Purdue University Graduate School
Browse

File(s) under embargo

Reason: Results are pending publication in journals

6

month(s)

5

day(s)

until file(s) become available

Selective Deposition of Conductive Inks Onto Rough Polymer Composites Using Drop-On-Demand Inkjet Printing

thesis
posted on 2024-02-20, 22:11 authored by Eric Jacob WilliamsonEric Jacob Williamson

Inkjet printing allows for rapid prototyping and design iteration that traditional printing methods do not. The use of inkjet printing for electronic devices has seen increased use in recent years owing to its high precision and ability to quickly test new devices. However, nearly all of this work has been done on smooth substrates with surface roughnesses on the nano scale. To further explore the capabilities of inkjet printing on rough surfaces, electrically conductive ink was printed onto a variety of solids-loaded polymer composite substrates using varied filler particle sizes with surface roughnesses on the micron scale. This work examines the necessary parameters required to print on these rough surfaces and characterizes the electrical properties of deposited ink. Electrical conductivity was demonstrated on surfaces across five distinct substrates using varied particle sizes. Further, two functional devices in the form of a heater and a strain gauge were printed and tested on these substrates. These devices showed comparable performance to commercially available devices. These findings offer improved ability to use inkjet technology on a variety of substrates and have implications in multiple fields. This demonstration of basic conductivity and advanced functionality shows the potential to continue development of complex devices and integrate them into new substrates. The optimization of printing algorithms on these rough surfaces also has significant potential to improve printability on rough surfaces and further expand capabilities.

History

Degree Type

  • Master of Science

Department

  • Aeronautics and Astronautics

Campus location

  • West Lafayette

Advisor/Supervisor/Committee Chair

Jeff Rhoads

Advisor/Supervisor/Committee co-chair

Steve Son

Additional Committee Member 2

Weinong Chen

Usage metrics

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC