology. Log2-normalized gene expression counts were 

averaged across the 3 replicates (wildtype or mutant). Two pairwise t-tests were then carried out 

between ASE-validated cis-eQTL genes versus non-validated cis-eQTL genes and ASE genes not 

found in cis-eQTL genes. This confirmed that indeed ASE-validated cis-eQTL genes had 

significantly higher expression than their non-validated counterparts in both wild type and mutant 

(p-value < 2.22E-16 in both) (Figure 5-8). This suggests ASE analysis may have less detection 

sensitivity under lower gene expression and confirm that while some cis-eQTL may rather be local 

tran-eQTL, others could not be validated because ASE may just lack the power to detect them due 

to their low expression. 

 

 

Figure 5-6. Overlap between genes identified from ASE analysis in B73 x H95;Rp1-D21/+ (BH) 

hybrid F1 plants showing wildtype (left) or Rp1-D21/+ (right) phenotype versus differentially 

expressed genes between plants showing wildtype or Rp1-D21 phenotype. 
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Figure 5-7. Integrating results from ASE in B73 x H95;Rp1-D21/+ (BH) hybrid F1 and cis-eQTL 

analyses. Orange bars indicate results from plants showing Rp1-D21 phenotype, and blue bars are 

results from plants showing wildtype phenotype. X-axis shows the different comparisons carried 

out whereas the y-axis shows the number of genes identified. 
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Figure 5-8. Comparison of gene expression among cis-eQTL and ASE genes in B73 x H95;Rp1-

D21 (BH) hybrid F1 plants displaying wilt-type (A) or RPI-D21 (B) phenotype. X-axis represents 

unique or overlapping genes from ASE and eQTL analyses. Y-axis is the mean of log2-normalized 

expression values across three replicates. ASE_in_cis-eQTL group denote significant genes from 

ASE and cis-eQTL analyses; ASE_only represent genes significant in ASE but not significant in 

cis-eQTL analysis; cis-eQTL_only designate genes significant in cis-eQTl analysis but not 

significant in ASE analysis. A t-test was performed between ASE_in_cis-eQTL group and the 

other two groups to assess whether a significant difference in mean expression values exists.  
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5.3.2 NC350 x H95;Rp1-D21/+ (NH) ASE analysis  

 The AGPv4 reference was prepared for the NC350 x H95 (NH) ASE analysis by first 

anonymizing H95 and NC350 SNP positions. Mapping to the anonymized reference and post 

alignment processing of single-end reads from six F1 hybrid individuals (3 biological replicates 

per wildtype or mutant phenotype) were carried out as previously described for BH hybrids. 

Retrieval of allele counts was done by first, comparing H95 and NC350 SNPs to remove shared 

positions. ASEReadCounter was then used, with same parameters as indicated above, to generate 

counts for the non-overlapping sets of SNPs. The reference and alternate allele read counts in the 

NC350-private list were flipped prior to merging with the H95 counts, sorted and used to compute 

allele counts per gene. Binomial test was used to assess ASE with significance determined at 0.05 

FDR. To identify genes that co-occur in single ASE and cis-eQTL experiments significant ASE 

genes from mutant BH analysis were overlapped with the significant cis-eQTL genes from the 

mutant RIL analysis. A similar comparison was carried out between wildtype BH significant ASE 

genes and significant cis-eQTL from the wildtype RIL experiment. 

 The H95-anonymized AGPv4 reference was further masked using 1,312,196 high-quality 

NC350 homozygous SNPs to produce a H-95-, NC350-anonymized AGPv4 reference. Between 

21,399,539 and 26,775,218 raw reads were aligned, with uniquely mapped rate of 73.6% on 

average (Table 5-3). Further filtering of homozygous NC350 SNPs yielded 1,147,309 genic SNPs. 

