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ABSTRACT

In this dissertation, we study stable and efficient methods for structured matrix compu-

tations. In particular, we present stability analysis, stabilization strategies, and efficiency

improvements for some major structured matrix algorithms. Structured matrix computa-

tions now play an important role in many applications. Compared to traditional algorithms,

it can reduce significantly the algorithm complexity, by capturing and taking advantage of

the intrinsic structures of the underlying problems. This dissertation overcomes some major

challenges and presents some novel results in the design and analysis of structured matrix

algorithms. These results have been previously overlooked due to the complex nature of the

structured methods. We show how to integrate many stabilization techniques into efficient

structured methods. The stability and efficiency of the resulting algorithms are justified

both theoretically and numerically. In Chapter  2 , we propose a stable matrix version of the

fast multipole method (FMM) in the complex plane. The advantage of our stable FMM is

that all the intermediate low-rank matrices will have bounded entries and bounded norms,

so that they can be computed stably and efficiently. Based on this, we give a formal proof

of the backward stability of our stable FMM. In Chapter  3 , we propose a robust and su-

perfast divide-and-conquer eigensolver (SuperDC) for symmetric structured matrices, which

significantly improves some earlier basic algorithms. The complexity of SuperDC for getting

the full eigenvalue decomposition is quasilinear, as compared to the cubic cost of traditional

divide and conquer. Such acceleration is achieved by integrating our stable FMM in a novel

but subtle way with the modified Newton-Raphson method for the solution of some interme-

diate rank-one modification eigenvalue problems. Numerical tests demonstrate its superior

performance in terms of speed and memory. To accommodate more general problems, we

also extend SuperDC to compute the singular value decomposition of nonsymmetric struc-

tured matrices. In Chapter  4 , we consider the efficient factorization update for some shifted

discretized matrices. After an O(n) precomputation stage, the factorization update for each

new shift needs only O(
√
n log n), which is significantly more efficient than doing refator-

izations. The various contributions of this dissertation significantly advance the reliability,

accuracy, and efficiency of structured matrix computations.
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1. INTRODUCTION

In this dissertation, we study stable and efficient methods for structured matrix computa-

tions. As the increasing problem size renders classical numerical linear algorithms less com-

petitive, structured matrix computations now plays an important role in modern scientific

computations. While most classical methods will treat the underlying matrix as a general

one, structured matrix methods attempt to capture the intrinsic properties or structures

of the underlying specific problem (e.g., low-rank property, divide-and-conquer, multilevel).

Based on that, efficient structured algorithms can be designed. Compared to their classical

counterparts, the complexity and memory of these structured algorithms are significantly

reduced, making them much more competitive and appropriate for large-scaled problems.

Among various structured matrix methods, there are the famous fast multipole methods

(FMM) [ 1 ]–[ 4 ] ,H/H2 matrix [ 5 ]–[ 8 ], quasiseparable/semiseparable matrix [  9 ], [  10 ], hierar-

chical semiseparable matrix (HSS) [ 11 ]–[ 14 ], block low-rank matrix (BLR) [ 15 ]. There are

also methods dedicated to sparse matrix, like the divide-and-conquer methods for bidiago-

nal/tridiagonal matrix [ 16 ]–[ 21 ], the multifrontal method for sparse factorization [  22 ]–[ 24 ],

and the structured multifrontal methods [ 25 ]–[ 28 ]. Some randomization techniques can also

be integrated with structured matrix methods to speed up the algorithms [  11 ]–[ 13 ], [  29 ],

[ 30 ]. In this dissertation, we focus on the fast multipole methods, and HSS matrix. We also

consider the factorization updates for some sparse discretized matrices.

In Chapter  2 , we shall describe a stable matrix version of the fast multipole method

(FMM) in the complex plane. This work can also serve as an elementary introduction to

FMM for people who are more familiar with matrix. It is well-known that the essential

components of FMM are some degenerate/separable expansions of the underlying kernel for

far-field point clusters. In matrix language, it is equivalent to the analytic constructions

of some separable low-rank approximations to the off-diagonal blocks of the kernel matrix.

However, some commonly used expansions may lead to fast-growing coefficients, which ren-

ders the algorithm prone to numerical instability. In some circumstances where the points

are highly clustered and full precision are needed (e.g., the secular equation solution in Chap-

ter  3 ), these fast-growing coefficients may destroy the accuracy. We attempt to overcome

12



this issue via some novel derivations of the expansions. Our examples include generalized

Cauchy kernel, Poisson kernel and the Helmholtz kernel. In our derivations, the intermediate

low-rank matrices of the FMM shall have bounded entries as well as bounded norms, so that

their entries can be computed stably and efficiently via some recurrence formulas. We say

such low-rank approximations are stable. We also study the backward stability of the FMM,

which, to the best of my knowledge, has been lacking for years due to the complexity of the

algorithm. In particular, we can show that with our stable low-rank approximations, the

FMM is backward stable, and its entry-wise backward error only depends logarithmically

on the matrix size. This is significantly better than standard matrix-vector product routine,

for which the backward error depends linearly on the matrix size. This also confirms the

advantage of structured matrix methods over classical matrix methods in terms of numerical

stability.

In Chapter  3 , we shall describe a superfast divide-and-conquer eigenvalue decomposition

(SuperDC) for dense symmetric matrices with small off-diagonal ranks and in HSS form.

SuperDC significantly improves an earlier basic algorithm in [Vogel, Xia, et al., SIAM J.

Sci. Comput., 38 (2016)]. The overall complexity of SuperDC is O(r2n log2 n), where r is

the maximal off-diagonal rank of the HSS matrix. The eigenmatrix is given in a structured

form, consisting a sequence of Cauchy-like matrices and orthogonal transformations. The

matrix-vector product routines of the eigenmatrix and its transpose have only O(rn log n)

complexity. We incorporate a sequence of key stability techniques and provide many im-

provements in the algorithm design. Various stability risks in the original basic algorithm

are analyzed, including potential exponential norm growth, cancellations, loss of accuracy

with clustered eigenvalues or intermediate eigenvalues, etc. In the dividing stage, we give a

new structured low-rank updating strategy with balancing that eliminates the exponential

norm growth and also minimizes the ranks of low-rank updates. In the conquering stage

with low-rank updated eigenvalue solution, the original algorithm directly uses the standard

FMM to accelerate secular function evaluations, which has the risks of cancellation, division

by zero, and slow convergence. Here, we design a triangular FMM to avoid cancellation

and to accelerate the rate of convergence. Furthermore, when there are clustered interme-

diate eigenvalues or when updates to existing eigenvalues are very small, we design a novel

13



local shifting strategy to integrate FMM accelerations into the solution of shifted secular

equations. This significantly enhances the efficiency and reliability. We also provide several

improvements or clarifications on some structures and techniques that are missing or unclear

in the previous work. While keeping the nearly linear complexity for finding the entire eigen-

value decomposition, the resulting SuperDC eigensolver has significantly better stability. In

a set of comprehensive tests, SuperDC shows significantly lower runtime and storage than

some other fast structured eigensolvers as well as the highly optimized MATLAB eig func-

tion. The stability benefits are also confirmed by both analysis and numerical comparisons.

We also discuss some other techniques and improvements (e.g., rank-revealing factorization

in the dividing stage, precomputations for FMM in the conquering stage, refined convergence

criteria for roots of secular equations) for more efficient and reliable implementations.

We also extend the SuperDC to compute the full singular value decompostion (SVD)

of unsymmetric HSS matrices. For this purpose, we will need to exploit the HSS structure

in a different way from the symmetric case. The idea is to reduce the HSS matrix to a

multilevel block broken-arrowhead form via a sequence of orthogonal transformations (similar

orthogonal transformations are also used in the ULV-type factorization of HSS matrix).

After the reduction, the full SVD shall be computed by recursively solving the SVDs of a

series of broken-arrowhead matrix. Then we can combine the well-studied theory on the

SVD of broken-arrowhead matrix, with the FMM acceleration techniques we develop for

SuperDC. Analogous to the case of symmetric eigensolver, the complexity of the entire

SVD solver is O(r2n log2 n), and the left and right singular matrices are given in structured

form consisting a sequence of Cauchy-like matrices and orthogonal transformations. The

matrix-vector product routine of left and right singular matrices also only have O(rn log n)

complexity.

The SuperDC eigensolver/SVD solver makes it feasible to use full eigendecompositions

to solve various challenging numerical problems. These include fast computations of Gauss

quadratures via Golub-Welsch algorithm, fast spectral transform, fast solution of roots of

Bessel functions, fast matrix function evaluation, separable PDE solver, etc. We expect to

explore these applications in details in future work. In addition, we expect that the novel

local shifting strategy and triangular FMM accelerations are also useful for other FMM-
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related matrix computations when stability and accuracy are crucial. In our future work, we

plan to prove the backward stability of SuperDC, as well as implement a high-performance

parallel version, which will extend the applicability of the algorithm to more large-scaled

numerical computations.

In Chapter  4 , we consider the superfast factorization update for some important dis-

cretized matrices. It is commonly known that the LU factorization of a matrix A cannot

be reused for the LU factorization of a diagonally shifted matrix A − sjI, where sj is a

scalar. That is, A − sjI needs to be refactorized. In this chapter, we consider some im-

portant discretized matrices and develop a series of techniques that enable us to quickly

obtain a factorization of A and then perform factorization update for multiple shifts sj. We

first compute a structured partial factorization of A, which can be reused to obtain new

factorizations for free for multiple sj. This idea is feasible because of several innovate ideas.

One is to compute a fast structured eigenvalue decomposition for large a pivot submatrix

A11. This eigenvalue decomposition can be updated for free for different shifts. Then we use

structured HSS form to approximate the Schur complements. This is done via randomization

and matrix-vector multiplication. A key idea is to assemble all the matrix-vector multiplica-

tions for all the shifts together in a highly structured matrix-matrix multiplication. We fully

utilize all the sparsity and structures in this process. By carefully designing all the steps,

most of the operations can be done in a precomputation step. The update is essentially

only limited to a small subproblem (such as that corresponding to boundary mesh points).

For two dimensional elliptic problems and Helmholtz problems with certain coefficients and

discretizations, the algorithm requires a precomputation cost of roughly O(n) flops. The

factorization update for each new shift needs only O(
√
n log n). The factorization update is

said to be superfast and is significantly more efficient than refactorizations.
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2. STABLE MATRIX VERSION OF THE FAST MULTIPOLE

METHOD IN 2D

In this chapter, we shall describe a matrix version of the fast multipole method (FMM) in

the complex plane. In our derivations, the intermediate low-rank matrices of the FMM have

bounded entries and norms, so that they can be computed stably and efficiently. We say

such low-rank approximations are stable. We also study the backward stability of the FMM.

In particular, we can show that with our stable low-rank approximations, then the relative

backward error of the FMM only depends logarithmically on the matrix size. Our examples

include generalized Cauchy kernel, Poisson kernel and the Helmholtz kernel.

Throughout this chapter, the following notations are used.

• Bold lower-case letters like x are used to denote sets of points, or nodes of a tree.

• (Kij)n×m means an n×m matrix with the (i, j)-entry Kij.

• diag(· · ·) denotes a (block) diagonal matrix.

• fl(x) denotes the floating point result of x.

• εmach represents the machine precision.

• i =
√
−1 is the imaginary unit.

• For a complex number z, let θz ∈ (−π, π] denote its phase, Re(z) denote its real part,

and Im(z) denote its imaginary part.

• Let α ∈ C, then
(

α
n

)
= α(α−1)···(α−n+1)

n! denotes the generalized binomial coefficients.

2.1 Background

Given a kernel function κ(x, y) and two sets of points x = {xi}n
i=1 and y = {yj}m

j=1 on

the complex plane C, the interactions between points in x and y are

φ(xi) =
m∑

j=1
κ(xi, yj)qj, 1 ≤ i ≤ n. (2.1)
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where qj ∈ R. Some frequently used kernels in 2D include the Poisson kernel log |x− y|, the

generalized Cauchy kernel 1
(x−y)1+d , as well as the Helmholtz kernel H0(k̃|x−y|), where H0 is

the first kind Hankel function of order 0. In this chapter, we assume without loss of generality

the wavenumber k̃ = 1 since H0(k̃|x−y|) = H0(|k̃x− k̃y|). Let φ = (φ(x1), · · · , φ(xn))T , q =

(q1, · · · , qm)T , then ( 2.1 ) can be reformed as a matrix-vector product

φ = Kq, (2.2)

where the matrix K = (κ(xi, yj))xi∈x,yj∈y ∈ Cn×m is referred as the interaction matrix or

kernel matrix of x and y.

The fast multipole method (FMM) is a fast algorithm that computes (  2.1 ) or (  2.2 ) to any

given accuracy with O(n+m) complexity [ 2 ], [  3 ], [  31 ]. Early literature of FMM [ 2 ], [ 3 ] focus

on the summation form (  2.1 ). Later, it is shown that the FMM essentially constructs a matrix

approximation to the kernel matrix K (see, e.g., [  1 ], [  32 ]). This approximation matrix is also

referred as the FMM matrix, and belongs to the class of hierarchically structured H2-matrix

[ 5 ], [  6 ]. The FMM algorithm has lots of success in accelerating numerical computations,

including N body simulations [  3 ], integral equation solutions [ 31 ], fast Gauss transform [  33 ],

symmetric eigenvalue solutions [  16 ], [ 34 ]. In this chapter, we will focus on the matrix form

( 2.2 ).

The construction of the FMM matrix relies on the degenerate or separable expansion of the

underlying kernels κ. Some commonly used separable expansions include multipole expansion

[ 3 ], Taylor expansion [  32 ], spherical harmonic expansion [  1 ], [  2 ], Chebyshev interpolation [  35 ],

proxy point method [  36 ]. Such expansions can be used to construct effectively the separable

low-rank approximation of the off-diagonal blocks of the kernel matrix K.

There exists a lots of implementations of the FMM algorithm [ 4 ], [ 31 ], [ 32 ], [ 35 ], [ 37 ], [ 38 ]

and they achieve satisfactory accuracy and efficiency. Nevertheless, as pointed out in [ 4 ],

[ 31 ], [  32 ], some stability risk may arise when we apply those aforementioned separable ex-

pansions to construct the low-rank factorization. Examples include fast-growing coefficients

in the expansions, products of extremely large numbers and extremely small numbers, ex-

tremely large entries in the low-rank approximations. Such stability concerns may cause the
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algorithm to break down in some special circumstances when full double-precision accuracy

are desired [  16 ], [  34 ], [  39 ]. In this work, we attempt to resolve such stability dangers for some

kernels in 2D, including the generalized Cauchy kernel, the Poisson kernel and the Helmholtz

kernel. In particular, via meticulous selections of forms of the separable expansions, we con-

struct stable low-rank approximations to the off-diagonal block of the kernel matrix, such

that the low-rank factors shall have bounded entries and norms. We also provide recurrence

formulas to compute the entries stably and efficiently.

Furthermore, due to the complicated nature of the FMM, its backward stability has

not been fully understood. In [  32 ], an elementary study in the backward stability of the

matrix-vector product with the off-diagonal block is provided. In [  40 ], some relevant stability

studies on HSS matrix are provided, built on the assumptions of orthogonal off-diagonal

basis matrices. In this work, we attempt to provide a more comprehensive and specific study

of the backward stability of the FMM algorithm. In particular, we shall prove that via our

stable low-rank approximations, the FMM algorithm is backward stable. The backward error

depends logarithmically on the size of the kernel matrix K. As comparisons, the backward

error in the standard matrix-vector product routine depends linearly on the matrix size.

The rest of this chapter is organized as follows. In Section  2.2 , we provide some mathe-

matics apparatus for the derivation and analysis of the FMM. In Section  2.3 , we derive the

stable low-rank approximation for different kernels. Then in Section  2.4 , we derive the stable

translation relation in the FMM. The overall framework of the matrix version of the FMM,

as well as the backward stability are presented in Section  2.5 .

2.2 Mathematics apparatus

In this section, we present some mathematics apparatus for the derivation and analysis of

the separable expansions for various kernels including the generalized Cauchy kernel, Poisson

kernel and the Helmholtz kernel.
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2.2.1 Binomial series and the truncation error

It is well-known that the binomial series is the Taylor series of the function F (z) = 1
(1−z)1+d

where d ∈ C
1

(1− z)1+d
=

∞∑
p=0

(
p+ d

p

)
zp, |z| < 1. (2.3)

The following lemma studies the truncation error of ( 2.3 ).

Lemma 2.2.1. Let Er be the remainder term in the Taylor expansion of F ,

Er(z) ≡ F (z)−
r−1∑
p=0

(
p+ d

p

)
zp =

∞∑
p=r

(
p+ d

p

)
zp, |z| < 1.

For any given υ > 0 such that µ ≡ (1+υ)|z| < 1, there exists a nonnegative integer N0 = d |d|
υ
e

such that for r ≥ N0,

|Er(z)| ≤

∣∣∣(N0+d
N0

)∣∣∣
(1 + υ)N0

· µr

1− µ = O (µr) .

Proof. Let ap(z) =
(

p+d
p

)
zp. If p ≥ N0 = d |d|

υ
e, then

∣∣∣∣∣ap+1(z)
ap(z)

∣∣∣∣∣ =
∣∣∣∣∣
(

1 + d

p+ 1

)
z

∣∣∣∣∣ ≤ (1 + υ)|z| = µ,

hence,

|ap(z)| ≤
∣∣∣aN0(z)µp−N0

∣∣∣ =
∣∣∣∣∣
(
N0 + d

N0

)∣∣∣∣∣ |z|N0

µN0
µp =

∣∣∣(N0+d
N0

)∣∣∣
(1 + υ)N0

µp.

As a result, for r ≥ N0,

|Er(z)| ≤
∞∑

p=r

|ap(z)| ≤

∣∣∣(N0+d
N0

)∣∣∣
(1 + υ)N0

∞∑
p=r

µp =

∣∣∣(N0+d
N0

)∣∣∣
(1 + υ)N0

µr

1− µ.

2.2.2 Some basic properties of Bessel functions

In this subsection, we present some basic properties of Bessels functions. This will be

needed in our derivation and analysis of the FMM for the Helmholtz kernel.
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We respect the convention to let Jp(z) denote the order p Bessel function of the first

kind, and Yp(z) the order p Bessel function of second kind. Both Jp(z) and Yp(z) are real

values if z > 0 and p ∈ R. Let Hp(z) = Jp(z) + iYp(z) denote the Hankel function of the first

kind. The following proposition can be found in standard references like [  41 ], [ 42 ].

Proposition 2.2.1 ([ 41 ], [  42 ]). Suppose p ∈ N and z > 0, the following relations hold for

the Bessel functions.

|Jp(z)| ≤ 1, |Jp(z)| ≤ 1
p!

(
z

2

)p

≤ 1√
2πp

(
ez

2p

)p

,

J−p(z) = (−1)pJp(z), Y−p(z) = (−1)pYp(z), H−p(z) = (−1)pHp(z).

They satisfy the following recurrence relation where T can be J, Y,H,

Tp−1(z) + Tp+1(z) = 2p
z
Tp(z), (2.4)

Tp−1(z)− Tp+1(z) = 2T ′
p(z). (2.5)

If in addition 0 < z ≤ p, then Jp(z) > 0 and J ′
p(z) > 0, and

|Jp(z)| ≤ |Yp(z)|, |Hp(z)| ≤
√

2|Yp(z)|.

The following proposition describes the asymptotic behavior of Yp(z) (see [ 43 ]).

Proposition 2.2.2 ([ 43 ]). Suppose p ∈ N+ and z > 0, and let Cp(z) be defined by

Yp(z) = −Cp(z)
√

2
πp

(2p
ez

)p

.

Then lim
p→∞

Cp(z) = 1. If in addition p ≥ z, we have

Cp(z) > 0, and Yp+1(z)
Yp(z) >

p

z
.
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If in addition p ≥ z and p ≥ 2, we have

Cp(z) > Cp+1(z) > · · · > 1, and Yp+1(z)
Yp(z) <

2p
z
.

Based on Proposition  2.2.2 , we can prove the following proposition for Cp(z).

Proposition 2.2.3. The function Cp(z) has the following properties.

(i) If p ≥ 1 and 0 < z ≤ p, then Cp(z) < 4
√

2
e
Cp+1(z).

(ii) If p ≥ 2 and 0 < z ≤ p, Cp(z) is a strictly increasing function of z.

(iii) If p ≥ 2 and 0 < z ≤ p, Cp(z) ≤ |Hp(p)|
√

πp
2

(
e
2

)p
.

Proof. We first prove  (i) . By definition, Cp(z) = −Yp(z)
√

πp
2

(
ez
2p

)p
. Then

Cp(z)
Cp+1(z)

=
Yp(z)

√
πp
2

(
ez
2p

)p

Yp+1(z)
√

π(p+1)
2

(
ez

2(p+1)

)p+1 .

According to Proposition  2.2.2 , we have Yp(z)
Yp+1(z) <

z
p
. Therefore,

Cp(z)
Cp+1(z)

<
2
e

(
1 + 1

p

)p+ 1
2

≤ 4
√

2
e
.

This proves property  (i) . For property  (ii) , the derivative of Cp(z) is

C ′
p(z) = −

√
πp

2

(
ez

2p

)p (
Y ′

p(z) + p

z
Yp(z)

)
.

For Bessel functions, we have the following recurrence formulas (see ( 2.4 ) and ( 2.5 ))

Yp−1(z) + Yp+1(z) = 2p
z
Yp(z), (2.6)

Yp−1(z)− Yp+1(z) = 2Y ′
p(z). (2.7)
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Adding ( 2.6 ) and ( 2.7 ) to get

C ′
p(z) = −

√
πp

2

(
ez

2p

)p

Yp−1(z).

According to [ 42 , Section 9.5] and [  43 , Lemma 1], Yp−1(z) < 0 if p ≥ 2 and 0 < z ≤ p.

Therefore, Cp(z) is a strictly increasing function of z if p ≥ 2 and 0 < z ≤ p. This proves

property  (ii) . As a result,

Cp(z) ≤ Cp(p) = |Yp(p)|
√
πp

2

(
e

2

)p

≤ |Hp(p)|
√
πp

2

(
e

2

)p

,

which proves property  (iii) .

The following proposition studies the monotonicity of |Hp(z)|.

Proposition 2.2.4. The Hankel function Hp(z) satisfies the following properties

(i) For fixed z > 0, |Hp(z)| is a strictly increasing function of p ≥ 0.

(ii) For fixed p ≥ 0, |Hp(z)| is a strictly decreasing function of z > 0.

(iii) If z ≥ 1
2 and 0 ≤ p ≤ z, then |Hp(z)| ≤

√
4
π
.

(iv) If z > 0, p ≥ 0, and 0 < λ < 1, then |Hp(λz)| ≤ 1√
λ
|H p

λ
(z)|.

Proof. The proofs of properties  (i) and  (ii) are given in [  43 , Lemma 2]. We prove properties

 (iii) and  (iv) below.

To prove  (iii) , suppose z ≥ 1
2 and 0 ≤ p ≤ z. By property  (i) , |Hp(z)| ≤ |Hz(z)|.

Therefore, it suffices to show |Hz(z)| ≤
√

4
π

for z ≥ 1
2 . By Nicholson’s formula (see, e.g. [ 41 ],

[ 43 ]),

|Hp(z)|2 = 8
π2

∫ ∞

0

∫ ∞

0
e−2z sinh t cosh v cosh(2pt)dtdv.

Take the derivative of |Hz(z)|2 with respect to z to get

d
dz |Hz(z)|2 = 16

π2

∫ ∞

0

∫ ∞

0
e−2z sinh t cosh v

(
t sinh(2zt)− sinh t cosh(2zt) cosh v

)
dtdv.
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For z, v, t > 0, t < sinh t, sinh(2zt) < cosh(2zt), and 1 < cosh v. Then

t sinh(2zt) < sinh t cosh(2zt) cosh v.

Therefore, d
dz
|Hz(z)|2 < 0. As a result, for z ≥ 1

2 ,

|Hz(z)|2 ≤
∣∣∣∣H 1

2

(1
2

)∣∣∣∣2 = 8
π2

∫ ∞

0

∫ ∞

0
e− sinh t cosh v cosh tdtdv = 4

π
.

To prove  (iv) , by Nicholson’s formula, we have

|Hp(λz)|2 = 8
π2

∫ ∞

0

∫ ∞

0
e−2λz sinh t cosh v cosh(2pt)dtdv.

Since sinh t = et−e−t

2 is convex on [0,∞) and sinh 0 = 0, we have for any λ ∈ (0, 1),

λ sinh t ≥ sinh(λt), 0 ≤ t <∞.

Therefore,

|Hp(λz)|2 ≤ 8
π2

∫ ∞

0

∫ ∞

0
e−2z sinh(λt) cosh v cosh(2pt)dtdv

= 8
π2

∫ ∞

0

∫ ∞

0

1
λ
e−2z sinh t cosh v cosh

(
2p
λ
t
)

dtdv

= 1
λ
|H p

λ
(z)|2.

2.2.3 Graf’s addition formula and the truncation error

The following Graf’s addition formula is essential to the theory behind the fast multipole

methods for the Helmholtz kernel (see, e.g., [ 42 , (9.1.79)], [ 31 , Theorem 3.1]).

Theorem 2.2.2 ([ 31 ], [ 42 ]). Suppose z1, z2 ∈ C, then

Jp(|z1 − z2|)e±ipθz1−z2 =
∞∑

l=−∞
Jp+l(|z1|)e±i(p+l)θz1Jl(|z2|)e∓ilθz2 . (2.8)

23



Suppose w, t ∈ C such that |w| > |t|, then

Hp(|w − t|)e±ipθw−t =
∞∑

l=−∞
Hp+l(|w|)e±i(p+l)θwJl(|t|)e∓ilθt . (2.9)

Given r ∈ N, we can truncate the summands of (  2.8 ) and (  2.9 ) when |l| ≥ r or |l+p| ≥ r.

The following two lemmas study the truncation errors. For relevant analysis, see [  2 ], [  43 ]–

[ 45 ].

Lemma 2.2.3. Let EJp
r be the remainder term in Graf’s addition formula for Jp,

EJp
r (z1, z2) =

∑
|l|≥r or |p+l|≥r

Jp+l(|z1|)e±i(p+l)θz1Jl(|z2|)e∓ilθz2 .

Suppose zmax ≥ max(|z1|, |z2|). If r ≥ zmax, then

|EJp
r (z1, z2)| ≤ 4

∞∑
l=r

|Jl(zmax)| ≤ 8
r!

(
zmax

2

)r

.

Proof. By Proposition  2.2.1 , |Jk(z)| is an increasing function of z if 0 < z ≤ |k|.

|EJp
r (z1, z2)| ≤

∑
|l|≥r or |p+l|≥r

|Jp+l(zmax)Jl(zmax)|

≤
∑

|p+l|≥r

|Jp+l(zmax)|+
∑
|l|≥r

|Jl(zmax)| = 4
∞∑

l=r

|Jl(zmax)| .

This proves the first inequality. To prove the second one, since r ≥ zmax,

∞∑
l=r

|Jl(zmax)| ≤
∞∑

l=r

1
l!

(
zmax

2

)l

≤
∞∑

l=r

1
r!

(
zmax

2

)r 1
2l−r

= 2
r!

(
zmax

2

)r

.

Lemma 2.2.4. Let EH0
r be the remainder term in Graf’s addition formula for H0,

EH0
r (w, t) =

∑
|l|≥r

Hl(|w|)e±ilθwJl(|t|)e∓ilθt .
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Suppose |t| ≤ tmax ≤ τ |w| for some 1
2 ≤ τ < 1. If r ≥ max( tmax

τ
, 2), then

|EH0
r (w, t)| ≤

2
√

2Cr

(
tmax

τ

)
πr

τ r

1− τ .

Proof. According to Propositions  2.2.1 ,  2.2.2 , and  2.2.4  (ii) ,

|EH0
r (w, t)| ≤ 2

∞∑
l=r

∣∣∣∣Hl

(
tmax

τ

)
Jl(tmax)

∣∣∣∣ ≤ 2
√

2
∞∑

l=r

∣∣∣∣Yl

(
tmax

τ

)
Jl(tmax)

∣∣∣∣
≤ 2
√

2
∞∑

l=r

Cl

(
tmax

τ

)√ 2
πl

(
2lτ
etmax

)l 1√
2πl

(
etmax

2l

)l

≤ 2
√

2
πr

∞∑
l=r

Cl

(
tmax

τ

)
τ l ≤

2
√

2Cr

(
tmax

τ

)
πr

τ r

1− τ .

2.3 Stable kernel expansion and low-rank approximation

If the kernel function κ can be approximated by a degenerate or separable expansion such

that for xi ∈ x, yj ∈ y,

κ(xi, yj) ≈
r−1∑

p,l=0
bplup(xi)vl(yj), (2.10)

then the kernel matrix has a low-rank approximation

K ≈ UBV T , where (2.11)

U = (up(xi))n×r , B = (bpl)r×r, V = (vl(yj))m×r .

In this section, we provide the details on the derivations of such separable expansion for

kernels including the Poisson kernel log 1
|x−y| , generalized Cauchy kernel 1

(x−y)1+d , and the

Helmholtz kernel H0(|x − y|). For a set of points x ⊂ C, we use δx and ox to denote the

radius and center of a circle that encloses x. Note that such circle may not be unique, but
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this will not concern the discussions in this paper. We generalize the definition in [  1 ], [  32 ]

to describe well-separated sets.

Definition 2.3.1 ([ 1 ]). Let τ ∈
[

1
2 , 1

)
, α ∈ (0, 1]. Two sets of points x and y are said to be

(τ, α)−well-separated if

δx + δy

|ox − oy|
≤ τ, (2.12)

αδy ≤ δx ≤
1
α
δy. (2.13)

ox

δx

x

oy

δy

y

δx+δy

|ox−oy|
=

1

2

Figure 2.1. Well separated sets

Note that by triangular inequality, ( 2.12 ) implies that for x ∈ x, y ∈ y,

|(x− ox)− (y − oy)| ≤ τ |ox − oy|,

(1− τ)|x− y| ≤ 1
1 + τ

|x− y| ≤ |ox − oy| ≤
1

1− τ |x− y|.

( 2.13 ) implies that

δx + δy ≥ (1 + α)δx, δx + δy ≥ (1 + α)δy.

