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ABSTRACT

Ponce, Joan Ph.D., Purdue University, December 2020. Structured Epidemiological
Models with Applications to COVID-19, Ebola, and Childhood-Diseases. Major
Professor: Zhilan Feng.

Public health policies increasingly rely on complex models that need to approx-

imate epidemics realistically and be consistent with the available data. Choosing

appropriate simplifying assumptions is one of the critical challenges in disease mod-

eling. In this thesis, we focus on some of these assumptions to show how they impact

model outcomes. In this thesis, an ODE model with a gamma-distributed infec-

tious period is studied and compared with an exponentially distributed infectious

period. We show that, for childhood diseases, isolating infected children is a possible

mechanism causing oscillatory behavior in incidence. This is shown analytically by

identifying a Hopf bifurcation with the isolation period as the bifurcation parameter.

The threshold value for isolation to generate sustained oscillations from the model

with gamma-distributed isolation period is much more realistic than the exponentially

distributed model.

The consequences of not modeling the spectrum of clinical symptoms of the 2014

Ebola outbreak in Liberia include overestimating the basic reproduction number and

effectiveness of control measures. The outcome of this model is compared with those

of models with typical symptoms, excluding moderate ones. Our model captures the

dynamics of the recent outbreak of Ebola in Liberia better, and the basic reproduction

number is more consistent with the WHO response team’s estimate. Additionally, the

model with only typical symptoms overestimates the basic reproduction number and

effectiveness of control measures and exaggerates changes in peak size attributable to

interventions’ timing.
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1. INTRODUCTION

The COVID-19 pandemic has brought the prediction and control of infectious dis-

eases to the forefront. However, modeling an ongoing outbreak presents a host of

challenges, including limited access to reliable data and a lack of thorough under-

standing of the disease’s biology. An essential requisite for a model to provide valid

predictions is that the assumptions made correspond to reality as much as possible,

given that every model is a simplified representation of reality. Therefore, making re-

alistic model assumptions is crucial to evaluate control measures properly and design

effective health policies.

The classic SIR (susceptible-infected-recovered) ordinary differential equations

(ODEs) model proposed by Kermack and McKendrick has commonly been used to

model epidemics [1]. The SIR model consists of three compartments that divide the

total population (N) based on their epidemiological status. The susceptible class

(S(t): number of susceptible individuals at time t) consists of individuals who can

contract the disease when they come into contact with an infected individual in the

infective class (I(t): number of infectious individuals at time t). R(t) denotes the

number of removed individuals from the interactions by either recovery or death.

The SIR model takes the following form:

dS

dt
= −βSI,

dI

dt
= βSI − γI,

dR

dt
= γI.

(1.1)

The transmission rate of the disease from an infected individual is β, and infected

individuals recover at a rate of γ. This model is the basis for all the models considered

in this dissertation. However, this simple model cannot account for all the factors
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contributing to the spread of infectious diseases or include all the details necessary

to model every outbreak. For example, certain diseases, such as smallpox, have

very long latent periods, implying that individuals have been infected but are not

yet contagious. Other diseases, such as Ebola and COVID-19, have a significant

proportion of infected individuals that do not present symptoms, though they can

still transmit the disease. Including an exposed and an asymptomatic compartment

allows us to have a more precise mathematical representation of the diseases’ biology

and has implications for disease control. Another critical assumption of the SIR model

(a) Classic SIR model with exponentially distributed infectious stage.

(b) SIR model with a gamma distributed infectious period.

Figure 1.1.: S is the number of susceptible individuals, I is the total number of infective
individuals, which equals the sum of the infective individuals, Ij, in each of the n
stages. The gamma distribution is determined by its mean (1/γ) and the parameter
n. The mean duration of infection is kept fixed to allow comparison between models.

is that the infectious period is exponentially distributed with a mean equal to 1/γ.

Although convenient, this assumption is equivalent to assuming that the probability

of recovery in a given interval of time remains constant, irrespective of the time since

infection. In an biological sense, this assumption is not realistic [2, 3]. Assuming

this particular distribution overestimates the number of individuals with infectious

periods that vary significantly from the mean value. In reality, an infected individual

has a greater chance of recovery as time passes. Consequently, to include a more

realistic infectious period distribution, a gamma instead of an exponential is more

appropriate [4] (see Figure 1.1).
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Simplifying assumptions play an important role in model predictions; they allow

us to draw conclusions about disease dynamics while keeping the system as simple

as possible. However, biologically sound models sometimes require increasing model

complexity to represent diseases adequately. Thus, if a disease has an exposed period

(an individual contracted the disease but has not exhibited symptoms yet and cannot

transmit the pathogen) of significant length, it is necessary to include a compartment

for exposed individuals. Similarly, certain diseases present a wide array of symp-

toms, some infected people do not exhibit all the symptoms, and sometimes they are

asymptomatic carriers. Each disease’s biology must be carefully studied to include a

compartment for asymptomatic individuals in a mathematical model.

1.1 Important concepts in the modelling of infectious diseases

One of the advantages of using compartmental models to study infectious disease

outbreaks is that individuals are separated depending on their health status, and every

individual in a compartment is assumed to have the same characteristics. Therefore,

we can track how each subgroup (susceptible, infected, and recovered) vary over time.

Some of the questions pertain to disease persistence, whether there are any constant

solutions to the system or oscillations. To analyze the dynamical systems’ trajectories,

i.e., what happens with the system after a long time, we need to introduce the concepts

of fixed points’ stability. The constant solutions to a system of differential equations

are the fixed points of the system. One such equilibrium point is the disease-free

equilibrium; that is, there are no infected individuals in the population at this steady

state.

1.1.1 On the stability of equilibrium points and bifurcations

An equilibrium point’s stability determines whether the solutions near said point

get further, closer, or remain nearby. A differential equation system may contain

several equilibrium points, and each of these could be locally stable. Saying an equi-
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librium point is locally stable implies that the point remains stable if initial conditions

that start near an equilibrium point stay in that point’s vicinity. We say a point is

locally asymptotically stable if it is stable, and all the nearby trajectories converge to

the equilibrium point as time goes to infinity. An equilibrium point is globally asymp-

totically stable if the system eventually approaches the equilibrium point regardless

of the initial condition.

The notion of local stability is tied to the concept of the basic reproduction num-

ber, R0, which is defined as the number of secondary infections when an infected

individual is introduced to a completely susceptible population of hosts [5]. If there

are control measures or interventions implemented at the start of an epidemic, the

reproduction number is called the effective reproduction number, which we denote by

Re. Several approaches have been developed to derive an analytical expression for

R0(Re) [5, 6]. One of the most common methods to obtain this value is the next-

generation matrix method. Consider a compartmental model with n compartments,

where m of those contain infected individuals. Let x̄ = xi, i = 1, . . . , n denote the

vector of the proportions of individuals in the ith compartment. Then, we can define

Fi(x̄i), which is the rate of appearance of new infections in the ith compartment.

Further, let V +
i and V −i be the rates of transfer of individuals into and out of the ith

compartment by other means besides infection, respectively. Note that the difference

of Fi(x̄i) − Vi(x̄i), where Vi(x̄i) = V −i − V +
i , is the rate of change of xi. If Fi and

Vi satisfy the conditions detailed in [5, 6], we can obtain the next generation matrix

operator FV −1, where

F =

[
∂Fi(x0)

∂xj

]
, V =

[
∂Vi(x0)

∂xj

]
,

i, j = 1, . . . ,m and x0 is the disease-free equilibrium of the system. Thus, the entries of

the matrix FV −1 give the rate at which infected individuals xj produce new infections

in xi multiplied by the average length of time that individuals spend in compartment
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j. R0 is the spectral radius of the next-generation matrix, that is, the dominant

eigenvalue of the matrix.

Feng and Thieme [7] formulated a SEIQR model for childhood diseases to study

the impact of isolation on periodic outbreaks. The dynamics of the system that Feng

and Thieme proposed are dependent on the basic reproduction number. They showed

that if R0 < 1, then the system has only a disease-free (trivial) equilibrium, which is

globally asymptotically stable. Also, if R0 > 1, then there exists a unique endemic

equilibrium (non-trivial). The expression that they obtain for R0 does not depend on

the length of the isolation period. When the length of the isolation period is either

very short or very long, the endemic equilibrium attracts all the system’s solutions.

Two different parameter values were identified at which the periodic solutions bifur-

cate from the equilibrium, i.e., a Hopf bifurcation occurs at two values of the length

of the isolation period.

Feng and Thieme’s work used the Hopf-bifurcation theorem to show the existence

of periodic solutions and a center manifold reduction to show the stability of the solu-

tions. A Hopf bifurcation occurs when a periodic solution surrounding an equilibrium

point arises or disappears as a parameter varies. The details of the proof can be found

in the paper Recurrent Outbreaks of Childhood Diseases Revisited: The Impact of Iso-

lation by Feng and Thieme [7]. In Chapter 3, we reformulate this theorem for the

gamma-distributed system that we use to model childhood diseases. For simplicity,

here we state a version of the Hopf bifurcation theorem in two dimensions [8]:

Theorem 1.1.1 (Hopf bifurcation Theorem) Consider the planar system

ẋ = fµ(x, y),

ẏ = gµ(x, y),

where µ is a parameter. Suppose the system has an equilibrium point, without loss

of generality assume it is (x, y) = (0, 0). Let the eigenvalues of the linearized system

about the equilibrium point be given by λ(µ), λ̄(µ) = α(µ)±iβ(µ). Suppose further that
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for a certain value of µ (we may assume the value to be 0), the following conditions

are satisfied:

(i) Non hyperbolicity condition: conjugate pair of eigenvalues, i.e.,

α(0) = 0, β(0) = ω 6= 0, where sgn(ω) = sgn[(∂gµ
∂x

)];

(ii) Transversality condition: the eigenvalues cross the imaginary axis with non-zero

speed, i.e.,
dα(µ)

dµ
|µ=0 = d 6= 0;

(iii) Genericity condition:

a 6= 0, with a =
1

16
(fxxx + fxyy + gxxy + gyyy) +

1

16ω
(fxy(fxx + fyy)− gxy(gxx +

gyy)− fxxgxx + fyygyy), where fxy =

(
∂2fµ
∂x∂y

)
|µ=0(0, 0), etc.

Then a unique curve of periodic solutions bifurcates from the origin into the region

µ > 0 if ad < 0 or µ < 0 if ad > 0. The origin is a stable fixed point for µ > 0

(µ < 0) respectively, and an unstable fixed point for µ < 0 (µ > 0) respectively, if

d < 0 (d > 0) respectively, whilst the periodic solutions are stable (unstable) if the

origin is unstable (stable) on the side of µ = 0 where the periodic solutions exist. The

amplitude of the periodic orbits grows like
√
|µ| whilst their periods tend to 2π/|ω| as

|µ| → 0.

1.1.2 On age-structured models

Simple SIR models that are homogeneous with respect to age may fail to represent

a pathogen’s transmission between hosts accurately. The difference in contacts be-

tween different age groups can make a difference in model estimates and intervention

strategies. We represent the different contacts via a contact matrix that contains the

number of contacts per day a person of age i has with a person of age j. Thus, the

system consists of individuals divided into age groups, and each age group is divided

by health status into different compartments. The different groups interact with each

other through the mixing matrix. The contacts per age group are country dependent;
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we obtain country dependent contact matrices from [9], which were produced using

social surveys to quantify contacts. We follow Busenberg and Castillo-Chavez’s def-

inition of cij : contacts that members of the ith group have with members of group

j, given that i has contacts. The criteria that mixing models should meet are the

following:

1. cij ≥ 0,

2.
∑k

j=1 cij = 1, j = 1, . . . , k, and

3. AiNicij = AjNjcji,

where Ni are the number of individuals in each group and Ai are the average per

capita contact rates of the groups, also called activities. Studies of encounters by

which respiratory diseases were transmitted suggest that individuals of the same age

group mix preferentially. Thus, the contacts individuals from group i have with other

groups is given by:

cij = eiδij + (1− ei)fj, fj =
(1− ej)Aj(t)Nj∑
k(1− ek)Ak(t)Nk

, i, j = 1, 2, 3, 4.

The parameter ei ∈ [0, 1] is the fraction of contacts an individual has with members

of his age group, and δij is the Kronecker delta (1 when i=j and 0 otherwise). The

function fj is proportional to the contacts outside of one’s group 1−eij, and describes

random mixing [10].

1.2 Outline of the thesis

Chapter 1 introduces the standard epidemiological models of SIR and SEIR type

and some extensions considered in this thesis. First, simple models consisting of

ordinary differential equations (ODEs) and their dynamical behavior is presented.

Then, examples are discussed to illustrate the importance of considering extensions

of these simple models, particularly the inclusion of population structures by age,

either the chronological age or the age (or time spent) within a disease stage.
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Chapter 2 introduces an age-structured COVID-19 model, a slightly modified

version from Feng and Zhao’s model [11], and uses case data from Ecuador to fit the

model parameters. The model includes a compartment for asymptomatic individuals

and uses a synthetic contact matrix. Parametrization of the model involved fitting the

uncontrolled portion of the outbreak and estimating the impact that social distancing

measures had on the epidemiological processes in each age group considered. We

explore two release policies and compare them to a benchmark policy to evaluate

prevented deaths and cases. This chapter shows that control measures targeting

specific age groups can protect the most vulnerable individuals.

Chapter 3 introduces a general model with arbitrarily distributed disease stages

that includes a compartment for isolated individuals. The ordinary differential equa-

tions system is obtained from the integrodifferential equations system once we assume

a Gamma distributed infectious period. We compare this model with an ODE model

with an exponentially distributed infectious period and show that isolating infected

children is a potential mechanism that causes oscillatory incidence.

Chapter 4 presents an Ebola model that includes moderately and severely symp-

tomatic individuals and is based on previous work by Zheng [12]. The model re-

constructs the 2014-25 Ebola outbreak in Liberia by calibrating the model to case

data. We compare the model considering moderate and severe symptoms to one that

considers only typical symptoms and conclude that modeling the spectrum of Ebola

symptoms is relevant for policy-making. Some of the detailed mathematical proofs

for results presented in Chapters 2-4 are included in Supplementary Materials.
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2. A MODEL OF THE NOVEL CORONAVIRUS

OUTBREAK AND REOPENING STRATEGIES IN

ECUADOR

2.1 Abstract

There have been many modeling studies on the spread and control of the COVID-

19 epidemic. All of these models focus on specific countries, including the US, China,

and others [13–18]. A few modeling studies have focused on Ecuador [19–21]. The

study presented in this chapter was motivated by strict non-pharmaceutical interven-

tions that Ecuador’s government implemented during the COVID-19 pandemic. The

objective is to use an age-structured model to evaluate various reopening policies after

the lockdown and imposition of strict social distancing policies. The consideration of

multiple age groups is based on the reported fact that younger people have a much

lower disease severity and mortality than the elderly. Thus, age- and risk-dependent

releasing policies might be beneficial for increasing economic activities while reducing

the overall disease deaths. In this chapter, a mathematical model is used to evaluate

these policies and identify the more appropriate timing and the level of relaxation of

the restrictive measures on social distancing.

2.2 Introduction

The novel Severe Acute Respiratory Syndrome (SARS-CoV-2), which emerged

in China in late 2019, spread to Ecuador on (or before) February 29, 2020. Since

March, Ecuador has relied on lockdowns and other social distancing measures to

control the virus’s spread. Since June, many of the restrictions have been lifted in

several provinces. The physical distancing interventions that were implemented, such
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as school closures and social distancing at the workplace, have changed the usual

interactions between different age groups.

The high variability in contact networks, where some individuals or groups have

more contacts than average, has been shown to affect the course of outbreaks [11,13,

22]. Specific interventions, such as school closures, change social networks and require

models that account for the changes in contact patterns. Zhao and Feng recently

published an SEIR-type model with a crude age structure to analyze the cost-benefit

of implementing policy that would relax restrictions of younger individuals who face

lower risk from COVID-19 [11].

In April, Ecuador was described as the “epicenter” of the pandemic in Latin Amer-

ica. The health care system in the country’s largest city, Guayaquil, was overwhelmed

with cases and fatalities such that officials struggled to dispose of bodies [23]. As of

August 8, 2020 Ecuador had reported 93,572 cases and 16,051 active cases, as well

as one of the highest excess mortality per million people in the world until June 17,

2020. On March 12, the government decreed a state of sanitary emergency and rolled

out control measures to stop the virus’s spread. Some of these measures included

imposing isolation for all travelers arriving to the country, increased control at points

of entry, and encouraging people to avoid large gatherings [24]. The Ecuadorian

government decreed a lockdown period from March 17 until April 5 that prohibited

movement between 9 pm and 5 am. Further, circulation was limited to 3 days a week

depending on license plate number [25].

From March 17, 2020 to June 3, 2020, approximately 70% of the productive sec-

tor in Ecuador had remained paralyzed [26]. Starting on June 3, businesses in the

capital city, Quito, were allowed to operate at half capacity and restaurants at a

third capacity and by June 8, half of all the provinces in the country had relaxed

restrictions [27]. Simultaneously releasing the entire population ignores the impact

that each age group has on the spread of the disease and its severity, which varies by

age group. For example, individuals over the age of 50 have a higher risk of needing

mechanical ventilation once hospitalized. Similarly, the percentage of deaths among



11

hospitalized individuals (non-ICU and ICU admissions) is 2% in people between 18-

49 years old, 9.8% among people aged 50 to 64 years, and 28.1% among individuals

older than 65 years old [28]. Also, younger individuals have a higher probability of

being asymptomatic (79%) than people aged more than 70 years (30%) [29].

Ecuador’s economy has been particularly affected by the pandemic; partly due to

the types of jobs that the majority of the population performs. According to data

obtained from the national poll of employment, unemployment, and sub-employment

(ENEMDU), by December 2019, 80% of people in poverty worked in the informal

economic sector, and 64% of people worked as nonqualified workers (workers with

elementary school education level), service workers, in sales and essential occupations.

Most of the previously mentioned activities have not been able to return to complete

normalcy after the shutdown [30].

In this study, we simulate the virus’s transmission dynamics in different age groups

and fit the model to case data to assess the cost-benefit of the lockdown and analyze

the gradual release of specific age groups. This study aims to estimate population

and age-dependent parameters, assess social distancing measures currently in place,

and evaluate the effectiveness of a staggered-release policy for Ecuador, which may

provide the twofold benefit of protecting vulnerable sectors of the population while

gradually expanding economic activity.

2.3 Age-structured model

The composition of a country’s population is an essential factor in designing

control policies, particularly when the disease affects older individuals more than

other age groups. The model described in this section is based on the age-structured

SEIR-type model proposed by Zhao and Feng with preferential mixing between age

groups [11]. We divide the population into four age groups: G1 consists of younger

individuals (under 19 years old), G2 comprises individuals between 20 and 49 years,

G3 includes individuals between 50 and 64 years old, and G4 includes individuals
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over 65 years old. The choice to divide the population into these groups was based

on the published, age-dependent parameter values by the CDC [28]. Ecuador has not

published age-specific data, therefore, we used CDC values. About 80% of Ecuador’s

population is in the lower-risk groups G1 and G2, 12% of the people are in G3, and

7% are in G4 [31]. More detailed demographic information about the population is

summarized in Table 2.1 and illustrated in Fig. 2.1.

Table 2.1.: Age groups in Ecuador.

Age Percentage Number of people Total
0 - 19 years 38.9% 6,636 159 17,510 643
20 - 49 years 42.36% 7,417 490
50 - 64 years 12.26% 2,146 697

over 65 7.48% 1,310 297

7%
12%

42%

38%

0 - 19 years 20 - 49 years
50 - 64 years 65 and older

(a) Age distribution pie chart.

0.0%

0.3%

0.6%

0.9%

1.2%

1.2%1.1%
0.9%

0.1%
0-19 years 20-49 years 50-64 years 65+ years

(b) Percentage of COVID cases by age groups (in-
fected individuals in Gi/individuals in Gi).

Figure 2.1.: Estimated distribution of Ecuador’s population by age for the year 2020
divided in four age groups and the percentage of total COVID cases per age group.

We further divide each of the age groups i = 1, 2, 3, 4 into the following classes:

susceptible (Si), exposed (Ei), infected symptomatic (Ii), infected asymptomatic (Ji),

hospitalized (Hi), deaths associated with the disease (Di), and recovered (Ri) indi-

viduals as in Figure 2.2.
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 Ri

 Hi

 Di

 Ii

 Ji

λi(t) Si  Ei
δiαi

(1 − δi)αi

wiηi

(1 − wi)γi

γai

(1 − qi)ϕi

qiϕi

Figure 2.2.: Age-structured modified SEIR model of the ith age group; the groups
interact through the force of infection term λi(t), which includes the mixing function
in (2.4)

.

Because this study focuses on a single outbreak, births and deaths are not con-

sidered. The model equations for age group i are as follows:

dSi
dt

= −λi(t)Si(t),
dHi

dt
= ηiIi(t)− φiHi(t),

dEi
dt

= λi(t)Si(t)− αiEi(t),
dJi
dt

= (1− δi)αiEi(t)− γaiJi(t),

dIi
dt

= δiαiEi(t)− [µi + ηi + γi]Ii(t),
dDi

dt
= qiφiHi(t) + µiIi(t),

dRi

dt
= γaiJi(t) + γiIi(t) + (1− qi)φiHi(t),

(2.1)

where λi(t) denotes the force of infection (FOI) and is given by

λi(t) = βiAi(t)
4∑
j=1

cij
Ij(t) + ε1jJj(t)

Nj

. (2.2)

When the epidemic begins, all individuals are in the susceptible class and transi-

tion to the exposed class via contact with symptomatic or asymptomatic individuals

of any age group, depends on (i) mixing between groups, which is described by the
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mixing function cij, (ii) the activity level of group i, denoted by Ai, and (iii) the

probability of infection per contact, denoted by βi. After a latent period (1/αi), an

exposed individual develops symptoms with probability δi or is asymptomatic with

probability (1 − δi). Asymptomatic individuals recover after an infective period of

1/γai . A proportion w of symptomatic individuals is hospitalized at rate ηi; φi is the

rate at which a proportion, (1 − qi), of hospitalized individuals recover, or die with

proportion qi. The proportion of infected individuals who recover without hospital-

ization is (1− w); they have an infective period of 1/γ.

We denote the infectivity ratio of Ji (asymptomatic individuals) to Ii (infected and

symptomatic individuals) individuals by ε1. The model in [11] includes the death rate

of infected individuals that were not hospitalized (µi). There is no reliable data on

the number of individuals that died outside of hospitals in Ecuador; thus, we assume

that µi = 0 for all four groups. The force of infection of each group i is λi(t), where

ci,j represents the proportion of the ith group’s contacts with members of group j.

Zhao and Feng lump together the probability of infection by contact per group (βi)

and the contact rate of each group (Ai) in one term called the per capita effective

contact rate ai; that is, each contact that leads to a new infection. Separating the

activity (Ai) from the probability of infection per contact (βi) allows us to obtain the

Ai values from the contact matrix and estimate βi from the case data.

Note that this model satisfies the three criteria of a mixing model [32]:

1. cij ≥ 0,

2.
∑k

j=1 cij = 1, j = 1, . . . , k, and (2.3)

3. AiNicij = AjNjcji,

whereNi are the number of individuals in each group and Ai are the average per capita

contact rates of the groups, also called activities. Thus, the contacts individuals from

group i have with other groups is given by:

cij = eiδij + (1− ei)fj, fj =
(1− ej)Aj(t)Nj∑
k(1− ek)Ak(t)Nk

, i, j = 1, 2, 3, 4. (2.4)
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The parameter ei ∈ [0, 1] is the fraction of contacts an individual has with members

of his age group, and δij is the Kronecker delta (1 when i=j and 0 otherwise). Note

that the function fj is proportional to the contacts outside of one’s group 1− eij, and

so describes mixing that is random [10]. Before any interventions are applied and

without considering hospitalization, the reproduction number of each group i is

R0i = βiA
0
i

[
δi
γi

+
ε1(1− δi)

γai

]
for t ≤ T1.

We denote the baseline value of the contact rate of each group by A0
i ; that is, the value

A0
i is the number of contacts group members have before any control measures are

applied. T1 is the date when lockdown measures were implemented (March 17, 2020),

school was canceled and social distancing measures started being enforced rigorously.

The social distancing measures implemented in Ecuador were relaxed after June 3

(T2) in the capital city, and a partial reopening of the country began though it was

up to local officials to determine these policies [26]. The activity level of each group,

Ai(t), varies depending on the policies enacted. As in [11], we model these changes

using a step function defined in the following way:

Ai(t) =



A0
i , t ≤ T1

(1− si1)A0
i , T1 < t ≤ T2 (lockdown)

(1− si2)A0
i , T2 < t ≤ T3 (reopening phase 1)

(1− si3)A0
i , T3 < t ≤ T4 (reopening phase 2)

(1− si4)A0
i , T4 < t ≤ T5 (reopening phase 3).

(2.5)

The parameter si1 in (2.5) represents the percent reduction of contacts for group i

from the baseline contacts before the lockdown period. After restrictions were relaxed,

contacts have a reduction of si2. The staggered release policies that we explore are

reflected in parameters si3 and si4 and explained in section 2.5.
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2.4 Data sources and parametrization of the model

We reconstruct the evolution of the COVID-19 outbreak in Ecuador using in-

cidence data of each age group obtained from the Ministerio de Salud Pública del

Ecuador [33]. In addition to case data, we obtained the dates when policies changed

from the Servicio Nacional de Gestión de Riesgos y Emergencias (COE) in Ecuador

[27].

All parameter values used in the simulations are listed in Table 2.2. Some param-

eter values were extracted from the literature directly, such as ε1, 1/α, δi, 1/γai and

1/γ. Others, such as the mean duration of hospitalization (wi), were obtained using

a weighted average of the CDC values listed for ICU stays and non-ICU stays per

age group [28]. Disease-related death rates per group (1/φi) were extracted from the

databases [33].

2.4.1 Social Contact Matrices

The information on the contacts between different age groups was obtained from

the social contact matrices produced by Prem et al., which used household level

data from demographics, health surveys, and socio-demographic factors from online

databases for 152 countries [9]. This matrix provides a mixing pattern of Ecuador and

includes contacts at different levels, such as school, work, home, and other locations

for 16 age groups (5-year intervals). The authors provide an Excel file with the

synthetic matrices in their supplementary material of [9]. To reduce the 16 × 16

matrix into a 4 × 4 with the selected age intervals, we take the original age groups

divided by 5-year intervals and group them by summing over the columns (contacts

per group). We then do a weighted average over the groups (rows) with the age

distributions of the country as weights. The age profile of the population was taken

from Ecuadorian government databases [31]. We balance the reduced matrices using

the formula provided by [39] to ensure reciprocity in the contacts; that is, that the

contacts group i has with group j are the same as the contacts group j has with group
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Table 2.2.: Definition of the parameters in model (2.1), and the ranges of their values
used in numerical simulations.

Symbol Definition Value (Range) Reference
Group-independent parameters

ε1 Infectivity ratio of mildly infected to severely infected individuals 0.75 (0.25, 1) [28]
1/α Mean latent period 5 (4.2, 6) days [34]
δ Proportion of symptomatic individuals varies [28,35]
1/γa Mean infectious period for J class 6 days [28,36]
1/γ Mean infectious period for I class 6 (5, 10) days [28,36]
µ Disease-related death rate for non-hospitalized individuals in the I class 0 assumed

Group-dependent parameters
βi probability of infection by contact (fitted to data)
1/η Hospitalization rate of symptomatic individuals if alive (fixed)
1/η1 6 (3, 9) days [33,37]
1/η2 6 (3, 9) days [37]
1/η3 6 (2, 9) days [37]
1/η4 3 (0, 7) days [37]
wi Proportion of infected individuals hospitalized
w1 0.0202 % [38]
w2 2.71% [38]
w3 9.63% [38]
w4 14.17% [38]
1/φi mean duration in H before disease death or recovery (fixed) [28]
1/φ1 3
1/φ2 4.6 days
1/φ3 7.62 days
1/φ4 8.1 days
qi Proportion of disease related deaths from the H class
q1 0.6% [28]
q2 2% [28]
q3 9.8% [28]
q4 28.1% [28]
Ai Average per-capita contact rates of groups computed
A1 19.8
A2 18.5
A3 6.8
A4 3.07
ei preference level of each group computed
e1 0.469103
e2 0.10001
e3 0.22897
e4 0.130304

i. Thus, the balanced matrix (2.3) satisfies the third condition in the criteria of a

mixing model.
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Figure 2.3.: Contact matrices from Ecuador: b) original matrices obtained from [9] for
16 age groups we used to obtain a) the matrix of the 4 age groups we are considering.

2.4.2 Estimation of βi and the group-specific R0i

This study’s fitting portion aims to reconstruct the dynamics of COVID-19 in

Ecuador between February 15, 2020, and August 22, 2020, across three different

periods defined by non-pharmaceutical interventions. Then, using those estimates

evaluate different staggered release policies. The fitting was done in two phases: first,

we fit the uncontrolled, initial outbreak data (T0 − T1) to estimate βi, and then we

estimated the control parameters (si2 and si3).

Case data before March 17, 2020, is suitable for estimating the reproduction num-

ber because there were no significant interventions in place to alter the epidemic

curve [27]. Using the data between February 15, 2020, and March 17, 2020, we es-

timate the baseline transmission rate of each group βi for i = 1, . . . , 4, which then

remain constant throughout the epidemic. All other parameters were obtained from

the literature or directly from the data and are listed in Table 2.2. We obtain the

estimates of R0i for each age group using the formula (2.3) given our estimate of

βi. The reported cases are assumed to be Poisson samples from the model, which is

appropriate for modelling the stochasticity in count data. We use Poisson Negative

Log-likelihood and the package odeint to solve the differential equations.
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The percentage of symptomatic individuals (δi) has been estimated from case

data [14, 28, 40, 41] and from prediction models [29, 42, 43]. However, there is wide

variation in the estimates, according to a comprehensive review by Kronbichler et al.,

the percentage of asymptomatic cases in case-series was 24.2% and ranged from 9.2%

to 69% in prediction models [42]. The choices for the age dependent δi were based

on estimates in [29]. The group with younger population G1, has a lower percentage

of symptomatic individuals: δ1 = 0.21, while the older age group, G4, has δ4 = 0.69,

i.e. 69% of symptomatic individuals. We set δ = 0.5 for G2 and G3.

We fit the values of βi for each age group and the results of these fittings are

detailed in Table 2.3. We also compute the reproduction number of all groups using

the formula in the supplementary material (A.1); note that the reproduction number

of all age groups is within the confidence interval of the reproduction number for

Ecuador, 3.95 (3.7-4.21) estimated by Caicedo-Ochoa et al. [44]. The calculation of

the overall reproduction number for the entire population is detailed in supplementary

material (A.1).

Table 2.3.: Transmission rates estimates with varying δi (proportion of symptomatic
individuals).

Parameter G1 G2 G3 G4 R0 Reference
δi 0.21 0.5 0.5 0.69 4.2 [29]
βi 0.014 0.051 0.21 0.29 fitted value

2.5 Estimates of the control parameters

The efforts to contain the COVID-19 pandemic have relied mainly on

non-pharmaceutical interventions due to the lack of a vaccine and effective treatment.

The first case in Ecuador was identified in February, and a state of emergency declared

in early March, but the government did not enforce strict social distancing until March

17, 2020, when a nighttime lockdown was imposed countrywide. Schools were closed,
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non-essential workers were directed to work from home, and traffic was restricted to

essential activities such as grocery shopping [27].

Using the transmission rates obtained in the first phase of the fit, we then estimate

the reductions in contacts si1 for i = 1, . . . , 4 during lockdown: t ∈ (T1 − T2]. Simi-

larly, after the restrictive measures were lifted and phase 1 of the reopening process

started (t ∈ (T2 − T3]), we estimate si2 for i = 1, . . . , 4. We assume no reduction

of the baseline contacts between groups in the first phase of the epidemic following

the piecewise definition of the contacts function (2.5). In the lockdown phase, most

groups have significant reductions in contacts (Table 2.4), which adequately reflect

the restrictions placed by the government. Once some mobility restrictions were lifted

after June 3, 2020, there was an increase contact rates by age group. Notably, the

largest increase in contacts (lower contact reduction) occurs in G1. This is reflected

in the steep increase of cases in that age group after reopening, probably due to low

compliance with mask use in this population segment. In addition, upon analyzing

Google Mobility reports of the country, specifically parks, and recreational areas, we

observe an increase in mobility to these areas after lockdown ended [45]. Thus, we

speculate that increased mobility of this age class or low adherence to social distancing

rules may play a role in this significant decrease of contact reduction.
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Reopening 
Phase 1LockdownNo control

02/15/2020 03/17/2020

T0 T1 T2 T3

06/03/2020 09/12/2020

Reopening 
Phase 2

Figure 2.4.: Parameters were estimated by fitting data from February 15 to August 22. a) Fitting
of the total daily cases (all groups) of the first three periods: before control, lockdown and reopening
phase 1. b) Fitting of total cumulative cases of all age groups of the first three periods. c) Timeline
of interventions implemented in Ecuador since the start of the outbreak.

Table 2.4.: Percent reduction of the contact rates Ai defined in (2.5) before lockdown
(T0 − T1), during lockdown (T1 − T2), and reopening phase 1 (T2 − T3).

Parameter G1 G2 G3 G4
δ1 = 0.21 δ2 = 0.5 δ3 = 0.5 δ4 = 0.69

T0 − T1 no reduction
T1 − T2 si1 0.716 0.743 0.764 0.614
T2 − T3 si2 0.52 0.73 0.76 0.615

2.6 Evaluation of two different control policies

Reducing the number of daily cases in the most vulnerable groups (G3 and G4)

is vital to keep mortality as low as possible in a country like Ecuador, which has a

limited hospital bed capacity [46]. In addition to reducing the peak daily incidence,

reducing the total number of infected individuals of the most vulnerable age groups

is also important to reduce disease-related mortality. We explore two release policies’

impact on the numbers of cases overall as well as by age group: 1) delayed-release
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(a) Daily cases fit of group 1 (G1). (b) Daily cases fit of group 2 (G2).

(c) Daily cases fit of group 3 (G3). (d) Daily cases fit of group 4 (G4).

Figure 2.5.: Fitting of daily cases by age group of the first three periods of the
outbreak between February 15 and August 22 reflecting the impact of the contact
variation in each group over time.
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(a) Benchmark delayed-release scenario: all groups maintain restriction level si2 = si3, i = 1, . . . , 4
until T4, after which all groups are simultaneously released.

(b) Staggered release A: G1 and G2 are released first
for a period of 120 days, afterwards all groups are released
with si4 = 0.2, i = 1, . . . , 4 for t ∈ (T4 < t).

(c) Staggered release B: G2 and G3 are released first
for a period of 120 days, afterwards all groups are released
with si4 = 0.2, i = 1, . . . , 4 for t ∈ (T4 < t).

Figure 2.6.: Different control strategies applied after reopening phase 1 is over, t ≥ T3.
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and 2) staggered-release (Figure 2.6). The control policies studied take place after

September 12, 2020 (start of reopening phase 2). The delayed-release policy consists

of releasing all groups after T4 until the end of the epidemic. This policy assumes

that all groups are released at once with only a 20% reduction in contacts until the

end of the outbreak si4 = 0.2 for i = 1, . . . , 4 for t ≥ T4. The benchmark delayed-

release policy assumes that a relatively high level of restrictions remain in place for an

extended period of time (120 days after T3). We use the delayed simultaneous-release

policy as the benchmark policy against which to compare the other policies.

Staggered-release strategies A and B

The decision to release a specific age group before others has important conse-

quences in the dynamics of the epidemic and the country’s economy [26, 30]. We

assess two staggered-release strategies: staggered-release strategy A allows G1 and

G2 higher activity levels during the time interval (T3−T4); similarly, staggered-release

strategy B allows G2 and G3 higher activity levels during the same time interval. Af-

ter T4, both strategies release individuals with contact restrictions of s1
4 = 0.2 for

i = 1, . . . , 4 until the end of the epidemic. With these two strategies, we aim to study

the consequences of releasing the country’s economic workforce versus releasing the

younger population (school, university re-openings), a large proportion of which is

not economically active. We also analyze different scenarios within each strategy by

varying the reduction in contacts for each age group under consideration (see Table

2.5). We assume 120 days for the reopening phase 2 because reducing the number

of days does not significantly decrease the peak size of the epidemic curve once all

groups are released after T4. The benchmark scenario is depicted in every plot by a

dotted orange line.
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Table 2.5.: Different scenarios of the two staggered-release strategies during reopening
stage 2.

Parameter G1 G2 G3 G4 Scenario
Staggered-release A
(T3 − T4) = 120 days si3 s1

2 - 0.1 s2
2-0.1 s3

2 s4
2 1

s1
2 - 0.2 s2

2-0.2 s3
2 s4

2 2
s1

2 - 0.3 s2
2-0.3 s3

2 s4
2 3

0.2 0.2 0.2 0.2 Benchmark
T4 − Tend si4 0.2 0.2 0.2 0.2

Staggered-release B
(T3 − T4) = 120 days si3 s1

2 s2
2 - 0.1 s3

2 - 0.1 s4
2 1

s1
2 s2

2 - 0.2 s3
2 - 0.2 s4

2 2
s1

2 s2
2 - 0.3 s3

2 - 0.3 s4
2 3

0.2 0.2 0.2 0.2 Benchmark
T4 − Tend si4 0.2 0.2 0.2 0.2

2.7 Analysis and Results

The delayed simultaneous-release policy, where all groups maintain post lockdown

contact levels, is used as a baseline to compare the strategies considered. One of the

main disadvantages of maintaining high levels of restriction is that, when all groups

are released simultaneously, there is a high risk of a second wave if other control mea-

sures are not implemented. To analyze the impact of the strategies chosen, we evaluate

the peak daily incidence, the epidemic’s final size, and how many cases/deaths can

be prevented with different control strategies. Zhao and Feng evaluate the strategies

considered based on the reduction in each group’s cumulative deaths compared to

the benchmark policy [11]. We follow the same approach and compute this quantity,

which they call "efficacy"

Fi =
DBi −Di

DBi

, where Di =

∫
T0

[qiφiHi(t) + µiIi(t)]dt, i = 1, 2, 3, 4, (2.6)

where Bi is the benchmark delayed-release policy. Let F0 =
∑4

i=1Fi denote the

efficacy over all groups.
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(a) Staggered release A: daily cases of all
groups.

(b) Staggered release B: daily cases of all
groups.

(c) Staggered release A: cumulative cases
of all groups.

(d) Staggered release B: cumulative cases
of all groups.

Figure 2.7.: Effects of staggered-release strategies in all groups.

2.7.1 Results of staggered-release A

In this section, we analyze the effects of staggered-release A (see Fig. 2.6), which

consists of releasing G1 and G2 before G3 and G4 for 120 days (reopening phase

2). The restriction levels of G3 and G4 during reopening phase 2 (T3 − T4) are

maintained at the levels fitted for reopening phase 1 (T2 − T3) and we explore three

different scenarios for the restriction levels of G1 and G2. We decrease the fitted

values of the percent reduction of contacts for G1 and G2 during reopening phase 1

(s1
2 and s2

2) by 10, 20, and 30% during reopening phase 2; after T4 contact restrictions

are lowered to 20% until the end of the epidemic in T5.

The daily cases in all groups are shown in Figure 2.7, and the three different

scenarios considered are plotted against the benchmark delayed-release scenario. Sce-

nario 1 (see Table 2.5) shows the number of cases per day if G1 and G2 increase
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by 10%; the small increase in contacts during reopening phase 2 translates to few

infections during that period, but results in a high peak once all groups are simul-

taneously released after T4. Scenario 2 and 3 have a maximum 55% reduction from

the benchmark policy in daily cases. The peak of scenario 2 is reached in reopening

phase 2, while scenario 3 reaches its peak on reopening phase 3.

Therefore, to minimize peak size on both reopening phases, a careful study should

be done to spread the cases as evenly as possible to prevent exceeding hospital surge

capacity. The red dotted line in Figure 2.7 represents Ecuador’s total health care

capacity, i.e., the total number of beds available. Reducing the daily cases as much

as possible will reduce the strain on the healthcare system.

(a) Cases prevented by staggered relative to
simultaneous-release policies.

(b) Percent "efficacy" (F0 ∗ 100), i.e.,
deaths prevented by staggered-relative to
simultaneous-release policies.

Figure 2.8.: Percentage of deaths and cases prevented when employing a staggered-
release strategy versus the delay-release benchmark policy.

