Purdue University Graduate School
thesis_v21FINAL.pdf (36.23 MB)

Stimuli-Responsive Valving Mechanisms for Paper-Based Diagnostics

Download (36.23 MB)
posted on 2020-03-10, 16:17 authored by Elizabeth Anne PhillipsElizabeth Anne Phillips
Rapid identification of disease-causing pathogens at the point-of-care enables immediate treatment and infection control. However, existing rapid diagnostic devices fail to detect the low concentrations of pathogens present in the early stages of infection, causing delayed and even incorrect treatment. A delay in antibiotic treatment of as few as 24 hours after infection onset will drastically decrease a patient’s chance of survival. The transport of a patient’s sample to a centralized testing laboratory can contribute hours to this delay. For instance, the most sensitive assay, nucleic acid detection, can only be performed at centralized laboratories. The multistep sample preparation and costly instrumentation required to analyze samples has prohibited nucleic acid detection assays from reaching the point-of-care. There remains a critical need to bring rapid and sensitive pathogen identification technologies out of the laboratory to ensure effective treatment.

Paper-based devices have emerged as a portable platform for nucleic acid detection but are limited by their imperfect control of reagent incubation and false positive results. Here, I have developed mechanisms to specifically and automatically detect the nucleic acids of pathogens on paper-based devices. First, I characterize wax-ink valves that enable controlled incubation and delivery of reagents through device stages. Next, I implement toe-hold mediated strand displacement reactions to increase the specificity of nucleic acid detection with paper-based devices. Lastly, I functionalize polymers with nucleic acid probes and explore their potential integration into paper-based devices as bio-responsive valves. I demonstrate how such novel valving mechanisms enable the automatic and multi-step analysis of bacteria and viruses on paper-based platforms, improving the detection of infectious diseases at patients’ point-of-care.


To develop a low-cost, paper-based, diagnostic test using wax for controlling fluid flow that can detect HIV from a pinprick of blood for use in low-resource settings

Bill & Melinda Gates Foundation

Find out more...

National Science Foundation Graduate Research Fellowship Program (DGE-1333468)

National Institute of Allergy and Infectious Diseases (R61AI40474)

Purdue University’s Shah Family Global Innovation Lab

Purdue Institute for Inflammation, Immunology and Infectious Disease


Degree Type

  • Doctor of Philosophy


  • Biomedical Engineering

Campus location

  • West Lafayette

Advisor/Supervisor/Committee Chair

Dr. Jacqueline Linnes

Additional Committee Member 2

Dr. Ramses Martinez

Additional Committee Member 3

Dr. Kevin Nichols

Additional Committee Member 4

Dr. Luis Solorio

Usage metrics



    Ref. manager