2.3.1 Generalized Cauchy kernel

The standard Cauchy kernel (i.e., κ(x, y) = 1
x−y

) is treated in [ 32 ], such that for well-

separated x and y, a low-rank approximation like K ≈ UBV T is derived via Taylor expan-

sion. The authors of [  32 ] also apply a sequence of scaling factors to the matrices U,B, V , so
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that the scaled matrices have bounded entries. These scaling factors are designed based on

Stirling’s formula, and it is difficult to compute the entries of the scaled B efficiently.

In this subsection, we extend the studies of [  32 ] to the generalized Cauchy kernel 1
(x−y)1+d ,

d ∈ Z. Without resorting to the Stirling’s formula, we only need Taylor expansion to establish

( 2.10 ) and (  2.11 ) with a stronger bound on the entries and norms of the low-rank factors

U , B and V . We also give a recurrence formula to compute the entries of B efficiently and

stably, which is an advantage over [  32 ]. In some special cases (e.g., x and y are on a straight

line), we can even relax the assumption d ∈ Z to d ∈ C (see Corollary  2.3.2 ). To be more

specific, we have the following theorem.

Theorem 2.3.1. Suppose κ(x, y) = 1
(x−y)1+d , d ∈ Z. Suppose x = {xi}n

i=1 and y = {yj}m
j=1

are well-separated with separation ratio τ . Let ε > 0 be any small positive number, then the

kernel matrix K = (κ(xi, yj))xi∈x,yj∈y has a rank r = O
(

log ε+|1+d|·log(1−τ)
log τ

)
approximation

K = UBV T + E, where |E| ≤ ε|K|. (2.14)

These matrices have the following forms

U =
((

xi − ox

δx

)p)
n×r

, V =
(yj − oy

δy

)l


m×r

, (2.15)

B =



b00 b01 · · · b0,r−1

b10 · · · b1,r−2
... . .

.

br−1,0


r×r

, (2.16)

bpl = (−1)p

(ox − oy)1+d

(
p+ l + d

p+ l

)(
p+ l

p

)(
δx

ox − oy

)p (
δy

ox − oy

)l

. (2.17)

Moreover, the entries bpl can be computed efficiently and stably via the recurrence relation

 bp,−1 = b−1,l = 0, b00 = (−1)p

(ox−oy)1+d ,

bpl = p+l+d
p+l

(
δy

ox−oy
bp,l−1 − δx

ox−oy
bp−1,l

)
, 1 ≤ p+ l ≤ r − 1

(2.18)
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Furthermore, their entries satisfy the following bounds

‖U‖max ≤ 1, ‖V ‖max ≤ 1, ‖B‖1,1 =
∑
p,l

|bpl| ≤
mini,j |Kij|
(1− τ)2+2|d| . (2.19)

As corollaries, their norms satisfy the following bounds

‖U‖2 ≤
√
rn, ‖V ‖2 ≤

√
rm, ‖B‖2 ≤

‖K‖2

(1− τ)2+2|d| . (2.20)

Proof. Let x ∈ x, y ∈ y, t = (x−ox)−(y−oy)
oy−ox

, then x− y = (ox− oy)(1− t). By the assumption

d ∈ Z, we have

(x− y)1+d = (ox − oy)1+d(1− t)1+d. (2.21)

Note that this identity ( 2.21 ) does not generally hold if d /∈ Z. Since x and y are well

separated, we have |t| ≤ τ < 1. By Taylor expansion,

1
(x− y)1+d

= 1
(ox − oy)1+d

· 1
(1− t)1+d

= 1
(ox − oy)1+d

r−1∑
k=0

(
k + d

k

)
tk + Er(t)

(ox − oy)1+d

=
r−1∑
k=0

(
k + d

k

)
k∑

p=0

(
k

p

)
(−1)p (x− ox)p(y − oy)k−p

(ox − oy)1+d+k
+ Er(t)

(ox − oy)1+d

=
r−1∑
k=0

k∑
p=0

(
k + d

k

)(
k

p

)
(−1)p (x− ox)p(y − oy)k−p

(ox − oy)1+d+k
+ Er(t)

(ox − oy)1+d

=
r−1∑
k=0

k∑
p=0

bp,k−p

(
x− ox

δx

)p
(
y − oy

δy

)k−p

+ Er(t)
(ox − oy)1+d

.

This gives the forms in (  2.14 )-( 2.17 ). Since (1− τ)|x−y| ≤ |ox−oy| ≤ 1
1−τ
|x−y| and d ∈ Z,

we have ∣∣∣(ox − oy)1+d
∣∣∣ ≥ (1− τ)|1+d|

∣∣∣(x− y)1+d
∣∣∣ . (2.22)
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Therefore, if r = O
(

log ε+|1+d|·log(1−τ)
log τ

)
, the remainder can be bounded according to (  2.22 )

and Lemma  2.2.1 

|Er(t)|∣∣∣(ox − oy)1+d
∣∣∣ ≤ |Er(t)|

(1− τ)|1+d| |κ(x, y)| ≤ ε|κ(x, y)|.

Next, we prove the recurrence relation (  2.18 ). Let k = p + l. Note that we have the

identities for binomial coefficients
(

k+d
k

)
= k+d

k

(
k−1+d

k−1

)
and

(
k
p

)
=
(

k−1
p−1

)
+
(

k−1
p

)
. Combining

these two identities, we have

(
k + d

k

)(
k

p

)
= k + d

k

(
k − 1 + d

k − 1

)(
k − 1
p− 1

)
+ k + d

k

(
k − 1 + d

k − 1

)(
k − 1
p

)
. (2.23)

Substituting ( 2.23 ) into the formula ( 2.17 ) of bpl to get

bpl = (−1)p

(ox − oy)1+d

(
k + d

k

)(
k

p

)(
δx

ox − oy

)p (
δy

ox − oy

)l

= (−1)p

(ox − oy)1+d

k + d

k

(
k − 1 + d

k − 1

)(
k − 1
p− 1

)(
δx

ox − oy

)p (
δy

ox − oy

)l

+ (−1)p

(ox − oy)1+d

k + d

k

(
k − 1 + d

k − 1

)(
k − 1
p

)(
δx

ox − oy

)p (
δy

ox − oy

)l

=− k + d

k

δx

ox − oy
bp−1,l + k + d

k

δy

ox − oy
bp,l−1

=p+ l + d

p+ l

(
δy

ox − oy
bp,l−1 −

δx

ox − oy
bp−1,l

)
,

which establish the recurrence relation ( 2.18 ).

Next, we prove the entry-wise bounds (  2.19 ). Since |x − ox| ≤ δx and |y − oy| ≤ δy,

we have ‖U‖max ≤ 1 and ‖V ‖max ≤ 1. To show the bound on ‖B‖1,1, note that
∣∣∣(k+d

k

)∣∣∣ =∣∣∣ (k+d)(k−1+d)···(1+d)
k!

∣∣∣ ≤ (k+|d|)(k−1+|d|)···(1+|d|)
k! =

(
k+|d|

k

)
. Therefore,

‖B‖1,1 =
r−1∑
k=0

k∑
p=0
|bp,k−p|

≤ 1∣∣∣(ox − oy)1+d
∣∣∣

r−1∑
k=0

k∑
p=0

(
k + |d|
k

)(
k

p

) ∣∣∣∣∣ δx

ox − oy

∣∣∣∣∣
p ∣∣∣∣∣ δy

ox − oy

∣∣∣∣∣
k−p
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= 1∣∣∣(ox − oy)1+d
∣∣∣

r−1∑
k=0

(
k + |d|
k

)
k∑

p=0

(
k

p

) ∣∣∣∣∣ δx

ox − oy

∣∣∣∣∣
p ∣∣∣∣∣ δy

ox − oy

∣∣∣∣∣
k−p

≤ 1∣∣∣(ox − oy)1+d
∣∣∣

r−1∑
k=0

(
k + |d|
k

)
k∑

p=0

(
k

p

) ∣∣∣∣∣ τδx

δx + δy

∣∣∣∣∣
p ∣∣∣∣∣ τδy

δx + δy

∣∣∣∣∣
k−p

= 1∣∣∣(ox − oy)1+d
∣∣∣

r−1∑
k=0

(
k + |d|
k

)
τ k

 k∑
p=0

(
k

p

)(
δx

δx + δy

)p (
δy

δx + δy

)k−p


= 1∣∣∣(ox − oy)1+d
∣∣∣

r−1∑
k=0

(
k + |d|
k

)
τ k

(
δx

δx + δy
+ δy

δx + δy

)k

= 1∣∣∣(ox − oy)1+d
∣∣∣

r−1∑
k=0

(
k + |d|
k

)
τ k

≤ |κ(x, y)|
(1− τ)|1+d|

∞∑
k=0

(
k + |d|
k

)
τ k = |κ(x, y)|

(1− τ)|1+d|
1

(1− τ)1+|d| ≤
|κ(x, y)|

(1− τ)2+2|d| ,

where we use δx + δy ≤ τ |ox−oy| in the second inequality, and (  2.22 ) in the third inequality.

Choosing x and y such that |κ(x, y)| = mini,j |Kij| yields the bound of ‖B‖1,1 in ( 2.19 ). The

norm bounds in ( 2.20 ) can be also verified via

‖U‖2 ≤ ‖U‖F ≤
√
rn, ‖V ‖2 ≤ ‖V ‖F ≤

√
rm,

‖B‖2 ≤
√
‖B‖1‖B‖∞ ≤ ‖B‖1,1 ≤

mini,j |Kij|
(1− τ)2+2|d| ≤

‖K‖2

(1− τ)2+2|d| .

The proof is completed.

Note that Theorem  2.3.1 has the assumption d ∈ Z. If x and y are subsets of a straight

line in C, Theorem  2.3.1 can be generalized to κ(x, y) = 1
(x−y)1+d , d ∈ C. This will be

particularly useful when points in x and y are real.

Corollary 2.3.2. If x and y are subsets of a straight line in C, then in Theorem  2.3.1 , the

assumption d ∈ Z can be relaxed to d ∈ C.

Proof. Note that in Theorem  2.3.1 , the assumption d ∈ Z is only needed for the identity

( 2.21 ) and the inequality (  2.22 ). If x and y are subsets of a straight line, then the centers
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ox and oy are also on that line. Hence, t = (x−ox)−(y−oy)
oy−ox

∈ R. Since |t| ≤ τ < 1, we must

have 1− t > 0. Therefore, the identity (  2.21 )

(x− y)1+d = (ox − oy)1+d(1− t)1+d

still holds for d ∈ C. We can use the inequality

|z|Re µe−π|Im µ| ≤ |zµ| ≤ |z|Re µeπ|Im µ|, z ∈ C, µ ∈ C,

to extend the inequality ( 2.22 ) to the more general one

∣∣∣(ox − oy)1+d
∣∣∣ ≥ e−2π| Im(1+d)|(1− τ)| Re(1+d)|

∣∣∣(x− y)1+d
∣∣∣ . (2.24)

Then the rest of the proof of Theorem  2.3.1 can go through with an extra factor e2π| Im(1+d)|.

2.3.2 Poisson kernel

For the Poisson kernel log 1
|x−y| , we can also use Taylor expansion to establish ( 2.10 ) and

( 2.11 ) for well-separated x and y. To be more specific, we have the following theorem.

Theorem 2.3.3. Suppose κ(x, y) = log 1
|x−y| . Suppose x = {xi}n

i=1 and y = {yj}m
j=1 are

well-separated with separation ratio τ . Let ε > 0 be any small positive number, then the

kernel matrix K = (κ(xi, yj))xi∈x,yj∈y has a rank r = O
(

log ε
log τ

)
approximation

K = Re(UBV T ) + E, where |E| ≤ ε. (2.25)

These matrices have the following forms

U =
((

xi − ox

δx

)p)
n×r

, V =
(yj − oy

δy

)l


m×r

, (2.26)
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B =



b00 b01 · · · b0,r−1

b10 · · · b1,r−2
... . .

.

br−1,0


r×r

, (2.27)

bpl =

 log 1
|ox−oy| , p = l = 0

(−1)p

p+l

(
p+l

p

) (
δx

ox−oy

)p ( δy
ox−oy

)l
, 0 < p+ l ≤ r − 1

. (2.28)

Moreover, the entries bpl can be computed efficiently and stably via the recurrence relation


bp,−1 = b−1,l = 0,

b00 = log 1
|ox−oy| , b10 = −δx

ox−oy
, b01 = δy

ox−oy
,

bpl = p+l−1
p+l

(
δy

ox−oy
bp,l−1 − δx

ox−oy
bp−1,l

)
, 2 ≤ p+ l ≤ r − 1.

(2.29)

Furthermore, their entries satisfy the following bounds

‖U‖max ≤ 1, ‖V ‖max ≤ 1, ‖B‖1,1 ≤ min
i,j
|Kij|+ 2 log 1

1− τ . (2.30)

As corollaries, their norms satisfy the following bounds

‖U‖2 ≤
√
rn, ‖V ‖2 ≤

√
rm, ‖B‖2 ≤ ‖K‖2 + 2 log 1

1− τ . (2.31)

Proof. Let x ∈ x, y ∈ y, t = (x−ox)−(y−oy)
oy−ox

, then x− y = (ox − oy)(1− t). Since x and y are

well separated, we have |t| ≤ τ < 1. By Taylor expansion,

log 1
1− t =

r−1∑
k=1

tk

k
+ Ẽr(t)

=
r−1∑
k=1

k∑
p=0

(−1)p

k

(
k

p

)
(x− ox)p(y − oy)k−p

(ox − oy)k
+ Ẽr(t)

=
r−1∑
k=1

k∑
p=0

bp,k−p

(
x− ox

δx

)p
(
y − oy

δy

)k−p

+ Ẽr(t),
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where |Ẽr(t)| ≤
∞∑

p=r

τp

p
≤ τr

r(1−τ) . Then

log 1
|x− y|

= log 1
|ox − oy|

+ log 1
|1− t|

= log 1
|ox − oy|

+ Re
(

log 1
1− t

)
= Re

(
b00 + log 1

1− t

)

= Re
b00 +

r−1∑
k=1

k∑
p=0

bp,k−p

(
x− ox

δx

)p
(
y − oy

δy

)k−p

+ Ẽr(t)


= Re
r−1∑

k=0

k∑
p=0

bp,k−p

(
x− ox

δx

)p
(
y − oy

δy

)k−p
+ Re

(
Ẽr(t)

)
.

If the expansion order r = O
(

log ε
log τ

)
, we will have |Ẽr(t)| ≤ ε. This establishes ( 2.25 )-( 2.28 ).

Next, we show the recurrence relation (  2.29 ). By definition, b00 = log 1
|ox−oy| , b10 = −δx

ox−oy
,

b01 = δy
ox−oy

. For p+ l ≥ 2, we can use the identity
(

p+l
p

)
=
(

p+l−1
p−1

)
+
(

p+l−1
p

)
to get

p+ l

p+ l − 1bpl = (−1)p

p+ l − 1

(
p+ l

p

)(
δx

ox − oy

)p (
δy

ox − oy

)l

= (−1)p

p+ l − 1

(
p+ l − 1
p− 1

)(
δx

ox − oy

)p (
δy

ox − oy

)l

+ (−1)p

p+ l − 1

(
p+ l − 1

p

)(
δx

ox − oy

)p (
δy

ox − oy

)l

=− bp−1,l
δx

ox − oy
+ bp,l−1

δy

ox − oy
.

which establish the recurrence relation ( 2.29 ).

Next, we prove the entry-wise bounds (  2.30 ). Since |x − ox| ≤ δx and |y − oy| ≤ δy, we

have ‖U‖max ≤ 1 and ‖V ‖max ≤ 1. To show the bound on ‖B‖1,1,

‖B‖1,1 = |b00|+
r−1∑
k=1

k∑
p=0
|bp,k−p|

= |b00|+
r−1∑
k=1

1
k

k∑
p=0

(
k

p

) ∣∣∣∣∣ δx

ox − oy

∣∣∣∣∣
p ∣∣∣∣∣ δy

ox − oy

∣∣∣∣∣
k−p
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≤ |b00|+
r−1∑
k=1

1
k

k∑
p=0

(
k

p

) ∣∣∣∣∣ τδx

δx + δy

∣∣∣∣∣
p ∣∣∣∣∣ τδy

δx + δy

∣∣∣∣∣
k−p

= |b00|+
r−1∑
k=1

τ k

k

 k∑
p=0

(
k

p

)(
δx

δx + δy

)p (
δy

δx + δy

)k−p


= |b00|+
r−1∑
k=1

τ k

k

(
δx

δx + δy
+ δy

δx + δy

)k

≤ |b00|+
∞∑

k=1

τ k

k

=
∣∣∣∣∣log 1
|ox − oy|

∣∣∣∣∣+ log 1
1− τ ≤

∣∣∣∣∣log 1
|x− y|

∣∣∣∣∣+ 2 log 1
1− τ ,

where we use δx + δy ≤ τ |ox − oy| in the first inequality, and (1 − τ)|x − y| ≤ |ox − oy| ≤
1

1−τ
|x− y| in the last inequality. Choosing x and y such that |κ(x, y)| = min

i,j
|Kij| gives the

bound of ‖B‖1,1 in ( 2.30 ). The norm bounds in (  2.31 ) can also be verified via

‖U‖2 ≤ ‖U‖F ≤
√
rn, ‖V ‖2 ≤ ‖V ‖F ≤

√
rm,

‖B‖2 ≤
√
‖B‖1‖B‖∞ ≤ ‖B‖1,1 ≤ min

i,j
|Kij|+ 2 log 1

1− τ ≤ ‖K‖2 + 2 log 1
1− τ .

The proof is completed.

Note that in Theorem  2.3.3 , log 1
|x−y| = Re

(
log 1

x−y

)
, and we need to take the real part

of the low-rank approximation Re
(
UBV T

)
. If x and y are subsets of a straight line in C,

Theorem  2.3.3 can be be generalized to κ(x, y) = log 1
x−y

, where log is the principle branch

of natural logarithm. This will be particularly useful when points in x and y are real.

Corollary 2.3.4. If x and y are subsets of a straight line in C, then Theorem  2.3.3 can be

generalized to κ(x, y) = log 1
x−y

, such that

K = UBV T + E, where |E| ≤ ε,

where U , B and V are the same as in Theorem  2.3.3 except that b00 = log 1
ox−oy

.

Proof. If x and y are subsets of a straight line, then the centers ox and oy are also on that

line. Hence, t = (x−ox)−(y−oy)
oy−ox

∈ R. Since |t| ≤ τ < 1, we must have 1 − t > 0. Therefore,
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the identity log 1
x−y

= log 1
ox−oy

+ log 1
1−t

holds, and the rest of the proof of Theorem  2.3.3 

can go through.

2.3.3 Helmholtz kernel

For the Helmholtz kernel H0(|x − y|), we can use Graf’s addition formula to establish

( 2.10 ) and (  2.11 ) for well-separated x and y. To be more specific, we have the following

theorem, which is implicitly derived in [ 2 ], [ 31 ]. We assume that the size of x and y are

comparable such that αδy ≤ δx ≤ 1
α
δy, 0 < α ≤ 1.

Theorem 2.3.5. Suppose κ(x, y) = H0(|x − y|). Suppose x = {xi}n
i=1 and y = {yj}m

j=1

are well-separated with separation ratio τ . Let ε > 0 be any small positive number, and

r = O
(

δx+δy
τ

+ log ε
log τ

)
, then the kernel matrix K = (κ(xi, yj))xi∈x,yj∈y has a (2r + 1)-rank

approximation

K = UBV T + E, where |E| ≤ ε. (2.32)

These matrices have the following forms

U =


g−r(x1 − ox) · · · gr(x1 − ox)

...
. . .

...

g−r(xn − ox) · · · gr(xn − ox)


n×(2r+1)

, (2.33)

V =


g−r(y1 − oy) · · · gr(y1 − oy)

...
. . .

...

g−r(ym − oy) · · · gr(ym − oy)


m×(2r+1)

, (2.34)

B =



b−r,0 · · · b−r,r

. .
.

. .
. ...

b0,−r . .
.

b0,r

... . .
.

. .
.

br,−r · · · br,0


(2r+1)×(2r+1)

, (2.35)

35



where for −r ≤ p, l ≤ r, we write

gp(z) = Jp(|z|)eipθz , bpl = (−1)lHp+l(|ox − oy|)e−i(p+l)θoy−ox .

And the entries of U, V,B satisfy

‖U‖max ≤ 1, ‖V ‖max ≤ 1, ‖B‖max ≥
√

2
πr

(
2r

e|ox − oy|

)r

Cr(|ox − oy|). (2.36)

Proof. Let x ∈ x, y ∈ y, t = (x− ox)− (y− oy), w = oy − ox, then x− y = −(w− t). Since

x and y are well separated, we have |t| ≤ τ |w| < |w|. Apply Graf’s addition formula (  2.9 )

to H0(|x− y|) = H0(|w − t|), then we have

H0(|x− y|) =
∑

|k|≤r

Hk(|w|)e−ikθwJk(|t|)eikθt + EH0
r+1(w, t). (2.37)

Apply Graf’s addition formula ( 2.8 ) to Jk(|t|)eikθt , then we have

Jk(|t|)eikθt =
∞∑

l=−∞
Jk−l(|x− ox|)ei(k−l)θx−oxJ−l(|y − oy|)eilθy−oy

=
∑

|l|≤r,|k−l|≤r

(−1)lgk−l(x− ox)gl(y − oy) + EJk
r+1(x− ox, y − oy). (2.38)

Therefore, substituting ( 2.38 ) into ( 2.37 ) we have

H0(|x− y|)

=
∑

|k|≤r

Hk(|w|)e−ikθw

 ∑
|l|≤r,|k−l|≤r

(−1)lgk−l(x− ox)gl(y − oy)
+ E(x, y)

=
∑

|k|≤r

 ∑
|l|≤r,|k−l|≤r

Hk(|w|)e−ikθw(−1)lgk−l(x− ox)gl(y − oy)
+ E(x, y)

=
∑

|l|≤r,|p|≤r

 ∑
|p+l|≤r

bplgp(x− ox)gl(y − oy)
+ E(x, y),
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which establishes ( 2.32 )-( 2.35 ) with the remainder

|E(x, y)| =

∣∣∣∣∣∣EH0
r+1(w, t) +

∑
|k|≤r

Hk(|w|)e−ikθw · EJk
r+1(x− ox, y − oy)

∣∣∣∣∣∣
≤
∣∣∣EH0

r+1(w, t)
∣∣∣+ ∑

|k|≤r

∣∣∣Hk(|w|) · EJk
r+1(x− ox, y − oy)

∣∣∣ .
Since |t| ≤ δx + δy ≤ τ |w|, we can set tmax = δx + δy in Lemma  2.2.4 , and bound

∣∣∣EH0
r+1(w, t)

∣∣∣ ≤ 2
√

2Cr+1
(

tmax
τ

)
π(r + 1)

τ r+1

1− τ = O

Cr+1
(

tmax
τ

)
r + 1 τ r+1

 , r ≥ tmax

τ
.

Since δx+δy
1+α

≥ max(δx, δy), we can set zmax = tmax
1+α

in Lemma  2.2.3 and bound

∣∣∣EJk
r+1(x− ox, y − oy)

∣∣∣ ≤ 4
∞∑

l=r+1

∣∣∣∣Jl

(
tmax

1 + α

)∣∣∣∣ .
Since |Hk(z)| is increasing in |k| and decreasing in z, we can bound

∣∣∣Hk(|w|) · EJk
r+1(x− ox, y − oy)

∣∣∣
≤
∣∣∣∣Hk

(
tmax

τ

)
· EJk

r+1(x− ox, y − oy)
∣∣∣∣ ≤ 4

∣∣∣∣∣∣Hk

(
tmax

τ

)
·

∞∑
l=r+1

∣∣∣∣Jl

(
tmax

1 + α

)∣∣∣∣
∣∣∣∣∣∣

≤ 4
∞∑

l=r+1

∣∣∣∣Hl

(
tmax

τ

)
Jl

(
tmax

1 + α

)∣∣∣∣ ≤ 4
√

2
∞∑

l=r+1

∣∣∣∣Yl

(
tmax

τ

)
Jl

(
tmax

1 + α

)∣∣∣∣
≤ 4
√

2
∞∑

l=r+1
Cl

(
tmax

τ

)√ 2
πl

(
2lτ
etmax

)l 1√
2πl

(
etmax

2l(1 + α)

)l

≤ 4
√

2
π(r + 1)

∞∑
l=r+1

Cl

(
tmax

τ

)(
τ

1 + α

)l

= O

Cr+1
(

tmax
τ

)
r + 1

(
τ

1 + α

)r+1
 .

Therefore,

|E(x, y)| ≤
∣∣∣EH0

r+1(w, t)
∣∣∣+ ∑

|k|≤r

∣∣∣Hk(|w|) · EJk
r+1(x− ox, y − oy)

∣∣∣
= O

Cr+1
(

tmax
τ

)
r + 1 τ r+1

+O

(
Cr+1

(
tmax

τ

)(
τ

1 + α

)r+1
)
.
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By Proposition  2.2.2 , Cr+1
(

tmax
τ

)
is monotonically decreasing to 1 as r → ∞. As a result,

we have the bound |E(x, y)| ≤ ε if r = O
(

δx+δy
τ

+ log ε
log τ

)
.

Next we show the entries bounds (  2.36 ). According to Proposition  2.2.1 , |Jp(z)| ≤ 1 for

all p ∈ Z and z > 0. Hence, we have ‖U‖max ≤ 1 and ‖V ‖max ≤ 1. By Proposition  2.2.4  (i) ,

|Hk(|ox − oy|)| is strictly increasing in |k|, we have

‖B‖max = |Hr(|ox − oy|)| ≥ |Yr(|ox − oy|)| =
√

2
πr

(
2r

e|ox − oy|

)r

Cr(|ox − oy|).

The proof is completed.

In the cases of generalized Cauchy kernel and Poisson kernel, the entries and norms of

the B matrices are bounded (see Theorems  2.3.1 and  2.3.3 ). In contrast, in the low-rank

factorization ( 2.32 ) for Helmholtz kernel, many entries of B are extremely large if r > e|ox−oy|
2 .

In particular, when ox− oy is very small, or when a large truncation order r is used for high

accuracy, we will have 2r
e|ox−oy| � 1, and hence ‖B‖max grows very fast. This may have

stability risk. It is often preferred to have bounded entries in B. For this purpose, we follow

the diagonal-scaling strategy in [ 32 ] to scale the low-rank factors U , B and V . The diagonal-

scaling in [ 32 ] is based on Stirling’s formula, while we use the asymptotic behaviors of Jp

and Hp (see Propositions  2.2.1 ,  2.2.2 ,  2.2.3 ,  2.2.4 ) to design the scaling factors.

For 0 ≤ p ≤ r, define the scaling factors for x and y respectively,

λp = λ−p = max
(

1, p!
( 2
δx

)p)
, ωp = ω−p = max

(
1, p!

(
2
δy

)p)
.

Lemma 2.3.6. The sequences {λp} and {ωp} are increasing in |p|.

Proof. Assume p ≥ 0, and let ap = p!
(

2
δx

)p
, then ap+1

ap
= 2(p+1)

δx
. The sequence {ap} is either

monotonically increasing, or first monotonically decreasing then monotonically increasing.

In either case, we have

ap ≤ max(a0, ap+1) = max
(

1, (p+ 1)!
( 2
δx

)p+1)
= λp+1.

Therefore, λp = max(1, ap) ≤ λp+1. The proof for ωp is analogous.
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With the scaling factors, we scale the low-rank approximation ( 2.32 ) as

UBV T = (UΛ) · (Λ−1BΩ−1) · (V Ω)T = ÛB̂V̂ T , where

Λ = diag
(
λ−r · · · λr

)
, Ω = diag

(
ω−r · · · ωr

)
.

Then we can show that the scaled matrices have bounded entries.

Theorem 2.3.7. With the same assumption in Theorem  2.3.5 and assume τ ≤ 2
e
. We have

the scaled low-rank approximation

K = ÛB̂V̂ T + E, where |E| ≤ ε. (2.39)

such that Û , B̂ and V̂ have the following forms,

Û =


g−r(x1 − ox)λ−r · · · gr(x1 − ox)λr

...
. . .

...

g−r(xn − ox)λ−r · · · gr(xn − ox)λr


n×(2r+1)

, (2.40)

V̂ =


g−r(y1 − oy)ω−r · · · gr(y1 − oy)ωr

...
. . .

...

g−r(ym − oy)ω−r · · · gr(ym − oy)ωr


m×(2r+1)

, (2.41)

B̂ =



b̂−r,0 · · · b̂−r,r

. .
.

. .
. ...

b̂0,−r . .
.

b̂0,r

... . .
.

. .
.

b̂r,−r · · · b̂r,0


(2r+1)×(2r+1)

, (2.42)

where for −r ≤ p, l ≤ r

b̂pl = (−1)lλ−1
p ω−1

l Hp+l(|ox − oy|)e−i(p+l)θoy−ox . (2.43)
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And their entries satisfy the following bounds.

‖Û‖max ≤ 1, ‖V̂ ‖max ≤ 1, ‖B̂‖max ≤ max
( 8
π
,
√

1 + τ min
i,j
|Kij|

)
. (2.44)

Proof. For 1 ≤ i ≤ n and −r ≤ p ≤ r, by Proposition  2.2.1 , we have

|Ûip| = |gp(xi − ox)λp|

= max
(
|Jp(|xi − ox|)| , |Jp(|xi − ox|)| · |p|!

( 2
δx

)|p|)

≤ max
1, 1
|p|!

(
|xi − ox|

2

)|p|

|p|!
( 2
δx

)|p|


= max
1,

(
|xi − ox|

δx

)|p|
 ≤ 1.

Therefore, ‖Û‖max ≤ 1. Similarly, we can show ‖V̂ ‖max ≤ 1.

Next, we show the upper bound for entries of B̂. Note that for −r ≤ p, l ≤ r,

|b̂pl| =
∣∣∣λ−1

p ω−1
l Hp+l(|ox − oy|)

∣∣∣ . (2.45)

By Proposition  2.2.4  (i) , we have |Hp+l(|ox − oy|)| ≤
∣∣∣H|p|+|l|(|ox − oy|)

∣∣∣. Therefore, without

loss of generality, we can assume 0 ≤ p, l ≤ r in ( 2.45 ). Note that by definition of the scaling

factors,

λ−1
p = min

(
1, 1
p!

(
δx

2

)p)
, ω−1

l = min
1, 1

l!

