Under embargo
Reason: Publications in review process
12
day(s)until file(s) become available
Solid-State Plasma Switches for Reconfigurable High-Power RF Electronics
Conventional RF switching technologies struggle to simultaneously achieve high-power handling, low loss, high isolation, broadband operation, quick reconfiguration, high linearity, and low cost, which are desirable for many applications, including communications, radar, and sensors. Moreover, they require electrical bias networks, which degrade performance and, in many cases, inhibit wideband applications, including DC operation. On the other hand, plasma (photoconductive) switches use an optical bias to generate free charge carriers. Recently these switches have begun to not only rival conventional technologies in terms of performance metrics such as switching speeds and loss but have exceeded what is possible in terms of power handling. This work details the strides made in placing solid-state plasma technologies at the forefront of advanced, high-power switching applications including a novel high-power tuner and an absorptive/reflective SPnT switch. In various form factors, SSP has achieved analog control of loss as low as 0.09 dB and isolation as high as 54 dB, linearity of 68.8 dBm (IP3), 110 GHz instantaneous bandwidth, including DC, switching speeds as low as 3.5 us, 100+ W power handling, and 30+ W hot switching. In addition, comprehensive physics modeling has been developed to enable seamless design validation before fabrication commences. This thesis discusses the achievements and design considerations for creating optimized plasma switches and proposes a path for future applications.
Funding
Wideband and High-Power Reconfigurable Plasma Matching Network for Compact and Efficient Phased Array Emitters
United States Department of the Navy
Find out more...History
Degree Type
- Doctor of Philosophy
Department
- Electrical and Computer Engineering
Campus location
- West Lafayette