There is no significant reduction of the cumulative cases with staggered-release

strategy A relative to the delayed-release benchmark policy (Figure 2.8 (a)); for in-

stance, scenario 3 reduces the final size by 8%, and all other scenarios reduce the

cumulative cases by less than 5%. In Figure 2.8 (b), we plot the percent "efficacy"

(Fi ∗ 100) of each scenario considered in staggered-release strategy A for all groups

(2.6). Scenario 3 prevents about 7% of cases; however, the biggest difference is in

F0 ∗ 100 which is around 13%.
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2.7.2 Results of staggered-release B

Staggered-release B consists of releasing G2 and G3 before G1 and G4 for 120 days,

which allows the economically active sector of the population to resume activities

during reopening phase 2, while the most vulnerable group, G4, remains with a

high level of restrictions until reopening phase 3. Similarly to staggered-release A,

we maintain the fitted restriction levels of G1 and G4 from reopening phase 1 and

explore lowering three different restriction levels for G2 and G3 (Table 2.5).

On Figure 2.7 (b), we see how all the scenarios of staggered-release B reduce the

peak size of the curve of the daily cases; and scenario 2 has the smallest peak size.

However, when we look at the cumulative cases in Figure 2.7 (d), we observe that

scenario 3 prevents the most cases. Moreover, Figure 2.8 b) demonstrates that it also

prevents the most deaths out of all scenarios ( 20%). Peak size is an important factor

to consider in any control policy, because hospital beds always are limited. Further

study is needed to design the optimal scenario within staggered-release strategy B,

given that Scenario 3 prevents the most cases and deaths, but has a higher peak than

Scenario 2. The risk of overwhelming the health care system is that deaths might

increase due to a lack of available hospital beds. We did not include hospitalization

capacity in our model, so do not include such deaths. Therefore, it is crucial to strike

a balance between preventing deaths (if we assume all patients have access to health

care) and minimizing daily cases simultaneously.
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(a) Percent "efficacy" (Fi ∗ 100, i = 1, 2, 3, 4)
employing staggered-release strategy A.

(b) Percent "efficacy" (Fi ∗ 100, i = 1, 2, 3, 4)
employing staggered-release strategy B.

Figure 2.9.: Percent reduction in cumulative deaths of each group relative to the
benchmark scenario when we use staggered-release strategies.

2.8 Discussion

The spread of SARS-CoV-2 is highly dependent on the direct contact that sus-

ceptible individuals have with infected ones [47]. Our simulations show that social

distancing measures can be useful in reducing both the total number of infected in-

dividuals and deaths, and lower the peak incidence of COVID-19 when appropriately

applied. This study evaluates the effect that age-specific control measures have on the

timing, final size, and overall deaths avoided (Figures 2.8 and 2.9). Zhao and Feng’s

work shows the advantages of a staggered-release strategy designed to avoid high in-

cidence among the most vulnerable groups. Releasing age groups with low mortality

and low risk of hospitalization allows them to achieve some population immunity and

protect the most vulnerable groups. The younger groups may have a higher level of

infections, but a significant portion are asymptomatic or mildly symptomatic, and a

few require hospitalization.

The benchmark policy, which limits contacts (some groups maintaining lockdown

levels) for 228 days, results in a very high number of infected individuals once all

groups are simultaneously released in phase 3. Both staggered-release strategies con-

sidered produce better results as Figures 2.7–2.9 show, both in overall deaths and

cases prevented. The staggered-release strategies studied represent practical control
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measures that the Ecuadorian government could implement in the following months,

such as reopening schools and universities and a percentage of workplaces (staggered-

release A), or just allowing a percentage of the economically active population to

return to work (staggered-release B).

Figure 2.7 (b) shows that staggered-release B scenario 3 has the highest overall

efficacy F0, thus reducing the most deaths of the options considered. Staggered-

release B scenario 3 releases the highest percentage of individuals from G2 and G3.

However, this scenario is problematic because the peak incidence occurs in 120 days

(reopening phase 2), producing a high number of infected individuals per day (see

Figure 2.7 (b)). This result indicates that the timing at which individuals are released

is vital for any control strategy. One reason why staggered-release B, scenario 2, is

the most successful at minimizing peak sizes is because individuals are released when

daily incidence is decreasing. However, decreasing daily incidence is not enough to

guarantee small peak sizes. For example, scenario 2 of staggered-release A in Figure

2.7 (a) does not minimize peak size. Individuals are simultaneously released when

the daily cases are declining in T4, but because the release happens close to the

peak, cases increase, and a higher peak occurs during phase 3. Therefore, releasing

the population’s economically active sector provides more benefits than releasing the

youngest, lowest risk groups.

Zhao and Feng conclude in their work that releasing low-risk groups saves lives [11].

We agree with that conclusion, but differ in which groups should be released first.

This difference could be a consequence of several country-specific factors, such as age

distribution and the contact matrix. Furthermore, Zhao and Feng assume that all

groups have the same restriction levels for the scenarios they consider, whereas we

obtain such values from fitting the model to observations (2.4).

None of the strategies investigated brings the total daily incidence below the num-

ber of hospital beds available in Ecuador. Therefore, it would be useful to design an

optimal control strategy to attain this goal. However, this paper aims to analyze the

consequences of releasing specific groups earlier and contrast the outcomes resulting
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from a more conservative control strategy, the delayed simultaneous-release policy.

The conclusions from this study are qualitative; any official policy requires further

study of the interventions’ timing and what percentage of the economically active

sector can return to work during reopening phase 2. In summary, releasing lower

risk individuals allows the population to build some degree of immunity and protect

vulnerable groups with higher disease-related death rates. An additional benefit of

releasing G2 and G3 earlier is that it allows economic activity to resume earlier than

the delayed simultaneous-release policy.
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3. A MODEL FOR CHILDHOOD DISEASES WITH

GAMMA DISTRIBUTED DISEASE STAGES

3.1 Background

Childhood diseases, such as measles, whooping cough, mumps and rubella, are an

active area of research due to the significant number of cases per year, especially in

underdeveloped countries [48]. Some childhood diseases, such as poliomyelitis, are

near eradication due to extensive vaccination campaigns [49, 50]. However, in the

past decade, measles cases, particularly in the U.S, have increased significantly due

to anti-vaccination sentiment [51].

Consequently, understanding the dynamics of childhood diseases remains an ac-

tive area of research. Among the features that make childhood diseases well suited

for mathematical modeling is their relatively simple epidemiology, and in most cases

low mortality rates and lifelong immunity after recovery. Outbreaks of most child-

hood diseases are recurrent; some exhibit highly regular annual or biennial patterns,

while others present seemingly irregular outbreaks [52,53]. Therefore, one of the main

goals of mathematical epidemiology has been to determine what causes these recur-

rent outbreaks and predict when they will occur (interepidemic interval). Since the

nineteenth century, researchers have been searching for the causes of recurrent out-

breaks. Seasonal variations of the pathogen’s virulence were proposed as a hypothesis

for recurrence by Brownlee [54]. Hirsch identified the density of susceptible individu-

als as an important factor for recurrence in the late 1800s [55]; however, mechanistic

models were not used to explain reoccurring outbreaks in childhood diseases until the

1900s.

In 1929, Soper analyzed a discrete-time compartmental model that generated sus-

tained oscillations when infectiousness was concentrated at the end of the incubation
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period. However, when the infectivity was distributed over an interval of time, the

oscillations damped and converged to the equilibrium [56]. In general, the SIR model

alone cannot accurately simulate the reoccurring outbreaks of childhood diseases.

Nevertheless, modifications of the simple SIR model have been successful in generat-

ing sustained oscillation patterns. Bauch classifies these modifications into two cat-

egories: endogenous and exogenous [57]. Exogenous mechanisms produce sustained

oscillations by directly incorporating seasonal forcing of specific parameters and the

forcing period is a model parameter. On the other hand, endogenous mechanisms do

not directly incorporate the oscillation period in the model parameters and typically

yield sustained oscillations by destabilizing the endemic equilibrium and generating

stable limit cycles with period T.

One of such endogenous mechanism can be produced by combining alternative

assumptions about the incidence term and isolation. Feng and Thieme consider that

infected children who become infective at the end of the latency period get severe

symptoms and have to stay at home [7]. Therefore, their infectiousness is consider-

ably reduced, given that they are not making contacts outside their families. They

proposed a modified SIR model that includes a class of isolated individuals (Q class)

and an isolation-adjusted bilinear mass action infection term. The standard, mass

action incidence term βIS/N is modified by dividing βIS by the active section of the

population; that is, individuals that are not isolated (N −Q). This model, which we

call a SIQR model, showed that isolation combined with the modified bilinear mass

action term create self-sustained oscillations [7].

An interesting result shown in [7] is that isolation can be a possible mechanism

responsible for the periodic recurrence of childhood diseases. The model is capable of

generating periodic solutions via a supercritical Hopf bifurcations using the isolation

period, denoted here by T , as a bifurcation parameter. However, when the model

results are applied to common childhood diseases, the lower critical values Tc at

which Hopf bifurcation occurs is outside realistic ranges, except for Scarlet fever,

which is 2-3 weeks. In their study of an extended model with general disease stage
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distributions [58,59], some special scenarios are discussed, but the critical value Tc is

still outside of realistic ranges for most childhood diseases.

In this chapter, we consider an extension of the simple model in [7] by generalizing

the exponentially distributed disease stages to Gamma distributions. Detailed anal-

yses of the existence and stability of equilibrium points as well as Hopf bifurcations

are presented. It is demonstrated that the critical value Tc can be greatly improved

and fall in realistic ranges for many childhood diseases.

The results presented in this chapter provide another example showing the short-

comings of simple epidemiological models with exponentially distributed sojourns.

One of the main reasons in this case is that the standard deviation of the mean is

identical to the mean. This may cause problems when the model is used for diseases

with long latent or infectious periods when quarantine or isolation is imperfect. A sig-

nificant number of researchers have tried to introduce a modeling framework that al-

lows incorporating arbitrary length distributions to the various disease stages [60,61].

One of the standard ways to construct these models is to obtain integro-differential

equations from a continuous-time stochastic model [62–65]. It has been shown that

models with different distributions of stage durations while keeping the same mean

may significantly alter dynamics and evaluations of disease control strategies [64,66].

For example, it is shown in [64] that more realistic assumptions than the exponen-

tial stage distribution need to be considered when an epidemiological model is used

to assess the effectiveness of quarantine and isolation. Using a model with gamma-

distributed disease stages, the authors illustrated that, for some parameter values,

models with exponential and gamma distribution assumptions can generate inconsis-

tent evaluations of intervention strategies.

In section 3.2, we extend the results in [7] by considering gamma-distributed in-

fectious stages. We obtain the ODE model from a system of integro-differential equa-

tions when Gamma distributions replace the arbitrary stage distributions. In section

3.3, we study the model properties, including the relation between the existence and
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stability, the basic reproduction number, and the bifurcation analysis. Section 3.4

contains some numerical results that support the analytical results obtained.

3.2 Model with general distributions for disease stages

Similar to [7], we divide the total population into four epidemiological classes:

individuals susceptible to the disease, S; infective non-isolated individuals, Ii; infec-

tive isolated individuals Qi; and recovered and immune individuals, R. The total

population is N = S + I + Q + R and the total non-isolated population, i.e., the

active population is A = S + I + R. One of the model’s main assumptions is that

sick children stay at home and undergo a form of isolation that reduces their ability

to infect others, so the force of infection is λ(t) = βI/A, where β is the per-capita

rate of infection when contacting an infected individual. Other parameters used in [7]

include: Λ, the recruitment rate at which individuals are born into the population;

µ, the natural per capita mortality rate; γ and ω, the rates at which individuals leave

the infected and isolation classes, respectively. The model in [7] assumes that the

waiting time in the infected stage is exponentially distributed. Thus, 1/γ represents

the mean length of the infective period before isolation, and 1/ω represents the mean

length of the isolation period.

To relax the exponential distribution assumption to allow Gamma distributions

(with the shape parameter greater than 1), we first present the model with arbitrarily

distributed disease stages. Let PI , PQ : [0,∞) → [0, 1] describe the duration of

the infected and isolated stages, respectively. Therefore, Pi(s) (i = I, Q) gives the

probability that a living individual remains in the ith stage s units of time since

entering the stage. Figure 3.1 illustrates the transitions of individuals between stages

with the arbitrary survival functions PI(t) and PQ(t). The derivative −Ṗi(s) (i =
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I, Q) gives the rate of exiting stage i at stage age s due to disease progression. The

nonnegative functions Pi(s) (i = I, Q) have the following properties

Pi(0) = 1, Ṗi(s) ≤ 0,

∫ ∞
0

Pi(s)ds <∞, i = I, Q. (3.1)

For simplicity, assume an exponential survival function Pm(s) with parameter µ, i.e.,

Pm(s) = e−µs.

Figure 3.1.: Transition diagram of disease stages when the waiting times in the I and
Q stages are described by the functions PI and PQ, respectively.

The equations for the S class is an ODE:

dS

dt
= Λ− λ(t)S − µS, (3.2)

where λ(t) is the modified force of infection given by

λ(t) =
β I

S + I +R
,

and λ(t)S(t) gives the number of new infections at time t. The total number of

infectious individuals is given by

I(t) =

∫ t

0

λ(s)S(s)PI(t− s)e−µ(t−s)ds+ I(0)PI(t)e
−µt. (3.3)

The first term in equation (3.3) represents the total number of individuals at time t

who became infected t−s units of time ago (0 < s < t) and have not been isolated or

died by time t. The second term represents the individuals who were infected at time
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t = 0 and remain in the I compartment at time t. We assume that all individuals

that are initially in the I compartment have stage age 0.

Differentiating equation (3.3) we obtain the input for the Q equation.

I ′(t) = λ(t)S(t)

−
[ ∫ t

0

λ(t)S(s)ṖI(t− s)e−µ(t−s)ds− µPI(t)e−µtI(0) + ṖI(t)e
−µtI(0)

]
.

Similar to [65], we can obtain the equation Q(t). Denote the random variables for

the independent waiting times of the transitions from I to Q and from Q to R by TPI
and TPQ , respectively. If s denotes the time at which individuals enter the isolated

stage Q, then the conditional probability of remaining there at time t > s, given that

the individual was isolated at time τ (s < τ < t), is given by:

PQ(t− s|τ − s) :=
R[TPQ > t− s]
R[TPQ > τ − s]

=
PQ(t− s)
PQ(τ − s)

.

Thus, the number of individuals in the isolated class at time t is given by

Q(t) =

∫ t

0

[ ∫ τ

0

λ(s)S(s)e−µ(τ−s)ṖI(τ − s)
e−µ(t−s)

e−µ(τ−s) + I(0)e−µtṖI(τ)

]
×PQ(τ − s)PQ(t− τ |τ − s)dsdτ , (3.4)

=

∫ t

0

[ ∫ τ

0

λ(s)S(s)ṖI(τ − s)eµ(t−s)ds+ I(0)e−µtṖI(τ)

]
PQ(t− τ)dτ.

Differentiating the Q(t) equation we obtain:

Q′(t) =

∫ t

0

λ(s)S(s)e−µ(t−s)ṖI(t− s)ds+ I(0)e−µtṖI(t)

+

∫ t

0

PQ(t− τ)

∫ τ

0

λ(s)S(s)e−µ(t−s)ṖI(τ − t)ds− I(0)e−µtṖI(τ)dτ

+

∫ t

0

ṖQ(t− τ)

∫ τ

0

λ(s)S(s)e−µ(t−s)ṖI(τ − s)ds+ I(0)e−µtṖI(τ)dτ,
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which provides the inflow to the R equation. After simplifications, we get:

R(t) =

∫ t

0

∫ u

0

ṖQ(u− τ)

[ ∫ τ

0

λ(s)S(s)e−µ(t−s)ṖI(τ − s)ds

+I(0)e−µtṖI(τ)

]
dτdu. (3.5)

Therefore, we obtain the following system of integro-differential equations for the

model:

dS

dt
= Λ− λ(t)S − µS,

I(t) =

∫ t

0

λ(s)S(s)PI(t− s)e−µ(t−s)ds+ I(0)PI(t)e
−µt, (3.6)

Q(t) =

∫ t

0

[ ∫ τ

0

λ(s)S(s)ṖI(τ − s)e−µ(t−s)ds+ I(0)e−µtṖI(τ)

]
PQ(t− τ)dτ,

R(t) =

∫ t

0

∫ u

0

ṖQ(u− τ)

[ ∫ τ

0

λ(s)S(s)e−µ(t−s)ṖI(τ − s)ds+ I(0)e−µtṖI(τ)

]
dτdu.

3.2.1 Reduction of the system (3.6) to a system of ODEs

The diagram in Fig. 3.2 delineates the ‘linear chain trick’ when the waiting times in

both the I and the Q stages follow Gamma distributions. The primary motivation to

use the linear chain trick is that it allows the system of integral or integro-differential

equations to be rewritten as a system of ordinary differential equations.

Figure 3.2.: Similar to Fig. 3.1, but for the case when the survival functions PI and
PQ are Gamma with parameters (n, γ) and (m,ω), respectively, where n and m are
the shape parameters, and 1/γ and 1/ω are the means.
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Consider the I equation in (3.3) with the survival function PI given by

PI(t) = Gn
nγ(t) =

n∑
j=1

(nγt)j−1e−nγt

(j − 1)!
. (3.7)

Substitution of the function in (3.7) into (3.3) yields:

I(t) =

∫ t

0
λ(s)S(s)PI(t− s)e−µ(t−s)ds+ I(0)PI(t)e

−µt,

=

∫ t

0
λ(s)S(s)

n∑
j=1

(nγ(t− s))j−1e−nγ(t−s)

(j − 1)!
e−µ(t−s)ds+ I(0)

n∑
j=1

(nγt)j−1e−nγt

(j − 1)!
e−µt,

=
n∑
j=1

(∫ t

0
λ(s)S(s)

(nγ(t− s))j−1e−nγ(t−s)

(j − 1)!
e−µ(t−s)ds+ I(0)

(nγt)j−1e−nγt

(j − 1)!
e−µt

)
,

:=

n∑
j=1

Ij(t),

where

I1(t) =

∫ t

0

λ(s)S(s)e−nγ(t−s)e−µ(t−s)ds+ I(0)e−nγte−µt,

and

Ij(t) =

∫ t

0

λ(s)S(s)
(nγ(t− s))j−1e−nγ(t−s)

(j − 1)!
e−µ(t−s)ds

+I(0)
(nγt)j−1e−nγt

(j − 1)!
e−µt, for j = 1, . . . , n.

Differentiating the I1(t) equation yields the first equation in (3.11).

I ′1(t) = λ(t)S(t)− (nγ + µ)

(∫ t

0

λ(s)S(s)e−nγ(t−s)e−µ(t−s)ds+ I(0)e−nγte−µt
)
,

= λ(t)S(t)− (nγ + µ)I1(t). (3.8)
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For j > 1 we have

I ′j(t) = λ(t)S(t)e−µ00 +

∫ t

0

λ(s)S(s)
d

dt

(
e−µ(t−s) (nγ(t− s))j−1e−nγ(t−s)

(j − 1)!

)
ds

+I(0)
d

dt

(
(nγt)j−1e−nγt

(j − 1)!
e−µt

)
,

=

∫ t

0

λ(s)S(s)e−µ(t−s)
(
nγ

(nγ(t− s))j−2e−nγ(t−s)

(j − 2)!
− nγ (nγ(t− s))j−1e−nγ(t−s)

(j − 1)!

)
ds

−µ
∫ t

0

λ(s)S(s)
(nγ(t− s))j−1e−nγ(t−s)

(j − 1)!
e−µ(t−s)ds

+I(0)e−µt
(
nγ

(nγt)j−2e−nγt

(j − 2)!
− nγ (nγt)j−1e−nγt

(j − 1)!

)
−I(0)µe−µt

(nγt)j−1e−nγt

(j − 1)!
,

=

∫ t

0

λ(s)S(s)e−µ(t−s)
(
nγ

(nγ(t− s))j−2e−nγ(t−s)

(j − 2)!

)
ds+ I(0)e−µtnγ

(nγt)j−2e−nγt

(j − 2)!

+

∫ t

0

λ(s)S(s)e−µ(t−s)
(
nγ

(nγ(t− s))j−1e−nγ(t−s)

(j − 1)!

)
ds+ I(0)e−µtnγ

(nγt)j−1e−nγt

(j − 1)!

−µ
∫ t

0

λ(s)S(s)e−µ(t−s) (nγ(t− s))j−1e−nγ(t−s)

(j − 1)!
ds

−µI(0)e−µt
(nγt)j−1e−nγt

(j − 1)!
,

= nγIj−1(t)− (µ+ nγ)Ij(t). (3.9)

From the Q(t) equation in (3.4), with the survival function PQ given by PQ(t) =

Gm
mω(t) =

∑m
j=1

(mωt)j−1e−mωt

(j−1)!
, we obtain

Q(t) =

∫ t

0

[ ∫ τ

0

λ(s)S(s)ṖI(τ − s)Pm(t− s)ds+ I(0)Pm(t)ṖI(τ)

]
PQ(t− τ)dτ,

=

∫ t

0

m∑
j=1

(mω(t− τ))j−1

(j − 1)!
e−mω(t−τ)

[ ∫ τ

0

λ(s)S(s)e−µ(t−s) (nγ(τ − s))n−1e−nγ(τ−s)

(n− 1)!
ds

+I(0)e−µt
(nγτ)n−1e−nγ(τ)

(n− 1)!

]
dτ,

=

m∑
j=1

∫ t

0

(mω(t− τ))j−1

(j − 1)!
e−mω(t−τ)

[ ∫ τ

0

λ(s)S(s)e−µ(t−s) (nγ(τ − s))n−1e−nγ(τ−s)

(n− 1)!
ds

+I(0)e−µt
(nγτ)n−1e−nγ(τ)

(n− 1)!

]
dτ,

=

m∑
j=1

Qj(t).
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Thus, for j = 1

Q1(t) =

∫ t

0

e−mω(t−τ)

[ ∫ τ

0

λ(s)S(s)e−µ(t−s) (nγ(τ − s))n−1e−nγ(τ−s)

(n− 1)!
ds

+I(0)e−µt
(nγτ)n−1e−nγ(τ)

(n− 1)!

]
dτ.

Differentiating the previous equation we obtain

Q′1(t) = nγ

[∫ t

0

λ(s)S(s)
(nγ(t− s))n−1e−nγ(t−s)

(n− 1)!
e−µ(t−s)ds+ I(0)

(nγt)n−1e−nγt

(n− 1)!
e−µt

]

−mω
∫ t

0

e−mω(t−τ)

[∫ τ

0

λ(s)S(s)e−µ(t−s) (nγ(τ − s))n−1e−nγ(τ−s)

(n− 1)!
ds

+I(0)e−µt
(nγτ)n−1e−nγ(τ)

(n− 1)!

]
dτ

−µ
∫ t

0

e−mω(t−τ)

[∫ τ

0

λ(s)S(s)e−µ(t−s) (nγ(τ − s))n−1e−nγ(τ−s)

(n− 1)!
ds

+I(0)e−µt
(nγτ)n−1e−nγ(τ)

(n− 1)!

]
dτ,

= nγIn(t)−mωQ1(t)− µQ1(t),

which is the equation corresponding to Q1(t) in (3.11). For j > 1,

Qj(t) =

∫ t

0

(mω(t− τ))j−1

(j − 1)!
e−mω(t−τ)

[ ∫ τ

0

λ(s)S(s)e−µ(t−s) (nγ(τ − s))n−1e−nγ(τ−s)

(n− 1)!
ds

+I(0)e−µt
(nγτ)n−1e−nγ(τ)

(n− 1)!

]
dτ.

Then,

Q′j(t) =

[∫ t

0

d

dt

( (mω(t− τ))j−1

(j − 1)!
e−mω(t−τ)

)[∫ τ

0

λ(s)S(s)e−µ(t−s) (nγ(τ − s))n−1e−nγ(τ−s)

(n− 1)!
ds

+I(0)e−µt
(nγτ)n−1e−nγ(τ)

(n− 1)!

]
dτ

]
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+

[∫ t

0

(mω(t− τ))j−1

(j − 1)!
e−mω(t−τ)

[ ∫ τ

0

λ(s)S(s)
d

dt
(e−µ(t−s))

(nγ(τ − s))n−1e−nγ(τ−s)

(n− 1)!
ds

+I(0)
d

dt
(e−µt)

(nγτ)n−1e−nγ(τ)

(n− 1)!

]
dτ

]
,

= mωQj−1(t)−mωQj(t)− µQj(t),

which corresponds to the Qj(t) equation for j > 1 in (3.11). Similarly, from equation
(3.5), we obtain the equation for R′(t):

R′(t) =

∫ t

0

ṖQ(t− τ)

[ ∫ τ

0

λ(s)S(s)Pm(t− s)ṖI(τ − s)ds+ I(0)Pm(t)ṖI

]
dτ

+

∫ t

0

∫ u

0

ṖQ(u− τ)

[ ∫ τ

0

λ(s)S(s)Ṗm(t− s)ṖI(τ − s)ds+ I(0)Ṗm(t)ṖI(τ)

]
dτdu,

=

∫ t

0

mω(mω(u− τ))m−1e−mω(u−τ)

(m− 1)!

[ ∫ τ

0

λ(s)S(s)(−µe−µ(t−s))

nγ(nγ(τ − s))n−1e−nγ(τ−s)

(n− 1)!
ds+ I(0)(−µe−µt)nγ(nγ(τ))n−1e−nγ(τ)

(n− 1)!

]
dτ

+mω

∫ t

0

∫ u

0

(mω(u− τ))m−1e−mω(u−τ)

(m− 1)!

[ ∫ τ

0

λ(s)S(s)e−µ(t−s)

nγ(nγ(τ − s))n−1e−nγ(τ−s)

(n− 1)!
ds+ I(0)e−µt

nγ(nγ(τ))n−1e−nγ(τ)

(n− 1)!

]
dτ,

= −muR(t) +mωQm(t).

In summary, we obtained from the integro-differential equations system (3.6) the
following ODE system:

dS(t)

dt
= Λ− λ(t)S(t)− µS(t),

dI1(t)

dt
= λ(t)S(t)− (µ+ nγ)I1(t),

...

dIn(t)

dt
= nγIn−1(t)− (µ+ nγ)In(t),

dQ1(t)

dt
= nγIn(t)− (µ+mω)Q1(t),

...

dQm(t)

dt
= mωQm−1(t)− (µ+mω)Qm(t),

dR(t)

dt
= mωQm(t)− µR(t),

(3.10)
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where λ(t) = β
∑

j Ij/A(t) and A = S +
∑
Ij +R.

We observe from (3.10) that the effect of the assumption of Gamma distributed

infective stages is that the single infective class (I) and isolated class (Q) in the

previous SIQR model is replaced by n and m sub-stages. Susceptible individuals,

once infected, enter the first I stage (I1) and enter the first isolation stage on the

n-th stage after passing through each Ij successively. A similar process occurs once

individuals enter the isolated compartments and recover after they have exited the

final Qm stage. The waiting time in each infective sub-stage is identical and equal to

the waiting time of the exponential distribution model divided by n. The definitions

of all variables and parameters are also listed in Table 3.1.

Table 3.1.: State variables and parameters for model (3.10).

.

Variable Definition
S Susceptible individuals
Ii Infectious non-isolated individuals in sub-stage i, 1 ≤ i ≤ n
Qi Isolated individuals in sub-stage i, 1 ≤ i ≤ m
R Recovered individuals

Parameter
Λ Recruitment rate
µ Per capita mortality rate, 1/µ is the average life expectancy
β Per capita infection rate

1/γ Mean duration from onset to isolation
1/ω Mean duration of isolation
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3.2.2 The system with scaled parameters and variables

For the purpose of demonstration, we will use the case of m = 2 and n = 2 for the

analysis in the rest of the chapter. In this case, the system (3.10) has the following

form:

dS(t)

dt
= Λ− λ(t)S(t)− µS(t),

dI1(t)

dt
= λ(t)S(t)− (µ+ 2γ)I1(t), (3.11)

dI2(t)

dt
= 2γI1(t)− (µ+ 2γ)I2(t),

dQ1(t)

dt
= 2γI2(t)− (µ+ 2ω)Q1(t),

dQ2(t)

dt
= 2ωQ1(t)− (µ+ 2ω)Q2(t),

dR(t)

dt
= 2ωQ2(t)− µR(t),

where

λ(t) = β
2∑
j=1

Ij/A(t), A = S +
2∑
j=1

Ij +R.

The total population size is obtained by adding the equations in system (3.11)

N = S + I1 + I2 + Q1 + Q2 + R = A + Q1 + Q2. Note that
d

dt
N = Λ − µN and

N(t) → Λ

µ
as t →∞. If we assume that the population has reached this limit, then

N ≡ Λ/µ ≡ S + I1 + I2 + Q1 + Q2 + R. This allows us to eliminate the S equation

in the analysis.

The analysis can be simplified by scaling the parameters by β:

ν =
µ

β
, Γ =

2γ

β
, Ω =

2ω

β
, (3.12)

and by considering proportions:

s =
S

A
, ij =

Ij
A
, qj =

Qj

A
, r =

R

A
. (3.13)
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From A = N−
∑

iQi = A = S+
∑
Ij+R we have A′ = −

∑
j
d
dt
Qj. By differentiating

(3.13) and substituting (3.12), we have the following system for the proportions:

s′ = ν(i1 + i2 + q1 + q2 + r)− s(i1 + i2) + s
[
Γi2 − (ν + Ω)(q1 + q2) + Ωq1

]
,

i′1 = (i1 + i2)(1− i1 − i2 − r)− (Γ + ν)i1 + i1
[
Γi2 − (ν + Ω)(q1 + q2) + Ωq1

]
,

i′2 = Γi1 − (Γ + ν)i2 + i2
[
Γi2 − (ν + Ω)(q1 + q2) + Ωq1

]
,

q′1 = Γi2 − (ν + Ω)q1 + q1

[
Γi2 − (ν + Ω)(q1 + q2) + Ωq1

]
,

q′2 = Ωq1 − (ν + Ω)q2 + q2

[
Γi2 − (ν + Ω)(q1 + q2) + Ωq1

]
,

r′ = Ωq2 − νr + r
[
Γi2 − (ν + Ω)(q1 + q2) + Ωq1

]
,

which is equivalent to (noticing that s+
∑2

j=1 ij + r = 1):

i′1 = (i1 + i2)(1− i1 − i2 − r)− (Γ + ν)i1 + i1
[
Γi2 − (ν + Ω)(q1 + q2) + Ωq1

]
,

i′2 = Γi1 − (Γ + ν)i2 + i2
[
Γi2 − (ν + Ω)(q1 + q2) + Ωq1

]
,

q′1 = Γi2 − (ν + Ω)q1 + q1

[
Γi2 − (ν + Ω)(q1 + q2) + Ωq1

]
, (3.14)

q′2 = Ωq1 − (ν + Ω)q2 + q2

[
Γi2 − (ν + Ω)(q1 + q2) + Ωq1

]
,

r′ = Ωq2 − νr + r
[
Γi2 − (ν + Ω)(q1 + q2) + Ωq1

]
.

3.3 Endemic equilibrium and reproduction number

System (3.14) always has the disease-free equilibrium (DFE) denoted by U0:

s = 1, i1 = i2 = q1 = q2 = r = 0.

Let U∗ = (i∗1, i
∗
2, q
∗
1, q
∗
2, r
∗) denote a positive or endemic equilibrium (EE) of (3.14)

that satisfies (computation details are in supplementary material (B.2)):

i∗1 = ν(Γ + ν)(Ω + ν)2k, i∗2 = Γν(Ω + ν)2k,

q∗1 = Γ2ν(Ω + ν)k, q∗2 = Γ2νΩk, r∗ = Γ2Ω2k,
(3.15)
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where

k =
(1− ν)(2Γ + ν)− Γ2

(2Γ + ν)(Γ2Ω2 + (ν + Ω)2(2Γν + ν2))
. (3.16)

Before proceeding, we define the effective reproduction number, a quantity that

will help the biological interpretation of the stability analysis. The model we are con-

sidering (3.14) includes an isolated compartment, thus, a control measure is already

included in the model. Therefore we define an effective reproduction number instead

of the basic reproduction number. The effective reproduction number, Re, derived in

Supplementary material (B.1) is defined as:

Re =
β(4γ + µ)

(2γ + µ)2
=

2Γ + ν

(Γ + ν)2
.

Note on Re: we can rewrite the effective reproduction number in the

following way:

Re =
β

2γ + µ
+ β

2γ

2γ + µ

1

2γ + µ
.

The first and second terms represent the contributions from individuals

in the I1 and I2 stages, respectively. Note that, 1/(2γ + µ) is the death-

adjusted mean duration in each of the Ii stage, and 2γ/(2γ + µ) is the

probability that an infectious individual survived and entered the I2 stage.

We can write k defined in (3.16) in the following form:

k =
(Γ + ν)2(Re − 1)

(2Γ + ν)(Γ2Ω2 + (ν + Ω)2(2Γν + ν2))
. (3.17)

To obtain a non-negative equilibrium U∗, distinct from the disease-free equilibrium

U0, we require k > 0. Therefore, k > 0 if and only if Re > 1.

The model we are considering, (3.14), includes an isolated compartment, thus, a

control measure is already included in the model. However, the effective reproduction

number, Re, is independent of the isolation period 1/ω.

The result below shows that Re = 1 is the threshold value for the stability of U0

and the existence of U∗.
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Theorem 1 (Local stability of U0 and existence of U∗)

If Re < 1 then System (3.14) has only the disease-free equilibrium U0, which is locally

asymptotically stable. If Re > 1, there is a unique endemic equilibrium U∗ given by

(3.15).

The stability of U∗ is discussed in the next section.

3.3.1 Stability of the Endemic Equilibrium

To analyze the stability of the endemic equilibrium (EE), we linearize the system

of ODE’s around the endemic equilibrium. Let U = (i1, i2, q1, q2, r)
T and rewrite

(3.14) as U ′ = F (U). The Jacobian of F at the EE U∗ is given by

DF (U∗) =



J1,1 J1,2 −i∗1ν −i∗1(ν + Ω) −i∗1 − i∗2
Γ (i∗2 − 1)Γ− ν −i∗2ν −i∗2(ν + Ω) 0

0 q∗1Γ + Γ −(q∗1 + 1)ν − Ω −q∗1(ν + Ω) 0

0 q∗2Γ Ω− q∗2ν −(q∗2 + 1)(ν + Ω) 0

0 r∗Γ −r∗ν −r(ν + Ω) + Ω −ν


,

where J1,1 = −2(i∗1 + i∗2) − r − Γ − ν + 1 and J1,2 = Γi∗1 − 2(i∗1 + i∗2) − r + 1. The

characteristic polynomial from the Jacobian matrix has the form

|yI −DF (U∗)| = y5 + ay4 + by3 + cy2 + dy + e.

Due to the length of the coefficients, they are included in the supplementary

material (B.2). The parameters that the coefficients depend on are ν = µ
β
, Γ = 2γ

β

,and Ω = 2ω
β
. The average longevity denoted by 1/µ is on the scale of years, while the

infectious (1/γ) and isolation periods (1/ω) are on the scale of days; this allows us

to conclude that ν is much smaller than Γ and Ω. Note that the components of the
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endemic equilibrium U∗ = (i∗1, i
∗
2, q
∗
1, q
∗
2, r
∗) as given in (3.15) are analytic functions of

ν > −δ for some δ > 0 and

i∗1 =

(
1

Γ
− 1

2

)
ν − ν2 (4Γ2 + Γ(Ω− 8) + 4Ω)

4 (Γ2Ω)
+O

(
ν3
)
, (3.18)

i∗2 =

(
1

Γ
− 1

2

)
ν +

ν2 (−4Γ2 + Γ(Ω + 8)− 8Ω)

4Γ2Ω
+O

(
ν3
)
,

q∗1 =
(2− Γ)ν

2Ω
+
ν2 (−2Γ2 + Γ(Ω + 4)− 8Ω)

4ΓΩ2
+O

(
ν3
)
,

q∗2 =
(2− Γ)ν

2Ω
+

(Γ− 8)ν2

4ΓΩ
+O

(
ν3
)
,

r∗ =

(
1− Γ

2

)
+

(
1

4
− 2

Γ

)
ν + ν2

(
3

Γ2
− Ω + 32

8ΓΩ
+

2

Ω

)
+O

(
ν3
)
.

Similarly, the coefficients of the characteristic polynomial are analytic functions of

ν > −δ and have the form:

a(ν) =
3Γ

2
+

(
2

Γ
+

13

4

)
ν + 2Ω +O(ν2), (3.19)

b(ν) = Ω(3Γ + Ω) + ν

(
4Ω

Γ
+

5Γ

2
+

9Ω

2
+ 4

)
+O

(
ν2
)
,

c(ν) =
3ΓΩ2

2
+

1

4

(
2(−2 + Γ)2Γ + 8(4 + Γ)Ω +

(
5 +

8

Γ

)
Ω2

)
ν +O

(
ν2
)
,

d(ν) =

(
(Γ− 2)2ΓΩ +

(
4− Γ

2

)
Ω2

)
ν +O

(
ν2
)
,

e(ν) = ΓΩ2 (2− Γ) ν +O
(
ν2
)
.

The characteristic polynomial’s coefficients are positive because (2 − Γ) > 0 for

biologically reasonable parameters; thus, we can conclude that for small ν > 0, there

are five distinct roots. The characteristic equation for ν = 0 is

y5 + a(0)y4 + b(0)y3 + c(0)y2 = 0,
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which has the following roots:

y1,2 = 0, y3,4 = −Ω, y5 = −3Γ

2
. (3.20)

By the implicit function theorem, y3,4(ν) and y5(ν) are analytic functions of ν and

have the following series expansion

y3,4(ν) = −Ω +
∞∑
j=1

yjν
j, y5(ν) = −3Γ

2
+
∞∑
j=1

yjν
j.

From Kato [67], the roots of this polynomial have expansions

y(ν) =
∞∑
j=1

yjν
j, y(ν) =

∞∑
j=1

yjν
j/2.

Substituting these expansions into the characteristic polynomial eliminates the

first expansion possibility, thus the second possibility with ε = ν1/2 allows us to

rewrite the coefficients in the following form.

a = a(Ω, ε2) =
3Γ

2
+ 2Ω + a1(Ω, ε2)ε2, (3.21)

b = b(Ω, ε2) = Ω(3Γ + Ω) + b1(Ω, ε2)ε2,

c = c(Ω, ε2) =
3ΓΩ2

2
+ c1(Ω, ε2)ε2,

d = d(Ω, ε2) = d1(Ω)ε2 + d2(Ω, ε2)ε4,

e = e(Ω, ε2) = e1(Ω)ε2 + e2(Ω, ε2)ε4.

Thus, we will look for eigenvalues of DF (U∗)(ν) of the form y = εỹ, where ε = ν1/2.

Substituting the coefficients in the characteristic polynomial,

(εỹ)5 + a(εỹ)4 + b(εỹ)3 + c(εỹ)2 + d(εỹ) + (e1(Ω)ε2 + e2(Ω, ε2)ε4) = 0.
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After some algebraic manipulations, we obtain the following five roots (details pre-

sented in supplementary section (B.4))

y1,2(ν) = ±iν1/2

√
2(2− Γ)

3
+ ν

6Γ2(2−Γ)
Γ+16

− Ω

3ΓΩ
+O(ν3/2), (3.22)

y3,4(ν) = −Ω +O(ν), y5(ν) = −3Γ

2
+O(ν).

If we use Ω as a bifurcation parameter, the roots y1,2 cross the imaginary axis from

left to right when Ω crosses a number close to Ω∗ = 6Γ2(2−Γ)
Γ+16

from left to right; by the

implicit function theorem, we can show the crossing is transversal.

Theorem 3.3.1 There is a function Ω0(ν) defined for small ν > 0,

Ω0(ν) =
6Γ2(2− Γ)

Γ + 16
+O(ν)1/2,

such that the system (3.11) satisfies the following property:

(a) The endemic equilibrium is locally asymptotically stable if Ω > Ω0(ν) and un-

stable if Ω < Ω0(ν), as long as Ω does not become too small.

(b) There is a Hopf bifurcation of periodic solutions at Ω = Ω0(ν) for small enough

ν > 0. The periods are approximately

T =
2π

|=y±|
≈ 2π√

2(2−Γ)
3

ν1/2

,

in the neighborhood of the Hopf bifurcation point.

(c) The stability of the bifurcating periodic solution is given by the sign of the fol-
lowing expression

α =
1

16

(
g(1)
rrr + g(1)

rss + g(2)
rrs + g(2)

sss

)
− 1

16=y+(Ω0(0))

[
g(1)
rs

(
g(1)
rr + g(1)

ss

)
− g(2)

rs

(
g(2)
rr + g(2)

ss

)
− g(1)

rr g
(2)
rr + g(1)

ss g
(2)
ss

]∣∣∣∣
r=s=λ=0

,
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where all partial derivatives are evaluated at the bifurcation point. The bifur-

cating periodic solution is locally asymptotically stable if α < 0 (supercritical

case); it is unstable if α > 0.

To determine the stability of the Hopf bifurcation in Theorem 3.3.1, we use the

center manifold reduction and determine that the Hopf bifurcation is supercritical and

the bifurcating branch consists of stable periodic solutions in the neighborhood of the

bifurcation point. The details of the proof are included in Supplementary Material

(B.5).

3.4 Numerical Simulations

In this section, we analyze the model numerically using Mathematica to illustrate

that the model with Gamma distributed infectious stages can provide more realistic

critical value of the isolation period for the appearance of periodic solutions via Hopf

bifurcation. We assume a longevity (1/µ) of 65 years and an infectious period before

isolation (1/γ) of 3 days. From these parameter values, we can estimate the trans-

mission rate (β = 2.133) from the expression for the effective reproduction number

Re in Theorem 1.

As in [7], we choose Re = 6.4. From Theorem 3.3.1, we can approximate the

isolation periods, 1/ω0 = β(γ+8β)
12γ2(β−γ)

≈ 15.5 days, at which the endemic equilibrium

becomes unstable. Figure 3.3 is a bifurcation generated by numerical simulations

with the isolation period as the bifurcation parameter. The vertical axis shows the

proportion (I1 + I2)/N at the endemic equilibrium and, for 1/ω > 1/ω0 ≈ 15.5, the

maximum/minimum magnitude of the periodic solution.



52

14 15 16 17 18 19 20
0

1

2

3

4

Period of isolation in days (1/ω)

P
ro

p
o

rt
io

n
o

f
N

o
n
-

q
u

a
ra

n
ti
n

e
d

In
fe

c
te

d
in

d
iv

id
u

a
ls

a
t

E
E

I1 + I2

N
* 10

-4

sss

sp

sp

HB

uss

653655657659 spHBsssFigure 3.3.: A bifurcation diagram generated by numerical simulations, showing the fraction of
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The Hopf bifucation can also be illustrated by plotting time-varying solutions for

several values of isolation period near the bifurcation point 1/ω0 ≈ 15.5 days. This is

shown in Figure 3.4. Similar to Figure 3.3, the proportion of individuals (I1 + I2)/N

is plotted as a function of time. Plots in (a)-(d) are for 1/ω = 1, 6, 16, and 30 days.

We observe in (a) and (b) that the solutions converge to the endemic equilibrium as

t → ∞, and that the convergence takes longer as 1/ω increases. In (c), the stable

periodic solution appears due to the stability switch of the endemic equilibrium.
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(a) Fraction of infected individuals (I1+I2)/N over time
with length of the isolation period 1/ω = 1 days.
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(b) Fraction of infected individuals (I1 + I2)/N over
time with length of the isolation period 1/ω = 6 days.
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(c) Fraction of infected individuals (I1+I2)/N over time
with length of the isolation period 1/ω = 16 days.
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(d) Fraction of infected individuals (I1 + I2)/N over
time with length of the isolation period 1/ω = 30 days.

Figure 3.4.: Numerical solutions to the system of equations defined in Equation (3.11)
for different values of the isolation period 1/ω.

3.5 Discussion

Childhood disease modeling remains an active research area, and the models have

become increasingly sophisticated. Among the results of models that consider en-

dogenous mechanisms to produce oscillations is that of Soper in 1929 [56], though his

model is structurally unstable, and the oscillations are marginally stable. The model-

ing approach in [7] of using a SIQR model by including isolation (the Q compartment)

and a modified incidence term provided a possible mechanism for producing sustained

oscillations. However, due to the assumption of exponentially distributed infectious

period, the condition required for the periodic solution to occur is too large for most

childhood diseases. Using scarlet fever as an example, the authors showed that a

stable periodic solution exists when the isolation period is greater than 23 days. By
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relaxing the exponential distribution assumption and allowing Gamma distributions

for the disease stages, the critical isolation period for sustained oscillations is re-

duced from 23 days to 15.5 days, which is in more realistic ranges for most childhood

diseases.

The incorporation of a more realistic Gamma distribution for the infectious stage

in the SIQR model made analysis more difficult, particularly proving the existence

of a Hopf bifurcation and stability of the bifurcating periodic solution. The Jacobian

matrix at the unique endemic equilibrium U∗ has a polynomial of degree 5. By taking

advantage of the different time scales of model parameters, the coefficients of leading

terms of the eigenvalues of the characteristic equation are calculated, which allowed

us to show that there are two complex and three negative eigenvalues. Moreover, the

real part of the complex eigenvalues switches sign at a critical value of the isolation

period 1/ω, which is shown to correspond to a Hopf bifurcation. By applying the

Center Manifold Theorem, we show that the bifurcation is supercitical.



55

4. ASSESSING THE EFFECTS OF MODELING THE

SPECTRUM OF CLINICAL SYMPTOMS ON THE

DYNAMICS AND CONTROL OF EBOLA

This chapter has been adapted from J. Ponce,Y. Zheng, G. Lin, Z. Feng, Assessing
the effects of modeling the spectrum of clinical symptoms on the dynamics and
control of Ebola, Journal of Theoretical Biology 467 (2019) 01013.
doi:10.1016/j.jtbi.2019.01.013 [68]. This work is included with permission from
Elsevier.

4.1 Introduction

The 2014-15 Ebola outbreak in West Africa, which presented a serious threat to

global public health, was declared a “public health emergency of international concern”

by the WHO on August 8, 2014 [69]. The Ebola virus is transmitted among humans

through close contact with bodily fluids of infected ill and dead persons, including

blood, secretions, etc. [70]. Symptoms of Ebola infection vary widely, but commonly

include fever, fatigue, loss of appetite, vomiting, diarrhea, and headache, as well as

hemorrhagic symptoms [70]. For the 2014-15 West African Ebola outbreak, 87% of

infected individuals exhibited fever, the most commonly reported symptom. And

some hemorrhagic symptoms are rarely reported (<5.7%) [70]. This suggests that

infected individuals experience a range of symptoms from mild to severe. Asymp-

tomatic infections are quite possible, as shown in previous Ebola outbreaks [71,72].

In the past year, two studies analyzed minimally symptomatic and asymptomatic

ebola in the 2014-15 outbreak. Bower et al. tested 933 people in Kerry town, Sierra

Leone, and found evidence of asymptomatic ebola in roughly 2.6% of the popula-

tion studied. Additionally, 12% reported some symptoms and although they were

undiagnosed, tested positive for Ebola antibodies [73]. A slightly smaller survey by
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Richardson et al. on minimally symptomatic Ebola reported that up to 25% of Ebola

infections may have been minimally symptomatic [74], which is consistent with pre-

vious outbreaks estimates [71,72].

The 2014-15 Ebola outbreak in West Africa has been very well studied, the basic

reproduction number has been computed, and control measures have been evalu-

ated [75–82]. However, most models do not consider individuals who did not exhibit

symptoms during the outbreak but tested positive for antibodies once swab stud-

ies were performed. Bellan et al. modeled asymptomatic individuals, though they

did not assume post-mortem transmission of the disease and concluded that models

without asymptomatic infection overestimate epidemic size [83]. Pandey et al. [84]

included asymptomatic infection in their model but studied only its influence on epi-

demic sizes with different possible control measures. In addition, those authors did

not study moderately symptomatic individuals, who might have reduced infectiv-

ity. The consequences of including moderately symptomatic individuals in the model

warrants detailed study.

To model the spectrum of clinical symptoms of Ebola infection, Zheng developed

a model with compartments for asymptomatic, mildly symptomatic, and severely

symptomatic individuals [12]. This work considers a simplified version of that model,

which considers infections with moderate and severe symptoms. However, that model

did not provide significantly different results from the case without considering multi-

ple levels of symptoms. This chapter analyzes the simpler model with moderate and

severe symptoms, which improves the outcomes. We omit some of the derivation’s

details in this chapter, and we refer the reader to [12] for the complete information.

For completeness, some of the similar derivations are included in this chapter; we

emphasize new results and the modified model’s aspects.

A Gamma distribution is adopted for a more realistic, yet mathematically tractable,

infectious period. Once an individual becomes exposed to the disease, they can

develop either severe or moderate symptoms. If an individual develops moderate

symptoms, we assume they recover without needing to seek medical treatment. In



57

addition, we assume that those moderately symptomatic individuals from the exposed

class probably are infectious, but less so than those with severe symptoms.

These moderately symptomatic people are important in estimating basic repro-

duction number and evaluating control effectiveness. For example, early outbreak

data from Liberia are used to estimate the basic reproduction number (there were

limited effects of control measures before the middle of September, 2014 [70, 84]) as

1.83 from the model with 30% moderate infections, which is consistent with the WHO

estimate via a different approach. If moderate symptoms are disabled, however, the

estimated reproduction number is 1.94, which is 6% higher. This shows that models

without considering moderate infections might overestimate the basic reproduction

number. In addition, the model without moderately symptomatic infections overesti-

mates the reduction in transmission rates in the community, hospitals and after death

due to international interventions. This implies that credit given to control measures

may actually be due to moderately symptomatic infections.

4.2 A new model with severe and moderate infections

The objective of this paper is to enhance our understanding of the effects of in-

cluding minimally symptomatic individuals on Ebola modeling. A compartmental

model is developed by including a compartment for infected individuals with moder-

ate symptoms. One of the important control measures for Ebola is isolation, which

will be considered in our model as well. It has been demonstrated that, when control

measures such as isolation are included in epidemiological models, one must consider

disease sojourns that are more realistic than exponential distributions to avoid bi-

ased evaluations of disease control and prevention programs [64]. It has also been

pointed out in [85] that, depending on the underlying assumptions on the epidemi-

ological processes (e.g., recovery, hospitalization, disease induced death, etc.), the

transition diagram between epidemiological classes can be very different, leading to

significantly different model equations (see Models I, II and III and the corresponding
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transition diagrams in [85]). In this paper, we adopt the same underlying assumption

as for Model II in [85], which assumes that, from individuals with severe infections,

the transitions to hospitalization and disease progression (recovery or death) are in-

dependent. Intuitively, the waiting times of these transitions are measured by two

independent clocks. If the hospitalization clock chimes before recovery or death, the

clock of disease progression continues to run until either recovery or death. If the

disease progression clock chimes before hospitalization, the individual dies with prob-

ability f and recovers with probability 1−f . More detailed explanations can be found

in [85] including the reduction of this model from a system of integro-differential equa-

tions (with arbitrary stage durations) to a system of ordinary differential equations

(ODEs) when waiting times follow Gamma distributions. When disease progression

follows a Gamma distribution with shape parameter n ≥ 1 and rate parameter γ,

the hospitalization process follows an exponential distribution with parameter χ (a

gamma distribution with shape parameter equal to 1) and disease progression for the

moderate infections follows a Gamma distribution with shape parameter m ≥ 1 and

rate parameter γa; the transition diagram is depicted in Figure 4.1.

The total population is divided into the following epidemiological classes: suscep-

tible S, latent (exposed) E, infectious with severe symptoms Ij, j = 1, 2, . . . , n, infec-

tious with moderate symptoms Jk, j = 1, 2, · · · ,m, hospitalized Hj, j = 1, 2, · · · , n,

disease-induced death and not safely buried D, and recovered R. The total popula-

tion is N = S +E + I + J +H +R, where I =
∑n

j=1 Ij(t), and H =
∑n

j=1 Hj(t), and

J =
∑m

k=1 Jk(t). A diagram for transitions between classes is shown in Figure 4.1.

For new infections, depending on the outcome of viral replication and host im-

munological response, individuals could be mildly infectious with moderate symptoms

(with a fraction δ) or fully infectious with severe symptoms (with a fraction 1 − δ).

The force of infection, denoted by λ(t), is given by

λ(t) =
βI
[
I(t) + εJ(t)

]
+ βHH(t) + βDD(t)

N(t)
,



59

λ 

δα 

γd	

fnγ 

D

R	E	S	
(1-f)nγ  

H1	

χ 

Hj	 Hn	

I1	 Ij	 In	

χ χ 

nγ nγ 

J1	 Jk	 Jm	
mγa mγa 

mγa 

nγ nγ fnγ  

(1-f)nγ 
(1-δ)α 

Figure 4.1.: Transition diagram between epidemiological classes under the assump-
tion of Gamma distributed infectious stages for severe infections (Ij, j = 1, 2, · · · , n)
and moderate infections (Jk, k = 1, 2, · · · ,m) with shape parameters n and m, re-
spectively. The mean infectious periods of these two types of infections are 1/γ and
1/γa, and the mean duration from the time of death to burial is 1/γd. The per-capita
rate of hospitalization for individuals with severe infections is χ; this is the rate at
which individuals in the Ij compartment enter the Hj compartment. The proportion
of deaths for severe infections is f .

where βI , βH , and βD are transmission rates in the community, hospital and at funerals

(deceased but not yet safely buried), respectively, and ε is a factor (0 ≤ ε ≤ 0.2)

representing the reduced infectivity of individuals with moderate symptoms (or the

ratio of infectivities of moderate and severe infections). The infectious periods of

moderate and severe symptoms are assumed to follow Gamma distributions with

shape parameters m and n, and mean infectious periods 1/γa and 1/γ, respectively.

This is equivalent to considering m and n sub-stages with transition rates from each

sub-stage to the next equal to mγa and nγ (see Figure 4.1). Individuals with severe

infections may be hospitalized at rate χ while at each of the n sub-stages. Deaths

due to infection only occur at the last sub-stage of severe infections. Because this is

an epidemic model for a single outbreak, demographic processes (births and natural

deaths) are ignored.
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The model consists of the following differential equations:

dS

dt
= −λ(t)S,

dE

dt
= λ(t)S − αE,

dI1
dt

= (1− δ)αE − (nγ + χ)I1,

dIj
dt

= nγIj−1 − (nγ + χ)Ij , j = 2, . . . , n,

dH1

dt
= χI1 − nγH1,

dHj

dt
= χIj + nγHj−1 − nγHj , j = 2, . . . , n,

dJ1

dt
= δαE −mγaJ1,

dJk
dt

= mγaJk−1 −mγaJk, k = 2, . . . ,m,

dD

dt
= fnγIn + fnγHn − γdD,

dR

dt
= (1− f)nγIn + (1− f)nγHn +mγaJm,

(4.1)

where δ is the fraction of infections with moderate symptoms; 1/γ and 1/γa are

the average periods for infections with severe and moderate symptoms; 1/α is the

latent period; χ is rate at which individuals with severe symptoms are hospitalized;

and f is the fraction of severe infections resulting in death. As discussed in [85], the

parameter γ can be chosen to be the weighted average of the interval from disease

onset to recovery, 1/γIR, and from onset to death, 1/γID, as follows:

1

γ
= (1− f)

1

γIR
+ f

1

γID
. (4.2)

All parameters with their definitions and ranges are listed in Table 4.1. The WHO

Ebola Response Team published estimates for the 2014-15 Ebola outbreak in West

African [70]. Authors of recently published studies estimated the reproduction num-

ber by fitting models to symptom onset dates during the initial stage of this out-

break [75, 78], and estimated parameters and evaluated interventions by calibrating

models using these data [81,84]. Similar studies for previous outbreaks include [86,87]
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and [79], which focused on estimates from the 1995 Congo and 2000 Uganda out-

breaks, respectively.

Table 4.1.: Definition of the parameters in model 4.1, and the ranges of their values
used in numerical simulations and sensitivity analysis.

Symbol Definition Value (Range) References
βI Community transmission rate 0.319 (0.3, 0.33) estimated
βH Hospital transmission rate 0.6 (0.55, 0.65)βI [78]
βD Traditional burial transmission rate 1.2 (1, 1.25)βI [84, 88]
ε Ratio of infectivities of moderate to severe infections 0.1 (0, 0.2) assumed
1/χ Mean time from disease onset to hospitalization 4.9 (4.8, 5.3) days [70,79,87]
1/γID Mean time from disease onset to death 7.9 (7.5, 8.5)days [79,87]
1/γIR Mean time from disease onset to recovery 9 (8.5, 9.5)days [84]
1/γ Mean of the Gamma distribution for severe infection = 1−f

γIR
+ f

γID
[85]

1/γa Mean of the Gamma distribution for moderate infection 3.1 (3, 7) days assumed
1/γd Mean time from deceased to buried 2.02 (1.5, 2.5) days [79,84,87]
1/α Latent period 9.5 (9, 12)days [70,84,86]
δ Proportion of infections with moderate symptoms 0.3 (0.1, 0.42) [83]
f Proportion of disease death for severe infections 0.6966 (0.69, 0.73) [70,86]

4.3 Derivation of the basic and control reproduction numbers

The basic (control) reproduction number was calculated in [12] for the more ex-

tensive system. Here, we present the results applied to this simplified version of that

model 4.1 and omit the details of the derivation. As with the more complex model, we

can write the reproduction number as a weighted average of the reproduction number

of severely symptomatic and moderately symptomatic individuals in the following

way:

Rc = (1− δ)Rc1 + δRc2, (4.3)
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whereRc1 andRc2 represent secondary infections produced by individuals with severe

and moderate symptoms, respectively, given by

Rc1 = (1− δ)
{
βI

1
χ

[
1−

(
nγ

nγ+χ

)n]
+ βH

(
1
γ
− 1

χ

[
1−

(
nγ

nγ+χ

)n])
+ βD

f
γd

}
,

Rc2 =
δεβI
γa

.

(4.4)

Therefore, from (4.3) and (4.4) we have

Rc = (1−δ)
{
βI

1

χ

[
1−

(
nγ

nγ + χ

)n]
+βH

(
1

γ
− 1

χ

[
1−

(
nγ

nγ + χ

)n])
+βD

f

γd

}
+
δεβI
γa

.

(4.5)

It can be verified that this expression for Rc is equivalent to that obtained using

the next generation matrix method. The effects of disease control measures are rep-

resented by reduced transmission rates βi (i = I,H,D), interval from death to burial

1/γd, and rate of hospitalization χ. In the absence of these parameter values, formula

(4.5) provides an expression for the basic reproduction number R0.

Denote the four components of Rc associated with I, H, D, and J by RI
c , RH

c ,

RD
c , and RJ

c , respectively. Then the expression in (4.5) can also be written as

Rc = RI
c +RH

c +RD
c +RJ

c ,

where
RI
c = (1− δ)βI

1

χ

[
1−

(
nγ

nγ + χ

)n]
,

RH
c = (1− δ)βH

(
1

γ
− 1

χ

[
1−

(
nγ

nγ + χ

)n])
,

RD
c = (1− δ)βD

f

γd
,

RJ
c =

δεβI
γa

.

(4.6)

These expressions in (4.6) can be helpful for examining how various factors may affect

Rc.
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Remark: In the case when moderate infections are not considered, i.e., δ = 0, the

reproduction number given in (4.5) becomes Rc = Rc1 (see (4.4)), which is exactly

the same as the reproduction number for Model II in [85]. This allows us to compare

the models with and without moderate infections.

4.4 Data fitting and parameter estimation

We will use the situation in Liberia based on the WHO reports [89] to calibrate the

model equations in 4.1. For demonstration purposes, we consider the model for the

case of n = 2 and m = 1. The data corresponding to the initial phase of exponential

growth is used to estimate the transmission parameters βi (i = I,H,D), which are

then used to determine R0 using formula (4.5). By fitting the model to reports

after control started, we can estimate the reductions in the transmission rates and

the control reproduction number, Rc, which then allows us to evaluate alternative

control measures.

4.4.1 Estimation of transmission rates and the reproduction number

We use data from the 2014 Ebola outbreak in Liberia and obtained data from the

CDC’s website [90], extracted from the WHO situation reports [89]. Before September

14, 2014, the data are suitable to estimate the basic reproduction number because

the local efforts to contain the outbreak from the middle of August 2014 were not

significant [84] and the epidemic curve was not affected [70]. Therefore, we used the

data from June 5, 2014, to September 14, 2014, to calibrate the models and estimate

the basic reproduction number [70,84].

The only parameters that we estimate are the transmission rates before control

measures were implemented. We used the estimates obtained by the WHO Ebola

Response Team [70] and the values listed in Table 4.1 for other parameters. We

assume that the data from Liberia are Poisson samples and use the R package bbmle

to perform the maximum likelihood estimation and deSolve to solve the system of
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differential equations. The confidence intervals of the fitted parameters are computed

using bootstrapping. The bootstrapping approach we used was resampling residuals,

which fits the model, retains the fitted values and residuals. And then, it reassembles

the data by pairing predictions and randomly resampled residuals and refits; finally

refitting the model to the resampled data.

We use the initial outbreak data (before September 14th) to estimate the trans-

mission rates βi (i = I,H,D), from which we estimated R0 using formula (4.5).

Furthermore, we fix βH and βD to be proportional to βI with the proportions in

certain ranges (see Table 4.1) so that βI is the only transmission rate estimated.

We noticed that the curve fitting is particularly sensitive to the choice of the initial

and end points of the selected time period for the exponential growth. To account

for this issue, we performed an 8-fold cross validation, which was chosen to have

similarly sized sub-samples. The analysis was performed on datasets with 25 points

and 26 points, excluding and including the last point. The 25-point dataset with the

minimum average error (RMSE) was chosen. In addition, because the fitted values

will depend on the choice of the proportion of moderate infections δ, for which there

is no commonly accepted value, we obtain estimates for several values of δ including

the case of no moderate infections (δ = 0). We use Bower et al.’s [73] estimate

that 12% of infections are moderately symptomatic as a lower bound for the value

δ and Bellan et al.’s [83] estimate of 40% as an upper bound. We considered four

scenarios in this section: (a) δ = 0; (b) δ = 0.15; (c) δ = 0.3; and (d) δ = 0.5. The

corresponding estimates of R0 are 1.94, 1.89, 1.83, and 1.71 (these values and the

confidence intervals are also listed in Table 4.2). For these four cases (a)–(d), the

fitted curves are illustrated in Figure 4.2. These fitted curves generates estimates of

βI values with corresponding confidence intervals equal to 0.244 (0.232,0.25), 0.275

(0.26, 0.28), 0.319 (0.309, 0.33), and 0.409 (0.39, 0.42), respectively. We used the

Akaike information criterion (AIC) to compare the models and evaluate which value

of δ returns the best fit. The AIC estimates the relative quality of a statistical model

for a given dataset by estimating the likelihood of a model to predict future values.
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The four different values of δ are analyzed as different models, the best model is the

one with the minimum AIC (δ = 0.3) among the candidate models.

Although the estimates of R0 in all cases of (a)–(d) are in the range of existing

estimates [86, 87], the estimate in (c), i.e., R0 = 1.83 (95% CI, 1.76 to 1.88), is

the most consistent with the estimate from WHO response team (obtained using

other statistical methods). In addition, for case (c), we estimate that community

transmission, RI
0 = 0.78 contributes the most to R0 at 42%. Contributions from

other transmissions are RH
0 = 0.64, RD

0 = 0.38, and RJ
0 = 0.03, which consist of

about 35%, 21%, and 1.6% of R0, respectively.

Data cases

a)

b)
c)

d)

Figure 4.2.: Fitting of model 4.1 to the 2014 Ebola reports before control (i.e., from
June 5th to September 8th). The line plots correspond to different proportions of
moderate infections: (a) δ = 0, (b) δ = 0.15, (c) δ = 0.3 (d) δ = 0.5. For the
cases (a)–(d), the Akaike information criterion (AIC) are 325, 281, 267, and 341,
respectively.
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Table 4.2.: Estimates of R0 corresponding to the model fitting presented in Figure
4.2 for four cases with different proportions of moderate infections: (a) δ = 0, (b)
δ = 0.15, (c) δ = 0.3, (d) δ = 0.5. Estimates of the components Ri

0 (i = I,H,D, J)
of R0 are also provided.

Case R0 (95% CI) RI0 (95% CI) RH0 (95% CI) RD0 (95% CI) RJ0 (95% CI)
(a) 1.94 (1.84, 2.01) 0.84 (0.79, 0.86) 0.69 (0.66, 0.71) 0.41 (0.38, 0.43) 0

(b) 1.89 (1.79, 1.93) 0.81 (0.76, 0.82) 0.67 (0.63, 0.68) 0.4 (0.38, 0.42) 0.012 (0.012, 0.013)

(c) 1.83 (1.76, 1.88) 0.78 (0.74, 0.8) 0.64 (0.62, 0.66) 0.38 (0.36, 0.39) 0.03 (0.028, 0.031)

(d) 1.71 (1.62, 1.75) 0.71 (0.67, 0.73) 0.59 (0.56, 0.60) 0.35 (0.32, 0.36) 0.064 (0.06, 0.065)

CI: Confidence Interval.

4.4.2 Estimates of the control parameters

In countries with widespread and intense spreading, the West African Ebola out-

break’s containment relied on non-pharmaceutical interventions due to ineffective

treatment options. Non-pharmaceutical interventions include social mobilization, use

of personal protective equipment (PPE) in healthcare facilities, safe burials, contact-

tracing and quarantine. The social mobilization control measures implemented in-

clude information campaigns to raise awareness of the disease’s transmission mode,

social distancing from infected individuals, timely hospitalization, and safe handling

of deceased individuals. Personal protective equipment can significantly lower the

risk of infections in hospitals and healthcare facilities. Contact tracing programs

allow probable cases to be identified and isolated early. Similarly, safe burials con-

ducted by trained teams can help reduce transmission from deceased people. These

interventions are linked to one or more parameters in the model; thus, a natural ques-

tion is whether considering moderate symptoms in the model affects the estimated

effectiveness of these interventions and to what extent ignoring this may contribute

to biased evaluations.

Let tc denote the time when intervention started in mid September, which for

convenience is chosen to be 100 days from June 5th, 2014. To estimate the effect of

control measures, we assume that the transmission rates for community (βI), hospital
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(βH), and funeral (βD) are reduced by factors zI , zH , and zD, respectively. That is,

the transmission rates for t > tc will be βi(1 − zi), i = I,H,D. This change can be

described by using piecewise-constant functions:

βi(t) =

{ βi for t < tc,

βi(1− zi) for t ≥ tc, i = I,H,D.

In addition, the time from onset to hospitalization (1/χ) is assumed to be reduced

by 0.25, i.e., around 1.2 days earlier in hospitalization due to control [76].

The estimated values of reductions zi in the transmission rates are shown in Table

4.3 for (i) δ = 0 and (ii) δ = 0.3. We observe that the reductions in case (i) is larger

than that in (ii), implying that models that do not explicitly include moderate infec-

tions (case (i)) may overestimate the effectiveness of the control measures considered

here.

Figure 4.3 shows the comparison between fitted model curves and reports for both

the period before intervention (t < tc = 100), which is the same as the curves shown

in Figure 4.2, and after (t > tc = 100). We observe that, when moderate infections

are considered (δ > 0), particularly for the case of δ = 0.3 (see (ii)), this model

fits the data much better than the model without considering moderate infections

explicitly (see (i)). These results suggest again that considering moderate infections

is necessary to estimate the effects of interventions for policy-making.

Table 4.3.: Estimates of reductions (zi, i = I,H,D) in transmission rates for four
cases based on the proportion δ for moderate infections.

Estimates (95% CI)
Cases (i) δ = 0 (ii) δ = 0.3
zI 0.987 (0.738, 1) 0.83 (0.675, 0.945)

zH 0.514 (0.326, 0.652) 0.49 (0.263, 0.51)

zD 0.23 (0, 0.527) 0.217 (0, 0.259)
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Figure 4.3.: Fitting of the model 4.1 to the 2014 Ebola data for the period between
June 5th, 2014 and October 8th, 2015. For t < tc = 100, the fit is the same as in
Figure 4.2, whereas the fit for t > tc = 100 is used for estimating the control reduction
parameters zi (i = I,H,D). The two cases are for δ values: (i) δ = 0 and (ii) δ = 0.3.
The jump in cases between day 100 and day 200 is due to a catch up in monitoring
and reporting in Liberia [91].

4.5 Evaluation of alternative control scenarios

Using the parameters estimated in the previous sections, we can experiment differ-

ent scenarios for alternative control strategies. For example, if the reduction factors

zi (i = I,H,D) were higher or lower than the estimated values, and/or if the time

of control tc started earlier or was delayed, how much that would have affected the

disease outcomes in terms of final epidemic size, peak size, and duration. Appar-

ently these evaluation results will be depend on the choice of other parameter values.

Thus, we will also examine the sensitivity of the reproduction number Rc and other

measures (final size, peak size, etc.) to various model parameters.
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4.5.1 The effects of timing of interventions

The timing of interventions is critical for disease control. Let T denote the time

of intervention, and consider T = tc = 100 (days) as the baseline scenario. We first

investigate earlier or later starting times and examine how they may affect the results

of the outbreak using measures including final epidemic size, peak size, duration of

outbreak, and total number of deaths.

In Figure 4.4, the epidemic curves and cumulative cases for various scenarios are

plotted. Early intervention corresponds to the starting time T = 86 and 93 while late

intervention corresponds to T = 107 and 114. This is for the case of 30% moderate

infections (i.e., δ = 0.3, the case (c) in Table 4.2). All other parameter are fixed at

the same values, and zi correspond to case (ii) in Table 4.3.
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Figure 4.4.: Plots of (a) epidemic curves and (b) cumulative infections for various
times to intervention T : The baseline scenario T = tc = 100 (thicker solid line), with
one or two weeks early intervention T = 86 and 93 and one or two weeks delayed
intervention T = 107 and 114.

We observe in Figure 4.4 that the difference in both peak sizes and final sizes are

very large between early and late interventions. For example, the peak and final size

values of early intervention are a half of the baseline scenario (the thick solid curve)

values. Similarly, the peak and final sizes double when control is applied two weeks

later than the hundredth day. The reduction that we observe in the epidemic curves
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in Figure 4.4 and Figure 4.5 close to day 100 is due to the application of control

measures at different times.

We can also compare models with different proportions of moderate infections,

including the case when moderate infections are not explicitly considered (i.e., δ = 0).

Figure 4.5 shows simulation results corresponding to the same set of two δ values as

before. The cumulative and epidemic curves are shown in the top and bottom rows,

respectively. The three columns are for (a) early intervention by one week (T = 93

days), (b) the baseline scenario T = tc = 100 days), and (c) late intervention by one

week (T = 107 days). It suggests again that the model with δ = 0 overestimate the

effects of early and delayed interventions. We observe in Figure 4.5 that, although the

two models produce similar cumulative curves, they produce very different peak sizes

for all three intervention times. Particularly, the peak size decreases with increasing

δ, and the model without moderate infections (δ = 0) produces the highest peak size,

approximately 20% higher than the model with δ = 0.3.

These differences between the two models are more transparent in Figure 4.6. The

bar chart for peak sizes (a) shows that the reduction in peak sizes with one week early

intervention are 70 for δ = 0 and 51 for δ = 0.3 and the increase in peak sizes with

one week late intervention are 88 for δ = 0 and 62 for δ = 0.3. The plot in (b) shows

that changes in final sizes generated by the two models do not differ significantly.

It can be helpful to derive a functional relationship between the time to interven-

tion and the final epidemic size. By fitting the regression line

FS(t) = FS(t0)exp(k(t− t0)),

to the final size we obtained the values k=0.0488, 0.04375 for the cases of δ = 0 and

δ = 0.3, respectively, as shown in Figure 4.7 (a). Figure 4.7 (b) is obtained using

the formula FS(t)−FS(tc)
FS(tc)

∗ 100. It shows that the final size percentage increases or

decreases as control is applied for different values of t. If control is applied a week

early (t = tc−7) where tc = 100, the percentage of cases per day is negative. That is,
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(a) One Week Early
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(b) Time to Intervention is 100 days
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(c) One Week Late
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Figure 4.5.: Comparison of models with different proportions (δ) of moderate infec-
tions and timing T of intervention: (a) T = 93 (one week early), (b) T = tc = 100,
and (c) T = 107 (one week late). The curves show cumulative infections for different
δ values: δ = 0 and 0.3.
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Figure 4.6.: Changes by one week earlier or later than the baseline scenario (i.e.,
T = tc = 100 days) in (a) peak size and (b) final size for δ = 0 and δ = 0.3. All
parameter values are the same as in Figures 4.4 and 4.5.

by applying control earlier, we have prevented roughly 27% of cases. Similarly, if we

apply control measures a week later, the percentage is positive; the percentage increase
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Figure 4.7.: Percentage of change of final sizes as a function of time of intervention
with respect to the baseline scenario (T = tc = 100 days) corresponding to different
fractions of moderate infections δ.

is roughly 37%. We observe that the model without asymptomatic infections (δ = 0)

predicts a lower or higher final size for earlier or later interventions, respectively.

4.6 Sensitivity analysis of R0

A sensitivity analysis of R0 provides important information regarding how uncer-

tainty and variability of model parameters may affect results and which parameters

are most influential. The analysis is based on the Latin hypercube sampling method

with 1000 points selected from assigned parameter ranges corresponding to the case of

30% moderate infections (see Table 4.1). The parameters considered in this analysis

include transmission rates (βI , βH , βD), progression rates from onset to recovery or

hospitalization (γ, γa, γd, χ), and factors related to moderate infections (δ and ε),

and death fraction (f).

A probability distribution (PDF) was assigned to each parameter to describe the

range of possible values and their probabilities. The PDFs were chosen based on the

biology of the disease and depending on whether the parameter was estimated or ob-

tained from existing literature. The parameter ε was fixed, as well as the proportions
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for βH and βD, because only βI was estimated and the others are proportional to βI .

For all parameters except δ, a triangular distribution was used because it is recom-

mended for situations in which a most likely value and a range for each parameter is

estimable [92]. In the case of δ, a uniform distribution was used because studies pro-

vide a wide range for this parameter. Partial rank relation coefficients (PRCC) were

computed between the values of the seven parameters that identified the independent

effect of each parameter on R0. In this study, we assume statistical independence of

the input parameters.

The results are illustrated in Figure 4.8.

4.6.1 Sensitivity analysis of peak and final epidemic sizes

Under the control measures corresponding to zi (i = I,H,D, χ) in case (ii) of

Table 4.3, deterministic simulations generate the peak and final sizes shown in Figure

4.4. When parameters are selected based on LHS with 1000 simulated epidemics, the

distributions of the peak and final sizes are illustrated in Figure 4.9. The parameter

ranges correspond to cases (c) in Table 4.2 and (ii) in Table 4.3, and the time to

intervention is the baseline scenario (i.e., tc = 100 days). We observe that, although

the means for both the peak (a) and the final (b) sizes are consistent with those shown

in Figure 4.4 (the thick solid curve), the variances are large.

4.6.2 Control measures and their effects on the time course

To assess the importance of various control measures for future outbreaks, we con-

ducted a time course sensitivity analysis based on the 2014-15 Liberia outbreak. This

is done again through Latin hypercube sampling of the control parameters represented

by zI , zH , and zD (reductions in βI , βH , and βD) and the timing of intervention, de-

noted by T . The partial rank correlation coefficients (PRCC) are presented in Figure

4.10. The ranges for zI , zH , and zD are same as the confidence intervals estimated in

Table 4.3. The range for T is chosen to be between 1 week before and 1 week after
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Figure 4.8.: Sensitivity and uncertainty analyses of the basic reproduction number
Rc with respect to model parameters. Values of the parameters are chosen using the
Latin hypercube sampling method, with the ranges around the values corresponding
to the case of 30% moderate infections as listed in Table 4.1. The plots in the top row
show the PRCC values of these parameters (left) and the distribution of Rc (right).
The bottom row shows the empirical CDF of Rc (left) and the contributions of Ri

c

(i = I,H,D, J) to Rc (right).

the baseline scenario tc = 100 (days), and the range for the reduction parameter zχ

(time from onset to hospitalization) is (0, 0.3).

We observe that the PRCC curves of control parameters are similar and close to

zero before implementation of control measures. Once control measures were imple-

mented, the PRCC curves of different control parameters quickly approach relatively

stable values. The first PRCC curve to approach 1 is the timing of control measures,

which is positively correlated with cumulative cases. This is because the later that
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Figure 4.9.: Similar to Figure 4.8(b) but results of the uncertainty analysis for the
peak and final sizes. This figure illustrates distributions of the peak and final sizes
of 1000 simulated epidemics with parameters selected using LHS from ranges corre-
sponding to the case of 30% moderate infections.
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Figure 4.10.: Time course sensitivity with respect to control parameters.

control measures are implemented, the larger the outbreak. Early implementation of

control measures is very important in the exponential growth phase of any outbreak.

As time increases, the influence of time to intervention diminishes. All other control

measures are negatively correlated, which implies that implementing these control

measures mitigates the outbreak. The most influential measures are the reductions

in community and hospital transmission (zI and zD), followed by zH and zχ.
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4.7 Discussion

To investigate the impact of a spectrum of symptoms of Ebola infection, we mod-

eled Ebola infections with moderate and severe symptoms. Those with moderately

symptomatic infections from the exposed class have some viral replication, which is

controlled due to strong innate immunity plus successful adaptive immunity. These

individuals are not very infectious despite moderately symptomatic infections, be-

cause they have few viruses circulating within their bodies. Individuals with severe

symptoms have higher viral load and therefore are more infectious than people with

moderately infections. Various levels of moderately symptomatic infections are con-

sidered in our analysis based on estimates by Bower et al. [73], Bellan et al. [83] and

Richardson et al. [74].

The model developed in this paper extends Model II in [85] by explicitly including

moderate infections. The formulation and its underlying assumptions are demon-

strated via integro-differential equations and their reduction to ordinary differential

equations in [85]. The merit of this model is that it retains the infection history even

after hospitalization. This is important in determining times of recovery and death,

especially when no treatment is available. The Gamma assumption also provides a

realistic infectious period, and infectious individuals recover or die in the later stage

of the infection, but not sooner.

The results in this paper illustrate the importance of considering infections with

moderate symptoms. First, the estimated basic reproduction number R0 for the

model with 30% moderate infections (δ = 0.3) is 1.83, which is the most consistent

(among the models with different δ values) with WHO’s empirical estimate (see Table

4.2). It is worth noting that our reproduction numbers are obtained by fitting our

models directly to cases using maximum likelihood estimation. Alternatively, one

can estimate the exponential growth rate of early cases and connect the rate to

reproduction number by assuming a generation interval [93]. The estimate of R0

can be inflated when excluding moderate infections in the model (δ = 0). However,
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uncertainty analysis of R0 of the model with 30% moderate infections could lead to

reproduction numbers from 1.2 to 2.4 (see Figure 4.8). We show that the sensitivity

of R0 to δ (percentage of moderately symptomatic individuals) is higher than to most

other parameters (see Figure 4.8(a)), and that the most influential components of R0

is RI
0 followed by RH

0 (see Figure 4.8(d)).

Second, the effectiveness of interventions is over-estimated when ignoring the mod-

erate infections. We demonstrate in Figures 4.4–4.6 that, although models with var-

ious δ values provide similar evaluations of the effect of control measures on the

final epidemic sizes, the model with δ = 0 predicts a much higher effectiveness of

early intervention than models with δ = 0.3. Thus, without considering moder-

ately symptomatic infections, extra credit is given to implemented control measures.

The sensitivity analysis also shows that the variances in the peak and final epidemic

sizes are relatively large (Figure 4.9) and that the reduction in βI (among all βi’s,

i = I,H,D, χ) is the most influential to the cumulative number of cases over the

entire time course, while the timing of interventions diminishes (see Figure 4.10).

In addition, the timing of interventions is of great importance to mitigate final

epidemic size. Because final size is an exponential function of the time to intervention,

early interventions could significantly reduce epidemic size. An empirical regression

equation linking final size and timing of interventions could be useful for policy-

making.

It is necessary to stratify infections by severity of clinical symptoms in modeling.

This permits reasonable estimates of the reproduction number and effectiveness of

control measures, especially when infected persons present with various symptoms.

More epidemiological investigation of moderately symptomatic infections of Ebola

will be helpful to estimate their fractions of the total infection and infectivity. These

are crucial to more useful modeling of future outbreaks.
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5. SUMMARY

In this thesis, I developed models that help understand how assumptions affect pre-

dictions, parameter estimations, and control measures using different diseases as ex-

amples. The models explore the impact of age structure, inclusion of asymptomatic

individuals in the model and, different distributions for the infectious period. In chap-

ter 2, an age-structured COVID-19 model was introduced, based on Chao and Feng’s

work [11]. The system divides the population into different age groups and health

status, which allows us to analyze targeted policies. In this case, the importance of

including different age groups in a population is that results obtained for one country

do not necessarily extend to another. The difference in societal structures is reflected

in the contact matrix for each country and policies that should be implemented to

minimize transmission. We fitted the model to age stratified infections reported from

Ecuador during the COVID-19 outbreak and analyzed two distinct policies against

a baseline delayed-release policy. We found that releasing the active workforce is

better than reopening schools while continuing to restrict the active workforce. The

measures used to evaluate the different policy options were: total cases and deaths

prevented and minimizing daily cases to prevent peaks in incidence. We conclude that

releasing the population’s economically active sector provides more benefits than re-

leasing the youngest, lowest risk groups. In addition, we determine that timing is

of great importance for the implementation of control measures. Control measures

applied for a short period followed by loosening restrictions for all age groups cause

high subsequent waves.

Chapter 3 was motivated by recurrent childhood disease outbreaks with relatively

short infectious periods. We follow Feng and Thieme, who obtained oscillations by

combining alternative assumptions about the incidence term (isolated individuals

were removed) and isolation. This chapter considers a general model with arbitrarily
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distributed infectious and quarantine stages and then recovers the ODE model when

Gamma distributions are used for infected and quarantined stages. Changing the

distribution from an exponential to Gamma allows the critical point (isolation period)

necessary for sustained oscillations to be reduced from 3 [7] to 2 weeks, which makes

this model applicable to many more childhood diseases. We analyze the system’s

stability, identify the critical value of the isolation period, and prove the existence of

a Hopf bifurcation, which is consistent with the results from [7].

In chapter 4, we developed a model including moderate and severe symptoms

based on previous work by Zheng [12], which takes into account the possibility that

individuals could be asymptomatic or have moderately symptomatic infections, as

reported during previous Ebola outbreaks. We fit the model to capture the dynamics

of the recent outbreak of Ebola in Liberia, and estimate the basic reproduction number

as 1.83 (CI: 1.72, 1.86), consistent with the WHO response team’s empirical estimate.

We compare the model to one with typical symptoms by excluding moderate ones.

The model with only typical symptoms overestimates the basic reproduction number

and effectiveness of control measures and exaggerates peak size changes attributable

to interventions’ timing. In this study, we show that including asymptomatic Ebola

infections may have crucial implications for policy-making.

Some of the limitations of chapter 2 include parameter identifiability issues, both

practical and structural, which can be addressed by performing identifiability analysis

on the model. Finally, given recent vaccine developments, a vaccination strategy could

also be considered when designing the policies. The mathematical model could be

adapted to include vaccinated individuals in a separate compartment.

Computing the interepidemic periods in the model (3.11)in chapter 3 would allow

us to understand when outbreaks are likely to occur. Furthermore, we could compare

how the Gamma distribution impacts these estimates. The Ebola model studied in

chapter4 includes Gamma distributed infectious period with shape parameter 2. This

allowed simpler simulations; however, further study is required to decide the specific

number of sub-compartments needed for the infectious period of both symptomatic



80

and asymptomatic individuals. Similarly, the numerical solutions of the childhood

disease model studied in chapter 4 could also benefit from using a disease-specific

value for the shape of the Gamma distributions considered.
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A. CHAPTER 2 SUPPLEMENTARY MATERIAL

A.1 Basic reproduction number

A.1.1 Basic reproduction number for isolated age groups

The reproduction number of the each age group in (2.1) was obtained using the

next generation matrix operator. The infected compartments of the i− th model are

Ei, Ji, Ii for i = 1, . . . , 4, therefore the matrix F describes the new infections and

V , the rates out of each compartment considered. For demonstration purposes, we

obtain the basic reproduction number for the first age group:

F1(U) =


β1S1

(
A1,1

(I1+εJ1)
N1

+ A1,2
(I2+εJ2)

N2
+ A1,3

(I3+εJ3)
N3

+ A1,4
(I4+εJ4)

N4

)
0

0

 ,

V1(U) =


αE1

−(1− δ1)αE1 + γaJ1

−δ1αE1 + (µ1 + η1 + γ)I1

 .

Let U∗ = (Si = 1, Ei = Ii = Ji = Di = Hi = Ri = 0) for i = 1, . . . , 4, be the

disease-free equilibrium and define F1 = DF1(U∗) and V1 = DV1(U∗).

F1 =


0 A1,1β1ε1 A1,1β1

0 0 0

0 0 0

 , V1 =


α 0 0

−α(1− δ1) γa 0

−αδ1 0 γ + η1 + µ1

 .
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Therefore, the basic reproduction number for each group isR0i = ρ(F1V
−1

1 ), where

ρ(F1V
−1

1 ) denotes the spectral radius of the matrix F1V
−1

1 , is the following

F1V
−1

1 =


A1,1β1

(
δ1

γ+η1+µ1
+ ε1(1−δ1)

γa

)
A1,1β1ε1

γa

A1,1β1

γ+η1+µ1

0 0 0

0 0 0

 .

The largest eigenvalue corresponds to the R01 value:

R01 = β1A1,1

(
δ1

γ + µ1

+
ε1(1− δ1)

γa

)
.

Therefore, the basic reproduction number for each group is

R0i = βiAi,i

(
δi

γ + µi
+
ε1(1− δi)

γa

)
, i = 1, . . . , 4.

A.1.2 Basic reproduction number for multiple interacting age groups

The reproduction number of all the age groups in (2.1) is obtained using the next
generation matrix operator. The infected compartments of the model are Ei, Ji, Ii
for i = 1, . . . , 4, therefore the matrix F describes the new infections in the total
population and V , the rates out of each compartment considered.

F (U) =



β1S1

(
A1,1

(I1+εJ1)
N1

+A1,2
(I2+εJ2)

N2
+A1,3

(I3+εJ3)
N3

+A1,4
(I4+εJ4)

N4

)
0

0

β2S2

(
A2,1

(I1+εJ1)
N1

+A2,2
(I2+εJ2)

N2
+A2,3

(I3+εJ3)
N3

+A2,4
(I4+εJ4)

N4

)
0

0

β3S3

(
A3,1

(I1+εJ1)
N1

+A3,2
(I2+εJ2)

N2
+A3,3

(I3+εJ3)
N3

+A3,4
(I4+εJ4)

N4

)
0

0

β4S4

(
A4,1

(I1+εJ1)
N1

+A4,2
(I2+εJ2)

N2
+A4,3

(I3+εJ3)
N3

+A4,4
(I4+εJ4)

N4

)
0

0



,
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V (U) =



αE1

−(1− δ1)αE1 + γaJ1

−δ1αE1 + (µ1 + η1 + γ)I1
...

αE4

−(1− δ4)αE4 + γaJ4

−δ4αE4 + (µ4 + η4 + γ)I4


.

Let U∗ = (Si = 1, Ei = Ii = Ji = Di = Hi = Ri = 0) for i = 1, . . . , 4, be the

disease-free equilibrium and define F = DF (U∗) and V = DV (U∗):

F =



0 A1,1β1ε1 A1,1β1 0 A1,2β1ε1 A1,2β1 0 A1,3β1ε1 A1,3β1 0 A1,4β1ε1 A1,4β1

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 A2,1β2ε1 A2,1β2 0 A2,2β2ε1 A2,2β2 0 A2,3β2ε1 A2,3β2 0 A2,4β2ε1 A2,4β2

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 A3,1β3ε1 A3,1β3 0 A3,2β3ε1 A3,2β3 0 A3,3β3ε1 A3,3β3 0 A3,4β3ε1 A3,4β3

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 A4,1β4ε1 A4,1β4 0 A4,2β4ε1 A4,2β4 0 A4,3β4ε1 A4,3β4 0 A4,4β4ε1 A4,4β4

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0


,

V =

α 0 0 0 0 0 0 0 0 0 0 0

α(δ1 − 1) γa 0 0 0 0 0 0 0 0 0 0

−αδ1 0 γ + η1 + µ1 0 0 0 0 0 0 0 0 0

0 0 0 α 0 0 0 0 0 0 0 0

0 0 0 α(δ2 − 1) γa 0 0 0 0 0 0 0

0 0 0 −αδ2 0 γ + η2 + µ2 0 0 0 0 0 0

0 0 0 0 0 0 α 0 0 0 0 0

0 0 0 0 0 0 α(δ3 − 1) γa 0 0 0 0

0 0 0 0 0 0 −αδ3 0 V9,9 0 0 0

0 0 0 0 0 0 0 0 0 α 0 0

0 0 0 0 0 0 0 0 0 α(δ4 − 1) γa 0

0 0 0 0 0 0 0 0 0 −αδ4 0 V12×12


,

where V12×12 = γ + η4 + µ4, V9,9 = γ + η3 + µ3.

The basic reproduction number for each group is R0 = ρ(FV −1), where ρ(FV −1)

denotes the spectral radius of the block matrix FV −1 we can write in the following

way:
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FV −1 =


K1,1 K1,2 K1,3 K1,4

K2,1 K2,2 K2,3 K2,4

K3,1 K3,2 K3,3 K3,4

K4,1 K4,2 K4,3 K4,4

 ,

Ki,j =


βiAi,j

(
(1−δj)ε1

γa
+

δj
γ+ηj+µj

)
βiAi,j

ε1
γa

βiAi,j
1

γ+ηj+µj

0 0 0

0 0 0


, for i, j = 1, . . . , 4.

Since we do not consider hospitalization we set ηi = 0. The non-zero eigenvalues of

FV −1 are given by the following matrix:

H =


h1,1 h1,2 h1,3 h1,4

h2,1 h2,2 h2,3 h2,4

h3,1 h3,2 h3,3 h3,4

h4,1 h4,2 h4,3 h4,4

 , hi,j=βiAi,j

(
(1−δj)ε1

γa
+

δj
γ+µj

)
, i, j = 1, . . . , 4.

Define ρ(H) as the dominant eigenvalue of H, then the basic reproduction number

for the whole population is given by R0 = ρ(H).
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A.1.3 Group plots of staggered-release scenarios

Figure A.1.: Daily and cumulative cases when we use staggered-release strategy A in
reopening phase 2 (T3 − T4).
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Figure A.2.: Daily and cumulative cases when we use staggered-release strategy B in
reopening phase 2 (T3 − T4).
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B. CHAPTER 3 SUPPLEMENTARY MATERIAL

B.1 Derivation of R0

The reproduction number of the original system (3.11) was obtained using the

next generation matrix operator described in [5]. The infected compartments of the

model (3.11) are Ij for j = 1, 2, therefore the matrix F describes the new infections

and V , the rates out of each compartment considered.

F (U) =

 β(I1+I2)
A(t)

S(t)

0

 and V (U) =

 (µ+ nγ)I1

−nγI1 + (µ+ nγ)I2

 .

Let U0 be the disease-free equilibrium and define F = DF (U0) and V = DV (U0).

Then

F =

 β β

0 0

 , V =

 2γ + µ 0

−2γ 2γ + µ

 .

Therefore, following the definition of the basic reproduction number by Diekmann [5]

is R0 = ρ(FV −1) where ρ(M) denotes the spectral radius of the matrix M and the

matrix FV −1 is the following

FV −1 =

 β(4γ+µ)
(2γ+µ)2

β
2γ+µ

0 0

 .

R0 is given by the largest eigenvalue of FV −1, i.e.,

Re =
β(4γ + µ)

(2γ + µ)2
=

2Γ + ν

(Γ + ν)2
.
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B.2 Endemic equilibrium computation

System (3.14) always has the disease-free equilibrium (DFE) denoted by U0:

s = 1, i1 = i2 = q1 = q2 = r = 0.

Let U∗ = (i∗1, i
∗
2, q
∗
1, q
∗
2, r
∗) denote a positive or endemic equilibrium (EE) of (3.14).

Then U∗ satisfies the following equations:

0 = (i∗1 + i∗2)(1− i∗1 − i∗2 − r∗)− (Γ + ν)i∗1 + i∗1 [Γi∗2 − (ν + Ω)(q∗1 + q∗2) + Ωq∗1] ,

0 = Γi∗1 − (Γ + ν)i∗2 + i∗2 [Γi∗2 − (ν + Ω)(q∗1 + q∗2) + Ωq∗1] , (B.1)

0 = Γi∗2 − (ν + Ω)q∗1 + q∗1 [Γi∗2 − (ν + Ω)(q∗1 + q∗2) + Ωq∗1] ,

0 = Ωq∗1 − (ν + Ω)q∗2 + q∗2 [Γi∗2 − (ν + Ω)(q∗1 + q∗2) + Ωq∗1] ,

0 = Ωq∗2 − νr∗ + r∗ [Γi∗2 − (ν + Ω)(q∗1 + q∗2) + Ωq∗1] .

From adding the third and fourth equations above at the non-trivial equilibrium, we get

the following equivalence:

(1 + q∗1 + q∗2)

[
Γi∗2 − (ν + Ω)(q∗1 + q∗2) + Ωq∗1

]
= 0.

Because at the nontrivial equilibrium, (1 + q∗1 + q∗2) > 0, we can conclude that

Γi∗2 − (ν + Ω)(q∗1 + q∗2) + Ωq∗1 = Γi∗2 − ν(q∗1 + q∗2)− Ωq∗2 = 0. (B.2)

The solution to the system of equations (B.1) and (B.2) satisfies:

i∗1 = ν(Γ + ν)(Ω + ν)2k, i∗2 = Γν(Ω + ν)2k,

q∗1 = Γ2ν(Ω + ν)k, q∗2 = Γ2νΩk, r∗ = Γ2Ω2k,
(B.3)

where

k =
(1− ν)(2Γ + ν)− Γ2

(2Γ + ν)(Γ2Ω2 + (ν + Ω)2(2Γν + ν2))
. (B.4)
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B.3 Coefficients of the characteristic polynomial

Recall that the endemic equilibrium U∗ is given in (B.3). The characteristic polynomial

at U∗ has the following form:

|yI −DF (U∗)| = y5 + ay4 + by3 + cy2 + dy + e, (B.5)

where the coefficient are:

a =
1

(2Γ + ν) (Γ2Ω2 + 2Γν(ν + Ω)2 + ν2(ν + Ω)2)

[
3Γ4Ω2 + 2Γ3

(
2ν3 + 4ν2Ω + 7νΩ2 + 2Ω3

)
+ 2Γ2ν

(
9ν3 + ν2(22Ω + 2) + νΩ(19Ω + 4) + Ω2(5Ω + 2)

)
+ 2Γν2(ν + Ω)2(7ν + 4Ω + 2)

+ ν3(ν + Ω)2(3ν + 2Ω + 1)
]
,

b =
1

(2Γ + ν) (Γ2Ω2 + 2Γν(ν + Ω)2 + ν2(ν + Ω)2)

[
Γ4
(
−4ν3 − 8ν2Ω + 5νΩ2 + 6Ω3

)
+ 2Γ3

(
4ν3(Ω + 1) + ν2(17Ω + 8)Ω + 4ν(3Ω + 1)Ω2 + Ω4

)
+ Γ2ν

(
17ν4 + ν3(62Ω + 24) + ν2Ω(83Ω + 56) + 2νΩ2(21Ω + 20) + Ω3(5Ω + 8)

)
+ 2Γν2(ν + Ω)2

(
6ν2 + ν(10Ω + 9) + 2Ω(Ω + 2)

)
+ ν3(ν + Ω)2

(
2ν2 + 4ν(Ω + 1) + Ω(Ω + 2)

) ]
,

c =
1

(2Γ + ν) (Γ2Ω2 + 2Γν(ν + Ω)2 + ν2(ν + Ω)2)

[
Γ6ν(ν + Ω)2 + 4Γ5(ν − 1)ν(ν + Ω)2

+ Γ4
(
6ν5 + 2ν4(6Ω− 11) + ν3

(
6Ω2 − 52Ω + 4

)
+ ν2(8− 29Ω)Ω + 4νΩ2(Ω + 1) + 3Ω4

)
+ 2Γ3ν

(
2ν5 + 4ν4(Ω− 4) + 2ν3

(
Ω2 − 18Ω + 7

)
+ 3ν2(12− 5Ω)Ω + 10νΩ2(Ω + 3)

+ Ω3(5Ω + 8)
)

+ Γ2ν
(
ν6 + ν5(2Ω− 19) + ν4

(
Ω2 − 32Ω + 49

)
+ ν3Ω(7Ω + 138)

+ ν2Ω2(32Ω + 133) + 12νΩ3(Ω + 4) + 4Ω4
)
− 2Γν2(ν + Ω)2

(
4ν3 − ν2(2Ω + 15)− νΩ(3Ω + 14)− 2Ω2

)
− ν3(ν + Ω)2

(
2ν3 − 6ν2 − νΩ(Ω + 6)− Ω2

) ]
,

d =
ν(Γ + ν)(ν + Ω)2

(2Γ + ν) (Γ2Ω2 + 2Γν(ν + Ω)2 + ν2(ν + Ω)2)

[
2Γ5(ν + Ω)

+ 2Γ4(3ν − 4)(ν + Ω) + Γ3
(
6ν3 + 6ν2(Ω− 4) + ν(8− 28Ω)− (Ω− 8)Ω

)
+ Γ2

(
2ν4 + 2ν3(Ω− 12)− 4ν2(7Ω− 6) + ν(32− 3Ω)Ω + 8Ω2

)
+ Γν

(
−13ν3 − 2ν2(8Ω− 9) + ν(26− 3Ω)Ω + 8Ω2

)
+ ν2

(
−3ν3 − 4ν2(Ω− 1)− ν(Ω− 6)Ω + 2Ω2

) ]
,

e = −
ν(Γ + ν)2

(
Γ2 + 2Γ(ν − 1) + (ν − 1)ν

)
(ν + Ω)2

(
Γ2(−ν)(ν + 2Ω) + 2Γ(ν + Ω)2 + ν(ν + Ω)2

)
(2Γ + ν) (Γ2Ω2 + 2Γν(ν + Ω)2 + ν2(ν + Ω)2)

.
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B.4 Computations to obtain the complex conjugate eigenvalues

We will look for eigenvalues of DF (U∗)(ν) of the form y = εỹ, where ε = ν1/2. Substi-

tuting the coefficients in the characteristic polynomial,

(εỹ)5 + a(εỹ)4 + b(εỹ)3 + c(εỹ)2 + d(εỹ) + (e1(Ω)ε2 + e2(Ω, ε2)ε4) = 0.

Dividing by ε2 and letting ε→ 0 implies

c(Ω, 0)ỹ2 = −e1(Ω), so we obtain

Y1 = ±i

√
e1(Ω)

c(Ω, 0)
,

= ±i
√

2(2− Γ)

3
,

substitute ỹ = Y1 + εY, divide by ε and letting ε→ 0, we can define:

G(Y,Ω, ε) = Y3
1b(0,Ω) + c(0,Ω)YY1 + d1(Ω)Y1.

By (B.6), we have that

Y2 =

6Γ2(2−Γ)
Γ+16 − Ω

3ΓΩ
.

We denote the first term of the Taylor series expansion of Ω0 by Ω∗ = 6Γ2(2−Γ)
Γ+16 , so

G(0,Ω0, 0) = 0,

and

GY(0,Ω0, 0) = 3ΓΩ2Y1 6= 0.

By the implicit function theorem, we know there is a function Y(Ω, ε), which is analytic

in Ω and ε in a neighborhood of (Ω∗, 0) with Y(Ω∗, 0) = 0 and G(Y,Ω, ε) = 0 if and only if

Y = Y(Ω, ε). Hence, we can write

Y(Ω, ε) = Y2(Ω) + εY3(Ω, ε),
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where Y2(Ω∗) = 0 and Y3 is an analytic function of Ω and ε in a neighborhood of (Ω∗, 0).

We can then write the other eigenvalues, besides y3,4,5, in the following form:

y±(Ω, ε) = εỹ±(Ω, ε) = ε(Y1 + εY2 + ε2Y3) = ±iε
√

2(2− Γ)

3
+ ε2

6Γ2(2−Γ)
Γ+16 − Ω

3ΓΩ
+ ε3Y3.

B.5 Calculation of the Center Manifold and Stability of Periodic Solutions

B.5.1 Stability of periodic solutions

To prove the stability of the Hopf bifurcation in 3 we use the following result from [8],

Chapter 3, Section 1B. Consider the system

ẏ = F (y, µ), y ∈ R5, µ ∈ R,

where F is Cr(r ≥ 5) on a sufficiently large open set containing (0, 0), and F (0, 0) = 0.