(
δy

2

)l
 .

There are three cases to discuss.

(i) p = l = 0. If |ox − oy| ≥ |x− y|, then by Proposition  2.2.4  (ii) ,

|b̂00| = |H0(|ox − oy|)| ≤ |H0(|x− y|)| ≤
√

1 + τ |H0(|x− y|)| .
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If |ox − oy| < |x− y|, then by Proposition  2.2.4  (iv) 

|b̂00| =
∣∣∣∣∣H0

(
|ox − oy|
|x− y|

· |x− y|
)∣∣∣∣∣ ≤

√√√√ |x− y|
|ox − oy|

· |H0(|x− y|)|

≤
√

1 + τ |H0(|x− y|)| .

(ii) 1 ≤ p+ l ≤ |ox − oy|. In this case, according to Proposition  2.2.4  (iii) 

|b̂pl| ≤
∣∣∣λ−1

p ω−1
l Hp+l(|ox − oy|)

∣∣∣ ≤ |Hp+l(|ox − oy|)| ≤
√

4
π
.

(iii) p+ l > |ox − oy|. Note that by Propositions  2.2.1 and  2.2.2 , we have

|Hp+l(|ox − oy|)| ≤
√

2 |Yp+l(|ox − oy|)| , and Cp+l(|ox − oy|) > 0.

Hence, we can use Stirling’s approximation
(

p+l
e

)p+l
< (p+l)!√

2π(p+l)
to bound

|b̂pl| ≤
√

2
∣∣∣λ−1

p ω−1
l Yp+l(|ox − oy|)

∣∣∣
≤
√

2
p!l!

(
δx

2

)p (
δy

2

)l

Cp+l(|ox − oy|)
√

2
π(p+ l)

(
2(p+ l)
e|ox − oy|

)p+l

= 2Cp+l(|ox − oy|)
p!l!

√
π(p+ l)

(
δx

|ox − oy|

)p (
δy

|ox − oy|

)l (
p+ l

e

)p+l

≤
√

2Cp+l(|ox − oy|)
π(p+ l)

(p+ l)!
p!l!

(
δx

|ox − oy|

)p (
δy

|ox − oy|

)l

≤
√

2Cp+l(|ox − oy|)
π(p+ l) τ p+l (p+ l)!

p!l!

(
δx

δx + δy

)p (
δy

δx + δy

)l

≤
√

2Cp+l(|ox − oy|)
π(p+ l) τ p+l.

By Propositions  2.2.3  (i) ,  2.2.3  (iii) and  2.2.4  (iii) , we can bound Cp+l(|ox − oy|) by

Cp+l(|ox − oy|) ≤
4
√

2
e
Cp+l+1(|ox − oy|)

≤ 4
√

2
e
|Hp+l+1(p+ l + 1)|

√
π(p+ l + 1)

2

(
e

2

)p+l+1
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≤ 4
√

2
e

√
4
π

√
π(p+ l + 1)

2

(
e

2

)p+l+1

= 4
√
p+ l + 1

(
e

2

)p+l

.

As a result, if τ ≤ 2
e
,

|b̂pl| ≤
4
√

2
√
p+ l + 1

π(p+ l)

(
eτ

2

)p+l

≤
4
√

2
√

2(p+ l)
π(p+ l)

(
eτ

2

)p+l

≤ 8
π
.

Combining these three cases, we have ‖B‖max ≤ max
(

8
π
,
√

1 + τ min
i,j
|Kij|

)
. And the proof

is completed.

Theorem  2.3.7 states that the entries in Û , V̂ and B̂ are bounded independent of the

expansion order r. However, we avoid to compute them directly via definitions ( 2.40 )-( 2.43 ),

since some of them could be the products of extremely large numbers and extremely small

numbers. Analogous to the generalized Cauchy kernel and Poisson kernel, we shall compute

those entries via recurrence formulas. Note that for Bessel functions, we do not have explicit

formulas, but we can use their recurrence relations ( 2.4 ).

Theorem 2.3.8. The entries of B̂ can be computed stably and efficiently via the following

three-step recurrence relations


b̂0,0 = H0(|ox − oy|),

b̂1,0 = λ−1
1 H1(|ox − oy|)e−iθoy−ox ,

b̂−1,0 = −λ−1
1 H1(|ox − oy|)eiθoy−ox ,

(2.46)

b̂p,0 =

 e−iθoy−ox 2(p−1)
|ox−oy|

λp−1
λp
b̂p−1,0 − e−2iθoy−ox λp−2

λp−1

λp−1
λp
b̂p−2,0, p ≥ 2,

eiθoy−ox 2(p+1)
|ox−oy|

λp+1
λp
b̂p+1,0 − e2iθoy−ox λp+2

λp+1

λp+1
λp
b̂p+2,0, p ≤ −2,

(2.47)

b̂p,l =

 −
λp+1

λp

ωl−1
ωl
b̂p+1,l−1, l ≥ 1,

−λp−1
λp

ωl+1
ωl
b̂p−1,l+1, l ≤ −1.

(2.48)
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The entries of Û can be computed stably and efficiently via the following recurrence relations,

for 1 ≤ i ≤ n,


Ûi,0 = J0(|xi − ox|),

Ûi,1 = λ1J1(|xi − ox|)eiθxi−ox ,

Ûi,−1 = −λ1J1(|xi − ox|)e−iθxi−ox ,

Ûi,p =

 eiθxi−ox 2(p−1)
|xi−ox|

λp

λp−1
Ûi,p−1 − e2iθxi−ox λp−1

λp−2

λp

λp−1
Ûi,p−2, p ≥ 2,

e−iθxi−ox 2(p+1)
|xi−ox|

λp

λp+1
Ûi,p+1 − e−2iθxi−ox λp+1

λp+2

λp

λp+1
Ûi,p+2, p ≤ −2.

(2.49)

The entries of V̂ can be computed stably and efficiently via the following recurrence relations,

for 1 ≤ j ≤ m,


V̂j,0 = J0(|yj − oy|),

V̂j,1 = ω1J1(|yj − oy|)eiθyj −oy ,

V̂j,−1 = −ω1J1(|yj − oy|)e−iθyj −oy ,

V̂j,l =

 eiθyj −oy 2(l−1)
|yj−oy|

ωl

ωl−1
V̂j,l−1 − e2iθyj −oy ωl−1

ωl−2

ωl

ωl−1
V̂j,l−2, l ≥ 2,

e−iθyj −oy 2(l+1)
|yj−oy|

ωl

ωl+1
V̂j,l+1 − e−2iθyj −oy ωl+1

ωl+2

ωl

ωl+1
V̂j,l+2, l ≤ −2.

(2.50)

Proof. We show the recurrence relations ( 2.47 ) and (  2.48 ) for B̂. The recurrence relations

( 2.49 ) and ( 2.50 ) for Û and V̂ can be derived in a similar way.

For convenience, we write c = |ox − oy| and η = e−iθoy−ox . Since the Hankel function

satisfies the recurrence relation Hp−2(c) +Hp(c) = 2(p−1)
c

Hp−1(c), we have

b̂p,0 = λ−1
p Hp(c)ηp = λ−1

p

(
2(p− 1)

c
Hp−1(c)−Hp−2(c)

)
ηp

= 2(p− 1)η
c

λp−1

λp

b̂p−1,0 − η2λp−2

λp−1

λp−1

λp

b̂p−2,0.

Similarly, the recurrence relation Hp(c) +Hp+2(c) = 2(p+1)
c

Hp+1(c) implies

b̂p,0 = λ−1
p Hp(c)ηp = λ−1

p

(
2(p+ 1)

c
Hp+1(c)−Hp+2(c)

)
ηp
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= 2(p+ 1)
cη

λp+1

λp

b̂p+1,0 −
1
η2
λp+2

λp+1

λp+1

λp

b̂p+2,0.

This proves ( 2.47 ). The other one (  2.48 ) follows directly from the formula ( 2.43 ) of b̂pl.

2.4 Stable translation relation

In this section, we exploit the translation relation in the U , V matrices in the low-rank

approximation,

Kx,y ≈ UxBx,yV
T

y ,

where we write the subscript to emphasize their dependencies on the underlying point sets.

The matrix Ux is called the local expansion matrix associated with x. It is the (approximate)

column basis matrix of Kx,y and represents the contributions of x to Kx,y. Similarly, Vy is

the multipole expansion matrix for y. It is the (approximate) row basis matrix of Kx,y and

represents the contributions of y. The translation relation connects the contributions of x

and y with those of their subsets, respectively. It is an essential idea for the FMM to reach

linear complexity.

In [  32 ], the authors derive the translation matrix for standard Cauchy kernel and scale

it using Stirling’s formula such that its entries are bounded by 1. In this work, we extend

the study to generalized Cauchy kernel and Poisson kernel. Our derivation is much sim-

pler (without Stirling’s formula), yet yields a stronger guarantee that the L1 norm of such

translation matrix equals 1. We also derive the translation matrix for the Helmholtz kernel.

It is shown that in Section  2.3 that for generalized Cauchy kernel and Poisson kernel, the

local and multipole expansion matrices have the following forms

Ux =
((

xi − ox

δx

)p)
n×r

, Vy =
(yj − oy

δy

)l


m×r

,

and for Helmholtz kernel, they are

Ûx =
(
λx,pJp(|xi − ox|)eipθxi−ox

)
n×(2r+1)

, λx,p = max
(

1, |p|!
( 2
δx

)|p|)
,
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V̂y =
(
ωy,lJp(|yj − oy|)eilθyj −oy

)
m×(2r+1)

, ωy,l = max
1, |l|!

(
2
δy

)|l|
 .

In this section, we derive the translation relation between the local expansion matrices

of x and its subset. The translation relation for y and its subset can be derived analogously.

Suppose a subset x′ of x has center ox′ and radius δx′ . We assume that the disk Dx′ =

{z : |z − ox′ | ≤ δx′} is inside the disk Dx = {z : |z − ox| ≤ δx} so that

|ox′ − ox|+ δx′ ≤ δx. (2.51)

To accommodate general cases, we also assume that there exists 0 < β ≤ 1 such that

β|ox′ − ox| ≤ δx′ ≤ 1
β
|ox′ − ox|, (2.52)

hence |ox′ − ox| ≤ δx
1+β

, δx′ ≤ δx
1+β

.

2.4.1 Stable translation relation for Cauchy and Poisson kernel

Suppose x ∈ x′, then a row of Ux′ is

u′ =
(

1 x−ox′
δx′

· · ·
(

x−ox′
δx′

)r−1
)

1×r
,

and a row of Ux is

u =
(

1 x−ox
δx

· · ·
(

x−ox
δx

)r−1
)

1×r
.

The translation from u′ to u can be derived as follows. For 0 ≤ k ≤ r − 1,

(
x− ox

δx

)k

=
k∑

p=0

(
k

p

)(
x− ox′

δx

)p (ox′ − ox

δx

)k−p

=
k∑

p=0

(
k

p

)(
x− ox′

δx′

)p
(
δx′

δx

)p (
ox′ − ox

δx

)k−p

≡
k∑

p=0

(
x− ox′

δx′

)p

tpk, where tpk =
(
k

p

)(
δx′

δx

)p (
ox′ − ox

δx

)k−p

.
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Theorem 2.4.1. There exists an r × r matrix Tx′,x such that u = u′ · Tx′,x. This matrix

Tx′,x is called the translation matrix between x′ and x, and it has the following form

Tx′,x =



t00 t01 · · · t0,r−1

t11 · · · t1,r−1

. . .
...

tr−1,r−1.


, tpk =

(
k

p

)(
δx′

δx

)p (
ox′ − ox

δx

)k−p

. (2.53)

and its entries tpk can be computed efficiently and stably via the recurrence formula

 t00 = 1, t−1,k−1 = tk,k−1 = 0,

tpk = δx′
δx
tp−1,k−1 + ox′ −ox

δx
tp,k−1, 0 ≤ p ≤ k,

(2.54)

It also satisfies

‖Tx′,x‖1 = 1, ‖Tx′,x‖∞ ≤ min
(
r,

1 + β

β

)
.

Furthermore, if x′′ is a subset of x′, then

Tx′′,x = Tx′′,x′Tx′,x. (2.55)

Proof. Using the identity
(

k
p

)
=
(

k−1
p−1

)
+
(

k−1
p

)
, we have the recurrence relation

tpk =
(
k − 1
p− 1

)(
δx′

δx

)p (
ox′ − ox

δx

)k−p

+
(
k − 1
p

)(
δx′

δx

)p (
ox′ − ox

δx

)k−p

= δx′

δx
tp−1,k−1 + ox′ − ox

δx
tp,k−1.

Next, we show ‖Tx′,x‖1 = 1. Since t00 = 1, we have ‖Tx′,x‖1 ≥ 1. On the other hand, for

0 ≤ k ≤ r − 1, the L1-norm of the kth column satisfies,

k∑
p=0
|tpk| =

k∑
p=0

(
k

p

)(
δx′

δx

)p ( |ox′ − ox|
δx

)k−p

≤
k∑

p=0

(
k

p

)(
δx′

δx

)p (
δx − δx′

δx

)k−p

= 1,
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therefore ‖Tx′,x‖1 = 1.

Next, we show ‖Tx′,x‖∞ ≤ min
(
r, 1+β

β

)
. Let sp = ∑r−1

k=p |tpk| be the L1-norm of the pth

row. Since

s0 =
r−1∑
k=0
|t0k| =

r−1∑
k=0

(
|ox′ − ox|

δx

)k

≤
r−1∑
k=0

(
1

1 + β

)k

≤ min
(
r,

1 + β

β

)
,

it suffices to show sp is decreasing in p. Indeed, by recurrence relation (  2.54 ),

sp =
r−1∑
k=p

|tpk| ≤
δx′

δx

r−1∑
k=p

|tp−1,k−1|+
|ox′ − ox|

δx

r−1∑
k=p

|tp,k−1|

≤ δx′

δx
sp−1 + |ox′ − ox|

δx
sp

≤ δx′

δx
sp−1 + δx − δx′

δx
sp,

which simplifies to sp ≤ sp−1. Thus, ‖Tx′,x‖∞ = s0 ≤ min
(
r, 1+β

β

)
.

Next, we show ( 2.55 ). For any x ∈ x′′, let u′′ be the row for x in Ux′′ , then we have

u′′ ·Tx′′,x = u = u′ ·Tx′,x = u′′ ·Tx′′,x′ ·Tx′,x. Choosing r different x ∈ x′′, we have an invertible

Vandermonde matrix U ′′ such that U ′′ · Tx′′,x = U ′′ · Tx′′,x′ · Tx′,x, which proves ( 2.55 ).

Remark 2.4.2. The translation matrix Tx′,x connects the local expansion matrix of x to

those of subsets of x. For example, suppose we have the partition x = x1∪x2∪x3∪x4, then

by Theorem  2.4.1 ,

Ux =



Ux1Tx1,x

Ux2Tx2,x

Ux3Tx3,x

Ux4Tx4,x


=



Ux1

Ux2

Ux3

Ux4





Tx1,x

Tx2,x

Tx3,x

Tx4,x


︸ ︷︷ ︸
Tx∈C4r×r

,

where we say Tx is the translation matrix between x and {xk}4
k=1, and it satisfies ‖Tx‖1 = 4,

‖Tx‖∞ ≤ 1+β
β

. Obviously, this can be generalized to any partition of x = ∪s
k=1xk and the

translation matrix

Tx =
(
T T

x1,x · · · T T
xs,x

)T

∈ Csr×r
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satisfies ‖Tx‖1 = s, ‖Tx‖∞ ≤ min(r, 1+β
β

).

2.4.2 Stable translation for Helmholtz kernel

In this subsection, we derive the translation relation for the Helmholtz kernel. Suppose

x ∈ x′ ⊂ x, then a row of Ûx′ is

u′ =
(
gp(x− ox′)λx′,p

)
−r≤p≤r

,

and a row of Ûx is

u =
(
gp(x− ox)λx,p

)
−r≤p≤r

,

where gp(z) = Jp(|z|)eipθz and r ≥ δx+δy
τ
≥ (1+α)δx

τ
. By Graf’s addition formula,

gp(x− ox) =
∑

|l|≤r,|p−l|≤r

gl(x− ox′)gp−l(ox − ox′)(−1)p−l + E
Jp

r+1(x− ox′ , ox − ox′).

From this we can obtain the translation relation from u′ to u

up =
r∑

l=−r

u′
ltlp + Ep, where Ep = λx,pE

Jp

r+1(x− ox′ , ox − ox′),

tlp =

 (−1)p−lλx,pgp−l(ox − ox′)λ−1
x′,l, |p− l| ≤ r

0, |p− l| > r
.

Theorem 2.4.3. There exists a (2r + 1) × (2r + 1) translation matrix Tx′,x such that u =

u′ · Tx′,x + E, where

Tx′,x =



t−r,−r · · · t−r,0
...

. . .
...

. . .

t0,−r · · · t0,0 · · · t0,r

. . .
...

. . .
...

tr,0 · · · tr,r


, ‖Tx′,x‖max ≤ 1,
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|E| ≤ O

( γ

1 + β

)r+1
 , γ = max

(
1, eτ

2(1 + α)

)
.

The entries tlp can be computed stably and efficiently via a recurrence relation analogous to

( 2.47 ) and ( 2.48 ).

Proof. We first show the bound on ‖Tx′,x‖max. By Lemma  2.3.6 , λx,p is increasing in |p|,

hence λx,p ≤ λx,p̃, where p̃ = |l|+ |p− l|. Note that we have

λx,p̃ = max
(

1, p̃!
( 2
δx

)p̃
)
, λ−1

x′,l = min
1, 1
|l|!

(
δx′

2

)|l|
 ,

|Jp−l(|ox − ox′|)| ≤ 1, |Jp−l(|ox − ox′ |)| ≤ 1
|p− l|!

(
|ox − ox′ |

2

)|p−l|

.

Therefore, we can bound

|tlp| ≤ λx,p̃ · |Jp−l(|ox − ox′|)| · λ−1
x′,l

= max
(

1, p̃!
( 2
δx

)p̃
)
· |Jp−l(|ox − ox′|)| · λ−1

x′,l

= max
(
|Jp−l(|ox − ox′|)| · λ−1

x′,l, p̃!
( 2
δx

)p̃

|Jp−l(|ox − ox′|)| · λ−1
x′,|l|

)

≤ max
1, p̃!

( 2
δx

)p̃ 1
|p− l|!

(
|ox − ox′ |

2

)|p−l| 1
|l|!

(
δx′

2

)|l|


= max
1,

(
|p− l|+ |l|
|l|

)(
|ox − ox′ |

δx

)|p−l| (
δx′

δx

)|l|


≤ max
1,

(
|p− l|+ |l|
|l|

)(
δx − δx′

δx

)|p−l| (
δx′

δx

)|l|
 = 1.

To show the bound for the remainder term, since δx
1+β
≥ max(δx′ , |ox − ox′|) and r ≥

(1+α)δx
τ

, we can set zmax = δx
1+β

in Lemma  2.2.3 to bound

∣∣∣EJp

r+1(x− ox′ , ox − ox′)
∣∣∣ ≤ 8

(r + 1)!

(
δx

2(1 + β)

)r+1

≤ 8√
2π(r + 1)

(
eδx

2(1 + β)(r + 1)

)r+1
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≤ 8√
2π(r + 1)

(
eτ

2(1 + β)(1 + α)

)r+1

,

where we use Stirling’s approximation in the second inequality. Therefore, we can bound

|Ep| = λx,p ·
∣∣∣EJp

r+1(x− ox′ , ox − ox′)
∣∣∣ ≤ λx,r ·

∣∣∣EJp

r+1(x− ox′ , ox − ox′)
∣∣∣

≤ max
∣∣∣EJp

r+1(x− ox′ , ox − ox′)
∣∣∣ , 8

(r + 1)!

(
δx

2(1 + β)

)r+1

r!
( 2
δx

)r


≤ max
 8√

2π(r + 1)

(
eτ

2(1 + β)(1 + α)

)r+1

,
4δx

r + 1

(
1

1 + β

)r+1


= O

((
γ

1 + β

)r)
, where γ = max

(
1, eτ

2(1 + α)

)
.

2.5 Matrix version of the fast multipole method

In this section, we present the matrix version of the fast multipole method in 2D. In

particular, given the approximation accuracy ε > 0, the fast multipole method will construct

an FMM approximation matrix K̃ to the kernel matrix K = (κ(xi, yj))xi∈x,yj∈y ∈ Cn×m,

K = K̃ + E, |E| ≤ ε|K|.

The matrix K̃ is hierarchically structured and admits O(n+m) matrix-vector multiplication.

We will illustrate the matrix version FMM with a square domain in 2D. The cases in 3D

and 1D are considered in earlier work [ 1 ] and [  32 ], respectively. Our frameworks are parallel

to them. Without loss of generality, we assume n = m hereafter. Throughout this section,

the symbols ∑ and ∏ will be interpreted as

l2∑
k=l1

Mk =

 Ml1 +Ml1+1 · · ·+Ml2 , l1 ≤ l2

0, l1 > l2
,

l1∏
k=l2

Mk =

 Ml2Ml2−1 · · ·Ml1+1Ml1 , l1 ≤ l2

I, l1 > l2
.
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2.5.1 Hierarchical partitioning and interaction list

Suppose the point sets x and y are located in a square domain S in C. The FMM be-

gins with a hierarchical partitioning of S. The domain S is quadrisected recursively until the

number of points is O(n0), where n0 is pre-specified constant. A two-level partitioning exam-

ple is given in Figure  2.2a . We also use a post-ordered quadtree T to organize the partition

such that the root of T corresponds to S, and each descendant node of T corresponds to a

descendant square of S, see Figure  2.2b . We say the root node is at level 0, and the children

of a level l node are at level l + 1. The total number of levels of T shall be L = O
(
log n

n0

)
.

We will use letters like i, j to denote nodes of the quadtree T , and lvl(i) to denote the level

of node i. We do not distinguish a node and its corresponding square.

We use xi to denote the subset of x that are located in the square i. The center oxi

and radius δxi are chosen to be the center and radius of i, that is, we choose oxi = oi and

cxi = ci. For convenience, we will also write Ki,j as the block of K defined by subsets xi and

yj, that is, Ki,j = Kxi,yj = (κ(x, y))x∈xi,y∈yj . When i and j are well-separated, the block Ki,j

is referred as far-field interaction or far-field block. According to Section  2.3 , each far-field

block has a low-rank approximation

Ki,j = UiBi,jV
T

j + Ei,j, |Ei,j| ≤ ε|Ki,j|,

where we write Ui = Uxi , Bi,j = Bxi,yj , Vj = Vyj for convenience. When they are not well-

separated, they are said to be neighbors, and the block Ki,j is referred as near-field interaction

or near-field block.

The interaction list Li of a node i ∈ T is defined to be the collection of nodes j that

satisfies the conditions (i) lvl(j) = lvl(i); (ii) i and j are well-separated; (iii) their parents

are neighbors [  1 ], [  3 ], [  32 ]. For example, the interaction list of node 4 in Figure  2.2a is

L4 = {7, 9, 13, 14, 17, 18, 19}. An three-level example is also given in Figure  2.3a , where

lvl(i) = 3, lvl(p) = 2. It is easy to see for any node i ∈ T , its interaction list Li has at most

27 nodes. The interaction list decides which far-field interactions to be considered at each
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(a) two-level partition of S
1 2 3 4

l = 0

l = 1

l = 26 7 8 9 11 12 13 14 16 17 18 19

5 10 15 20

21

(b) two-level post-ordered quadtree T

Figure 2.2. A two-level partition example and the corresponding post-ordered quadtree

i

p

(a) gray squares are the interaction list of p;
red squares are the interaction list of i.

1
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1 2 3 4 6 7 8 9 11 12 13 14 16 17 18 19

(b) Far-field blocks at level 2

Figure 2.3. Interaction list and far-field approximations

level. Figure  2.3b gives an example of the far-field interactions at level 2, in which each gray

block is a far-field block that has a low-rank approximation like UiBi,jV
T

j .
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2.5.2 Level-wise low rank approximation

For l ≥ 2, we can define the level-l far-field matrix K(l) by retaining only the far-field

blocks Ki,j, where lvl(i) = lvl(j) = l and j ∈ Li, and setting other blocks of K to zero. Then

K(l) have the decomposition

K(l) = U (l)B(l)
(
V (l)

)T
+ E(l), where |E(l)| ≤ ε|K(l)|, (2.56)

U (l) = diag(Ui1 , · · · , Uik
), V (l) = diag(Vi1 , · · · , Vik

), {iα}k
α=1 are nodes at level l,

and B(l) and E(l) have the same block structure as K(l) with Ki,j replaced by Bi,j and Ei,j

respectively. We also define the near-field matrix Kn by retaining only the near-field blocks

Ki,j, where i and j are leaf nodes and neighbors, and setting other blocks to zero. Then the

kernel matrix K can be decomposed as the sum

K = Kn +
L∑

l=2
K(l) = Kn +

L∑
l=2

U (l)B(l)
(
V (l)

)T
+ E, (2.57)

where the error term E = ∑L
l=2 E

(l). Because the nonzero pattern of E(l) does not overlap

for different l, we have the error bound |E| ≤ ε|K|.

Then, we can define the FMM approximation matrix

K̃ = Kn +
L∑

l=2
U (l)B(l)

(
V (l)

)T
. (2.58)

Computing the matrix-vector product with K̃ in form ( 2.58 ) has O(Ln) = O(n log n) com-

plexity, and the resulting algorithm is called the TreeCode algorithm.

2.5.3 Translation relation and nested basis

In this subsection, we exploit the nested relations in U (l) and V (l), so that the matrix-

vector product with the FMM matrix K̃ can be accelerated to O(n) complexity. For this

purpose, we need to use the translation relation in Section  2.4 .
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Suppose a non-leaf node i ∈ T has four children {c1, c2, c3, c4} in the hierarchical parti-

tion of S. Then we have the partition for xi

xi = xc1 ∪ xc2 ∪ xc3 ∪ xc4 .

For 1 ≤ j ≤ 4, let Tcj ,i be the translation matrix defined in Theorem  2.4.1 or  2.4.3 , then

Ui =



Uc1Tc1,i

Uc2Tc2,i

Uc3Tc3,i

Uc4Tc4,i


=



Uc1

Uc2

Uc3

Uc4





Tc1,i

Tc2,i

Tc3,i

Tc4,i


︸ ︷︷ ︸

Ti

.

A similar relation is also true for Vi. As a result, we obtain the nested relation

U (l) = U (l+1)R(l), V (l) = V (l+1)R(l) where (2.59)

R(l) = diag(Ti1 , · · · , Tik
), {iα}k

α=1 are nodes at level l. (2.60)

Apply the nested relation ( 2.59 ) recursively, we obtain the factorization

U (l)B(l)
(
V (l)

)T
= U (L)

 l∏
l′=L−1

R(l′)

B(l)

 l∏
l′=L−1

R(l′)

T (
V (L)

)T
.

Thus, we have a telescoping expansion of the FMM matrix K̃

K̃ =
L∑

l=2
U (L)

 l∏
l′=L−1

R(l′)

B(l)

 l∏
l′=L−1

R(l′)

T (
V (L)

)T
+Kn

= U (L)

R(L−1)
(
· · ·

(
R(2)B(2)

(
R(2)

)T
+B(3)

)
(2.61)

· · ·
)(

R(L−1)
)T

+B(L)

(V (L)
)T

+Kn.
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In actual computation, we do not have to assemble the matrices U (l), V (l), B(l), R(l) and

Kn. Instead, we only need to assemble the small matrices Ui and Vi for leaf nodes, Ti for

non-leaf nodes, Bi,j for j ∈ Li, and Ki,j for neighbor leaf nodes i, j. Then the matrix-vector

product with K̃ can be computed via a bottom-up and a top-down traversal of the tree T ,

see Algorithm  1 . If we choose n0 = O(r), where r is the expansion order in the far-field low-

rank approximation Ki,j = UiBi,jV
T

j + Ei,j, then the complexity of the FMM matrix-vector

product is O(r2n).

Algorithm 1 2D FMM matrix vector product φ = K̃q

1: v(L) ←
(
V (L)

)T
q

2: t(L) ← B(L)v(L)

3: for level l = L− 1, · · · , 2 do . bottom-up traversal
4: v(l) ←

(
R(l)

)T
v(l+1)

5: t(l) ← B(l)v(l)

6: end for
7: u(2) ← t(2)

8: for level l = 3, · · · , L do . top-down traversal
9: u(l) ← R(l−1)u(l−1) + t(l)

10: end for
11: φ← U (L)u(L) +Knq . evaluation

2.6 Backward stability of FMM

In this section, we will study the backward stability of FMM. In particular, we will prove

that the FMM algorithm is backward stable. For simplicity, we assume the underlying kernel

κ(x, y) = 1
(x−y)1+d . We also assume T is a full quadtree, so that for 0 ≤ l ≤ L, there are 4l

nodes at level l. We also assume that for each leaf node i ∈ T , |xi| = |yi| = n0 = O(r), so

that Ui and Vi have size n0 × r and the total number of level L = 1
2 log2

n
n0

= O(log2 n).

We first review the backward stability of the standard matrix-vector multiplication, see

[ 46 ].

Lemma 2.6.1 ([ 46 ]). Let M ∈ Cp×r, q ∈ Cr, γr = rεmach
1−rεmach

, then the numerical matrix-vector

product satisfies

fl(Mq) = (M + ∆M)q, |∆M | ≤ γr|M |.
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As corollary, ‖∆M‖1 ≤ γr‖M‖1, ‖∆M‖∞ ≤ γr‖M‖∞, ‖∆M‖1,1 ≤ γr‖M‖1,1.

We will use the following norm inequalities repeatedly.

Lemma 2.6.2. Let M , A, N be matrices with appropriate sizes, then

‖MAN‖max ≤ ‖M‖∞‖A‖max‖N‖1,

‖MAN‖max ≤ ‖M‖max‖A‖1,1‖N‖max,

where ‖A‖1,1 = ∑
p,l |Apl|.

Proof. For the first inequality, since

|(MA)ij| =
∣∣∣∣∣∑

p

MipApj

∣∣∣∣∣ ≤ ‖A‖max
∑

p

|Mip| ≤ ‖M‖∞‖A‖max,

using this inequality twice we get

‖MAN‖max ≤ ‖M‖∞‖AN‖max = ‖M‖∞‖NTAT‖max

≤ ‖M‖∞‖NT‖∞‖AT‖max = ‖M‖∞‖A‖max‖N‖1.