Comparison of the genic SNPs between H95 and NC350 resulted in 1,742,425 (97.1%) and 

1,003,144 (87.4%) private SNPs respectively. These were then used separately to generate allele 

counts at each position. Allele counts per gene were then computed and merged for subsequent 

use in gene-level binomial tests. A total of 18,046 genes (39.3% of known maize genes) in wildtype 

and 17,777 genes (38.7% of known maize genes) in the mutant were examined for allele-specific 

expression. Out of these, 14, 018 (77.7%) and 13,916 (78.2%) displayed significant imbalanced 

allelic expression in wildtype and mutant respectively (Table 5-4 and Figure 5-9). A greater 

proportion of the genes showing ASE exhibited bias in the direction of H95; 63.3% for wildtype 

and 63.4 % for mutants (Table 5-4). 
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Table 5-3. Results from aligning NC350 x H95;Rp1-D21 (NH) RNA-seq reads to an NC350-

anonymized AGPv4 reference genome. 

Sample Genotype Phenotype Raw reads 

Uniquely 

mapped reads 

Uniquely mapped 

reads % 

NHwt_rep1 NC350 x H95;Rp1-D21 wildtype 21,399,539 16,178,489 75.6 

NHwt_rep2 NC350 x H95;Rp1-D21 wildtype 25,645,653 19,707,310 76.84 

NHwt_rep3 NC350 x H95;Rp1-D21 wildtype 22,179,388 15,838,290 71.41 

NHmu_rep1 NC350 x H95;Rp1-D21 Rp1-D21 25,567,445 18,656,614 72.97 

NHmu_rep2 NC350 x H95;Rp1-D21 Rp1-D21 26,775,218 19,422,746 72.54 

NHmu_rep3 NC350 x H95;Rp1-D21 Rp1-D21 26,373,971 19,008,342 72.07 

 

Table 5-4. Number of genes showing allelic imbalance and direction of bias within the NC350 x 

H95;Rp1-D21/+ background. 

Sample NC350-bias H95-bias Sum 

NHwt 5,147 8,871 14,018 

NHmu 5,085 8,831 13,916 

 

 

 Of the genes with imbalanced allelic expression in the wildtype, 5362 (38.3%) were 

differentially expressed between wildtype and mutant, more than the 4587.8 expected by random 

chance (χ2 p-value 4.00E-53). Likewise, 5517 (39.6%) of the ASE genes in the mutant showed 

differential expression; almost a thousand more genes than the 4590.1 expected by random chance 

(χ2 p-value 2.00E-75) (Figure 5-10).  The proportion of ASE genes that were differentially 

expressed here was more than three-fold larger (in both wildtype and mutant) than those identified 

in the BH background. This lends support to the suggestion that detection power might be 

contributing to limited overlap between ASE and DEG. NC350, having an enhanced phenotype 

due to Rp1-D21 (in contrast to B73’s suppressed phenotype) consequently showed enhanced gene 

expression, and led to better detection sensitivity of DEGs. More DEGs identified between 

wildtype and mutant NH increased the chance for overlap with ASE Genes. A majority of cis-

eQTL genes assessed for ASE were validated; 5,669 (79.7%) for the wildtype and 5520 (81.3%) 

for the mutants (Figure 5-11). Cis-eQTL affecting these genes represent the true cis-eQTL set since 
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they act in an allele-specific manner to influence their target gene. As indicated earlier, non-

validated cis-eQTL could either be local trans-acting regulatory variants that are but were 

erroneously detected as cis-eQTL or true cis-eQTL that could not be detected due to low sensitivity 

of ASE analysis. 

 

 

Figure 5-9. ASE analysis results from NC350 x H95;Rp1-D21/+ (NH) hybrid F1 plants showing 

wildtype (left) or Rp1-D21 (right) phenotype. The x-axis represents allele counts for N haplotype 

for each gene tested whilst the y-axis denotes the counts for H haplotype. Red dots are genes 

showing significant allelic imbalance (FDR ≤ 0.05), whereas black dots represent genes with 

balanced expression. 
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Figure 5-10. Overlap between genes identified from ASE analysis in NC350 x H95;Rp1-D21/+ 

(NH) hybrid F1 plants showing wildtype (left) or RPI-D21 (right) phenotype and differentially 

expressed genes between plants showing wildtype versus RPI-D21 phenotype. 

