Space, Walking Ability, and Broiler Chicken Behavior and Welfare
Stocking density, space availability, and lameness are important aspects affecting broiler chicken behavior and welfare. Stocking density refers to the weight of broiler chickens per a set area of space typically measured as kg/m2. Space availability is the amount of space per individual broiler chicken typically measured as m2/bird. Stocking density and space availability can contribute to lameness and other aspects of welfare such as footpad dermatitis, hock burn, and feather cleanliness. The behavior of broiler chickens can also be modified by stocking density, space availability, and lameness. All of these aspects are typically related to a change in activity levels which could be used as an indicator of animal welfare. To date, the majority of research that has examined the walking ability of broiler chickens has assessed how stocking density influences the development of gait problems when applied during the grower phase. However, not all broilers develop gait problems at the same point in time and it is unknown whether broilers that initially have sound gait develop gait problems at a similar rate to broilers that are initially classified as having affected gait. Further, the influence of stocking density on the progression of gait abnormalities of broilers with sound and poor gait is unknown. Finally, since space becomes more and more limited as broiler chickens increase in body weight and age, it is unknown how the provision of space during the finisher phase, when broiler chickens are gaining weight rapidly, can influence their walking ability and welfare outcomes. Stocking density is calculated based on projected final weights of broiler chickens from the time they are placed on a commercial farm, and that projected stocking density remains the same from the chick placement date. As stocking densities are increased, there is also an increase in the prevalence of lameness. Age is also known to be related to walking ability, and as broiler chickens age, there is an increase in the prevalence of lameness. While it is known that increasing stocking density and aging are both contributing factors to broiler chicken lameness, there is no previous research on if reducing stocking density at a later age can help alleviate the prevalence of lameness. To address this knowledge gap, two studies were conducted. In the first study, 784 mixed-sex Ross 708 broiler chickens in commercial barns were placed into of four treatment groups. · SOUND: Consisted of broiler chickens that were considered to have sound gait (scores of 0 and 1) and the broilers were housed at farm stocking density (6lb/ft2, 29.29 kg/m2), · AFFECTED: Consisted of broiler chickens that were considered to have affected gait (scores of 2 or higher) and were housed at farm stocking density (6lb/ft2, 29.29 kg/m2) · MIXED-F: Consisted of 50% of broiler chickens that were considered to have sound gait and 50% that were considered to have affected gait and were housed at farm stocking density (6lb/ft2, 29.29 kg/m2) · MIXED-L: Consisted of 50% of broiler chickens that were considered to have sound gait and 50% that were considered to have affected gait and were housed at half of the farm stocking density (3lb/ft2, 14.65 kg/m2) Broiler chickens were randomly selected at 33 days of age from each of four commercial barns for welfare assessments, which included gait scoring to assess walking ability, as well as the assessment of footpad dermatitis and hock burn. Broilers were then assigned to one of two gait categories based on their gait scores. Broilers were either considered to have sound gait meaning they had no or unidentifiable abnormalities, or affected gait meaning there were identifiable abnormalities. To separate treatment groups, custom-built pens (4 ft x 12 ft, 1.22 m x 3.66 m) were constructed. At 37 days of age welfare assessments were conducted again, and then the broiler chickens were placed back into the flock (Chapter 2). The behavior of the broiler chickens was recorded from the evening of day 33 to the morning of day 37 and video was analyzed using scan sampling. The proportion of broiler chickens performing target behaviors was recorded every 10 minutes in the morning (6:00 – 8:00) and evening (19:00 – 21:30). Better gait scores were observed at 37 days of age in broiler chickens in the MIXED-L group and broiler chickens in the SOUND group. The presence of hock burn was lower in broiler chickens in the SOUND group. Cleanliness scores were better for broiler chickens in the MIXED-L group and in broiler chickens in the SOUND. Stocking density impacted the proportion of broilers performing eating, drinking, sitting, and walking (P < 0.05). Walking ability impacted the proportion of broiler chickens standing, walking, and sitting (P < 0.05). To continue investigating the implementation of housing changes later in the broiler chickens’ life, a second study was conducted using 705 mixed-sex Ross 708 broiler chickens. At 7 d, broiler chickens were randomly assigned to 1 of 16 pens (46-47 birds/pen). At 28 d, half of the pens doubled in size after welfare assessments were completed (measuring 8 ft x 10 ft, 3.05 m x 2.44 m, DOUBLE), while the other half remained at the original dimensions (8 ft x 5 ft, 2.44 m x 1.5 m, SINGLE). The DOUBLE pens had an expected stocking density of 15.2 - 15.5 kg/m2 (3.11 - 3.17 lb/ft2) and an estimated space availability of 0.15 to 0.16 m2/bird while the SINGLE pens had an estimated stocking density of 30.4 - 31.1 kg/m2 (6.23-6.37 lb/ft2) and an estimated space availability of 0.07-0.08 m2/bird. Welfare assessments consisting of scoring gait, feather cleanliness and for the presence of FPD and hock burn were conducted at 22 d, 28 d, and 38 d (Chapter 4). At 38 d, broiler chickens in SINGLE pens were less likely to have a score of 0 for FPD (Wald c2 = 15.45, P < 0.0001), hock burn (Wald c2 = 7.26, P = 0.0071), and feather cleanliness (Wald c2 = 11.77, P = 0.0006) than broiler chickens in DOUBLE pens. However, broiler chickens in SINGLE pens were more likely to have a gait score of 0 compared to broiler chickens in DOUBLE pens (Wald c2 = 11.34, P = 0.0008). Broiler chicken behavior was recorded at 23-26 d (Period 1: before space increase), 28-31 d (Period 2: time of space increase), and 36-37 d (Period 3: after space increase). Behavior data were collected using focal sampling for two broiler chickens per each of the 16 pens in the morning, afternoon, and evening (Chapter 5). Broiler chickens housed in double pens had an increased frequency of leg extensions compared to broiler chickens housed in single pens (P < 0.05). Period had a significant impact on the frequency of eating, sitting, and walking and the durations of sitting, environmental pecking, standing, and walking (P < 0.05). Time of day had a significant impact on the frequency of eating, sitting, walking, preening, and leg extensions and the durations of sitting, eating, preening, and standing (P < 0.05). The interaction of age and time of day had a significant impact on the frequency of drinking and leg extensions and the durations of sitting, eating, and walking (P < 0.05). The interaction of age and treatment had a significant impact on the frequency of eating and walking and the duration of preening (P < 0.05). In conclusion, broiler chickens housed in DOUBLE pens did not exhibit a difference in behaviors compared to those in SINGLE pens, other than broilers in the DOUBLE pens performing leg extensions more often. While the first study indicated that having more space available per broiler chicken led to better walking ability, the second study showed the opposite to be true as those with more space had reduced walking ability. This indicates that changing the stocking density through manipulating space in the finisher phase may impact welfare, but further investigation is needed. Future research should first examine the effects of adding space in the finisher phase with 3 treatment groups. While the two discussed here would remain the same, the third group should start with broilers in a pen that is already the size of the DOUBLE pens and remains that way for the entire project. This will ensure that increasing space during the finisher period is beneficial rather than the additional space availability in general accounting for the differences in treatments. All treatment groups should also get fresh bedding with the pen increase to ensure the welfare measurement results are due to the changes in space availability rather than the provision of fresh litter.
History
Degree Type
- Doctor of Philosophy
Department
- Animal Sciences
Campus location
- West Lafayette