For the second inequality,

|(MAN)ij| =

∣∣∣∣∣∣
∑
p,l

MipAplNlj

∣∣∣∣∣∣ ≤ ‖M‖max‖N‖max
∑
p,l

|Apl| = ‖M‖max‖A‖1,1‖N‖max.

The proof is completed.

Lemma 2.6.3. For 2 ≤ l ≤ L, we have

‖U (l)‖max = 1, ‖U (l)‖∞ ≤ r, ‖U (l)‖1 ≤ 4L−ln0,

‖V (l)‖max = 1, ‖V (l)‖∞ ≤ r, ‖V (l)‖1 ≤ 4L−ln0,

‖B(l)‖∞ ≤
27‖K‖max

(1− τ)2+2|d| ‖B(l)‖1 ≤
27‖K‖max

(1− τ)2+2|d| , ‖B(l)‖2 ≤
27‖K‖max

(1− τ)2+2|d| .
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Proof. Suppose {iα}k
α=1 are nodes at level l, where k = 4l. By definition,

U (l) = diag(Ui1 , · · · , Uik
), Uiα ∈ C

n

4l ×r.

According to Theorem  2.3.1 , ‖Uiα‖max = 1. Therefore, ‖U (l)‖max = 1, and

‖U (l)‖∞ = max
α
‖Uiα‖∞ ≤ r,

‖U (l)‖1 = max
α
‖Uiα‖1 ≤

n

4l
= 4L−ln0.

The bound for V (l) is analogous. Note that B(l) is a block 4l × 4l matrix, and the nonzero

blocks on the αth block row B(l)
α,: are {Biα,iβ

}iβ∈Liα
, where ‖Biα,iβ

‖1,1 ≤ ‖K‖max
(1−τ)1+|d| . Since each

interaction list Liα contains at most 27 nodes, we have

‖B(l)‖∞ = max
α
‖B(l)

α,:‖∞ ≤ max
α

∑
β∈Liα

‖Biα,iβ
‖1,1

≤ 27 max
α

max
β∈Liα

‖Biα,iβ
‖1,1 ≤

27‖K‖max

(1− τ)2+2|d| .

Similarly, we can consider block column B(l)
:,α to see ‖B(l)‖1 ≤ 27‖K‖max

(1−τ)2+2|d| .

Lemma 2.6.4. Suppose 2 ≤ l1 ≤ l2 ≤ L−1. The matrix R(l2,l1) ≡ ∏l1
l=l2 R

(l) is block 4l1×4l1

diagonal. Each diagonal block Ti corresponds to a node i at level l1 and has size 4l2+1−l1r×r.

Furthermore, Ti is the vertical concatenation of 4l2+1−l1 matrices of size r × r, and each of

these r× r matrices corresponds to a level l2 + 1 descendant of i. Suppose d is a level l2 + 1

descendant of i, and the path from d to i is

d = dl2+1 → dl2 → · · · → dl1+1 → dl1 = i,

then the r × r submatrix of Ti corresponding to d is

Tdl2+1,dl2
Tdl2 ,dl2−1 · · ·Tdl1+1,dl1

=
l1∏

l=l2

Tdl+1,dl
= Td,i, (2.62)
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where Tdl+1,dl
is the translation matrix defined in Theorem  2.4.1 . As corollaries,

∥∥∥R(l2,l1)
∥∥∥

max
= 1,

∥∥∥R(l2,l1)
∥∥∥

∞
≤ min

(
r,

1 + β

β

)
,

∥∥∥R(l2,l1)
∥∥∥

1
= 4l2−l1+1. (2.63)

Proof. We prove this by induction. If l1 = l2, by the definition ( 2.60 ), R(l2,l1) = R(l1) is block

4l1 × 4l1 diagonal, and each diagonal block Ti is just

Ti =
(
T T

c1,i T T
c2,i T T

c3,i T T
c4,i

)T

, {cj}4
j=1 are children of i,

so that ( 2.62 ) is true.

Assume l1 < l2, and R(l2,l1+1) is block 4l1+1 × 4l1+1 diagonal, and each diagonal block

corresponds to a node at level l1 + 1 and has size 4l2−l1r× r . Then we can merge 4 diagonal

blocks into a larger diagonal block, so that R(l2,l1+1) is block 4l1 × 4l1 diagonal and each

larger diagonal block now corresponds to a node at level l1 and has size 4l2−l1+1r × 4r. By

definition, R(l1) is also block 4l1 × 4l1 diagonal, and each diagonal block corresponds to a

node at level l1 and has size 4r × r. As a result, the product

R(l2,l1) =
l1∏

l=l2

R(l) = R(l2,l1+1)︸ ︷︷ ︸
block 4l1 ×4l1 diagonal

· R(l1)︸ ︷︷ ︸
block 4l1 ×4l1 diagonal

(2.64)

is also block 4l1×4l1 diagonal, and each diagonal block has size 4l2−l1+1r×r and corresponds

to a node at level l1.

In (  2.64 ), the submatrix of R(l2,l1+1) corresponding to d is multiplied with the submatrix

Tdl1+1,dl1
of R(l1) to get the submatrix of R(l2,l1) corresponding to d. By induction hypothesis,

it is l1+1∏
l=l2

Tdl+1,dl

Tdl1+1,dl1
=

l1∏
l=l2

Tdl+1,dl
= Td,i,

where the last equality uses ( 2.55 ) of Theorem  2.4.1 . This completes the induction.

Since ‖Td,i‖max = ‖Td,i‖1 = 1, ‖Td,i‖∞ ≤ min
(
r, 1+β

β

)
, and the diagonal block Ti is the

vertical concatenation of 4l2+1−l1 such Td,i, we have the norm bounds (  2.63 ). This completes

the proof.
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Remark 2.6.5. If we replace R(k) by R̂(k) in the product ∏l1
l=l2 R

(l),

R(l2) · · ·R(k+1)R̂(k)R(k−1) · · ·R(l1),

where R̂(k) could be any matrix with the same structure as R(k), then the statement in Lemma

 2.6.4 still holds for this new product, except that we just need to replace Tdlk+1 ,dlk
in ( 2.62 )

with the appropriate block in R̂(k).

Now, we study the backward error in the fast multipole method. In particular, we show

that its backward error depends logarithmically on the size of K. This is an advantage over

standard matrix-vector product, where the backward error depends linearly on the size of

the matrix (see Lemma  2.6.1 ).

Theorem 2.6.6. The fast multipole method multiplication is backward stable:

fl(K̃q) = (K + ∆K)q, where

|∆K| ≤
(
O (r log n) εmach + ε

)
|K|,

where εmach is the machine precision, and ε is the approximation accuracy.

Proof. Throughout this proof, let γ̃r denote the generic constant cγr for some small c > 0.

The FMM matrix-vector product routine consists of a bottom-up traversal, a top-down

traversal, and a final evaluation step, see Algorithm  1 .

• Bottom-up traversal. In this stage, we compute

fl(v(L)) =
(
V (L) + ∆V (L)

)T
q, |∆V (L)| ≤ γ̃r|V (L)|,

fl(v(l)) =
(
R(l) + ∆R(l)

)T
fl(v(l+1)), |∆R(l)| ≤ γ̃r|R(l)|, (2.65)

fl(t(l)) =
(
B(l) + ∆B(l)

)
fl(v(l)), |∆B(l)| ≤ γ̃r|B(l)|, (2.66)
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where ∆V (L) has the same block structure as V (L), and ∆R(l) has the same block

structure as R(l), and ∆B(l) has the same block structure as B(l). Expand the recursion

( 2.65 ) and use the nested relation ( 2.59 ), we get

fl(v(l)) =
(
V (l) + ∆V (l) +O(ε2

mach)
)T
q, where (2.67)

∆V (l) = ∆V (L) ·R(L−1,l) +
L−1∑
k=l

V (k+1) ·∆R(k) ·R(k−1,l), 2 ≤ l ≤ L. (2.68)

Then, we can expand ( 2.66 ) to get

fl(t(l)) =
(
B(l) + ∆B(l)

) (
V (l) + ∆V (l) +O(ε2

mach)
)T
q (2.69)

=
(
B(l)

(
V (l)

)T
+ ∆Bl +O(ε2

mach)
)
q,

where the error matrix ∆Bl is

∆Bl = ∆B(l)
(
V (l)

)T
+B(l)

(
∆V (l)

)T
. (2.70)

• Top-down traversal. In this stage, we compute

fl(u(2)) = fl(t(2)),

fl(u(l)) =
(
I + ∆Z(l)

)( (
R(l−1) + ∆R(l−1)

)
fl(u(l−1)) + fl(t(l))

)
, l ≥ 3,

where |∆Z(l)| ≤ εmach|I| for l ≥ 3, and we also set ∆Z(2) = 0. Substituting (  2.69 ) into

the above expression, we obtain the following recursion for l ≥ 3,

fl(u(l)) =
(
I + ∆Z(l)

) (
R(l−1) + ∆R(l−1)

)
fl(u(l−1)) (2.71)

+
(
I + ∆Z(l)

) (
B(l)

(
V (l)

)T
+ ∆Bl +O(ε2

mach)
)
q.

In order to expand the above recursion, we assume fl(u(l−1)) has the following form

fl(u(l−1)) =
(

l−1∑
k=2

R(l−2,k)B(k)
(
V (k)

)T
+ ∆Fl−1 +O(ε2

mach)
)
q. (2.72)
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And we need to find the recurrence formula for the error matrix ∆Fl−1. To do this,

substitute ( 2.72 ) into ( 2.71 ), then we get

fl(u(l)) =
(

l∑
k=2

R(l−1,k)B(k)
(
V (k)

)T
+ ∆Fl +O(ε2

mach)
)
q, (2.73)

and we obtain the following recurrence formula for Fl

∆F2 = ∆B2,

∆Fl = R(l−1) ·∆Fl−1 + ∆Gl, where (2.74)

∆Gl = ∆Bl + ∆Z(l) ·B(l)
(
V (l)

)T

+
l−1∑
k=2

(
∆Z(l) ·R(l−1,k)

)
B(k)

(
V (k)

)T
.

+
l−1∑
k=2

(
∆R(l−1) ·R(l−2,k)

)
B(k)

(
V (k)

)T

Expand the recurrence formula ( 2.74 ), we can get the error matrix ∆FL

∆FL = R(L−1,2) ·∆B2 +
L∑

l=3
R(L−1,l) ·∆Gl,

=
L∑

l=2
R(L−1,l) ·∆Bl +

L∑
l=2

(
R(L−1,l) ·∆Z(l)

)
B(l)

(
V (l)

)T

+
L∑

l=3

l−1∑
k=2

(
R(L−1,l) ·∆Z(l) ·R(l−1,k)

)
B(k)

(
V (k)

)T

+
L∑

l=3

l−1∑
k=2

(
R(L−1,l) ·∆R(l−1) ·R(l−2,k)

)
B(k)

(
V (k)

)T

Substitute the expression ( 2.70 ) for ∆Bl and change the order in the double sums,

∆FL =
L∑

l=2
R(L−1,l) ·∆B(l)

(
V (l)

)T
+

L∑
l=2

R(L−1,l)B(l)
(
∆V (l)

)T

+
L∑

l=2

(
R(L−1,l) ·∆Z(l)

)
B(l)

(
V (l)

)T

+
L−1∑
l=2

L−1∑
k=l

(
R(L−1,k+1) ·∆Z(k+1) ·R(k,l)

)
B(l)

(
V (l)

)T
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+
L−1∑
l=2

L−1∑
k=l

(
R(L−1,k+1) ·∆R(k) ·R(k−1,l)

)
B(l)

(
V (l)

)T
.

• Evaluation. In this stage, we compute

fl(φ) = (I + ∆Z)
((
U (L) + ∆U (L)

)
fl(uL) + (Kn + ∆Kn)q

)
, (2.75)

where |∆U (L)| ≤ γ̃r|U (L)|, |∆Kn| ≤ γ̃r|Kn|, |∆Z| ≤ εmach|I|, and

fl(u(L)) =
(

L∑
l=2

R(L−1,l)B(l)
(
V (l)

)T
+ ∆FL +O(ε2

mach)
)
q, (2.76)

Substituting ( 2.76 ) into ( 2.75 ), and using ( 2.59 ) and ( 2.57 ), we have

fl(φ) = (K + ∆K)q,

where the overall error matrix

∆K = ∆F + ∆Kn + ∆Z ·K −∆Z · E − E +O(ε2
mach), where

∆F = U (L) ·∆FL +
L∑

l=2

(
∆U (L) ·R(L−1,l)

)
B(l)

(
V (l)

)T

=
L∑

l=2
U (l) ·∆B(l)

(
V (l)

)T
+

L∑
l=2

U (l)B(l)
(
∆V (l)

)T

+
L∑

l=2

(
U (l) ·∆Z(l)

)
B(l)

(
V (l)

)T

+
L−1∑
l=2

L−1∑
k=l

(
U (k+1) ·∆Z(k+1) ·R(k,l)

)
B(l)

(
V (l)

)T

+
L−1∑
l=2

L−1∑
k=l

(
U (k+1) ·∆R(k) ·R(k−1,l)

)
B(l)

(
V (l)

)T

+
L∑

l=2

(
∆U (L) ·R(L−1,l)

)
B(l)

(
V (l)

)T
,
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where ∆V (l) has the form ( 2.68 )

∆V (l) = ∆V (L) ·R(L−1,l) +
L−1∑
k=l

V (k+1) ·∆R(k) ·R(k−1,l), 2 ≤ l ≤ L.

To simplify the notations in ∆F , let

∆U (l) = ∆U (L) ·R(L−1,l) +
L−1∑
k=l

U (k+1) ·∆R(k) ·R(k−1,l), 2 ≤ l ≤ L,

∆Ũ (l) = U (l) ·∆Z(l) +
L−1∑
k=l

U (k+1) ·∆Z(k+1) ·R(k,l), 2 ≤ l ≤ L,

then we have

∆F =
L∑

l=2
U (l) ·∆B(l)

(
V (l)

)T
+

L∑
l=2

U (l)B(l)
(
∆V (l)

)T

+
L∑

l=2
∆U (l) ·B(l)

(
V (l)

)T
+

L∑
l=2

∆Ũ (l) ·B(l)
(
V (l)

)T
.

We show how to bound the entries of ∑L
l=2 ∆U (l) · B(l)

(
V (l)

)T
. In light of Lemma  2.6.4 

and Remark  2.6.5 , ∆U (l) has the same structure as U (l), so ∆U (l) · B(l)
(
V (l)

)T
has the

same structure as K(l) = U (l)B(l)
(
V (l)

)T
+ E(l). Therefore, the non-zero pattern of ∆U (l) ·

B(l)
(
V (l)

)T
for different l does not overlap. Suppose lvl(i) = lvl(j) = l and j ∈ Li, then

the corresponding block in ∆U (l) · B(l)
(
V (l)

)T
has the form ∆Ui · Bi,j (Vj)T , where ∆Ui is a

diagonal block in ∆U (l). According to Lemma  2.6.2 and Theorem  2.3.1 ,

∥∥∥∆Ui ·Bi,j (Vj)T
∥∥∥

max
≤ ‖∆Ui‖max‖Bi,j‖1,1‖Vj‖max

≤ ‖∆Ui‖max
‖Ki,j‖min

(1− τ)2+2|d|

≤
∥∥∥∆U (l)

∥∥∥
max

‖Ki,j‖min

(1− τ)2+2|d| ,
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where the ‖ · ‖max norm of ∆U (l) can be bounded via Lemma  2.6.4 and Remark  2.6.5 as

follows. For its first term ∆U (L) ·R(L−1,l), the block corresponding a node dL at level L has

the form

∆UdL
·
(
TdL,dL−1 · · ·Tdl+1,dl

)
= ∆UdL

· TdL,dl
,

and its ‖ · ‖max norm can be bounded by

‖∆UdL
‖max · ‖TdL,dl

‖1 ≤ γ̃r‖UdL
‖max · ‖TdL,dl

‖1 = γ̃r.

For each summand U (k+1) ·∆R(k) ·R(k−1,l), the block corresponding a node dL at level L has

the form

UdL
·
(
TdL,dL−1 · · ·Tdk+2,dk+1

)
︸ ︷︷ ︸

Udk+1

· ∆Tdk+1,dk
·
(
Tdk,dk−1 · · ·Tdl+1,dl

)
︸ ︷︷ ︸

Tdk,dl

,

and its ‖ · ‖max norm can be bounded by

‖Udk+1‖max · ‖∆Tdk+1,dk
‖1 · ‖Tdk,dl

‖1 ≤ γ̃r‖Udk+1‖max · ‖Tdk+1,dk
‖1 · ‖Tdk,dl

‖1 = γ̃r.

Thus, we have the bounds

‖∆U (l)‖max ≤ γ̃r +
L−1∑
k=l

γ̃r ≤ (L− l + 1)γ̃r,

∥∥∥∆Ui ·Bi,j (Vj)T
∥∥∥

max
≤ (L− l + 1)γ̃r

(1− τ)2+2|d| ‖Ki,j‖min.

Hence, we have the entry-wise bound

∣∣∣∆Ui ·Bi,j (Vj)T
∣∣∣ ≤ (L− l + 1)γ̃r

(1− τ)2+2|d| |Ki,j|,∣∣∣∣∆U (l) ·B(l)
(
V (l)

)T
∣∣∣∣ ≤ O(γ̃r log n)

∣∣∣K(l)
∣∣∣ .
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Because the non-zero blocks of ∆U (l) · B(l)
(
V (l)

)T
for different l does not overlap, we have

the entry-wise bound

∣∣∣∣∣
L∑

l=2
∆U (l) ·B(l)

(
V (l)

)T
∣∣∣∣∣ ≤ O(γ̃r log n) |K| .

We can analogously derive the bounds for other terms in ∆F

∣∣∣∣∣
L∑

l=2
U (l) ·∆B(l)

(
V (l)

)T
∣∣∣∣∣ ≤ O(γ̃r log n) |K| ,

∣∣∣∣∣
L∑

l=2
U (l)B(l) ·

(
∆V (l)

)T
∣∣∣∣∣ ≤ O(γ̃r log n) |K| ,

∣∣∣∣∣
L∑

l=2
∆Ũ (l) ·B(l)

(
V (l)

)T
∣∣∣∣∣ ≤ O(γ̃r log n) |K| .

Because ∆K = ∆F + ∆Kn + ∆Z ·K −∆Z · E − E + O(ε2
mach) and |E| ≤ ε|K|, we obtain

the entry-wise bound for ∆K

|∆K| ≤
(
O (r log n) εmach + ε

)
|K|,

where εmach is the machine precision, and ε is the approximation accuracy. The proof is

completed.
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3. SUPERDC: SUPERFAST DIVIDE-AND-CONQUER

RANK-STRUCTURED MATRIX EIGENVALUE

DECOMPOSITION WITH IMPROVED STABILITY

This chapter is based on the paper [Ou, Xiaofeng and Xia, Jianlin, ”SuperDC: superfast

divide-and-conquer eigenvalue decomposition for rank-structured matrices with improved sta-

bility”, submitted to SIAM Journal on Scientific Computing].

In this chapter, we shall describe a superfast divide-and-conquer eigenvalue decompo-

sition for dense symmetric matrices with small off-diagonal ranks and in a hierarchically

semiseparable form. Compared to an earlier basic algorithm in [Vogel, Xia, et al., SIAM J.

Sci. Comput., 38 (2016)], this eigensolver (SuperDC) has significantly better stability while

keeping the nearly linear complexity for finding the entire eigenvalue decomposition. In a

set of comprehensive tests, SuperDC shows significantly lower runtime and storage than the

Matlab eig function. The stability benefits of our new algorithm are also confirmed with

both analysis and numerical comparisons.

Throughout this chapter, the following notations are used.

• Lower-case letters in bold fonts like u are used to denote vectors.

• A vector u = (ui)n
i=1 will also be considered as a set with elements {ui}n

i=1.

• (Aij)n×n means an n×n matrix with the (i, j)-entry Aij. Sometimes, a matrix defined

by the evaluation of a function κ(s, t) at points si in a set s and tj in a set t is written

as (κ(si, tj))si∈s,tj∈t.

• diag(· · · ) denotes a (block) diagonal matrix.

• rowsize(A) and colsize(A) mean the row and column sizes of A, respectively.

• u� v denotes the entrywise (Hadamard) product of two vectors u and v.

• For a binary tree T , we order its nodes in postorder, so that it has nodes i =

1, 2, . . . , root(T ), where root(T ) is the root.
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• fl(x) denotes the floating point result of x.

• εmach represents the machine precision.

3.1 Introduction

We consider the full eigenvalue decomposition of n×n symmetric matrices A with small

off-diagonal ranks. Such matrices belong to the class of rank-structured matrices. Examples

include banded matrices with finite bandwidth [ 47 ], Toeplitz matrices in Fourier space [ 30 ],

[ 48 ], [ 49 ], some matrices arising from discretized PDEs and integral equations [ 25 ]–[ 27 ], [ 50 ],

[ 51 ], some kernel matrices [  32 ], [ 36 ], etc. The eigenvalue decompositions are very useful in

computations such as matrix function evaluations [  52 ], discretized linear system solutions

[ 53 ], [  54 ], matrix equation solutions, and quadrature approximations [  55 ], [  56 ]. They are also

very useful in fields such as optimization, imaging, Gaussian processes, and machine learning.

In addition, symmetric eigendecompositions can be used to compute SVDs of non-symmetric

matrices.

There are several types of rank-structured forms such as H/H2 matrices [  5 ], [ 6 ], hierar-

chical semiseparable (HSS) matrices [  14 ], [  57 ], quasiseparable/semiseparable matrices [ 10 ],

[ 58 ], [  59 ], BLR matrices [  15 ], and HODLR matrices [ 60 ]. Examples of eigensolvers for these

rank-structured methods include divide-and-conquer methods [  39 ], [  47 ], [  61 ]–[ 64 ], QR itera-

tions [  9 ], [  10 ], [  65 ]–[ 67 ], and bisection [  30 ], [  68 ]. There are also relevant works like [  16 ], [  69 ]

dedicated to the acceleration and stabilization of relevant eigenvalue solutions.

Our work here focuses on the divide-and-conquer method for HSS matrices (that may

be dense or sparse). The divide-and-conquer method has previously been well studied for

tridiagonal matrices (which may be considered as special HSS forms). See, e.g., [ 16 ]–[ 18 ],

[ 70 ]–[ 72 ]. In particular, a stable version is given in [  16 ]. The algorithms can compute all

the eigenvalues in O(n2) flops and can compute the eigenvectors in O(n3) flops. It is also

mentioned in [ 16 ] that it is possible to accelerate the operations in the divide-and-conquer

process via the fast multipole method (FMM) [  3 ] to reach nearly linear complexity. However,

this has not actually been done in [ 16 ] or later relevant work [ 47 ], [ 61 ]. Until recently in [  39 ],

a divide-and-conquer algorithm is designed for HSS matrices without the need of tridiagonal
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reductions. For an HSS matrix with off-diagonal ranks bounded by r (which may be a

constant or a power of log n), the method in [  39 ] computes a structured eigendecomposition

in O(r2n log2 n) flops with storage O(rn log n). The method is said to be superfast.

The work in [  39 ] gives a proof-of-concept study of superfast eigendecompositions for HSS

matrices A. Yet it does not consider some crucial stability issues in the HSS divide-and-

conquer process, such as the risks of exponential norm growth and potential cancellations in

some function evaluations. Moreover, it does not incorporate several key stability strategies

that are used in practical tridiagonal divide-and-conquer algorithms. In fact, these limita-

tions are due to some major challenges in combining FMM accelerations with those stability

strategies. More specifically, the limitations are as follows.

1. During the dividing stage, the diagonal blocks of A (also as HSS blocks) are repeatedly

updated along a top-down hierarchical tree traversal. Upper-level off-diagonal blocks

are used to update lower-level HSS diagonal blocks. If some upper-level off-diagonal

blocks have large norms, then the norms of updated lower-level HSS blocks will grow

exponentially during the top-down traversal. This brings stability risks and may even

cause overflow.

2. In the conquering stage, the eigenvalues are solved via modified Newton’s method

applied to some secular equations. On the one hand, in order to apply FMM accel-

erations, evaluations of the secular function need to be assembled into matrix-vector

products. On the other hand, each evaluation of the secular function shall be split into

two (say, for the positive terms and negative terms in a summation) to avoid cancella-

tion and also to employ different interpolation methods (see, e.g., [  16 ], [  18 ], [  70 ], [  71 ],

[ 73 ]). However, such splitting depends on individual eigenvalues, so that the standard

FMM acceleration cannot be applied directly. (See Section  3.4.2 .) In [  39 ], the FMM

is used directly without such splitting, which gives another stability risk.

3. When the eigenvalues of A or any of the intermediate eigenvalue problems are clus-

tered or when an updated eigenvalue is close to a previous one, evaluations of the

standard secular function might lose accuracy or even encounter division by zero due
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to catastrophic cancellations. This would negatively affect the convergence of modi-

fied Newton’s method, and destroy the orthogonality of eigenvectors. To avoid such

cancellations, in [  16 ], [ 18 ], [ 70 ], [  71 ], [  73 ], the shifted secular equations are considered

rather than the standard ones. However, such shifting is eigenvalue-dependent and

there is no uniform shift that works for all the eigenvalues. This makes it difficult to

apply FMM accelerations. (See Section  3.4.3 for the details.) Again, the algorithm in

[ 39 ] directly applies FMM accelerations to standard secular equations without shifting.

This is potentially dangerous for practical use.

The main purpose of this work is to overcome these limitations. That is, we seek to

design a more reliable superfast divide-and-conquer eigensolver (called SuperDC) to find an

approximate eigenvalue decomposition

A ≈ QΛQT , (3.1)

where Λ is a diagonal matrix for the eigenvalues, and Q is for the orthogonal eigenvectors.

Here we assume A to be a real and symmetric HSS matrix. The ideas can be immediately

extended to the Hermitian case. For convenience, we call the matrix Q an eigenmatrix.

Compared to [ 39 ], we give a sequence of strategies that resolves the stability issues. We also

provide many other improvements in terms of the reliability, efficiency, along with certain

analysis. The main significance of the work includes the following.

1. We analyze why the original hierarchical dividing strategy in [  39 ] can lead to expo-

nential norm growth. A more stable dividing strategy is designed, with a balancing

technique which guarantees the norm growth is well under control. The number of

rank-one updates is also minimized to save the cost of intermediate eigenvalue solu-

tions.

2. For accelerations of the solution of the secular equations, we design a triangular FMM

to split secular function evaluations into two . When shifted secular equations are

solved to avoid cancellations, a local shifting strategy is developed to integrate shifting
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into FMM matrices without destroying the FMM structure. This improves not only

the stability, but also the rate of convergence.

3. We also provide various other discussions and improvements. Examples include the

precise structure of the resulting eigenmatrix, the FMM-accelerated iterative eigenvalue

solution, the eigenvalue deflation criterion with a user-supplied tolerance.

4. With all the stabilization strategies, SuperDC still has O(r2n log2 n) complexity with

O(rn log n) storage. Numerical tests for different types of matrices are included. For

matrix of moderate size, SuperDC already has significantly lower runtime and storage

than the Matlab eig function while producing satisfactory accuracy. Benefits of our

stability strategies are also demonstrated.

In the remaining sections, we begin in Section  3.2 with a quick review of the basic HSS

divide-and-conquer eigensolver in [  39 ]. Then the improved structured dividing strategy is

discussed in Section  3.3 , followed by the efficient structured conquering scheme in Section  3.4 .

Section  3.5 gives some comprehensive numerical experiments to demonstrate the efficiency

and accuracy. A list of the major algorithms is given in the Section  3.6 . We also describe

some improvements on the implementations in Section  3.7 , followed by the generalization of

SuperDC to compute the SVD in Section  3.8 . Section  3.9 concludes this chapter.

3.2 Review of the basic superfast divide-and-conquer eigensolver

We first briefly summarize the basic superfast divide-and-conquer eigensolver in [ 39 ],

which generalizes the classical divide-and-conquer method for tridiagonal matrices to HSS

matrices.

A symmetric HSS matrix A [ 14 ] defined with the aid of a postordered full binary tree T

called HSS tree has a nested structure that looks like

Dp =

 Di UiBiU
T
j

UjB
T
i U

T
i Dj

 , (3.2)
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where p ∈ T has child nodes i and j, so that Dp with p = root(T ) is the entire HSS matrix

A. Here, the U matrices are off-diagonal basis matrices and also satisfy a nested relationship

Up =

UiRi

UjRj

. The Di, Ui, Bi matrices are called HSS generators associated with node i.

The maximum size of the B generators is usually referred as the HSS rank of A. We suppose

the root of the HSS tree T for A is at level 0, and the children of a node i at level l are at

level l + 1.

U14B14U
T
7

U7B7U
T
14

U3B3U
T
6

U6B6U
T
3

U10B10U
T
13

U13B13U
T
10

U1B1U
T
2

U2B2U
T
1

U4B4U
T
5

U5B5U
T
4

U8B8U
T
9

U9B9U
T
8

U11B11U
T
12

U12B12U
T
11

D1

D2

D4

D5

D8
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D12

(a) 4-level HSS matrix

root(T )

6

4 51 2

3

7 14

10 13

11 138 9

l = 0

l = 1

l = 2

l = 3

(b) 4-level HSS tree

Figure 3.1. A 4-level symmetric HSS matrix and its associated HSS binary tree

The superfast divide-and-conquer eigensolver in [  39 ] finds the eigendecomposition (  3.1 )

of A through a dividing stage and a conquering stage as follows.
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3.2.1 Dividing stage

In the dividing stage in [ 39 ], A and its submatrices are recursively divided into block-

diagonal HSS forms plus low-rank updates. Starting with p = root(T ) and its two children

i and j. A = Dp in ( 3.2 ) can be written as

Dp =

Di − UiBiB
T
i U

T
i

Dj − UjU
T
j

+

UiBi

Uj

( BT
i U

T
i UT

j

)
. (3.3)

For notational convenience, we suppose the HSS rank of A is r and each B generator has

column size r. Let

D̂i = Di − UiBiB
T
i U

T
i , D̂j = Dj − UjU

T
j , Zp =

UiBi

Uj

 , (3.4)

then we have

Dp = diag(D̂i, D̂j) + ZpZ
T
p . (3.5)

= +

Here, the diagonal blocks Di and Dj are modified so that a rank-r update ZpZ
T
p can

be used instead of a rank-2r update. The column size of Zp is referred as the rank of the

low-rank update and here we have colsize(Zp) = colsize(Bi). During this process, the blocks

D̂i and D̂j remain to be HSS forms. In fact, it is shown in [ 14 ], [ 39 ] that any matrix of

the form Di − UiHU
T
i can preserve the off-diagonal basis matrices of Di. Specifically, the

following lemma can be used for generator updates.
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Lemma 3.2.1. [ 39 ] Let Ti be the subtree of the HSS tree T that has the node i as the root.