 

 

Figure 5-11. Integrating results from ASE in NC350 x H95;Rp1-D21/+ (NH) hybrid F1 and cis-

eQTL analyses. Orange bars indicate results from plants showing Rp1-D21 (right) phenotype, and 

blue bars are results from plants showing wildtype phenotype. X-axis shows the different 

comparisons carried out whereas the y-axis shows the number of genes identified. 
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 Similar to ASE analysis in the BH background, a comparison of gene expression across 

groups of genes common to ASE and cis-eQTL analyses and those that are unique to either 

methodology was carried out. Pairwise t-test of log2-normalized expression values showed that 

ASE-validated cis-eQTL genes had significantly higher expression than non-validated cis-eQTL 

genes in both wildtype and mutant plants (p-value < 2.22E-16) (Figure 5-12). This is further 

evidence that ASE analysis may have less detection sensitivity under lower gene expression and 

further confirms that while some cis-eQTL may rather be local trans-eQTL, others could not be 

validated because ASE may just lack the power to detect them due to their low expression. 

Figure 12. Comparison of gene expression among cis-eQTL and ASE genes in NC350 x H95;Rp1-

D21/+ (NH) hybrid F1 plants displaying wilt-type (A) or RPI-D21 (B) phenotype. X-axis 

represents unique or overlapping genes from ASE and eQTL analyses. Y-axis is the mean of log2-

normalized expression values across three replicates. ASE_in_cis-eQTL group denote significant 

genes from ASE and cis-eQTL analyses; ASE_only represent genes significant in ASE but not 

significant in cis-eQTL analysis; cis-eQTL_only designate genes significant in cis-eQTl analysis 

but not significant in ASE analysis. A t-test was performed between ASE_in_cis-eQTL group and 

the other two groups to assess whether a significant difference in mean expression values exists.  
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Figure 5-12. Comparison of gene expression among cis-eQTL and ASE genes in NC350 x 

H95:Rp1-D21/+ (NH) hybrid F1 plants displaying wilt-type (A) or RPI-D21 (B) phenotype. X-

axis represents unique or overlapping genes from ASE and eQTL analyses. Y-axis is the mean of 

log2-normalized expression values across three replicates. ASE_in_cis-eQTL group denote 

significant genes from ASE and cis-eQTL analyses; ASE_only represent genes significant in ASE 

but not significant in cis-eQTL analysis; cis-eQTL_only designate genes significant in cis-eQTl 

analysis but not significant in ASE analysis. A t-test was performed between ASE_in_cis-eQTL 

group and the other two groups to assess whether a significant difference in mean expression 

values exists. 
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5.3.3 Three-way ASE, by comparison to a common reference, matches B73-NC350 eQTL 

with ASE as a test of cis-eQTL mechanism 

 To reconstruct B73-NC350 (B-N) ASE a set of comparisons using H as the common 

reference, or control, were done.  Reads counts from BH and NH mutant backgrounds were 

compared and allele counts for common genes combined in a separate file. Different approaches 

were taken to combine the BH and NH ASE data to permit downstream hypothesis testing. One 

approach was to take those genes with significant ASE in both comparisons. A Fisher’s exact test 

was then conducted between the pairs of reference and alternative allele counts for each gene using 

the allele-specific read counts from the NC350 vs H95 comparison and from the independent B73 

vs H95 comparison. P-values were FDR corrected with the Benjamini and Hochberg 

transformation. Deviation from the null hypothesis of a Fisher’s exact test indicates a different 

relative expression between B73 and NC350, relative to the H95 common reference. Lists of these 

types were constructed from the wildtype siblings and mutant siblings separately and all tests were 

carried out independently. Genes with differing expression between the B and N alleles, relative 

to H95 were tabulated as Fisher test significant genes (Figure 5-13). 

 

 

Figure 5-13. Comparison between B73-NC350 (B-N) ASE and cis-eQTL analysis results. Orange 

bars indicate results from plants showing Rp1-D21 phenotype, and blue bars are results from plants 

showing wildtype phenotype. X-axis shows the different comparisons carried out whereas the y-

axis shows the number of genes identified. 
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 If local eQTL, detected in chapter 4, are the result of true cis-regulatory variation then they 

should affect ASE when NC350 and B73 alleles are compared. However, to deliver Rp1-D21 in 

the same genetic background as used for the RIL F1 family mapping experiment, they need to be 

in the presence of H95;Rp1-D21/+ as one of the parents. We used the tabulated data described 

above to compare the relative abundance of B73 and NC350 transcripts to the common H95 

reference allele. If a cis-eQTL is encoded at a gene, then the direction of the effect in the cis-eQTL 

and ASE should be the same. For example, if the NC350 allele at the cis-eQTL increased transcript 

abundance, the ASE analysis should demonstrate a greater relative transcript abundance from the 

NC350 allele as compared to the B73 allele. If no ASE is detected, or the ASE occurs in the 

opposite direction as the eQTL, then the eQTL is more likely to be a local trans-acting variant.  