Then Di − UiHU
T
i has HSS generators D̃k, Ũk, R̃k, B̃k for each node k ∈ Ti as follows:

Ũk = Uk, R̃k = Rk,

B̃k = Bk − (RkRkl
· · ·Rk1)H(RT

k1 · · ·R
T
kl
RT

k̃ ), (3.6)

D̃k = Dk − Uk(RkRkl
· · ·Rk1)H(RT

k1 · · ·R
T
kl
RT

k )UT
k for a leaf k,

where k̃ is the sibling node of k and k → kl → · · · → k1 → i is the path connecting k to i.

Accordingly, Di − UiHU
T
i and Di have the same off-diagonal basis matrices.

Thus, the HSS generators of D̂i and D̂j can be conveniently obtained via the generator

update procedure (  3.6 ). Then the dividing process can continue on D̂i and D̂j like above

with p in ( 3.3 ) replaced by i and j, respectively.

3.2.2 Conquering stage

Suppose eigenvalue decompositions of the subproblems D̂i and D̂j in (  3.4 ) have been

computed as

D̂i = QiΛiQ
T
i , D̂j = QjΛjQ

T
j . (3.7)

Then from ( 3.5 ), we have

Dp = diag(Qi, Qj)
(
diag(Λi,Λj) + ẐpẐ

T
p

)
diag(QT

i , Q
T
j ), (3.8)

where

Ẑp = diag(QT
i , Q

T
j )Zp. (3.9)

Consequently, if we can solve the rank-r update problem

diag(Λi,Λj) + ẐpẐ
T
p = Q̂pΛpQ̂

T
p , (3.10)
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then the eigendecomposition of Dp can be simply retrieved as

Dp = QpΛpQ
T
p , with Qp = diag(Qi, Qj)Q̂p. (3.11)

Therefore, the main task is to compute the eigendecomposition of the low-rank update

problem (  3.10 ). To this end, suppose Ẑp = ( z1 · · · zr ), where zk’s are the columns of

Ẑp. Then (  3.10 ) can be treated as r rank-1 update problems diag(Λi,Λj) +∑r
k=1 zkzT

k . As a

result, a basic component is to quickly find the eigenvalue decomposition of a diagonal plus

rank-1 update problem in the following form:

Λ̃ + vvT = Q̃ΛQ̃T , (3.12)

where Λ̃ = diag(d1, · · · , dn) with d1 ≤ · · · ≤ dn, v = ( v1 · · · vn )T , Q̃ = ( q̃1 · · · q̃n ),

and Λ = diag(λ1, · · · , λn).

As in the standard divide-and-conquer eigensolver (see, e.g., [ 16 ], [ 17 ], [ 70 ]), finding λk

is equivalent to solving the following secular equation [ 74 ]:

f(x) = 1 +
n∑

k=1

v2
k

dk − x
= 0. (3.13)

x = d1 x = d2 x = d3 x = d4

λ1 λ2 λ3 λ4

Figure 3.2. Roots of secular equation 1 + v2
1

d1−x
+ v2

2
d2−x

+ v2
3

d3−x
+ v2

4
d4−x

= 0

Newton iterations with rational interpolations may be used, and the cost for finding all

the n roots is O(n2). Once λk is computed, a corresponding eigenvector looks like q̃k =

(Λ̃− λkI)−1v. Such an analytical form is not directly used, because any loss of precision in

the computed λk can be significantly amplified in (Λ̃ − λkI)−1v, and this will result in loss
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of eigenvectors orthogonality. Instead, a method in [ 16 ] based on Löwner’s formula can be

used to obtain q̃k stably.

It is also mentioned in [  16 ] that nearly O(n) complexity may be achieved by assembling

multiple operations into matrix-vector multiplications that can be accelerated by the FMM.

This is first verified in [  39 ], where the complexity of the algorithm for finding the entire

eigendecomposition is O(r2n log2 n) instead of O(n3), with the eigenmatrix Q in (  3.1 ) given in

a structured form that needs O(rn log n) storage instead of O(n2). In the following sections,

we give a series of stability enhancements to get an improved superfast divide-and-conquer

eigensolver.

3.3 Improved structured dividing strategy

In this section, we point out a stability risk in the original dividing method as given in

( 3.3 )–( 3.4 ) and propose a more stable dividing strategy. We also minimize colsize(Zp), the

rank of the low-rank update.

The stability risk can be illustrated as follows. Consider D̂i in ( 3.3 ) which is the result of

updating Di in the dividing process associated with the parent p of i. Suppose i has children

c1 and c2 such that

Di =

 Dc1 Uc1Bc1U
T
c2

Uc2Bc2U
T
c1 Dc2

 , Ui =

Uc1Rc1

Uc2Rc2

 . (3.14)

Then

D̂i = Di − UiBiB
T
i U

T
i =

 D̃c1 Uc1B̃c1U
T
c2

Uc2B̃
T
c1U

T
c1 D̃c2

 ,
where

D̃c1 = Dc1 − Uc1Rc1BiB
T
i R

T
c1U

T
c1 , D̃c2 = Dc2 − Uc2Rc2BiB

T
i R

T
c2U

T
c2 ,

B̃c1 = Bc1 −Rc1BiB
T
i R

T
c2 . (3.15)
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In HSS constructions [  14 ], to ensure stability of HSS algorithms, the U basis generators

often have orthonormal columns [  30 ], [  40 ], and the R generators also satisfy that

Rc1

Rc2

 has

orthonormal columns. Then each B generator has 2-norm equal to its associated off-diagonal

block. For example ‖Bi‖2 = ‖UiBiU
T
j ‖2. Furthermore, ‖Rc1‖2 ≤ 1, ‖Rc2‖2 ≤ 1, and (  3.15 )

means

‖B̃c1‖2 ≤ ‖Bc1‖2 + ‖Bi‖2
2. (3.16)

If the off-diagonal block UiBiU
T
j has a large norm, ‖B̃c1‖2 can potentially be much larger than

‖Bc1‖2. We can similarly observe the norm growth with the updatedD generators. Moreover,

when the dividing process proceeds on D̃c1 , the norms of the updated B,D generators at

lower levels can grow exponentially.

Proposition 3.3.1. Suppose the Uk generator of A associated with each node k of T with

k 6= root(T ) has orthonormal columns and all the original Bk generators satisfy ‖Bk‖2 ≤ β

with β � 1. Also suppose the leaves of T are at level lmax ≤ log2 n. When the original

dividing process in Section  3.2.1 proceeds from root(T ) to a nonleaf node i, immediately

after finishing the dividing process associated with node i,

• with i at level l ≤ lmax− 2, the updated Bk generator (denoted B̃k) associated with any

descendant k of i satisfies

‖B̃k‖2 = O(β2l) ≤ O(β2lmax−2); (3.17)

• with i at level l ≤ lmax− 1, the updated Dk generator (denoted D̃k) associated with any

leaf descendant k of i satisfies

‖D̃k‖2 = ‖Dk‖2 +O(β2l) ≤ ‖Dk‖2 +O(β2lmax−1). (3.18)

Here O(·) means the asymptotic upper bound taken as the highest order term in β. Both

upper bounds for ‖B̃k‖2 and ‖D̃k‖2 are attainable.
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Proof. Following the update formulas in Lemma  3.2.1 , we just need to show the norm bound

for ‖B̃k‖2. The bound for ‖D̃k‖2 can be shown similarly.

After the dividing process associated with root(T ) is finished, according to (  3.6 ), B̃k

associated with any descendant k of a child i of root(T ) looks like

B̃k = Bk − (RkRkm−1 · · ·Rk1)Hi(RT
k1 · · ·R

T
km−1R

T
k̃ ), (3.19)

where Hi = BiB
T
i if i is the left child of root(T ) or Hi = I otherwise, k is supposed to be

at level m with sibling k̃, and k → km−1 → · · · → k1 → i is the path connecting k to i

in the HSS tree T . Clearly, ‖Hi‖2 ≤ β2. With the orthogonality condition of the U basis

generators,

Rc1

Rc2

 also has orthogonal columns. Then we get

‖B̃k‖2 ≤ ‖Bk‖2 + ‖Hi‖2 ≤ β + β2 = O(β2). (3.20)

Then in the dividing process associated with node i at level 1, for a child c of i (see

Figure  3.3 for an illustration), the generator D̃c is further updated to

D̂c = D̃c − UcHcU
T
c , (3.21)

where Hc = B̃cB̃
T
c if c is the left child of i or Hc = I otherwise. We have ‖Hc‖2 ≤ ‖B̃c‖2

2 for

the first case and ‖Hc‖2 = 1 for the second case. From (  3.20 ), we have ‖Hc‖2 ≤ (β2 + β)2.

For any descendant k of c with sibling k̃, ( 3.21 ) needs to update the generator Bk to

B̃k = Bk − (RkRkm−1 · · ·Rk2Rc)Hi(RT
c R

T
k2 · · ·R

T
km−1R

T
k̃ ) (3.22)

− (RkRkm−1 · · ·Rk2)Hc(RT
k2 · · ·R

T
km−1)RT

k̃ ,

where the last term on the right-hand side is because of the update associated with the

dividing of Di like in ( 3.19 ). Then

‖B̃k‖2 ≤ ‖Bk‖2 + ‖Hi‖2 + ‖Hc‖2 ≤ β + β2 + (β2 + β)2 = O(β4). (3.23)
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root(T )

i
c

k

Figure 3.3. Nodes involved in the dividing process.

If the dividing process continues to c, it is similar to obtain ‖B̃k‖2 = O(β8) for any

descendant k of a child of c. We can then similarly reach the conclusion on the general

pattern of the norm growth as in (  3.17 ). Also, if i is at level lmax − 1, then Bk associated

with a child k of i is not updated, which is why only i at level l ≤ lmax − 2 contributes to

the norm growth of lower level B generators. The upper bounds are attainable. To see this,

suppose k0 is a child of root(T ) and ‖Bk0‖2 = β, then following the proof we can see that

the asymptotic upper bounds (  3.17 ) and ( 3.18 ) can be attained at some leaf level node k

after the dividing process associated with the parent of k is completed.

This proposition indicates that, during the original hierarchical dividing process, the

updated B,D generators associated with a lower-level node may potentially have exponential

norm accumulation, as long as one of its ancestors is associated with a B generator with a

large norm. This can cause stability issues or even overflow, as confirmed in the numerical

tests later.

To resolve this, we introduce balancing/scaling into the updates and propose a new

dividing strategy. That is, we replace the original dividing method (  3.3 ) by

Dp =

Di − 1
‖Bi‖2

UiBiB
T
i U

T
i

Dj − ‖Bi‖2UjU
T
j

 (3.24)
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+


1√

‖Bi‖2
UiBi√

‖Bi‖2Uj

( 1√
‖Bi‖2

BT
i U

T
i

√
‖Bi‖2U

T
j

)
.

Then we still have ( 3.5 ), but with

D̂i = Di −
1
‖Bi‖2

UiBiB
T
i U

T
i , D̂j = Dj − ‖Bi‖2UjU

T
j , Zp =


1√

‖Bi‖2
UiBi√

‖Bi‖2Uj

 . (3.25)

With this strategy, we can prove that the norms of the updated B,D generators are well

controlled.

Proposition 3.3.2. Suppose the same conditions as in Proposition  3.3.1 hold, except that

( 3.3 ) is replaced by ( 3.24 ) so that ( 3.4 ) is replaced by ( 3.25 ). Then (  3.17 ) becomes

‖B̃k‖2 ≤ 2lβ ≤ 2lmax−2β, (3.26)

and ( 3.18 ) becomes

‖D̃k‖2 ≤ ‖Dk‖2 + 2lβ ≤ ‖Dk‖2 + 2lmax−1β.

Analogously, the upper bounds are attainable.

Proof. The proof follows a procedure similar to the proof for Proposition  3.3.1 . Again, we

just show the result for ‖B̃k‖2. After the dividing process associated with root(T ) is finished,

we still have (  3.19 ) for any descendant k of a child i of root(T ), except that Hi = BiB
T
i

‖Bi‖2
if

i is the left child of root(T ) or Hi = ‖Bi‖2I otherwise. In either case, we have ‖Hi‖2 ≤ β.

Then ( 3.20 ) becomes

‖B̃k‖2 ≤ 2β. (3.27)

Then in the dividing process associated with node i at level 1, for a child c of i, the

generator D̃c is updated like in ( 3.21 ), except that Hc = B̃cB̃T
c

‖B̃c‖2
if c is the left child of i or

Hc = ‖B̃c‖2I otherwise. We have ‖Hc‖2 ≤ ‖B̃c‖2 for both cases. From (  3.27 ), ‖Hc‖2 ≤ 2β.
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For any descendant k of c, (  3.21 ) still requires the update of the generator Bk to B̃k like in

( 3.22 ), except that ( 3.23 ) now becomes

‖B̃k‖2 ≤ ‖Bk‖2 + ‖Hi‖2 + ‖Hc‖2 ≤ β + β + 2β = 4β.

If the dividing process continues to c, it is similar to obtain ‖B̃k‖2 ≤ 8β for any descendant

k of the left child of c. It is clear to observe the norm growth as in (  3.26 ) in general.

Therefore, the norm growth now becomes at most linear in n and is well controlled, in

contrast to the exponential growth in Proposition  3.3.1 .

Next, we can also minimize colsize(Zp) (the rank of the low-rank update). Note that in

the original dividing method (  3.3 ) in [  39 ], the updates to the two diagonal blocks involve the

Bi generator in different ways. No reason is given in [  39 ] to tell why D̂i and D̂j should involve

Bi differently. In fact, in (  3.3 ) and also (  3.24 )–( 3.25 ), the rank of the low-rank update is

equal to colsize(Bi). In practice, Bi may not be a square matrix. Thus, ( 3.25 ) shall be used

only if colsize(Bi) ≤ rowsize(Bi). Otherwise, we replace (  3.25 ) by the following:

D̂i = Di − ‖Bi‖2UiU
T
i , D̂j = Dj −

1
‖Bi‖2

UjB
T
i BiU

T
j , Zp =


√
‖Bi‖2Ui

1√
‖Bi‖2

UjB
T
i

 , (3.28)

so that (  3.5 ) still holds. In (  3.28 ), the low-rank update size is now rowsize(Bi). Therefore,

the rank of the low-rank update is

colsize(Zp) = min(rowsize(Bi), colsize(Bi)).

When Bi is rectangular, we will have a smaller colsize(Zp), which can benefit the efficiency

in the conquering stage. With these new ideas, we have a more stable and efficient dividing

stage.
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3.4 Improved structured conquering stage

In this section, we discuss the solution of the eigenvalues and eigenvectors in the con-

quering stage via the integration of various stability strategies into FMM accelerations. As

reviewed in Section  3.2.2 , the key problem in the conquering stage is to quickly find the

eigendecomposition of the rank-one update problem ( 3.12 ): Λ̃ + vvT = Q̃ΛQ̃T .

In the following, a flexible deflation strategy is first introduced. Then we show a triangular

FMM idea for accelerating secular equation solution, a local shifting idea for solving shifted

secular equations and constructing structured eigenvectors. We also discuss the framework

of the overall eigendecomposition, and the precise structure of the overall eigenmatrix.

3.4.1 Deflation

Following the discussions in [  18 ], [ 71 ], a standard deflation step can be first applied to

simplify the problem ( 3.12 ) when vk or the difference |dk − dk+1| is small. In the imple-

mentations of the tridiagonal divide-and-conquer eigensolver (see, e.g., [ 70 ]), the deflation

is performed in a two-step procedure with a tolerance related to εmach. Here, we follow the

same steps, but replace εmach with a user-supplied deflation tolerance parameter τ to get a

more flexible deflation procedure:

(i) If |vk| < τ , without loss of generality we assume k = n, then

Λ̃ + vvT =

Λ̃1

dn

+

v1

vn

(vT
1 vn

)
=

Λ̃1 + v1vT
1

dn

+O(τ).

Then we only need to solve the smaller problem Λ̃1 + v1vT
1 = Q̃1Λ1Q̃

T
1 .
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(ii) If |(dk − dk+1)vkvk+1| < (v2
k + v2

k+1)τ , we can find a Givens rotation G

G


dk

dk+1

+

 vk

vk+1

(vk vk+1

)T

GT

=

dk µ

µ dk+1

+

 0√
v2

k + v2
k+1

(0
√
v2

k + v2
k+1

)T

≈

dk

dk+1

+

 0√
v2

k + v2
k+1

(0
√
v2

k + v2
k+1

)T

,

where |µ| =
∣∣∣∣ (dk−dk+1)vkvk+1

v2
k

+v2
k+1

∣∣∣∣ ≤ τ . This is reduced to the first case.

After the above two deflation steps, the problem size of (  3.12 ) is reduced and the simplified

problem satisfies

|vk| ≥ τ, and |dk − dk+1| ≥
(v2

k + v2
k+1)τ

|vkvk+1|
. (3.29)

The parameter τ offers the flexibility to control the accuracy of the eigenvalues. When

only moderate accuracy is needed, a larger τ can be used for a larger reduction in problem

size. Moreover, this can sometimes avoid the need to deal with situations where |λk − dk| or

|λk − dk+1| is too small, see Section  3.4.3 .

3.4.2 Fast secular equation solution

Assume (  3.29 ) holds for (  3.12 ) so that no more deflation is needed. We consider the

solution of the secular equation (  3.13 ) for its eigenvalues λk, k = 1, 2, . . . , n. Without loss of

generality, suppose the diagonal entries dk of Λ̃ are ordered from the smallest to the largest.

Standard FMM for fast evaluations of the secular function

When modified Newton’s method is used to solve for λk, it needs to evaluate the secular

function f and its derivative f ′ at certain xk ∈ (dk, dk+1). The idea in [  16 ], [ 39 ], [ 61 ] is to

82



assemble the function evaluations for all k together as matrix-vector products, so that fast

evaluations can be done via the standard FMM matrix multiplication. That is, let

f =
(
f(x1) · · · f(xn)

)T

, f ′ =
(
f ′(x1) · · · f ′(xn)

)T

,

v =
(
v1 · · · vn

)T

, w = v� v, e =
(

1 · · · 1
)T

, (3.30)

C =
(

1
dj − xi

)
n×n

, S =
(

1
(dj − xi)2

)
n×n

. (3.31)

f = e + Cw, f ′ = Sw. (3.32)

The vectors f and f ′ can be quickly evaluated by the 1D FMM with the kernel functions

κ(s, t) = 1
s−t

and κ(s, t) = 1
(s−t)2 , respectively. We will briefly introduce the 1D FMM for

completeness, since its essential idea is analogous to the 2D FMM in Chapter  2 . The basic

idea of the 1D FMM for computing, say, Cw is as follows. Note that C is the evaluation of

the kernel κ(s, t) = 1
s−t

at real points s ∈ {dj}1≤j≤n and t ∈ {xi}1≤i≤n that are interlaced:

di < xi < di+1 < xi+1, 1 ≤ i ≤ n− 1. (3.33)

The sets {xi}1≤i≤n and {dj}1≤j≤n are first partitioned into subsets. This is done via a

hierarchical bisection of the interval that covers all xi’s and dj’s. Consider two subsets

produced in this partitioning:

sx ⊂ {xi}1≤i≤n, sd ⊂ {dj}1≤j≤n. (3.34)

Use Csx,sd
= (κ(dj, xi))xi∈sx,dj∈sd

to denote the block of C defined by sx and sd, which is

often referred as the interaction between sx and sd.

(i) If sx and sd are well separated (see ( 2.12 )), then Csx,sd
can be approximated by a

low-rank form

Csx,sd
≈ UsxBsx,sd

V T
sd
. (3.35)

As in Theorem  2.3.1 , such low-rank approximation can be obtained via a degenerate

expansion of κ(s, t). The size of Bsx,sd
depends logarithmically on the desired approx-
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imation accuracy, and can be treated as bounded even when (  3.35 ) achieves double-

precision. Subsets sx and sd are also said to be far-field clusters and the submatrix

Csx,sd
to be far-field interactions or far-field blocks.

(ii) If sx and sd are not well separated, then they are said to be near-field clusters, and

Csx,sd
= (κ(dj, xi))xi∈sx,dj∈sd

is treated as a regular dense block (also referred as near-

field interactions or near-field blocks).

Moreover, the interactions between parent cluster and child cluster during the hierarchical

partition are considered, so that the U, V basis matrices in (  3.35 ) satisfy nested relationships

(see Theorem  2.4.1 and Remark  2.4.2 ). The 1D FMM essentially constructs an FMM matrix

approximation to C and multiplies it with w. The complexity of each FMM matrix-vector

multiplication is O(n).

In light of ( 3.31 ) and (  3.32 ), a straightforward idea in [ 16 ], [  39 ], [  61 ] is to apply the stan-

dard FMM to C and S for fast evaluations of f and f ′. However, in practical implementations

of secular equation solution methods, it is preferred to write f(x) in the following form to

avoid cancellation (see, [ 18 ], [ 70 ], [ 71 ]):

f(x) = 1 + ψk(x) + φk(x),

where the splitting depends on k (when λk ∈ (dk, dk+1) is to be found):

ψk(x) =
k∑

j=1

v2
j

dj − x
, φk(x) =

n∑
j=k+1

v2
j

dj − x
. (3.36)

Because of the interlacing property ( 3.33 ), all the terms in the sum for ψk (resp. φk) have

the same sign for x ∈ (dk, dk+1). Furthermore, ψk and φk capture the behavior of f near

two poles dk and dk+1 respectively. Therefore, ψk and φk can be used in any interpolation-

based strategy for finding the roots of f . A reliable and widely used strategy to solve

( 3.13 ) is proposed in [  73 ], and based on a modified Newton’s method with a hybrid scheme

for rational interpolations. The scheme mixes a middle way method and a fixed weight

method and is implemented in LAPACK [  70 ]. In the middle way method, rational functions
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ξk,1(x) = a1 + b1
dk−x

and ξk,2(x) = a2 + b2
dk+1−x

are decided to interpolate ψk and φk respectively

at xk ∈ (dk, dk+1), so that

ξk,1(xk) = ψk(xk), ξ′
k,1(xk) = ψ′

k(xk), ξk,2(xk) = φk(xk), ξ′
k,2(xk) = φ′

k(xk).

(SuperDC also follows this hybrid scheme to find the first n− 1 roots λ1, λ2, . . . , λn−1. The

last root λn has only one pole dn next to it, so a simple rational interpolation is used as in

[ 70 ], [ 73 ]).

The modified Newton’s method requires evaluations of the functions ψk, φk, ψ′
k, and φ′

k

at some xk ∈ (dk, dk+1), 1 ≤ k ≤ n− 1. (Note that even though the summands in ψ′
k and φ′

k

have the same sign, ψ′
k and φ′

k are used separately in the rational interpolations by ξk,1 and

ξk,2, respectively [ 73 ].) Since these functions all depend on individual k, the standard FMM

cannot be applied directly. The reason is that the standard FMM handles the evaluation of

a kernel κ(s, t) at a fixed set of data points, while here these k-dependent functions need to

evaluate κ(s, t) at some k-dependent subsets of the data points. This poses a challenge to

applying the standard FMM accelerations to ( 3.36 ).

Triangular FMM for fast evaluations of ψk and φk

To resolve the challenge of applying FMM accelerations to ( 3.36 ), we let

ψ =
(
ψ1(x1) · · · ψn(xn)

)T

, φ =
(
φ1(x1) · · · φn−1(xn−1) 0

)T

, (3.37)

ψ′ =
(
ψ′

1(x1) · · · ψ′
n(xn)

)T

, φ′ =
(
φ′

1(x1) · · · φ′
n−1(xn−1) 0

)T

. (3.38)

The key idea is to write

f = e +ψ + φ = e + CLw + CUw, f ′ = ψ′ + φ′ = SLw + SUw, (3.39)

where e is given in (  3.30 ), CL and SL are the lower triangular parts of C and S, respectively,

and CU and SU are the strictly upper triangular parts of C and S, respectively. This suggests

that the FMM idea should be applied to the lower and upper triangular parts of C and S
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separately. That is, we need a special triangular FMM that can be used to quickly evaluate

the triangular matrix-vector products CLw, CUw, SLw, SUw.

In the following, we use CLw as a specific example to describe the design of triangular

FMM. For two subsets sx, sd in (  3.34 ), we similarly use (CL)sx,sd
to denote the block of CL

defined by sx and sd.

For the far-field block (CL)sx,sd
where sx and sd are well-separated, one and only one of

the following two cases is true:

1. sx is on the left of sd, i.e., max sx < min sd. In this case, because of the interlacing

property ( 3.33 ), the block (CL)sx,sd
is in the upper triangular part of CL. Since CL is

a lower triangular matrix, (CL)sx,sd
must be the zero matrix,

(CL)sx,sd
= 0.

2. sx is on the right of sd, i.e., min sx > max sd. In this case, because of the interlacing

property (  3.33 ), the block (CL)sx,sd
is in the lower triangular part of CL. Since CL is

defined to be the lower triangular part of C, we have

(CL)sx,sd
= Csx,sd

≈ UsxBsx,sd
V T

sd
.

The above two cases can be unified as

(CL)sx,sd
≈ UsxB̃sx,sd

V T
sd
, (3.40)

where

B̃sx,sd
=

 0 if max sx < min sd

Bsx,sd
if min sx > max sd

.

On the other hand, suppose sx and sd are neighbor clusters, then (CL)sx,sd
is a dense near-

field block. Again, because of the interlacing property (  3.33 ), (CL)sx,sd
is on the diagonal

part of CL. Since CL is the lower triangular part of C, we can assemble (CL)sx,sd
by selecting

appropriate nonzero elements from Csx,sd
.
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Therefore, analogous to the standard FMM, we can construct a lower triangular FMM

approximation matrix to CL and multiplies it with w in O(n) operations. With the triangular

FMM, fast and accurate function evaluations in modified Newton’s method is now feasible.

The cost of one simultaneous iteration step for all xk’s is O(n).

Iterative secular equation solution

During the modified Newton’s method, let x(j)
k be an approximation to the eigenvalue λk

at the iteration step j. A correction ∆x(j)
k is computed to update x(j)

k as

x
(j+1)
k ← x

(j)
k + ∆x(j)

k . (3.41)

(We sometimes write xk instead of x(j)
k unless we specifically discuss the details of the itera-

tions.)

We adopt the stopping criterion from [ 16 ]:

|f(x(j)
k )| < cn(1 + |ψk(x(j)

k )|+ |φk(x(j)
k )|)εmach, (3.42)

where c is a small constant. This stopping criterion can be conveniently checked after

the FMM-accelerated function evaluations, which is an advantage over a criterion in [ 73 ].

Although (  3.42 ) might be loose for an large n, it works well in our tests and produces

satisfactory accuracy for large matrices. It is possible to refine (  3.42 ) to a tighter convergence

estimate using the results for the backward stability of hierarchical algorithms in [  32 ], [  40 ].

This is our ongoing work.

Typically, a very small number of iterations is needed for convergence. In our experi-

ments, each eigenvalue converges in 2 to 5 iterations on average. We want to point out that

this is slightly more than the case in the standard tridiagonal divide and conquer (2 or 3

iterations on average, as pointed out in [  75 ]). This can be explained by the fact that FMM

is an approximation algorithm to evaluate the secular functions, so it might need one or two

extra iterations. Note that it is possible for few eigenvalues to converge slower than most

others. We may just use the standard iteration method in [ 16 ], [ 73 ] for those eigenvalues.
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With the total number of iterations bounded, the total iterative solution cost for finding all

the eigenvalues from one secular equation is O(n).

3.4.3 Local shifting in triangular FMM for shifted secular equation solution

When there are clustered eigenvalues or when updates to previous eigenvalues are small,

typically the standard secular equation ( 3.13 ) is not directly solved. Instead, shifted secular

equations are solved for the purpose of stability and accuracy, as discussed in [  16 ], [ 18 ], [ 71 ].

However, it is nontrivial to apply FMM to accelerate shifted secular equation solution. In

fact, the paper [  16 ] mentions the possibility of FMM accelerations for the standard secular

equation but does not consider the shifted ones. The FMM-accelerated algorithm in [ 39 ]

does not use shifted secular equations either and thus has stability risks.

In this subsection, we discuss the necessity of shifting and its challenges to FMM accelera-

tions. Moreover, we develop a new strategy that makes feasible applying FMM accelerations

to shifted secular equations. In the following, we suppose deflation in Section  3.4.1 has

already been applied.

Shifted secular equation solution and its challenge to FMM accelerations

The original secular equation (  3.13 ) can be rewritten as the equivalent shifted secular

equation (see, e.g., [ 16 ], [ 18 ], [ 70 ]):

gk(y) ≡ f(dk + y) = 1 +
n∑

j=1

v2
j

δjk − y
= 0, (3.43)

where

δjk = dj − dk, j = 1, 2, . . . , n. (3.44)

Here we assume f(dk+dk+1
2 ) ≥ 0 so that dk < λk ≤ dk+dk+1

2 and λk is closer to dk. If

f(dk+dk+1
2 ) < 0, then λk is closer to dk+1 and we can replace dk in (  3.43 ) and (  3.44 ) with

dk+1. The difference (also referred as the gap) ηk ≡ λk − dk can be computed by solving

( 3.43 ) for y = ηk. Note that in exact arithmetic we have δik − ηk = di − λk, however it is
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preferred to compute δik − ηk since it does not suffer from cancellation (see, e.g., [  16 ], [  71 ]).

We would like to provide more details on the benefits of this shifting within our context.

One benefit is to avoid catastrophic cancellation or division by zero (see, e.g., [  16 ], [  70 ],

[ 71 ]). To be more specific, we illustrate this with the following example. Let xk be an

computed approximation to λk. In exact arithmetic, xk shall lie strictly between dk and

dk+1. At each modified Newton iteration, it needs to guarantee dk < fl(xk) < dk+1. However,

this might not be satisfied in floating point arithmetic when xk is very close to dk:

|dk − xk| = O(εmach) or smaller, (3.45)

which may lead to cancellation when computing dk − fl(xk):

fl(dk − fl(xk)) = o(εmach) or even fl(dk − fl(xk)) = 0. (3.46)

This will cause stability issues in the numerical solutions of the standard secular function:

fl
(

v2
k

dk−fl(xk)

)
either is highly inaccurate or becomes ∞.

Note that ( 3.45 ) and ( 3.46 ) are still possible even if deflation in Section  3.4.1 has been

applied with a tolerance τ that is not too small. To see this, suppose vk = O(τ) ≥ τ and the

exact kth root λk satisfies |λk− dj| � v2
j for j 6= k. Substituting λk into the secular equation

( 3.13 ), we get v2
k

dk−λk
= −1 +∑n

j 6=k

v2
j

λk−dj
= O(1). In this case, λk shall be very close to dk in

the following sense:

|dk − λk| = v2
k ·O(1) = O(τ 2).

If τ = O(ε1/2
mach) which is not extremely small, we can have ( 3.45 ) so that ( 3.46 ) may happen

when solving the standard secular equation.

Another benefit for solving the shifted equation is faster convergence. It is observed in

our tests that computing with ηk instead of λk can speed up the convergence of modified

Newton’s method. To illustrate this, suppose λk is solved directly from the standard secular

equation (  3.13 ), then the approximation x
(j)
k at iteration step j is updated as in ( 3.41 ).

Suppose |λk| = O(1) and |ηk| = |λk − dk| = O(εmach). Since x(j)
k converges to λk as j →∞,

we also have |x(j)
k | = O(1) and |x(j)

k − dk| = O(εmach) after some iterations. By modified
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Newton’s method, the correction ∆x(j)
k approaches 0 as j increase. This may lead to loss of

digits in the updated x
(j+1)
k : fl(x(j+1)

k ) = fl(x(j)
k + ∆x(j)

k ) = fl(x(j)
k ). As a result, the iteration

stagnates. On the other hand, if ηk is solved from the shifted secular equation ( 3.43 ), as in

[ 18 ], [ 70 ], [ 71 ], the update ( 3.41 ) is replaced by

y
(j+1)
k ← y

(j)
k + ∆x(j)

k , (3.47)

where y(j)
k = x

(j)
k − dk is an approximation to ηk at step j of the iterative solution. Although

( 3.41 ) and ( 3.47 ) are equivalent in exact arithmetic, the latter preserves a lot more digits of

accuracy since |y(j)
k | = O(εmach).

These discussions illustrate the importance of solving the shifted secular equation ( 3.43 )

instead of the original equation (  3.13 ). However, in an FMM-accelerated scheme where all

λk’s are solved simultaneously, it is not plausible to shift the secular equation simultaneously

for all λk’s. The reason is the shift in (  3.43 ) depends on each individual eigenvalue and there

is no such a uniform shift that would work for all λk’s. To see this, let yk = xk − dk be

an approximation to ηk during the iterative solution of (  3.43 ). The evaluations of gk(y) in

( 3.43 ) at y = yk for all k = 1, 2, . . . , n can be assembled into the matrix form

g = e + Ĉw = e + ĈLw + ĈUw, with (3.48)

g =
(
g1(y1) · · · gn(yn)

)T

, Ĉ =
(

1
δjk − yk

)
1≤k,j≤n

, (3.49)

where δjk is given in ( 3.44 ) and ĈL, ĈU are similarly defined as in ( 3.39 ).

Recall that when the triangular FMM is used to accelerate the matrix-vector product Cw

in (  3.39 ), it relies on the separability of s and t in a degenerate approximation of κ(s, t) = 1
s−t

.

(Note that in κ(dj, xk), xk only involves the row index k and dj only involves the column

index j, so that the separability can be understood in terms of the row and column indices.)

However, to evaluate Ĉw in ( 3.48 ), we have

κ(dj, xk) = κ(dj − dk, xk − dk) = κ(δjk, yk). (3.50)
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δjk involves both the row and column indices, so that the separability in terms of the row

and column indices does not hold. Also, there is no obvious way of rewriting κ(δjk, ηk) to

produce separability in j and k. If there exists such a uniform shift d0, then κ(dj, xk) =

κ(dj − d0, xk − d0) and the triangular FMM framework would still apply. However, the shift

dk as above for λk depends on the local behavior of the secular function in (dk, dk+1) so such

d0 does not exist.

One possible remedy is as follows. The FMM-accelerated iterations are applied to solve

the original secular equation (  3.13 ) via K. In the meantime, whenever the difference |xk−dk|

is too small for a certain eigenvalue λk, switch to solve the shifted equation (  3.43 ) without

FMM accelerations to get λk. However, if (  3.45 ) happens very often when a small tolerance

τ is used for high accuracy or when the problem is not very nice, then the efficiency will

be reduced significantly since every such a case costs extra O(n) flops. Also, when a shift

like this is involved, the corresponding eigenvector needs to be represented in the usual way

for the accuracy purpose (instead of using the structured form as in Section  3.4.4 later).

This requires extra storage for extra (regular) eigenvectors. Thus, this remedy is not fully

satisfactory.

Therefore, we need to adapt the triangular FMM for fast evaluation of the shifted matrix-

vector product ( 3.48 ).

FMM accelerations with local shifting

In this subsection, we propose a strategy called local shifting that makes it feasible to

apply triangular FMM accelerations to solve ( 3.43 ).

As mentioned in Section  3.4.2 , multiple terms involving xk−dj are assembled into matrices

in order to apply FMM accelerations. See, e.g., ( 3.31 ). When |xk − dj| is small, the shifting

helps get xk − dj accurately. However, when k is not near j or when |k− j| is large, xk − dj

can actually be computed accurately without involving any shift dk. To see this, recall that

dk < xk < dk+1 and also after deflation in Section  3.4.1 , we have for all j,

|dj − dj+1| ≥
vj

2 + v2
j+1

|vjvj+1|
≥ 2τ.
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Thus, for j 6= k, k + 1,

|xk − dj| ≥ min(|dk − dj|, |dk+1 − dj|) ≥ 2(|k − j| − 1)τ. (3.51)

Hence, xk − dj can be computed accurately when |k − j| is large.

Following this justification, we have our local shifting strategy with the following basic

ideas: (i) use the gap ηk for each eigenvalue λk in near-field interactions of FMM, which does

not interfere with the structures needed for FMM accelerations; (ii) it is safe to directly use

λk recovered from

λk = dk + ηk, k = 1, 2, . . . , n, (3.52)

in far-field interactions to exploit the rank structure and facilitate FMM accelerations.

The major details are as follows.

1. For k = 1, 2, . . . , n, the shifted secular equations (  3.43 ) are solved together for the gaps

ηk = λk−dk. An intermediate gap during the iterative solution looks like yk = xk−dk.

The relevant function evaluations in the iterative solutions are assembled into matrix-

vector products like in ( 3.48 ).

2. The FMM is used to accelerate the resulting matrix-vector products like Ĉw in (  3.48 )

as follows. On the one hand, suppose two subsets sx and sd like in (  3.34 ) are well-

separated. As mentioned above, for xk ∈ sx and dj ∈ sd, xk and dj are far away from

each other and |k− j| is large, so xk − dj can then be computed accurately because of

( 3.51 ). Thus, we can recover xk from dk + yk to directly exploit the low-rank structure

like in (  3.35 ). As a result, the far-field block Ĉsx,sd
of Ĉ is now just a block of C in

( 3.31 ):

Ĉsx,sd
= (κ(δjk, yk))xk∈sx,dj∈sd

= (κ(dj, xk))xk∈sx,dj∈sd
= Csx,sd

3. On the other hand, when two subsets sx and sd are not well separated, the near-field

interaction Ĉsx,sd
= (κ(δjk, yk))xk∈sx,dj∈sd

is kept dense and each entry κ(δjk, yk) can be

evaluated accurately via yk and δjk. This has no impact on the structures needed for

FMM accelerations.
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4. These ideas are combined with the triangular FMM in Section  3.4.2 to stably and

quickly perform function evaluations like (  3.48 ) and solve the shifted secular equations.

This local shifting strategy successfully integrates shifting into the triangular FMM

framework without sacrificing performance. As a result, we can quickly and reliably solve

the shifted secular equations (  3.43 ) via modified Newton’s method. The overall complexity

to find all the n roots is still O(n). In addition, since the relevant functions are now evalu-

ated more accurately than with the method in [  39 ], the convergence is also improved. (This

can be confirmed from our tests later.) When the iterative solution of the shifted secular

equations converge, we can use the resulting ηk values to recover the desired eigenvalues as

in ( 3.52 ).

The local shifting strategy can also be used to stably apply FMM accelerations to other

operations like finding the eigenmatrix. See the next subsection.

3.4.4 Structured eigenvectors via FMM with local shifting

With the identified eigenvalues λk in (  3.52 ), the eigenvectors can be obtained stably as

in [ 16 ]. An eigenvector corresponding to λk looks like

qk =
(

v̂1
d1−λk

· · · v̂k

dk−λk
· · · v̂n

dn−λk

)T

, (3.53)

where v̂ ≡ ( v̂1 · · · v̂n )T is given by Löwner’s formula

v̂i =

√√√√ ∏
j(λj − di)∏

j 6=i(dj − di)
, i = 1, 2, . . . , n. (3.54)

To quickly form v̂, the standard FMM acceleration would look like the following [  16 ]. Rewrite

( 3.54 ) as

log v̂i = 1
2

n∑
j=1

log(|di − λj|)−
1
2

n∑
j=1,j 6=i

log |di − dj|. (3.55)
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Now let G1 = (log |di − λj|)n×n, G2 = (log |di − dj|)n×n, where the diagonals of G2 are set to

be zero. Then

log v̂ = 1
2(G1e−G2e). (3.56)

G1e and G2e can thus be quickly evaluated by the FMM with the kernel log |s− t|.

As in [ 16 ], [ 39 ], the eigenvectors are often normalized to form an orthogonal matrix

Q̂ =
(

v̂ibj

di − λj

)
n×n

, (3.57)

where

b ≡ ( b1 · · · bn )T , with bj =
(

n∑
i=1

v̂2
i

(di − λj)2

)−1/2

. (3.58)

Again, the vector b can be quickly obtained via the FMM with the kernel κ(s, t) = 1
(s−t)2 . Q̂

is a Cauchy-like matrix which gives a structured form of the eigenvectors. The FMM with

the kernel κ(s, t) = 1
s−t

can be used to quickly multiply Q̂ to a vector.

Again, with the same reasons as before, it is challenging to stably apply the standard

FMM to accelerate operations like the evaluations of log v in (  3.56 ) and b in ( 3.58 ) and

the application of Q̂ to a vector. On the other hand, just like the discussions in Section

 3.4.3 , the local shifting strategy still applies with appropriate kernels κ(s, t). Thus, instead

of directly applying the standard FMM accelerations in [ 39 ], we use FMM accelerations

with local shifting. For example, with the gaps ηk solved from the shifted secular equation

solution, it is preferred to use δik − ηk in place of di− λk in the computation of some entries

of qk for accuracy purpose [  16 ], [  18 ], [  70 ], [  71 ] when di and λk are very close. Note that,

with δjk in ( 3.44 ), ( 3.53 ) can be written as

qk =
(

v̂1
δ1k−ηk

· · · v̂k

−ηk
· · · v̂n

δnk−ηk

)T

. (3.59)

When an entry of qk belongs to a near-field block of Q̂, its representation in ( 3.59 ) is used.

Otherwise, we use its form in (  3.53 ). This preserves the far-field rank structure and makes

the local shifting idea go through.

94



Thus, FMM accelerations with local shifting can be used to reliably represent and apply

Q̂ or Q̂T . Note that

Q̂ = diag(v̂)
(

1
di − λj

)
n×n

diag(b), (3.60)

so that Q̂ can be stored just via five vectors:

v̂, b, d ≡ ( d1 · · · dn )T , λ ≡ ( λ1 · · · λn )T , η ≡ ( η1 · · · ηn )T . (3.61)

Here, we have the storage of one more vector η than that in [ 39 ]. This only slightly increase

the storage, but the stability is significantly enhanced.

3.4.5 Overall eigendecomposition and structure of the eigenmatrix

The overall conquering framework is similar to [ 39 ], but with all the new stability strate-

gies integrated. Also, the structure of the eigenmatrix Q is only briefly mentioned in [ 39 ]

in a vague way. Here, we would like to give a precise description of Q resulting from the

conquering process.

The conquering process is performed following the postordered traversal of the HSS tree

T of A, where at each node i ∈ T , a local eigenproblem is solved. For a leaf node i, suppose

D̂i is the (small) diagonal generator resulting from the overall dividing process. We just

compute the dense eigenproblem D̂i = QiΛiQ
T
i . Then Qi is a local eigenmatrix associated

with i.

For a non-leaf node p with children i and j, the local eigenproblem is to find an eigende-

composition like in (  3.11 ) based on (  3.7 ) and ( 3.8 ). However, unlike (  3.10 ) where a diagonal

plus low-rank update eigendecomposition is computed, it is necessary to reorder the diagonal

entries of diag(Λi,Λj) in order to explore structures in the FMM accelerations that rely on

the locations of the eigenvalues. Let Pp represent a sequence of permutations for deflation

and for ordering the diagonal entries of diag(Λi,Λj) from the smallest to the largest. The
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need for Pp is not clearly mentioned in [  39 ]. Also let the eigendecomposition of the permuted

diagonal plus low-rank update problem be

Pp[ diag(Λi,Λj) + ẐpẐ
T
p ]P T

p = Q̂pΛpQ̂
T
p , (3.62)

where Ẑp is given in (  3.9 ). Write Dp in (  3.8 ) as D̂p since Dp is likely updated after the

multilevel dividing process. Then we have the following eigendecomposition:

D̂p = QpΛpQ
T
p , with Qp = diag(Qi, Qj)P T

p Q̂p, (3.63)

where Qi and Qj are eigenmatrices of D̂i and D̂j obtained in steps i and j, respectively.

Then the conquering process proceeds similarly.

Here for convenience, we say Qp is a local eigenmatrix and Q̂p is an intermediate eigenma-

trix. The difference between the two is that a local eigenmatrix is an eigenmatrix of a local

HSS block while the latter is an eigenmatrix of a diagonal plus low-rank update problem. A

local eigenmatrix is formed by a sequence of intermediate eigenmatrices. Since Q̂pΛpQ̂
T
p in

( 3.62 ) is obtained by solving r consecutive rank-1 update eigenproblems, the intermediate

eigenmatrix Q̂p is the product of r Cauchy-like matrices like in (  3.57 ). Of course, when FMM

accelerations and deflation are applied, the eigendecomposition is approximate.

Then the overall eigenmatrix Q is given in terms of all the intermediate eigenmatrices,

organized with the aid of the tree T . Its precise form is missing from [  39 ]. Here, we give an

accurate way to understand its structure as follows.

Lemma 3.4.1. Assemble all the intermediate eigenmatrices and permutation matrices cor-

responding to the nodes at a level l of T as

Q(l) = diag(Q̂i, i: at level l of T ), P (l) = diag(Pi, i: at level l of T ). (3.64)

Then the final eigenmatrix Q has the form (illustrated in Figure  3.4 )

Q = Q(L) 0∏
l=lmax−1

(P (l)Q(l)), (3.65)
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where level lmax is the leaf level of T and root(T ) is at level 0. In addition, Q also corresponds

to ( 3.63 ) with p set to be root(T ).

Q̂4 Q̂5Q̂1 Q̂2

{Q̂3, P3}

Q̂11 Q̂12Q̂8 Q̂9 Q̂19 Q̂20Q̂16 Q̂17 Q̂26 Q̂27Q̂23 Q̂24

{Q̂31, P31}

{Q̂6, P6} {Q̂10, P10} {Q̂13, P13} {Q̂18, P18} {Q̂21, P21} {Q̂25, P25} {Q̂28, P28}

{Q̂7, P7} {Q̂14, P14} {Q̂22, P22} {Q̂29, P29}

{Q̂15, P15} {Q̂30, P30}

(a) Intermediate eigenmatrices

P
(2)

P
(1) P

(0)
P

(3)

(b) Structure of the eigenmatrix Q

Figure 3.4. Structure eigenmatrix Q, where lmax = 4

Thus, Q can be understood in terms of either (  3.65 ) or the local eigenmatrices. Lemma

 3.4.1 gives an efficient way to apply Q or QT to a vector, where the triangular FMM with local

shifting is again used to multiply the intermediate eigenmatrices with vectors. Note that

with a very similar procedure, a local eigenmatrix Qi or its transpose can be conveniently

applied to a vector. Such an application process is used to multiply the local eigenmatrices

QT
i and QT

j to Zp as in ( 3.9 ) to quickly form Ẑp used in ( 3.62 ).

The main algorithms used in SuperDC are shown in the supplementary materials. When

A is given in terms of an HSS form with HSS rank r, the total complexity for computing

the eigendecomposition (  3.1 ) can be counted following [ 39 , Section 3.1] and is O(r2n log2 n).

(There is an erratum for [ 39 ] in the flop count since r in equation (3.1) of [  39 , Section 3.1]

should be r2.) Note that the use of all the new stability techniques here does not change the

overall complexity. Every local eigenmatrix Q̂i is represented by a sequence of r Cauchy-like
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matrices like in (  3.57 ). Each such a Cauchy-like matrix is stored with the aid of five vectors

like in (  3.61 ). The storage for Q is then O(rn log n) and the cost to apply Q or QT to a

vector is O(rn log n) as in [ 39 ].

3.5 Numerical experiments

In this section, we carry out a comprehensive test of the SuperDC eigensolver with

different types of matrices and demonstrate its efficiency and accuracy. We compare SuperDC

with the divide and conquer algorithms for band-symmetric matrices (BandDC, [  16 ], [  18 ],

[ 63 ]), and the HSS bisection eigensolver based on structured LDL factorization (HSS-LDL,

[ 76 ]), as well as the highly optimized Matlab eig function as a performance reference. In

order for comparisons of larger sizes, we use BandDC and HSS-LDL to compute only the

eigenvalues, which also gives them advantages over SuperDC. For the bisection-based HSS-

LDL, we use ρ̃(A) ≡
√
‖A‖1‖A‖∞ ≥ ‖A‖2 as an estimate of the spectral radius of A. We also

show the necessity of our stability improvements in some test cases. We use the following

accuracy measurements:

γ = max
1≤k≤n

‖Aqk − λkqk‖2√
n‖A‖2

(residual),

θ = max
1≤k≤n

‖QT qk − ek‖2√
n

(loss of orthogonality),

δrs = ‖λ− λ
∗‖2

‖λ∗‖2
(relative spectral error),

δrm = ‖λ− λ
∗‖∞

‖λ∗‖∞
(relative maximum error),

δmr = max
1≤k≤n

|λ∗
k − λk|
|λ∗

k|
(maximum relative error),

where λ∗ = ( λ∗
1 · · · λ∗

n
)T are eigenvalues from eig and are considered as the exact results.

We also measure the flops (the total number of floating point arithmetic operations of the

algorithm), the storage (total number of nonzeros to store the eigenmatrix), and the timing

(total seconds elapsed when the call of the eigensolver routine is completed). The triangular
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FMM routine is developed based on a code used in [  32 ], and its accuracy during each call is

set to reach full machine precision.

All the algorithms are implemented in pure Matlab. SuperDC is available at  https:

//www.math.purdue.edu/~xiaj . The tests are performed with four 2.60GHz cores and 80GB

memory on a node at a cluster of Purdue RCAC. The request of 80GB memory is just to

accommodate the need of eig for larger matrices.

Example 1

First, we consider a symmetric tridiagonal matrix A. For our SuperDC eigensolver, the

HSS representation of A can be explicitly written out without any extra cost and its HSS

rank is r = 2 [ 77 ]. (The HSS structure does not rely on the actual nonzero entries, which are

3 on the main diagonal and −1 on the first superdiagonal and subdiagonal. Other numbers

such as random ones are also tested with similar performance observed.) As comparisons,

we also apply BandDC, HSS-LDL and eig to A. The size of A in the test ranges from 4096

to 1048576. In the HSS form, the leaf-level diagonal block size is 2048. We use τ = 10−10 in

the deflation criterion (Section  3.4.1 ).

The timing are reported in Figure  3.5 (a). The storage for the eigenmatrix Q is given in

Figure  3.5 (b). The costs of SuperDC are given in Figure  3.5 (c), in terms of the flops to get

the eigendecomposition and the flops to apply Q to a vector. SuperDC achieves nearly linear

complexity in all the aspects (timing, flops, and storage), while BandDC and HSS-LDL have

a quadratic trend in timing, and eig has a cubic trend in timing, and an obvious quadratic

storage (which is just n2 for storing the dense Q). In fact, the flop count of SuperDC in

Figure  3.5 (c) shows a pattern even slightly better than O(n log2 n). The timing trend of

SuperDC is slightly deviated from the reference line O(n log2 n), and we expect to optimize

our implementations in future work.

SuperDC is faster than BandDC and HSS-LDL for all the tested sizes, and its breakeven

point with eig is around n = 4096. With n = 32768, SuperDC is already about 6 times

faster than eig and takes only about 6% of the memory. Note that eig runs out of memory
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Figure 3.5. Example 1. Timing and storage of SuperDC and eig and flops of SuperDC.
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for larger n due to the dense eigenmatrix, while SuperDC takes much less memory and can

reach much larger n.

The conquering stage is usually much more time-consuming that the dividing stage. For

example, for n = 65536, SuperDC takes totally 57.8 seconds, where the dividing stage needs

just 1.4 seconds and the conquering stage needs 56.4 seconds. This confirms that our strategy

for minimizing colsize(Zp) is important, since it can reduce the number of rank-one updates

to improve the efficiency of the conquering stage.

Table  3.1 shows the accuracy of SuperDC. The eigenvalues and eigendecompositions are

computed accurately with numerically orthogonal eigenvectors.

Table 3.1. Example 1. Accuracy of SuperDC, where some errors (δ) are not
reported since eig runs out of memory, and the cases n ≥ 262, 144 are not
shown since it takes too long to compute γ and θ.

n 4, 096 8, 192 16, 384 32, 768 65, 536 131, 072

γ 1.2e− 15 6.4e− 15 1.1e− 13 9.4e− 14 7.5e− 14 5.3e− 14

θ 1.8e− 14 2.9e− 14 3.8e− 14 5.5e− 14 8.6e− 14 1.2e− 13

δrs 2.6e− 16 4.6e− 16 1.3e− 13 9.4e− 14

δrm 8.9e− 16 1.2e− 14 8.0e− 12 6.3e− 12

δmr 9.7e− 16 1.2e− 14 8.0e− 12 6.3e− 12

Example 2

Next, we consider a symmetric matrix A which is sparse and nearly banded. That is, A

has a banded form with half bandwidth 5 together with some nonzero entries away from the

band. The HSS form for A can be explicitly written out with the method in [ 77 ] and has

HSS rank 10. The nonzero entries away from the band are introduced by modifying some

HSS generators. The main diagonal entries are set as 30 and the other entries in the band

are set as −10 so that the upper bound for all ‖Bk‖ in Proposition  3.3.1 is β = 35.1 � 1.

As comparisons, we apply eig and HSS-LDL to A, and BandDC can also be conveniently

adapted to A. The size n in the test ranges from 4096 to 1048576. In the HSS form, the
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leaf-level diagonal block size is 2048. We use τ = 10−10 in the deflation criterion (Section

 3.4.1 ).

The entries away from the band break the banded structure of A. The efficiency benefit

of SuperDC becomes even more significant, as shown in Figure  3.6 . The breakeven point

of SuperDC and eig is around n = 4096. At n = 32678, SuperDC is already over 8 times

faster than eig and takes only about 7% of the memory. At n = 1048576, SuperDC is over

12 times faster than BandDC (note that we do not compute the eigenmatrix with BandDC).

Again, eig runs out of memory when n increases, but SuperDC works for much larger n and

demonstrates nearly linear complexity.

We also compare our new dividing strategy (  3.25 ) with the original one (  3.3 ), and the

results are reported in Table  3.2 . The accuracies associated with the original dividing strategy

deteriorate as the matrix size gets larger, while the accuracies associated with the new

dividing strategy are well controlled by the tolerance. This can be explained as follows. At

the leaf node, we need to use a (backward stable) dense method to compute a (numerical)

eigendecomposition of the updated generator (see Lemma  3.2.1 )

D̃k = QkΛkQ
T
k + ∆D̃k, with ‖∆D̃k‖2 = O(‖D̃k‖2 · εmach). (3.66)

By Proposition  3.3.1 and  3.3.2 , this backward error is

‖∆D̃k‖2 =

 O(β2lmax−1 · εmach) with the original dividing ( 3.3 )

O(2lmax−1β · εmach) with the new dividing ( 3.24 )
, (3.67)

where lmax is the total level of the HSS tree. Therefore, using the original dividing strategy

will introduce large error since β = 35.1 in this case.

We also demonstrate the importance of our local shifting strategy by testing the eigen-

solver with triangular FMM accelerations applied to the standard secular equation. Due to

cancellations, Matlab returns NaN (not-a-number) for all cases except n = 4096 and 8192.

This confirms the risk of directly applying FMM accelerations to the standard secular equa-

tion like in [ 39 ].
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Figure 3.6. Example 2. Timing and storage of SuperDC and eig and flops of SuperDC.
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Table 3.2. Example 2. Accuracy of SuperDC, where some errors (δ) are not
reported since eig runs out of memory, and the cases n ≥ 262, 144 are not
shown since it takes too long to compute γ and θ.

n 4, 096 8, 192 16, 384 32, 768 65, 536 131, 072

new dividing strategy

γ 9.4e− 14 1.8e− 12 3.7e− 13 3.4e− 13 5.6e− 13 1.2e− 12

θ 1.9e− 13 4.4e− 13 5.6e− 13 1.1e− 12 1.4e− 12 2.0e− 12

δrs 1.6e− 14 3.2e− 12 5.3e− 13 2.6e− 13

δrm 6.0e− 13 1.5e− 10 2.2e− 11 1.1e− 11

δmr 1.6e− 12 2.9e− 10 3.2e− 11 2.2e− 11

original dividing strategy

δrs 7.0e− 13 8.3e− 13 5.4e− 11 7.4e− 10

δrm 2.7e− 11 3.5e− 11 2.6e− 9 4.1e− 8

δmr 2.8e− 11 5.0e− 10 2.5e− 8 3.9e− 7

Example 3

Next, we consider a dense symmetric Toeplitz matrix A with its first row

ξ = ( ξ1 · · · ξn ), given by

ξ1 = 2α, ξj = sin(2α(j − 1)π)
(j − 1)π , j = 2, 3, . . . , n,

where 0 < α < 1/2. This is the so-called Prolate matrix that appears frequently in signal

processing. It is known to be extremely ill-conditioned and has special spectral properties

(see, e.g., [  78 ]). In fact, the Prolate matrix has many small eigenvalues of magnitudeO(εmach).

In this example, we set α = 1
4 . It is known that any Toeplitz matrix can be converted into a

Cauchy-like matrix C which has small off-diagonal numerical ranks [  39 ], [ 48 ], [ 49 ]. That is,

C = FAF∗, where F is the normalized inverse DFT matrix. Then the eigendecomposition of

A can be done via that of C. An HSS approximation to C may be quickly constructed based

on randomized methods in [ 12 ], [  13 ], [  26 ], [  30 ] and fast Toeplitz matrix-vector multiplications.
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The cost is nearly linear in n. Here, we use a tolerance 10−10 in relevant compression steps,

which is the same as the deflation tolerance τ . In the HSS form, the leaf-level diagonal block

size is 2048. SuperDC and HSS-LDL are applied to the resulting HSS form and compared

with eig applied to A. The size n ranges from 4096 to 65536. In Figure  3.7 , the timing,

storage, and flops are shown and they are consistent with the complexity estimates.

We also demonstrate the advantage of our flexible deflation strategy (Section  3.4.1 ).

During the conquering stage, let ζ be the ratio of the total number of deflated intermediate

eigenvalues to the total number of intermediate eigenvalues. The ratio ζ (see Table  3.3 )

is around 99% for all sizes, which indicates that most of the intermediate eigenvalues get

deflated. This brings significant speed-ups to SuperDC. For example, at n = 32, 768, eig

takes 1385.5 seconds, while SuperDC only needs 11.3 seconds, which is a difference of about

123 times. Also, the memory saving is about 15 times.

The accuracy is reported in Table  3.3 . SuperDC computes the eigendecomposition

A ≈ QΛQT accurately, as shown by γ, θ, and δrs. We do not include the maximum rel-

ative error δmr = max
1≤k≤n

|λ∗
k−λk|
|λ∗

k
| here, since A is highly singular and has many eigenvalues of

order O(εmach). The magnitudes of these tiny eigenvalues are below the deflation tolerance

so that the errors introduced by deflation may contaminate their accuracies. In addition,

the backward errors ∆D̃k (see (  3.66 )) introduced at leaf nodes may also contaminate their

accuracies.

We also test SuperDC on random Toeplitz matrix. Since the associated Cauchy-like

matrix C has off-diagonal rank r = O(log n), the complexity of SuperDC is O(n log4 n). In

addition, we find in experiments that for random Toeplitz matrix, deflation rarely happens

(i.e., ζ ≈ 0). So we have no speed-up from deflation. As a result, we expect that for random

Toeplitz matrix, the breakeven point between SuperDC and eig is larger and the speed-up

will not be as significant as in the Prolate matrix case.

Example 4

The last example is a discretized kernel matrix A in [  57 ] which is the evaluation of the

function
√
|s− t| at the Chebyshev points cos(2i−1

2n
π), i = 1, 2, . . . , n. The HSS construction
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Figure 3.7. Example 3. Timing and storage of SuperDC and eig and flops of SuperDC.
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Table 3.3. Example 3. Accuracy of SuperDC, where the error (δ) for n =
65, 536 is not reported since eig runs out of memory. Note that for n = 4, 096,
A has a zero eigenvalue.

n 4, 096 8, 192 16, 384 32, 768 65, 536

γ 2.3e− 11 4.4e− 11 1.8e− 10 3.5e− 10 1.4e− 9

θ 2.2e− 15 8.6e− 15 6.0e− 15 4.2e− 15 3.0e− 15

δrs 5.5e− 12 1.4e− 11 4.5e− 10 9.3e− 10

δrm 1.1e− 10 7.3e− 10 2.2e− 8 6.1e− 8

ζ 98.8% 99.2% 99.5% 99.6% 99.4%

may be based on direct off-diagonal compression or efficient analytical methods like in [ 36 ].