 Given the very large number of trans-eQTL detected in this experiment, a large number of 

local trans-eQTL seems possible. I used the sets genes identified as having ASE in both BH and 

NH in wildtype and mutant F1 progenies. These lists consisted of 6496 genes exhibiting ASE in 

the wildtype families and 7392 genes exhibiting ASE in the mutants. Out of these, 2930 (45.1%) 

in the wildtype results and 3144 (42.5%) in the mutant results were also affected by cis-eQTL. The 

ASE data were compared between BH and NH and the favored direction of expression for these 

genes were tabulated and compared to the direction of the effect observed at these genes among 

the cis-eQTL. For both wild-type (Table 5-5) and mutant (Table 5-6) comparisons, the number of 

genes with ASE that favored the NC350 allele and also had a cis-eQTL in the same direction was 

nearly two-fold greater that the number of genes with NC350-favoring ASE that had cis-eQTL 

affecting expression in the opposite direction. The same pattern was observed for the genes with 

ASE that favored the B73 allele and their eQTL. This pattern held true for both the wild-type 

(Table 5-5) and mutant (Table 5-6) expression data. This finding that a majority of the genes at 

which both eQTL and ASE were affected in the same direction, indicates that most of the local 

eQTL detected in Chapter 4 are indeed cis-eQTL and validates the utility of this double test of 

molecular mechanism to characterize cis-regulatory variants. 

 One caveat must be mentioned in this analysis. There was a fold-difference greater 

detection of ASE favoring the B73 allele in both mutant and wildtype samples. The direction of 

this effect, favoring the reference genome allele, strongly implicates reference bias as a 

confounding factor in these data. This reference bias appears to remain my efforts in genome 
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anonymization. For genes that were affected in the same direction in both ASE and cis-eQTL in 

wildtype the B allele was preferred almost 3-fold more (488 were N-allele favoring whilst 1508 

favored the B allele) (Table 5-5). In the same vein, 550 genes were N favoring in contrast to 1491 

B-favoring genes mutant plants (Table 5-6). It is clear from these experiments that for efficient 

ASE analysis an actual hybrid reference genome created from sequencing the F1 parental genomic 

DNA is invaluable. 

 

Table 5-5. Assessing effect direction of cis-eQTL in plants with wildtype phenotype using 

common ASE and cis-eQTL genes. 

   Relative ASE  

  Favoring N B 

Cis-eQTL N 488 666 

 B 265 1508 

 

Table 5-6. Assessing effect direction of cis-eQTL in plants with mutant phenotype using 

common ASE and cis-eQTL genes. 

   Relative ASE  

  Favoring N B 

Cis-eQTL N 550 773 

 B 327 1491 

 

5.4 Conclusions 

 Several factors could be responsible for the limited overlap observed between differentially 

expressed genes and genes showing allelic expression imbalance. This could be caused by 

differences in the detection power between differential gene expression and ASE analyses. For 

instance, a gene with minimal expression (i.e., 4 – 8 reads) could still be detected as differentially 

expressed but not ASE because of the high read depth threshold (minimum 10 reads) of ASE. In 

this instance the gene will not even be assessed for ASE. As such, low number of ASE showing 

DE could be the result of the low detection power of ASE analysis. On the other hand, the lack of 

concordance between ASE and DEG gene sets may reveal a general lack of cis-regulatory variation 
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on gene expression variation in the two crosses. DEGs are identified as a difference between B73 

x H95 versus B73 x H95 Rp1-D21/+, in the case of BH or between NC350 x H95 versus NC350 

x H95 Rp1-D21/+ as is the case for NH. If the changes in gene expression are affected by the HR 

induced by Rp1-D21 and not by an interaction between the trans-regulatory mechanisms and the 

cis-acting polymorphisms we do not expect to observe substantial overlap between DEG and genes 

displaying ASE. 
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