We use an existing routine based on the former one for simplicity. To show the flexibility of

accuracy controls, we aim for moderate accuracy in this test by using a compression tolerance

10−6 in the HSS construction, which is same as the deflation tolerance τ .

For this example, we still set the HSS leaf-level diagonal block size to be 2048. We can

observe similar complexity results as in the previous examples, see Figure  3.8 . With the

larger tolerance than in the previous examples, we still achieve reasonable eigenvalue errors

and residuals with numerically orthogonal eigenvectors, see Table  3.4 .

Table 3.4. Example 4. Accuracy of SuperDC, where the error (δ) for n =
65, 536 is not reported since eig runs out of memory.

n 4, 096 8, 192 16, 384 32, 768 65, 536

γ 7.4e− 9 2.7e− 9 2.2e− 9 1.6e− 9 1.1e− 9

θ 1.4e− 13 2.6e− 13 2.5e− 13 2.4e− 13 3.8e− 13

δrs 3.8e− 8 5.5e− 8 5.7e− 8 8.7e− 8

δrm 2.9e− 8 3.2e− 8 2.8e− 8 5.6e− 8

δmr 1.2e− 4 4.2e− 4 4.7e− 4 5.8e− 4

In the previous Example 2, it is shown that local shifting helps avoid cancellations so

that FMM accelerations can be applied reliably. In fact, even if there is no cancellation

in the original secular equation solution, our local shifting strategy (for triangular FMM-
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Figure 3.8. Example 4. Timing and storage of SuperDC and eig and flops of SuperDC.
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accelerated solution of the shifted secular equation) can also significantly benefit the rate of

convergence of the roots. To illustrate this, we perform the following count. Suppose the

low-rank update associated with the root node of the HSS tree T has size r, so that r secular

equations are solved when the conquering stage proceeds to the root. When solving the

jth secular equation, let µj be the percentage of eigenvalues that have not converged after

5 Newton’s iterations. Let µ = max1≤j≤r µj. Table  3.5 reports this maximum percentage

µ with varying n. With local shifting, a vast majority of those eigenvalues (about 99% or

more) converges within 5 iterations. This is significantly better than the case without local

shifting (i.e., when the standard secular equation is solved with FMM accelerations). We

also observe similar or even smaller µ’s in other examples.

Table 3.5. Example 4. Maximum percentage (µ) of eigenvalues not converged
within 5 iterations for solving the r secular equations associated with root(T ).

n 4, 096 8, 192 16, 384 32, 768 65, 536

With local shifting 1.00% 0.88% 0.34% 0.38% 0.33%

Without local shifting 62.5% 57.6% 57.2% 58.5% 57.7%

Following Propositions  3.3.1 and  3.3.2 , we also show the norm growth of the B,D gen-

erators after the dividing stage. For the initial B,D generators of the original HSS form, let

B̃, D̃ denote the updated generators after the entire dividing stage is finished. Let

ρB = max
i<root(T )

‖Bi‖2, ρD = max
i: leaf

‖Di‖2, ρB̃ = max
i<root(T )

‖B̃i‖2, ρD̃ = max
i: leaf

‖D̃i‖2.

In order for better demonstration of the norm growth after multilevel dividing, we set the

leaf-level diagonal block size to be 256 here to have more levels. For each n, Table  3.6 shows

the number of levels in the HSS approximation. When n increases, the HSS tree T grows

deeper. Table  3.6 shows that ‖A‖2 and ρ(B) grow roughly linearly with n. However, ρB̃ and

ρD̃ grow exponentially with the original dividing stage in [ 39 ], as predicted by Proposition

 3.3.1 . This poses a stability risk. When n grows beyond a certain size, overflow happens.

(Note that ρD̃ has a larger magnitude than ρB̃, which is consistent with Proposition  3.3.1 .

In addition, since the backward error ‖∆D̃k‖2 in (  3.66 ) is proportional to ρD̃, the accuracy
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of the eigendecomposition will deteriorate.) In contrast, the growth of ρD̃ and ρB̃ with our

new dividing strategy is much slower and roughly follows the growth pattern of ρ(B), as

predicted by Proposition  3.3.2 . Accordingly, our algorithm can handle much larger n much

more reliably.

Table 3.6. Example 4. Norms of the D,B generators after the dividing stage,
where ∞ means overflow.

n 4, 096 8, 192 16, 384 32, 768 65, 536

Number of levels 5 6 7 8 9

‖A‖2 3.4e3 6.8e3 1.4e4 2.7e4 5.4e4

Initial
ρB 2.3e3 4.6e3 9.2e3 1.8e4 3.7e4

ρD 6.1e1 4.3e1 3.1e1 2.2e1 1.5e1

After the original ρB̃ 5.5e24 9.9e53 2.1e117 4.2e253 ∞

dividing strategy ρD̃ 3.0e49 9.9e107 4.5e234 ∞ ∞

After the new ρB̃ 2.3e3 4.6e3 9.2e3 2.1e4 5.5e4

dividing strategy ρD̃ 4.7e3 1.2e4 3.4e4 8.6e4 2.4e5

3.6 Pseudocodes and algorithms

In this section, we present the pseudocodes and procedures that can help understand the

major algorithms in SuperDC.

• Algorithm  2 : the HSS dividing stage.

• Algorithm  3 : solving the secular equation for the eigenvalues with triangular FMM

accelerations and local shifting.

• Algorithm  4 : the conquering stage for producing the eigendecomposition.

• Algorithm  5 : application of the a local eigenmatrix Qi or its transpose to a vector.

This is used in Algorithm  4 and also can be used to apply the global eigenmatrix Q or

its transpose to a vector when i = root(T ).
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For notational convenience, we use r to represent the column sizes of all Zi matrices in

the pseudocodes. Ti is also used to denote the subtree of T rooted at node i ∈ T . Z(:, j)

means the jth column of Z.

The following utility routines are used in the algorithms. To save space, we are not

showing pseudocodes for these routines.

• updhss(Di, Ui, H): for an HSS block Di corresponding to the subtree Ti, update its

D,B generators to get those of Di − UiHU
T
i using Lemma  3.2.1 .

• trifmm(d,x,y,w, κ): compute a matrix-vector product Kw with the triangular FMM

and local shifting as in Sections  3.4.2 and  3.4.3 , where K = (κ(di, xj))di∈d,xj∈x is a

kernel matrix and y is the gap vector (for accurately evaluating x−d). Note that the

triangular FMM is used to multiply the lower triangular part of K with w and the

strictly upper triangular part of K with w and the final result is the sum of the two

products.

• mnewton(ψ,φ,ψ′,φ′): use the modified Newton’s method to compute corrections to

the current approximate gap as in (  3.47 ), where ψ,φ,ψ′,φ′ look like (  3.37 ) and (  3.38 ).

• iniguess(d,w): compute the initial guess as in [  73 ] for the solution of the secular

equation ( 3.13 ).

• deflate(d,v, τ): apply deflation with the criterion in Section  3.4.1 .

3.7 Some improvements on implementations of SuperDC

In this section, we describe several improvements on the implementations of SuperDC.

When properly implemented (in MATLAB), these techniques can speed up the SuperDC

routine by a factor over 2, as compared with Section  3.5 .

3.7.1 Rank-revealing factorization in dividing stage

As discussed in Section  3.5 , the conquering stage is much more time-consuming than the

dividing stage, since it needs to solve colsize(Zp) secular equations at each non-leaf node
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Algorithm 2 SuperDC dividing stage
1: procedure divide({Di}i∈T , {Ui}i∈T , {Ri}i∈T , {Bi}i∈T )
2: for node i = root(T ), . . . , 1 do . Dividing Di in a top-down traversal
3: if i is a non-leaf node then
4: if colsize(Bc1) ≤ rowsize(Bc1) then . c1, c2: children of i
5: Dc1 ← updhss(Dc1 , Uc1 ,

1
‖Bc1 ‖2

Bc1B
T
c1) . Update generators of Dc1

to get those of Dc1 − 1
‖Bc1 ‖2

Uc1Bc1B
T
c1U

T
c1 like in Lemma  3.2.1 

6: Dc2 ← updhss(Dc2 , Uc2 , ‖Bc1‖2I) . Update generators of Dc2

to get those of Dc2 − ‖Bc1‖2Uc2U
T
c2 like in Lemma  3.2.1 

7: else
8: Dc1 ← updhss(Dc1 , Uc1 , ‖Bc1‖2I) . Update generators of Dc1

to get those of Dc1 − ‖Bc1‖2Uc1U
T
c1 like in Lemma  3.2.1 

9: Dc2 ← updhss(Dc2 , Uc2 ,
1

‖Bc1 ‖2
BT

c1Bc1) . Update generators of Dc2

to get those of Dc2 − 1
‖Bc1 ‖2

Uc2B
T
c1Bc1U

T
c2 like in Lemma  3.2.1 

10: end if
11: end if
12: end for
13: for node i = 1, . . . , root(T ) do . Form Zi in a bottom-up traversal
14: if i is a non-leaf node then
15: if colsize(Bc1) ≤ rowsize(Bc1) then . c1, c2: children of i

16: Zi ←

 1√
‖Bc1 ‖2

Uc1Bc1√
‖Bc1‖2Uc2

 . Local update Z matrix like in ( 3.25 )

17: else

18: Zi ←


√
‖Bc1‖2Uc2
1√

‖Bc1 ‖2
Uc2B

T
c1

 . Local update Z matrix like in ( 3.28 )

19: end if
20: if i 6= root(T ) then

21: Ui ←
(
Uc1Rc1

Uc2Rc2

)
. Assemble Ui for parent node of i

22: end if
23: end if
24: end for
25: return updated generators {Di}i∈T , {Bi}i∈T , {Zi}i∈T
26: end procedure
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Algorithm 3 Secular equation solution for eigenvalues (of diag(d) + vvT )
1: procedure secular(d,v)

. Eigenvalue solution via the solution of the shifted secular equation ( 3.43 )
2: w← v� v
3: x(0) ← iniguess(d,w) . Computation of the initial guess as in [ 73 ]
4: y(0) ← x(0) − d
5: for j = 0, 1, . . . do
6: [ψ,φ]← trifmm(d,x(j),y(j),w, 1

s−t
) . Computation of ψ,φ in ( 3.37 )

7: [ψ′,φ′]← trifmm(d,x(j),y(j),w, 1
(s−t)2 ) . Computation of ψ′,φ′ in ( 3.38 )

8: f ← e +ψ + φ
9: if |f | < cn(e + |ψ|+ |φ|)ε then . Stopping criterion

10: break
11: end if
12: ∆x(j) ← mnewton(ψ,φ,ψ′,φ′)

. Computation of root update with modified Newton’s method
13: y(j+1) ← y(j) + ∆x(j) . Updated gap approximation as in ( 3.47 )
14: x(j+1) ← y(j+1) + d . Updated eigenvalue approximation
15: end for
16: λ← x(j), η ← y(j) . Eigenvalue and gap upon convergence
17: return λ,η
18: end procedure
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Algorithm 4 SuperDC conquering stage
1: procedure conquer({Di}i∈T , {Ui}i∈T , {Ri}i∈T , {Bi}i∈T , {Zi}i∈T , τ)

. The Di, Bi generators have been updated in the dividing stage
2: for node i = 1, . . . , root(T ) do . Conquering in a postordered traversal
3: if i is a leaf node then . Leaf-level eigendecomposition
4: (λi, Q̂i)← eig(Di) . Via Matlab eig function
5: else
6:

(
Zi,1
Zi,2

)
← Zi . Partitioning following the sizes of Dc1 and Dc2

7: Zi,1 ← superdcmv(Qc1 , Zi,1, 1) . QT
c1Zi,1

8: Zi,2 ← superdcmv(Qc2 , Zi,2, 1) . QT
c2Zi,2

9: Zi ←
(
Zi,1
Zi,2

)
. Ẑi like in ( 3.9 )

10: [λ(0)
i , Pi]← sort(λc1 ,λc2) . Ordering of all the diagonal entries

of λc1 ,λc2 together, with Pi the permutation matrix
11: for j = 1, 2 . . . , r do . r = colsize(Zi)
12: [d(j)

i , Zi(:, j)]← deflate(λ(j−1)
i , Zi(:, j), τ) . Deflation (Section  3.4.1 )

13: [λ(j)
i ,η

(j)
i ]← secular(d(j)

i , Zi(:, j)) . Secular equation solution
14: v1 ← trifmm(d(j)

i ,λ
(j)
i ,η

(j)
i , e, log |s− t|) . G1e as needed in ( 3.56 )

15: v2 ← trifmm(d(j)
i ,d(j)

i ,0, e, log |s− t|) . G2e as needed in ( 3.56 )
16: v̂(j)

i ← exp (v1−v2
2 ) . Löwner’s formula for v̂ as in ( 3.54 )–( 3.56 )

17: b(j)
i ← (trifmm(d(j)

i ,λ
(j)
i ,η

(j)
i , v̂(j)

i � v̂(j)
i , 1

(s−t)2 ))−1/2

. Normalization factor as in ( 3.58 )
18: Q̂

(j)
i ← {v̂

(j)
i ,b(j)

i ,d(j)
i ,λ

(j)
i ,η

(j)
i } . Cauchy-like structured

representation of the local eigenmatrix as in ( 3.57 )
19: for k = j + 1, j + 2, . . . , r do . Multiplication of Q̂(j)

i

to the remaining columns of Zi via ( 3.60 )
20: Zi(:, k)← v̂(j)

i � Zi(:, k)
21: Zi(:, k)← trifmm(d(j)

i ,λ
(j)
i ,η

(j)
i , Zi(:, k), 1

s−t
)

22: Zi(:, k)← b(j)
i � Zi(:, k)

23: end for
24: end for
25: λi ← λ

(r)
i . Local eigenvalues associated with node i

26: end if
27: end for
28: λ← λroot(T ), Q← {{Q̂(j)

i }r
j=1, Pi}i∈T . Final eigenvalues

and eigenmatrix Q in ( 3.65 ), with Q̂i in ( 3.64 ) given by ∏r
j=1 Q̂

(j)
i

29: return λ, Q
30: end procedure
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Algorithm 5 SuperDC eigenmatrix-vector multiplication
1: procedure superdcmv(Qi,x, transpose) . Application of a local eigenmatrix Qi

or its transpose to a vector x, depending on whether ‘transpose’ is 0 or 1
2: i1 ← smallest descendant of i
3: if transpose = 0 then . y = Qix
4: yi ← x
5: for k = i, i− 1, . . . , i1 do . Reverse postordered traversal of Ti

6: if k is leaf then
7: yk ← Qkyk . Dense Qk at the leaf level
8: else
9: for j = r, r − 1, . . . , 1 do . Multiplication of Q̂(j)

k via ( 3.60 )
10: yk ← b(j)

k � yk

11: yk ← trifmm(d(j)
k ,λ

(j)
k ,η

(j)
k ,yk,

1
s−t

)
12: yk ← v̂(j)

k � yk

13: end for
14: yk ← P T

k yk . Permutation like in ( 3.63 )

15:

(
yc1

yc2

)
← yk . Partitioning following the sizes of Qc1 , Qc2,

with c1, c2 the children of k
16: end if
17: end for
18: else . y = QT

i x
19: Partition x into xk pieces following the leaf-level Qk sizes
20: for k = i1, i1 + 1, . . . , i do . Postordered traversal of Ti

21: if k is leaf then
22: yk ← QT

k xk . Dense Qk at the leaf level
23: else
24: yk ←

(
yc1

yc2

)
. c1, c2: children of k

25: yk ← Pkyk . Permutation like in ( 3.63 )
26: for j = 1, 2, . . . , r do . Multiplication of (Q̂(j)

k )T via ( 3.60 )
27: yk ← v̂(j)

k � yk

28: yk ← −trifmm(λ(j)
k ,d(j)

k ,η
(j)
k ,yk,

1
s−t

) . The negative sign
and the switch of λ(j)

k and d(j)
k are because of the transpose

29: yk ← b(j)
k � yk

30: end for
31: end if
32: end for
33: end if
34: return y
35: end procedure
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p ∈ T . In order to make SuperDC more efficient, in Section  3.3 , we use an adaptive dividing

strategy to minimize colsize(Zp) = min(rowsize(Bi), colsize(Bi)).

However, in some cases, the matrix Bi may be rank-deficient. For example, in the HSS

construction (see, e.g., [  77 ]) of a symmetric banded matrix with bandwidth w, the size of Bi

is 2w×2w while its rank is just w. In this case, we can take advantage of the rank-deficiency

by computing a rank-revealing factorization

Bi = XiY
T

i , such that (3.68)

‖Xi‖2 = ‖Yi‖2 =
√
‖Bi‖2, colsize(Xi) = rank(Bi). (3.69)

Then we can divide Dp as

Dp =

Di − UiXiX
T
i U

T
i

Dj − UjYiY
T

i U
T
j

+

UiXi

UjYi

( XT
i U

T
i Y T

i U
T
j

)
, (3.70)

so that the low-rank update Zp now becomes

Zp =

UiXi

UjYi

 , colsize(Zp) = rank(Bi) < min(rowsize(Bi), colsize(Bi)).

Because ‖Xi‖2 = ‖Yi‖2 =
√
‖Bi‖2, we can analogously show that the dividing strategy ( 3.70 )

satisfies Proposition  3.3.2 .

3.7.2 Precomputations in triangular FMM

When solving the shifted secular equation (  3.43 ) via modified Newton’s method, we need

to use triangular FMM (with local shifting) to compute the matrix-vector products ( 3.39 )

at each iteration to update yk’s like ( 3.47 ), where yk = xk − dk are the approximations to

the exact differences ηk = λk − dk.

For this purpose, a straightforward way is just to repeat the triangular FMM algorithm at

each individual iteration. That is, at each iteration, (i) we first partition the interval covering

x = {xk}n
k=1 and d = {dj}n

j=1; (ii) then compute the corresponding low-rank factors of the
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far-field blocks like (  2.14 ), ( 2.15 ), ( 2.17 ), and the translation matrices like (  2.53 ),( 2.60 ), as

well as the near-field blocks; (iii) then multiply via Algorithm  1 the trangular FMM matrices

with the vector w = ( v2
1 · · · v2

n
)T to get ψ, φ, ψ′, and φ′.

However, via a more careful design, most of the computations in the triangular FMM

can be done in a precomputation step, so that when the approximations yk’s in ( 3.49 ) are

updated, only a small amount of extra work is needed to get ψ, φ, ψ′, and φ′ for next

iteration.

(i) Precomputations. We construct a hierarchical partition (see Section  2.5 of Chapter

 2 ) of the interval I = [d1, dn+1] just based on d̃ = {dk}n+1
k=1 , where dn+1 = dn + ‖v‖2

2.

Note that this partition shall be independent of x. In the telescoping expansion of the

triangular FMM matrix ( 2.61 ), the matrices R(l), B(l) and V (L) can be precomputed

since they do not depend on x (see their explicit formulas (  2.15 ), (  2.17 ), (  2.53 )). Then

in Algorithm  1 , these matrices are multiplied with appropriate slices of the vector w.

These computations are independent of yk’s and xk’s, so that they can be reused in

the following update step.

(ii) Efficient Newton iterations. Thanks to the interlacing property (  3.33 ), the partition

of the interval I will also partition x = {xk}n
k=1 into small subsets. When yk’s (equiv-

alently, xk’s) are updated, in order to get ψ, φ, ψ′, and φ′ for next iteration, we only

need to compute the local expansion matrix U (L), as well as the near-field interaction

matrix Kn in the telescoping expansion (  2.61 ). Moreover, the diagonal blocks of U (L)

can be computed more accurately via yk = xk − dk,

Ui =
((

xk − oi

δi

)j
)

xk∈i,0≤j≤r−1
=
(yk + (dk − oi)

δi

)j


xk∈i,0≤j≤r−1

, (3.71)

where we can compute dk − oi accurately since the interval i is produced in the hier-

archical partition of d̃ = {dk}n+1
k=1 . We refer (  3.71 ) as shifting in the far-field block or

far-field shifting.

The precomputation strategy can significantly reduce the amount of computations in the

modified Newton’s iteration. Moreover, these precomputations can be also reused for com-
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puting the vectors v̂ and b. In our experiments in MATLAB, SuperDC can be twice faster

when the precomputation strategy is implemented.

3.7.3 Improved convergence criteria

In this subsection, we reexamine the convergence criteria

|f(dk + yk)| < cn(1 + |ψk(dk + yk)|+ |φk(dk + yk)|)εmach. (3.72)

This bound is first proposed in [  16 ], and has the advantage that it comes for free after

computing ψ and φ via triangular FMM. On the other hand, as pointed out in [ 16 ], [ 73 ],

it might allow too much error when n is extremely large. While it works well in the tests

for the large matrices in Section  3.5 , a tighter and more accurate bound will still be desired.

Indeed, Li proposes in [ 73 ] to compute ψk(dk + yk) = ∑k
j=1

v2
j

δjk−yk
by summing up each term

from j = 1 to k and φk(dk + yk) = ∑k+1
j=n

v2
j

δjk−yk
from n to k + 1, so that a backward error

bound can be obtained on the way at the cost of about 2n extra additions

|f(dk + yk)| ≤
2 +

k∑
j=1

(k − j + 6)v2
j

|δjk − yk|
+

k+1∑
j=n

(j − k + 5)v2
j

|δjk − yk|
(3.73)

+ |f(dk + yk)|+ |ykf
′(dk + yk)|

εmach.

This backward error bound would be more accurate and reasonable than ( 3.72 ) if ψk(dk +yk)

and φk(dk + yk) are computed via Li’s method. However, it would not be applicable in

SuperDC because (i) ψk(dk + yk) and φk(dk + yk) are computed via the triangular FMM

matrix-vector products ψ = C̃Lw and φ = C̃Uw; (ii) it is difficult to compute the bounds

( 3.73 ) simultaneously for all k = 1, . . . , n in O(n) operations.

Therefore, an alternative bound based on the backward error of triangular FMM matrix-

vector product will be more suitable for SuperDC. In particular, the backward error bound
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in Theorem  2.6.6 of Chapter  2 suggests that the following convergence criteria shall be a

good candidate

|f(dk + yk)| < c̃ log2 n (1 + |ψk(dk + yk)|+ |φk(dk + yk)|) εmach, (3.74)

where we relax the factor log n in Theorem  2.6.6 to log2 n in order to accommodate the

approximation error ε there. Here, c̃ is moderate constant and c̃ = 256 works well in our

tests. In our numerical experiments, the new bound ( 3.74 ), together with the far-field shifting

( 3.71 ), can improve the accuracy of some eigenvalues by two digits.

3.8 Generalization to SVD solver

In this section, we generalize SuperDC to compute the SVD of a nonsymmetric HSS

matrix A. We show two ways for doing this.

A straightforward way is to follow the idea in [ 21 ] to embed the matrix A into a symmetric

HSS matrix, then apply the SuperDC eigensolver. To be more specific, we can embed A into

the symmetric matrix

Ā =

 AT

A

 .
Moreover, Ā will be a symmetric HSS matrix after symmetric permutation. For example,

for a two-level HSS matrix A =

 D1 U1B1V
T

2

U2B2V
T

1 D2

 and a suitable permutation matrix

P , then PĀP T has the form
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PĀP T =P



DT
1 V1B

T
2 U

T
2

V2B
T
1 U

T
1 DT

2

D1 U1B1V
T

2

U2B2V
T

1 D2


P T

=



DT
1 V1B

T
2 U

T
2

D1 U1B1V
T

2

V2B
T
1 U

T
1 DT

2

U2B2V
T

1 D2


≡

 D̄1 Ū1B̄1Ū
T
2

Ū2B̄
T
1 Ū

T
1 D̄2

 ,

where D̄i =

 DT
i

Di

 , Ūi =

Vi

Ui

 , i = 1, 2, and B̄1 =

 BT
2

B1

. Then the SVD

A = XΣY T can be obtained from the eigenvalue decomposition Ā = QΛQT . In particular,

the singular values of A are the nonnegative eigenvalues of Ā, and the left and right singular

matrices X and Y are given in terms of the structured eigenmatrix Q so that their matrix-

vector product routines can be computed via that of Q, see [  21 ] for more details. The overall

complexity is O((2r)2 · 2n log2(2n)) = O(8r2n log2 n) and storage is O(2r · 2n log(2n)) =

O(4rn log n), where the 2r and 2n are because the sizes of B̄1 and Ā double compared to the

sizes of B1 and A, respectively. Although the complexity is still quasilinear, it needs eight

times more work and four times more storage than the symmetric case.

The alternative is to directly exploit the HSS structure of A, but in a different way from

the symmetric case. For the convenience of presentation, we assume all B generators of A

have row size r. To illustrate the idea, suppose A = D3 =

 D1 U1B1V
T

2

U2B2V
T

1 D2

 is a two-

level n × n HSS matrix, where n = n1 + n2. Compute the QL factorizations Ui = Qi

 0

Ũi


and partition QT

i Di accordingly

QT
1

(
D1 U1

)
=

 D̂1

D̃1 Ũ1

 , QT
2

(
U2 D2

)
=

 D̂2

Ũ2 D̃2

 ,
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where Ũi ∈ Rr×r, D̃i ∈ Rr×ni , D̂i ∈ R(ni−r)×ni , i = 1, 2. Define Π3 = P3 · diag(QT
1 , Q

T
2 ) where

P3 is a suitable permutation matrix, then

Π3A = P3



D̂1

D̃1 Ũ1B1V
T

2

D̂2

Ũ2B1V
T

1 D̃2


=



D̃1 Ũ1B1V
T

2

Ũ2B1V
T

1 D̃2

D̂1

D̂2


≡


T1 T2

D̂1

D̂2

 . (3.75)

The right-hand-side of ( 3.75 ) is said to have block broken-arrowhead form.

Next, suppose A = D7 =

 D3 U3B3V
T

6

U6B6V
T

3 D6

 is a three-level HSS matrix, where D3

and D6 are two-level HSS matrices. Let Π6 be defined similarly as in ( 3.75 ) with children

nodes 4 and 5, then

Π3

Π6

A =



T1 T2 Û3B3V
T

6

D̂1

D̂2

Û6B6V
T

3 T4 T5

D̂4

D̂5


, where Û3 =

Ũ1R1

Ũ2R2

 , Û6 =

Ũ4R4

Ũ5R5

 ∈ R2r×r.

Q1 →

Q2 →

Q4 →

Q5 →

→ →

Compute the QL factorizations Ûi = Qi

 0

Ũi

 , Ũi ∈ Rr×r, i = 3, 6, and partition accordingly
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QT
3

(
T1 T2 Û3

)
=

 T̂1 T̂2

T̃1 T̃2 Ũ3

 , QT
6

(
Û6 T4 T5

)
=

 T̂4 T̂5

Ũ6 T̃4 T̃5

 .

Define Π7 = P7 · diag(QT
3 , In3−2r, Q

T
6 , In6−2r) where P7 is a suitable permutation and Ini−2r’s

are the identity matrices, then

Π7

Π3

Π6

A =



T̃1 T̃2 Ũ3B3V
T

6

Ũ6B6V
T

3 T̃4 T̃5

T̂1 T̂2

D̂1

D̂2

T̂4 T̂5

D̂4

D̂5



≡


T3 T6

D̂3

D̂6

 , D̂i ∈ R(ni−r)×ni . (3.76)

Q3 →

Q6 →

→ →

As a result, the matrix A is reduced to block broken-arrowhead form (  3.76 ), with its subblocks

D̂3 and D̂6 also in block broken-arrowhead form.

The above procedure can be generalized to multilevel in an obvious way, such that a

multilevel HSS matrix can be reduced to multilevel block broken-arrowhead form via a se-

quence of orthogonal matrices {Πi}i∈T , see Figure  3.9 . Therefore, the SVD of A can be

computed recursively if we know how to compute the SVD of a block broken-arrowhead
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Figure 3.9. Multilevel block broken-arrowhead form

matrix. We show how to do this for the rectangular matrix D̂p =


T̂i T̂j

D̂i

D̂j

 where

D̂i ∈ R(ni−r)×ni , D̂j ∈ R(nj−r)×nj ,
(
T̂i T̂j

)
∈ Rr×(ni+nj). Without loss of generality, we

can assume
(
T̂i T̂j

)
has full row rank. Otherwise, we can just compute the QL factoriza-

tion
(
T̂i T̂j

)
= Gp

 0 0

Ťi Ťj

 where Gp ∈ Rr×r is orthogonal, and then solve the SVD of

the smaller matrix


Ťi Ťj

D̂i

D̂j

. Suppose we have computed the SVDs of D̂i and D̂j

D̂i = Xi

(
Σi 0

)
Y T

i , Σi ∈ R(ni−r)×(ni−r),

D̂j = Xj

(
Σj 0

)
Y T

j , Σj ∈ R(nj−r)×(nj−r),
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
T̂i T̂j

D̂i

D̂j

 =


Ir

Xi

Xj




T̂iYi T̂jYj(

Σi 0
)

(
Σj 0

)

Y T

i

Y T
j



=


Ir

Xi

Xj




Fi Fj Hi Hj

Σi

Σj

P
Y T

i

Y T
j


(3.77)

where T̂iYi =
(
Hi Fi

)
, T̂jYj =

(
Hj Fj

)
and P is a permutation matrix. Compute the RQ

factorization of the r×2r matrix
(
Fi Fj

)
=
(

0 Z

)
G, where Z ∈ Rr×r is upper triangular

and G ∈ R2r×2r is orthogonal, then


T̂i T̂j

D̂i

D̂j

 =


Ir

Xi

Xj




0 Z Hi Hj

0 Σi

0 Σj


G

Ini+nj−2r

P
Y T

i

Y T
j



=


Ir

Xi

Xj




Z Hi Hj 0

Σi 0

Σj 0

 P̃
G

Ini+nj−2r

P
Y T

i

Y T
j



Xi · (Σi 0) · Y
T
i

Xj ·
(

Σj 0
)

· Y T
j

→ →

Therefore we only need to compute the SVD of the following upper triangular square

matrix

M =


Z Hi Hj

Σi

Σj

 ≡
 Z(0) H(0)

Σ(0)

 ∈ R(ni+nj−r)×(ni+nj−r). (3.78)
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For this purpose, we follow the strategy in [  20 ], [  21 ], [  47 ] to get the SVD of M . To be more

specific, partition

Z(0) =

 Z(1) z

v0

 , H(0) =

 H̃(0)

vT

 ,

M =


Z(1) z H̃(0)

v0 vT

Σ(0)

 ≡
 Z(1) H̃(1)

M (1)

 ,

so that M (1) is a broken arrowhead matrix. Let M (1) = X(1)Σ(1)
(
Y (1)

)T
be the SVD

computed according to Lemmas  3.8.1 and  3.8.2 , then

M =

 Ir−1

X(1)


 Z(1) H(1)

Σ(1)


 Ir−1

Y (1)


T

.

The matrix in the middle has similar form to M but with a smaller leading block Z(1). The

above steps are repeated r times to get the SVD of M

M = X̂pΣpŶ
T

p , where

X̂p =
r∏

k=1

 Ir−k

X(k)

 , Ŷp =
r∏

k=1

 Ir−k

Y (k)

 .

Then the SVD of D̂p will be given by

D̂p = Xp

(
Σp 0

)
Y T

p ,

where the left and right singular matrices are

Xp =


Ir

Xi

Xj


r∏

k=1

 Ir−k

X(k)

 ,
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Yp =

Yi

Yj

P T

GT

Ini+nj−2r

 P̃ T


r∏

k=1

 Ir−k

Y (k)


Ir

 .

As a result, the problem is boiled down to computing the SVD of a broken arrowhead

matrix like M (1), which has been well studied in [ 20 ], [  21 ], [  47 ]. The singular values and

vectors of M (1) can be found explicitly via the following Lemma  3.8.1 from [  21 ]. Note that,

a standard deflation step need be first applied to M (1) so that the prerequisites of Lemma

 3.8.1 are satisfied. This is similar to the symmetric case. More discussions about deflation

can be found in [ 18 ], [ 20 ], [ 21 ], [ 34 ] as well as Section  3.4.1 .

Lemma 3.8.1 ([ 20 ], [  21 ], [  47 ]). Suppose 0 < d2 < · · · < dn and vi 6= 0. Let UΣW T be the

SVD of the broken-arrowhead matrix



v1 v2 · · · vn

d2

. . .

dn


= UΣW T , with

U =
(

u1 · · · un

)
, Σ = diag(σ1, · · · , σn), W =

(
w1 · · · wn

)
,

where 0 < σ1 < · · · < σn. Then the singular values {σk}n
k=1 satisfies the interlacing property

0 ≡ d1 < σ1 < d2 < · · · < dn < σn < dn + ‖v‖2,

and the secular equation

f(σ) = 1 +
n∑

k=1

v2
i

d2
i − σ2 = 0. (3.79)

And the singular vectors are

uk =
(
−1 d2v2

d2
2−σ2

k
· · · dnvn

d2
n−σ2

k

)T
/√√√√1 +

n∑
i=2

d2
i v

2
i

(d2
i − σ2

k)2 , (3.80)
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wk =
(

v1
d2

1−σ2
k
· · · vn

d2
n−σ2

k

)T
/√√√√ n∑

i=1

v2
i

(d2
i − σ2

k)2 . (3.81)

Similar to the symmetric rank-one update problem, SuperDC can find the gap ηk = σk−dk

efficiently and accurately via modified Newton’s method and triangular FMM. Note that

since di ≥ 0, σk > 0, we can take advantage of the identity d2
i −σ2

k = ((di−dk)− ηk)(di +σk)

to avoid cancellation in FMM.

However, the singular vectors given by (  3.80 ) and (  3.81 ) may lose orthogonality even if

the computed singular values σ̂k have double precision accuracy. In order for the computed

singular vectors to be numerically orthogonal, Gu uses Löwner theorem [  20 ], [  79 ] to compute

v̂i to replace vi in ( 3.80 ) and ( 3.81 ).

Lemma 3.8.2 ([ 20 ], [ 79 ]). If {dk}n
k=1 and {σ̂k}n

k=1 satisfy the interlacing property

0 = d1 < σ̂1 < d2 < · · · < dn < σ̂n,

then there exists a broken-arrowhead matrix M̂ =



v̂1 v̂2 · · · v̂n

d2

. . .

dn


whose singular values

are {σ̂k}n
k=1. The components of the vector v̂ = ( v̂1 · · · v̂n )T are uniquely determined up

to a sign

log |v̂i| =
1
2

 n∑
j=1

log |d2
i − σ̂2

j | −
n∑

j=1,j 6=i

log |d2
i − d2

j |

 .
Again, similar to the symmetric case, FMM can be adapted to accelerate the computa-

tions of v̂ and the normalization factors of uk and wk, as well as the matrix-vector product

routines of the singular matrices U and W .

3.9 Conclusions

In this chapter, we have designed a more reliable SuperDC eigensolver. It significantly

improves the divide-and-conquer algorithm in [ 39 ] in terms of stability and efficiency. A series

127



of stability enhancements is built into the different stages of the algorithm. In particular, we

avoid an exponential norm growth risk in the dividing stage via a balancing strategy. And

we are able to combine FMM accelerations with several key stability safeguards that have

been used in practical divide-and-conquer algorithms. We also give a variety of algorithm

designs and structure studies that have been missing or unclear in [  39 ]. The comprehensive

numerical tests confirm the nearly linear complexity and much higher efficiency than the

Matlab eig function for the eigendecomposition of different types of HSS matrices. Nice

accuracy and eigenvector orthogonality have been observed. Comparisons also illustrate the

benefits of our stability techniques.

The SuperDC eigensolver makes it feasible to use full eigendecompositions to solve various

challenging numerical problems as mentioned at the beginning of this chapter. In addition,

we expect that the novel local shifting strategy and triangular FMM accelerations are also

useful for other FMM-related matrix computations when stability and accuracy are crucial.

In our future work, we plan to provide the proof of backward stability, as well as a high-

performance parallel implementation, which will extend the applicability of the algorithm to

large-scale numerical computations.

We also describe a novel precomputation strategy that can reuse the computations in

triangular FMM. We also extend the SuperDC to compute the SVD of HSS matrices. This

can accommodate more situations when matrices are nonsymmetric.
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4. SUPERFAST FACTORIZATION UPDATE FOR

DIAGONALLY-SHIFTED SPARSE DISCRETIZED MATRICES

In this chapter, we consider some important discretized matrices, and develop a series of

techniques that enable us to quickly obtain a factorization of A and then perform factor-

ization update for multiple shifted matrices A− sjI. We first compute a structured partial

factorization of A, which can be reused to obtain new factorizations for free for multiple sj .

This idea is feasible because of several innovate ideas. One is to compute a fast structured

eigenvalue decomposition for large a pivot submatrix A11. This eigenvalue decomposition

can be updated for free for different shifts. Then we use structured HSS form to approximate

the Schur complements. This is done via randomization and matrix-vector multiplication.

A key idea is to assemble all the matrix-vector multiplications for all the shifts together

in a highly structured matrix-matrix multiplication. We fully utilize all the sparsity and

structures in this process.

By carefully designing all the steps, most of the operations can be done in a precom-

putation step. The update is essentially only limited to a small subproblem (such as that

correspond to boundary mesh points). For two dimensional elliptic problems and Helmholtz

problems with certain coefficients and discretizations, the algorithm requires a precompu-

tation cost of roughly O(n) flops. The factorization update for each new shift needs only

O(
√
n log n). The factorization update is thus said to be superfast and is significantly more

efficient than redoing factorizations.

4.1 Introduction

In recent years, there have been extensive developments on fast direct factorizations of

sparse discretized Helmholtz equations. Such direct solvers provide fast and reliable solutions

that are very attractive for applications such as full waveform inversion (FWI). With low or

medium frequencies, they can usually reach nearly O(n) complexity in two dimensions and

O(n) ∼ O(n4/3) complexity in three dimensions.
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However, in FWI, it often involves the solution of Helmholtz equations with multiple

frequencies like in

−∆u− ω2
j c(x)−2u = f, j = 1, 2, . . . ,m. (4.1)

It is well known that, in matrix computation, an LU factorization of A generally cannot be

reused to get that of A− sjI for a new shift sjI. Thus, it is usually not possible to perform

fast shifted LU factorization update.

In this chapter, we are interested in the fast factorization of shifted sparse matrices, such

as matrices arising from some discretized equations. We suppose that, after appropriate

permutations and preprocessing, the discretized matrix has the following form:

A− sjI ≡

 A11 − sjI A12

A21 A22 − sjI

 , (4.2)

where {sj}m
j=1 are m scalars, and A is partitioned so that A11 is Hermitian. We suppose A11

is n × n and A22 is N × N . Examples of such problems are shifted Laplacians and certain

discretized Helmholtz equations corresponding to varying frequencies [ 28 ], [ 80 ], [ 81 ].

For some Helmholtz problems like the one in [ 28 ], we choose the permutation so that

A11 correspond to the interior points. A11 is Hermitian and has a form like in a usual finite

difference matrix with Dirichlet boundary conditions. Later, we refer to A11 as the interior

problem. A22 corresponds to the boundary points with boundary conditions such as PML.

Sometimes, the discretized matrix does not appear like (  4.2 ) but can be converted into such

a form (see Section  4.2 ).

We seek to develop a superfast (sublinear cost) factorization update algorithm for such

problems. For the form in (  4.2 ), we first compute an eigenvalue decomposition for A11. Such

a decomposition is usually prohibitively expensive for large sparse matrices. However, for

problems like the one in [  28 ], where the interior part A11 is related to a separable problem,

we can quickly perform eigenvalue decompositions. The main idea is to utilize SuperDC

in Chapter  3 . The cost to factorize A11 is nearly O(n). Note that the eigendecomposition

of A11 can be updated for free for each new shift sjI. That is, we can quickly eliminate

A11 − sjI from each A− sjI.
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The next challenge is to deal with the Schur complement Sj resulting from the elimination

of A11 − sjI. The Schur complement problem is a smaller problem. Nevertheless, it has a

significant cost to form the Schur complement explicitly and factorize it for different shifts.

The reason is that Sj is dense due to the update from the partial elimination. This update

involves (A11 − sjI)−1 and is very costly to form directly.

Here, we apply a structured approximation to the Schur complement, and then compute

a structured factorization. To save the costs for multiple shifts, we apply some innovative

strategies. One is a randomized construction of the structured approximation to Sj. The

main cost of this construction is the multiplication of Sj and random vectors z. Thus,

we assemble all the matrix-vector multiplications for different shifts into a large structured

intermediate matrix. Each column of this structured intermediate matrix corresponds to

one sj value. This structured form is a product of multiple matrices that are sparse or

highly structured. We take full advantage of the sparsity and structures to quickly assemble

the intermediate matrix. This enables us to get the needed matrix-vector products for

all sj simultaneously. With the use of multiple z, it is convenient to construct structured

approximations such as hierarchically semiseparable (HSS) forms [ 14 ], [ 57 ] for Sj.

For discretized Poisson equations and certain discretized Helmholtz equations in two di-

mensions, the entire algorithm involves some precomputations that cost about O(n). Then

for each new shift, the cost to obtain a new factorization is significantly lower than refac-

torizing A− sjI. In fact, the factorization update costs only O(
√
n log n) (sublinear) and is

thus said to be superfast.

In the following, we discuss the fast eigenvalue decomposition of A11 in Section  4.2 .

Section  4.3 gives the main algorithm for the shifted factorization. Section  4.4 discusses the

complexity and some extensions. Section  4.5 presents some numerical experiments. Some

concluding remarks are drawn in Section  4.6 .

4.2 Fast eigenvalue decomposition for the interior problem

For ( 4.1 ), the discretized matrix looks like S + ω2
jM , where S is the stiffness matrix and

M is the mass matrix. We need converte it into the form in (  4.2 ). Here, we are interested in
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a type of problems where the fast eigendecomposition of A11 in ( 4.2 ) is possible. To illustrate

the idea, we use the 2D case, and the idea can be similarly understood for 3D cases. We

assume S and M have the following forms:

S =

 S11 S12

S21 S22

 , M =

 M11

M22

 , with (4.3)

S11 = I ⊗G+H ⊗ I, M11 = I ⊗D−2, (4.4)

where S and M are partitioned comformably as in ( 4.2 ), G and H correspond to discretized

problems in one dimensions, and D is an invertible diagonal matrix with the same size as

G. This is the case for the problem in [  28 ]. For such a case, A11 in ( 4.2 ) looks like

A11 = (I ⊗D)(I ⊗G+H ⊗ I)(I ⊗D),

where D is a diagonal matrix, and G and H are 1D Hermitian discretized matrices in the x

and y directions, respectively. Suppose G and D are K ×K and H is M ×M . A11 can be

rewritten as

A11 = I ⊗ G̃+H ⊗D2,

where G̃ = DGD. We can apply SuperDC in Chapter  3 to compute the eigendecomposition

H = QhΛhQ
∗
h, (4.5)

where we abuse notation and still use H to mean its HSS approximation. (We will also do

so for later cases.) Then

A11 = I ⊗ G̃+ (QhΛhQ
∗
h)⊗D2

= (QhQ
∗
h)⊗ G̃+ (QhΛhQ

∗
h)⊗D2

= (Qh ⊗ I)[I ⊗ G̃+ Λh ⊗D2](Qh ⊗ I)∗.
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Next, we find an eigendecomposition for I ⊗ G̃+ Λh ⊗D2, which is a block diagonal matrix

with diagonal blocks

Tj ≡ G̃+ λh,jD
2 = D(G+ λh,jI)D, j = 1, 2, . . . ,M, (4.6)

where Λh = diag(λh,1, . . . , λh,M) and M is the size of H. Since G is a 1D Hermitian dis-

cretized matrix, it can be approximated by a structured matrix such as the hierarchically

semiseparable (HSS) form [  14 ], [  57 ]. Since D is diagonal, Tj can also be approximated by

an HSS form. Note that there is no need to form Tj in (  4.6 ) explicitly since we can directly

update the HSS approximation to G + λh,jI. Such updates can be performed quickly by

updating G’s generators As a result, we can again use SuperDC to quickly find an eigende-

composition for Tj as

Tj = Qt,jΛt,jQ
∗
t,j. (4.7)

Then A11 has an eigendecomposition

A11 = QΛQ∗, with (4.8)

Λ = diag(Λt,1, . . . ,Λt,M), Q = (Qh ⊗ I) diag(Qt,1, . . . , Qt,M). (4.9)

We make some remarks regarding this structured eigenmatrix.

• Note that Qh, Qg and all Qt,j are all in structured forms and can be multiplied with a

vector in nearly linear complexity via the fast multipole method (see Chapters  2 and

 3 ). The overall complexity to multiply Q or Q∗ is roughly linear.

• These structured eigenmatrices are very memory-efficient. If traditional eigensolvers

were used and eigenmatrices were dense, storing O(M) such dense K × K matrices

would be a challenge, especially when mesh sizes M and K are large.

• These two perspectives justifies our use of the SuperDC, which is highly efficient in

both speed and space.
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4.3 Fast diagonally-shifted factorization update

Then, we consider the factorization update problem for ( 4.2 ). According to (  4.8 ),

A− sjI =

 A11 − sjI A12

A21 A22 − sjI

 Interior

Boundary
(4.10)

≈

 Q

L21 I


 Λ− sjI

Sj


 Q∗ R12

I

 , (4.11)

where

L21 = A21Q(Λ− sjI)−1, R12 = (Λ− sjI)−1Q∗A12,

Sj = A22 − sjI − A21Q(Λ− sjI)−1Q∗A12. (4.12)

L21 and R12 are not explicitly formed since they admit quick matrix-vector multiplications,

which is how they are used in the solution stage. Q in (  4.9 ) is structured and can be

quickly applied to a vector in nearly linear complexity. The remaining challenge is to apply

hierarchical structured methods to all Sj. We use HSS methods.

4.3.1 Structured approximation of Schur complements with multiple shifts

The HSS approximation can be done by randomized construction [  12 ], [  13 ], [  30 ], where

the dominate cost is to multiply Sj and some random vectors z like

Sjz = A22z − sjz − A21Q(Λ− sjI)−1Q∗A12z. (4.13)

The products A22z and z̃ ≡ Q∗(A12z) can be quickly computed based on the sparsity of

A22, A12 and the structure of Q. The major challenge is to evaluate A21Q(Λ − sjI)−1z̃ for

all j. Naive multiplication costs at least O(n) for each sj, resulting in a total cost at least

O(mn) for m shifts.
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A more intuitive way is to formulate (Λ−sjI)−1z̃ for all sj values together as the columns

of a Cauchy-like matrix:

C =
(

z̃i

λi − sj

)
n×m

, (4.14)

where z̃ =
(
z̃1 . . . z̃n

)T

. We then compute A21Q(Λ− sjI)−1z̃ for all sj together since

(
A21Q(Λ− s1I)−1z̃ · · · A21Q(Λ− smI)−1z̃

)
= A21QC.

We just need to find the columns of A21QC. If m is very small, then we directly form A21QC

by using the sparsity of A21 and the structure of Q. Thus, we focus on the case where m is

not too small.

A21QC =

A21 Q C

A convenient strategy is to form A21Q first in precomputations and then use Cauchy-like

matrix-vector multiplications or the FMM to compute A21QC. However, this precomputa-

tion cannot make use of the sparsity of A21 and costs O(n3/2) in two dimensions (and O(n5/3)

in three dimensions) if m = O(N).

We thus design a fully structured strategy that can take advantage of all the structures:

the sparsity in A21, the structures of Q, and the structures of C. Note that the Cauchy-like

matrix C in ( 4.14 ) is highly structured.

• If the interior eigenvalues {λi} and the shifts {sj} are well separated, then C is nu-

merically low rank. We can obtain a separable low-rank approximation C ≈ XY T via
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Taylor expansions, or even better, a recent analytical compression method in [  36 ] with

the Cauchy kernel function.

C =
(

z̃i

λi − sj

)
n×m

≈ Xn×rY
T

m×r =

X

Y
T

r

Here X only depends on {λi, z̃i} and Y only depends on {sj}. At this point,

A21QC ≈ A21QXY
T (4.15)

=

A21 Q X

Y T

. (4.16)

Note that when we use the method in [  36 ], the column basis matrix X essentially only

depends on the {λi} values and is independent of the {sj} values. This means that

the N × r matrix A21QX can be precomputed. Even such a precomputation is very

fast based on the sparsity of A21 and the structure of Q. After this, it is quick to

evaluate A21QC since Y is just an m× r matrix. That is, the matrix W = A21QX is

independent of the shifts and can be precomputed in O(rn log n).

W = =
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After precomputing W ,

A21QC ≈ WY T =

can be computed in O(rmN). Each shift Sjz now costs O(rN), rather than O(n) in

direct evaluation.

Thus, we can quickly evaluate Sjz in (  4.13 ) for all j = 1, . . . ,m. For convenience, suppose

r1 is the maximum off-diagonal numerical rank (called HSS rank [  14 ]) of Sj’s. To get HSS

approximations to all Sj based on the matrix-vector products, we can use either a par-

tially matrix-free HSS construction [  12 ], [  13 ], [  30 ] or a fully matrix-free HSS construction

algorithms in [  12 ], [ 82 ]. The previous version requires fewer matrix-vector multiplications

but needs to form O(r1N) entries of Sj with unknown locations. This is then impractical.

We thus use the fully matrix-free version, which requires the multiplication of each Sj with

O(r1 logN) random vectors z. That is, the multiplication procedure needs to be repeated

for all these z vectors. After that, we have the products of each Sj with O(r1 logN) random

vectors z. Then we apply the algorithm in [  82 ] to construct the HSS approximations.

4.3.2 Factorization update

With the HSS approximation to each Sj, we can then compute an ULV-type HSS factor-

ization [ 14 ], [ 57 ] of the following form:

Sj ≈ UjLjV∗
j ,

where Uj (Vj) represents a sequence of unitary factors and Lj represents a sequence of

triangular factors. Plugging this into (  4.11 ) yields a structured factorization:

A− sjI ≈

 Q

L21 Uj


 Λ− sjI

Lj


 Q∗ R12

V∗
j

 .
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When sj varies, L21 and R12 have the forms in ( 4.10 ) and need no cost to update. Thus,

the only actual update is to construct and factorization the HSS approximation to Sj. That

is, with our elaborate design of the algorithm, we essentially restrict the actual factorization

update to just the Schur complement problem (or the subproblem corresponding to the

boundary).

4.4 Complexity and discussions

Algorithm 6 Precomputation stage
Input G,H,D,A12, A21, A22
Output W,U,Λ, Q, Z

1: Compute [Qh,Λh] = superdc(H)
2: for j = 1, . . . ,M do
3: Tj = D(G+ λh,jI)D
4: Compute [Qt,j,Λt,j] = superdc(Tj)
5: end for
6: Λ = diag(Λt,1, . . . ,Λt,M), Q = (Qh ⊗ I) diag(Qt,1, . . . , Qt,M)
7: Generate O(r1 logN) random vectors Z
8: W = [], U = []
9: for z : column of Z do

10: Compute z̃ = Q∗A12z
11: Generate matrix X from {λi} and z̃ via Taylor expansion
12: Compute w = A21QX, u = A22z
13: W = [W ;w]
14: U = [U, u]
15: end for

Algorithm 7 Online computation stage
Input W,U,Λ, Q, Z, s = {sj}m

j=1
Output Sj, {Uj,Lj,Vj}m

j=1

1: Generate matrix Y from {sj} via Taylor expansion
2: W = W · Y
3: for j = 1, . . . ,M do
4: Randomized matrix-free HSS construction Sj = randhssmf(W,U,Z, sj)
5: HSS ULV factorization {Uj,Lj,Vj} = hssulv(Sj)
6: end for

138



Procedures of precomputation stage, as well as online factorization update stage, are

summarized in Algorithm  6 and  7 . We then inspect the complexity of the overall factoriza-

tion update algorithm. Suppose r1 is a uniform bound for the HSS ranks of all Sj’s. For

Helmholtz equations with small frequencies, r1 is expected to be small. Also suppose r0 is

the bound of the HSS ranks of G and H in (  4.4 ). Since G and H essentially correspond to

1D discretizations, r0 is small. (For example, G and H may be w-banded or even tridiagonal,

then r0 = 2w.) For convenience, we count the cost of forming A21QC as in (  4.15 ) where C

can be approximated by a low-rank form. The costs of some basic operations involved in the

algorithm are given in Table  4.1 . The main operations for the factorization updates for all

m frequencies are given in Table  4.2 .

Table 4.1. Costs of some basic operations.
Operation Cost

SuperDC of an order K HSS matrix with HSS rank r0 O(r2
0K log2 K)

Multiplication of Q and a vector O(r0(KM logM +KM logK))

Multiplication of A21 and a vector O(N)

Structured computation of A21QC
O(rr0(KM logM +KM logK)

+rN + rmN)

Fully matrix-free HSS construction for each Sj O(r2
1N logN)

HSS ULV factorization for each Sj O(r2
1N)

Thus, the total cost for m shifts is

O(K2 + r2
0K +M2 + r2

0M) +O(r2
0M log2 M) +O(r0KM) +O(r2

0MK log2 K)

+O(rr1r0(KM logM +KM logK) logN + rr1N logN)

+O(mr2
1N logN) +O(mr2

1N logN) +O(mr2
1N)

= O(r2
0n log n+ rr1r0n log2 n)︸ ︷︷ ︸

Precomputation

+O(mr2
1N log n)︸ ︷︷ ︸

m updates

,
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Table 4.2. Costs of the main operations in the precomputation and factorization update.
Operation Cost

Precompute

HSS approximations to G and H O(K2 + r2
0K +M2 + r2

0M)

Eigendecomposition ( 4.5 ) O(r2
0M log2 M)

HSS approximation to ( 4.6 ) for all j O(r0KM)

Eigendecomposition ( 4.7 ) for all j O(r2
0MK log2 K)

Forming A21QX for O(r1 logN) vectors z O(rr1r0(KM logM

+KM logK) logN

+r2
1N logN)

m updates
Form (A21QX)Y T for O(r1 logN) vectors z O(mrr1N logN)

Matrix-free HSS construction for all Sj O(mr2
1N logN)

HSS ULV factorization for all Sj O(mr2
1N)

where O(r2
1N log n) is the cost to update the factorization for each new shift. For the 2D

case, we have r0 = O(1), r1 = O(1), r = O(1), N = O(
√
n). Thus, the precomputation cost

is O(n log2 n), and the cost for each new update is

O(r2
1N log n) = O(

√
n log n).

Such a cost is essentially roughly proportional to the number of boundary mesh points.

Therefore, the factorization update is significantly faster than refactorizations.

Note that when we compute the product of Q and a vector, it needs to multiple Qh ⊗ I

and a vector, say, x. It is preferred to use the relationship

(Qh ⊗ I)x = vec(XQT
h ),

where X is formed by reshaping x into a matrix through the so-called unvec operation. In

this way, it naturally utilizes BLAS3 instead of BLAS2 operations.

We may also consider the 3D case, where the approximation of Sj should be based on

H2 matrices [ 5 ] since r1 would be too large if HSS approximation is used.
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4.5 Numerical experiments

In this section, we shall test our new factorization update algorithm on some numerical

examples to demonstrate its efficiencies. Throughout this section, the following notations

are used

• SMF: unsymmetric structured multifrontal method in [ 25 ],

• NEW: our new multiple shifts factorization update algorithm,

• e2: the relative 2-norm solution error ‖x−xtrue‖2
‖xtrue‖2

,

• SuperDC: superfast divide-and-conquer eigensolver in Chapter  3 

Example 1

Helmholtz equation with PML boundary condition

∆u+ w2

c2 u = f, Ω = [0, 1]2,

where c and f are velocity field and force term respectively. The frequency w is set to be

w = 5Hz. The following linear systems

(A− sjI)x = bj

are solved, where A is finite difference discretization matrix. Details of discretization and

PML formulation can be found in [  83 ]. The shifts sj’s are randomly picked within a circle

away from the real axis

sj

rand.
∈ {z ∈ C : |z − c| ≤ r}, |c| > r.

We fix w = 5Hz and vary the mesh sizes n = 2562, 5122, 10242, 20482, 40962. The tolerance

for the SuperDC eigensolver is tol = 10−3, and the bound for the HSS ranks of all Sj is set
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to be r1 = 20. The flops counts for precomputation stage is reported in Table  4.3 . To see

the scaling, we also plotted the result in Figure  4.1 . The flops count scaling is consistent

with our estimate O(n log2 n). Note that we did not include the timing here since n is not

large enough to show the theoretical scaling. We also include the storage of NEW. In the

precomputation stage, we need to store

• eigenmatrix Q, which consists of a sequence of structured eigenmatrices from SuperDC,

• intermediate matrix W , which is used for randomized matrix-free HSS construction of

boundary Schur complements in the online computation stage.

Table 4.3. Precomputation flops count for NEW, tol=10−3.

Matrix size 2562 5122 10242 20482 40962

Precomputation flops 3.0e11 1.8e12 1.0e13 5.2e13 2.8e14

Storage of Q 3.8e7 1.9e8 1.3e9 5.7e9 2.4e10

Storage of W 1.1e8 2.6e8 6.0e8 1.3e9 2.9e9
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10
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10
13

10
14

10
15

Figure 4.1. Precomputation flops count of NEW, tol=10−3.
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Figure 4.2. Storage of Q, tol=10−3
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Figure 4.3. Storage of W , tol=10−3

Next, we compare NEW and SMF in terms of factorization update flops counts and storage

per shift in Table  4.4 , Figure  4.4 and  4.5 . Here for SMF, we refactorize A− sjI for each shift

sj. Note that the flops count and timing of NEW is significantly lower than that of SMF. For

each shift, NEW is sublinear O(
√
n log2 n) in flops and storage, since we restrict the update

problem to the boundary.
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Table 4.4. Factorization update flops count and storage, NEW v.s. SMF

Matrix size 2562 5122 10242 20482 40962

Flops
SMF 1.4e10 6.3e10 2.6e11 1.1e12 5.0e12

NEW 5.4e8 1.3e9 3.1e9 7.3e9 1.7e10

Time
SMF 1.6e0 5.6e0 2.5e1 3.5e2 4.0e3

NEW 9.5e-1 1.7e0 3.9e0 8.9e0 2.3e1

Storage
SMF 3.0e7 1.6e8 7.8e8 4.0e9 1.9e10

NEW 1.9e7 4.0e7 8.2e7 1.7e8 3.5e8
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Figure 4.4. Factorization update flops
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Figure 4.5. Factorization update storage

We then inspect the solution stage in terms of flops count and accuracy. We report the

results in Table  4.5 and Figure  4.6 . Note that the solution stage flops count for NEW is roughly

linear with respect to the matrix size, which is consistent with our estimate. Although NEW

costs approximately 3 times more than SMF here, the extra cost is almost negligible compared
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to the gainz in the factorization update stage. Therefore, the overall performance of NEW is

still way superior than SMF refactorization. Furthermore, the solution error of NEW is one or

two digits better than SMF. This may be due to the orthogonal eigenmatrix and that each

update is restricted to the smaller boundary problem.

Table 4.5. Solution stage, SMF v.s. NEW

Matrix size 2562 5122 10242 20482 40962

Flops
SMF 1.5e8 6.2e8 2.5e9 1.0e10 4.3e10

NEW 5.1e8 2.7e9 1.3e10 6.1e10 3.0e11

e2

SMF 2.1e-5 1.5e-4 3.9e-4 1.2e-3 3.4e-3

NEW 3.9e-4 1.1e-4 4.2e-5 4.2e-5 4.9e-5
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Figure 4.6. Solution flops, SMF v.s. NEW

4.6 Conclusions

We have considered a challenging problem of performing factorization update for diagonally-

shifted sparse discretized matrices. A series of structured matrix techniques is used to first
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compute a fast partial factorization of A. The partial factorization needs no cost to be up-

dated for A−sjI. For different sj, we then only need to update the structured approximation

of the Schur complement and perform a structured factorizations. The main operation in

the structured approximation is the multiplication of the Schur complement with vectors.

We assemble these multiplications corresponding to all sj so as to perform fast structured

matrix-matrix multiplications. We have shown that the majority of the computations can

be done in a precomputation stage. For Helmholtz equations with certain coefficients and

discretizations, it is superfast to perform the update for each new shift, and the cost is

essentially roughly proportional to the number of boundary mesh points.
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