Suppose that DyF (0, 0) has two purely imaginary conjugate eigenvalues and three strictly

negative eigenvalues. Then by the center manifold theorem ( [8], Chapter 2, Section 1B),

near (y, µ) = (0, 0), the system (3.14) can be reduced to a two dimensional system with the

parameter µ. Assume that at the bifurcation point, which means µ = 0, the reduction of

the system to the center manifold will take the following form

ẋ
ẏ

 =

 0 =y(Ω0)

−=y(Ω0) 0

x
y

+

G1(x, y, 0)

G2(x, y, 0)

 ,

where =y(Ω0) is the imaginary part of the eigenvalues of DyF (0, 0), (x, y) ∈ R2, and

Gi(x, y, µ)(i = 1, 2) are real-values functions of x, y, µ which are of order higher than 1

in x and y. The stability of the bifurcating periodic solution is given by the sign of the

following expression

α =
1

16

(
G(1)
xxx +G(1)

xyy +G(2)
xxy +G(2)

yyy

)
− 1

16=y+(Ω0(0))

[
G(1)
xy

(
G(1)
xx +G(1)

yy

)
−G(2)

xy

(
G(2)
xx +G(2)

yy

)
−G(1)

xxG
(2)
xx +G(1)

yy G
(2)
yy

]
,

where all partial derivatives are evaluated at the bifurcation point (x1, x2, µ) = (0, 0, 0).
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Lemma 1 The bifurcating periodic solution is locally asymptotically stable if α < 0 (super-

critical case); it is unstable if α > 0.

B.5.2 Shifting the system to the endemic equilibrium

Therefore, to begin the center manifold reduction we use the simplified system (3.14)

and we transform the endemic equilibrium in (3.14) to the origin by letting

I1 = i1 − i∗1, I2 = i2 − i∗2, Q1 = q1 − q∗1, Q2 = q2 − q∗2 and R = r − r∗.

The transformed system is

I ′1 = i∗1

[
− 2I1 + (Γ− 2)I2 − νQ1 − (ν + Ω)Q2 −R

]
− i∗2

(
2I1 + 2I2 +R

)
− r∗

(
I1 + I2

)
+I1

[
− Γ + (Γ− 2)I2 − ν − νQ1 +Q2(−ν − Ω)−R+ 1

]
+ I2(1−R)− I2

1 − I2
2 ,

I ′2 = i∗2

[
− νQ1 − (ν + Ω)Q2

]
+ νI2q

∗
1 + (ν + Ω)I2q

∗
2 + ΓI1 + ΓI2

2

−I2

[
(Γ + ν) + νQ1 + (ν + Ω)Q2

]
,

Q′1 = ΓI2q
∗
1 −Q1q

∗
1 − (ν + Ω)Q2q

∗
1 + ΓI2 + ΓI2Q1 − (ν + Ω)Q1

−(ν + Ω)Q1Q2 −Q2
1ν, (B.6)

Q′2 = −ΩQ1q
∗
1 − ΩQ2q

∗
1 + ΓI2q

∗
2 + ΩQ1q

∗
2 + I2Q2Γ + ΩQ1 − νQ1Q2

−(ν + Ω)Q2 − (ν + Ω)Q2
2,

R′ = −ΩQ1q
∗
2 − ΩQ2q

∗
2 + ΓI2r ∗ −ΩQ2r

∗ + I2RΓ− νQ1R− ΩQ2

−(ν + Ω)Q2R− νR.

By (3.20) the system (B.6) has two complex conjugate eigenvalues given by

y±(Ω, ε) = εY1 + ε2Y2 + ε3Y3(Ω, ε),

= ±iε
√

2(2− Γ)

3
+ ε2

6Γ2(2−Γ)
Γ+16 − Ω

3ΓΩ
+ ε3Y3(Ω, ε).
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Note that the leading real part (Y2) of y± is zero at Ω∗. To calculate the real part of the

eigenvector, we need to calculate y± to the third order of ε. Let

y±(Ω, ε) = εY1(Ω) + ε2Y2(Ω) + ε3Y3(Ω) + ε4Y4(Ω, ε).

Using (3.19) and (3.21) we have the following expansions for the coefficients of the charac-

teristic polynomial (B.5) around ε:

a = a(Ω, ε2) = 3Γ
2 + 2Ω + a1(Ω, ε2)ε2,

b = b(Ω, ε2) = Ω(3Γ + Ω) + b1(Ω, ε2)ε2,

c = c(Ω, ε2) = 3ΓΩ2

2 + c1(Ω, ε2)ε2,

d = d(Ω, ε2) = d1(Ω)ε2 + d2(Ω, ε2)ε4,

e = e(Ω, ε2) = e1(Ω)ε2 + e2(Ω, ε2)ε4,

(B.7)

where

a1 =
2

Γ
+

13

4
,

b1 =
4Ω

Γ
+

5Γ

2
+

9Ω

2
+ 4,

c1 =
1

4

(
2Γ3 − 8Γ2 +

8Ω2

Γ
+ 8Γ(Ω + 1) + Ω(5Ω + 32)

)
,

d1 =
1

2
Ω
(
2Γ3 − 8Γ2 − Γ(Ω− 8) + 8Ω

)
,

d2 =
1

4

(
12Γ3 + 6Γ2(Ω− 8)− 8Ω2

Γ
+ Γ(48− 36Ω)− 3(Ω− 24)Ω

)
,

e1 = −(Γ− 2)ΓΩ2,

e2 = Ω
(
Γ3 − 6Γ2 − 2Γ(Ω− 4) + Ω

)
.

Substitution of the expansion of each coefficient around ε and the expression for y into the

characteristic equation leads to the following equation:

(
εY1 + ε2Y2 + ε3Y3

)5
+ a(ε)

(
εY1 + ε2Y2 + ε3Y3

)4
+ b(ε)

(
εY1 + ε2Y2 + ε3Y3

)3
+c(ε)

(
εY1 + ε2Y2 + ε3Y3

)2
+ d(ε)

(
εY1 + ε2Y2 + ε3Y3

)
+ e(ε) = 0.
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Substituting the Taylor expansions in (B.7) up to ε4 and ignoring higher order terms, we
obtain

O(ε5) =
ε2

4Γ

(
−4Γ3Ω2 + 8Γ2Ω2 + 6Γ2Ω2Y2

1

)
+
ε3

4Γ

(
4Γ4ΩY1 − 16Γ3ΩY1 − 2Γ2Ω2Y1 + 12Γ2Ω2Y1Y2 + 16Γ2ΩY1 + 16ΓΩ2Y1 + 4ΓΩY3

1 (3Γ + Ω)
)

+
ε4

4Γ

[
4Γ4Ω− 24Γ3Ω− 8Γ2(Ω− 4)Ω + 4ΓΩ2 + 2Γ4Y2

1 − 8Γ3Y2
1 + 6Γ2Ω2Y2

2 + 12Γ2Ω2Y1Y3

+8Γ2(Ω + 1)Y2
1 + 2ΓΩY2

(
2Γ3 − 8Γ2 − Γ(Ω− 8) + 8Ω

)
+ 2ΓY4

1 (3Γ + 4Ω) + ΓΩ(5Ω + 32)Y2
1

+12ΓΩY2
1Y2(3Γ + Ω) + 8Ω2Y2

1

]
.

Dividing by ε2 we get

O(ε3) = 1
2ΓΩ2

(
−2Γ + 3Y2

1 + 4
)

+ 1
2ΩY1ε

(
2Γ3 − 8Γ2 − ΓΩ + 8Γ + 6ΓΩY2 + 2Y2

1 (3Γ + Ω) + 8Ω
)

+ 1
4ε

2
[
Y2

1

(
2Γ3 − 8Γ2 + 8Ω2

Γ + 8Γ(Ω + 1) + 12ΩY2(3Γ + Ω) + Ω(5Ω + 32)
)

+2Ω
(

2
(
Γ3 − 6Γ2 − 2Γ(Ω− 4) + Ω

)
+ Y2

(
2Γ3 − 8Γ2 − Γ(Ω− 8) + 8Ω

)
+3ΓΩY2

2

)
+ 12ΓΩ2Y3Y1 + Y4

1 (6Γ + 8Ω)
]
.

(B.8)

Note that, previously we already computed

Y1 = ±i
√

2/3(2− Γ), Y2 =

6Γ2(2−Γ)
Γ+16 − Ω

3ΓΩ
.

From the coefficient of ε2 in (B.8) we get Y3:

Y3(Ω) = − 1

3ΓΩ2Y1

[
1

4
Y2

1

(
2Γ3 − 8Γ2 +

8Ω2

Γ
+ 8Γ(Ω + 1) + 12ΩY2(3Γ + Ω) + Ω(5Ω + 32)

)
+

1

2
Ω
(
2
(
Γ3 − 6Γ2 − 2Γ(Ω− 4) + Ω

)
+ Y2

(
2Γ3 − 8Γ2 − Γ(Ω− 8) + 8Ω

)
+ 3ΓΩY2

2

)
+

1

4
Y4

1 (6Γ + 8Ω)

]
.

Note that at the bifurcation point Ω0(0) = Ω∗ given in Theorem (3.3.1) we have that
Y2(Ω∗) = 0 and Y1(Ω∗) = ±i

√
2/3(2− Γ). It follows that

Y3(Ω∗) = i
6Γ5 + 6Γ4(3Ω∗ − 4) + Γ3(24− 68Ω∗) + Γ2(128− 21Ω∗)Ω∗ + 4ΓΩ∗(3Ω∗ − 32)− 48(Ω∗)2

18
√

6
√

2− ΓΓ2(Ω∗)2
,

=: ∓iρ,
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where

ρ =
6Γ5 + 6Γ4(3Ω∗ − 4) + Γ3(24− 68Ω∗) + Γ2(128− 21Ω∗)Ω∗ + 4ΓΩ∗(3Ω∗ − 32)− 48(Ω∗)2

18
√

6
√

2− ΓΓ2(Ω∗)2
.

(B.9)

Therefore, the two complex eigenvalues at the bifurcation point Ω = Ω0 (where the real

part is zero) can be written as

y±(Ω0, ε) = ±i

(√
2/3(2− Γ)ε− ρε3

)
+O(ε5).

Recall that the system (B.6) has three real eigenvalues given by (3.20):

y3,4(Ω, ν) = −Ω +O(ν), y5(Ω, ν) = −3Γ

2
. (B.10)

To derive the center manifold reduction of the system (B.6), we first calculate eigenvectors

of the Jacobian matrix corresponding to y±(Ω0) and y3,4,5(Ω0). Introduce new parameters:

λ = Ω− Ω0, β =
(Γ + ν)

(
Γ
(

1
Γ+ν − 1

)
− ν + 1

)
(2Γ + ν)

(
Γ2Ω2

0 + 2Γν (ν + Ω0) 2 + ν2 (ν + Ω0) 2
) . (B.11)

The equilibrium in terms of the new parameters λ and β in (B.11) can be written as:

i∗1 = βν(Γ + ν) (ν + Ω0) 2 +O(λ),

i∗2 = βΓν (ν + Ω0)2 +O(λ),

q∗1 = βΓ2ν (ν + Ω0) +O(λ),

q∗2 = βΓ2νΩ0 +O(λ),

r∗ = βΓ2Ω2
0 +O(λ).

(B.12)

Then, System (B.6) shifted to the endemic equilibrium given in (B.12) can be written as



I ′1

I ′2

Q′1

Q′2

R′


= C



I1

I2

Q1

Q2

R


+



F1(I1, I2, Q1, Q2, R, λ)

F2(I1, I2, Q1, Q2, R, λ)

F3(I1, I2, Q1, Q2, R, λ)

F4(I1, I2, Q1, Q2, R, λ)

F5(I1, I2, Q1, Q2, R, λ)


,
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where, the matrix C for the linear part is given by

C =



C1,1 C1,2 −βν2(Γ + ν) (ν + Ω0) 2 −βν(Γ + ν) (ν + Ω0) 3 −βν(2Γ + ν) (ν + Ω0) 2

Γ βΓ2ν (ν + Ω0) 2 − Γ − ν βΓν2 (ν + Ω0) 2 −βΓν (ν + Ω0) 3 0

0 βν (ν + Ω0) Γ3 + Γ
(
−βΓ2ν2 − 1

)
(ν + Ω0) −βΓ2ν (ν + Ω0) 2 0

0 βΓ3νΩ0

(
1 − βΓ2ν2

)
Ω0 (−ν − Ω0)

(
βνΩ0Γ2 + 1

)
0

0 βΓ3Ω2
0 −βΓ2νΩ2

0 −Ω0

(
βΩ2

0Γ2 + βνΩ0Γ2 − 1
)

−ν


,

(B.13)

with

C1,1 = −βΓ2Ω2
0 − 2βν(2Γ + ν) (ν + Ω0) 2 − Γ− ν + 1,

C1,2 = −βΓ2Ω2
0 + βν((Γ− 2)(Γ + ν)− 2Γ) (ν + Ω0) 2 + 1.

B.5.3 Computation of eigenvectors for the matrix C in (B.9) for the linearized

system

The nonlinear functions in System (B.13) are:

F1 = −I2
1 + I1 ((Γ− 2)I2 − νQ1 −Q2 (ν + Ω0)−R)− I2

2 − I2R+O(λ),

F2 = I2
2 − I2 (νQ1 +Q2 (ν + Ω0)) +O(λ),

F3 = ΓI2Q1 − νQ2
1 −Q1Q2 (ν + Ω0) +O(λ), (B.14)

F4 = ΓI2Q2 − νQ1Q2 +Q2
2 (− (ν + Ω0)) +O(λ),

F5 = ΓI2R− νQ1R−Q2R (ν + Ω0) +O(λ).

Note that

Fi(0, 0, 0, 0, 0, 0, 0) =
∂Fi
∂j

(0, 0, 0, 0, 0, 0, 0) = 0, for i = 1, . . . , 5 and j = I1, I2, Q1, Q2, R.

The matrix C has two imaginary and three negative eigenvalues. Let ~φ = (φ1, φ2, φ3, φ4, φ5)T

be an eigenvector of C corresponding to the eigenvalue y+(Ω0) = i

(√
2/3(2− Γ)ε−ρε3

)
+

O(ε5). Then (
C − y+(Ω0)I

)
~φ = 0.
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Rewrite the expression of β in (B.11) as

β = − Γ− 2

2
(
Γ2Ω2

0

) +
(Γ− 8)ε2

4Γ3Ω2
0

+
ε4 (16(Γ− 2)Γ− (Γ− 24)Ω0)

8Γ4Ω3
0

+O
(
ε5
)
.

Then,

C =


C[1, 1] C[1, 2] O(ε4)

(Γ−2)Ω0ε
2

2Γ
+ O(ε4)

(Γ−2)ε2

Γ
+ O(ε4)

Γ −Γ − Γε2

2
+ O(ε4) O(ε4)

(Γ−2)Ω0ε
2

2Γ
+ O(ε4) 0

0 Γ − ((Γ−2)Γ)ε2

2Ω0
+ O(ε4) −Ω0 − ε2 + O(ε4)

(
Γ
2

− 1
)
ε2 + O(ε4) 0

0 − ((Γ−2)Γ)ε2

2Ω0
+ O(ε4) Ω0 + O(ε4) −Ω0 +

(
Γ
2

− 2
)
ε2 + O(ε4) 0

0 C[5, 2]
(

Γ
2

− 1
)
ε2 + O(ε4) C[5, 4] −ε2 + O(ε4),

 ,

where

C[1, 1] = −Γ

2
+

(
3

4
− 2

Γ

)
ε2 +O(ε4),

C[1, 2] =
Γ

2
+

(
−Γ

2
+

11

4
− 2

Γ

)
ε2 +O

(
ε4
)
,

C[5, 4] =
ΓΩ0

2
+

(
Γ− 2

2
+

(
2

Γ
− 1

4

)
Ω0

)
ε2 +O

(
ε4
)
,

C[5, 2] =

(
Γ− Γ2

2

)
+

(
Γ

4
− 2

)
ε2 +O

(
ε4
)
.

From the equation (B.5.3) we obtain the following equation:


(1, 1) Γ

2
+
(
−Γ

2
+ 11

4
− 2

Γ

)
ε2 + O

(
ε4
)

O
(
ε4
)

(Γ−2)Ω0ε
2

2Γ
+ O

(
ε4
)

(Γ−2)ε2

Γ
+ O

(
ε4
)

Γ (2, 2) O
(
ε4
)

(Γ−2)Ω0ε
2

2Γ
+ O

(
ε4
)

0

0 Γ − ((Γ−2)Γ)ε2

2Ω0
+ O

(
ε4
)

(3, 3)
(

Γ
2

− 1
)
ε2 + O

(
ε4
)

0

0 − ((Γ−2)Γ)ε2

2Ω0
+ O

(
ε4
)

Ω0 + O
(
ε4
)

(4, 4) 0

0

(
Γ − Γ2

2

)
+
(

Γ
4

− 2
)
ε2 + O

(
ε4
) (

Γ
2

− 1
)
ε2 + O

(
ε4
)

(5, 4) (5, 5)



φ1

φ2

φ3

φ4

φ5

 = 0,
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where

(1, 1) = −Γ

2
− i
√

2

3

√
2− Γε+

(
3

4
− 2

Γ

)
ε2 + iρε3 +O

(
ε4
)
,

(2, 2) = −Γ− i
√

2

3

√
2− Γε− Γε2

2
+ iρε3 +O

(
ε4
)
,

(3, 3) = −Ω0 − i
√

2

3

√
2− Γε− ε2 + iρε3 +O

(
ε4
)
,

(4, 4) = −Ω0 − i
√

2

3

√
2− Γε+

(
Γ

2
− 2

)
ε2 + iρε3 +O

(
ε4
)
,

(5, 4) =
ΓΩ0

2
+

(
Γ− 2

2
+

(
2

Γ
− 1

4

)
Ω0

)
ε2 +O

(
ε4
)
,

(5, 5) = −i
√

2

3

√
2− Γε− ε2 + iρε3 +O

(
ε4
)
.

If we ignore the O
(
ε4
)
terms, we obtain the following set of equations:

0 = φ1

(
−2ε2

Γ
− i
√

2

3

√
2− Γε− Γ

2
+ iρε3 +

3ε2

4

)

+
1

4
φ2

(
−8ε2

Γ
− 2Γ

(
ε2 − 1

)
+ 11ε2

)
+

(Γ− 2)Ω0ε
2φ4

2Γ
+

(Γ− 2)ε2φ5

Γ
,

0 = Γφ1 +
1

6
φ2

(
−3Γ

(
ε2 + 2

)
+ 2iε

(
3ρε2 −

√
6
√

2− Γ
))

+
(Γ− 2)Ω0ε

2φ4

2Γ
,

0 = φ2

(
Γ− (Γ− 2)Γε2

2Ω0

)
+ φ3

(
−Ω0 +

1

3
iε
(
−
√

6
√

2− Γ + 3ρε2 + 3iε
))

+
1

2
(Γ− 2)ε2φ4,

0 = −(Γ− 2)Γε2φ2

2Ω0
+ Ω0φ3 + φ4

(
−Ω0 +

1

6
ε
(

3(Γ− 4)ε− 2i
√

6
√

2− Γ + 6iρε2
))

,

0 = φ2

(
−Γ2

2
+

Γε2

4
+ Γ− 2ε2

)
+

1

2
(Γ− 2)ε2φ3

+
φ4

(
Ω0

(
2Γ2 − Γε2 + 8ε2

)
+ 2(Γ− 2)Γε2

)
4Γ

+
1

3
iεφ5

(
−
√

6
√

2− Γ + 3ρε2 + 3iε
)
.
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Thus, we obtain the following expressions for φi up to O
(
ε4
)
with φ5 being arbitrary:

φ1 =

(
i

[
ε3
(√

6
√

2− Γ
(
2Γ2 − 7Γ + 6

)
Γ2 + Ω2

0

(
6
√

6
√

2− Γ− 9Γρ
)

+
√

6
√

2− Γ(5Γ + 2)ΓΩ0

)
9Γ2Ω2

0

+

√
2
3

√
2− Γε

Γ

]

+
ε4
(

Ω2
0

(
9Γ2δ1 + 6

√
6
√

2− Γρ+ 9
)

+ 18Γ(Γ− 2)Ω0 + 2Γ(2Γ− 3)(Γ− 2)2
)

9Γ2Ω2
0

−
ε2
(
− 2(Γ−2)Γ

Ω0
+ 4

Γ
− 5
)

3Γ

)
φ5,

φ2 = φ5

([
iε3
(√

6
√

2− ΓΓ
(
2Γ2 − 7Γ + 6

)
+ 3
√

6
√

2− Γ(Γ + 2)Ω0 − 9ρΩ2
0

)
9ΓΩ2

0

+
i
√

2
3

√
2− Γε

Γ

]

+ ε4δ1 + ε2
(

2(Γ− 2)

3Ω0
+

1

Γ

))
,

φ3 = φ5

(
ε2
(
2Γ2 − 6Γ + 3Ω0 + 4

)
3Ω2

0

+ ε4δ2

+

[
iε3
(

3
√

6Γ
√

2− ΓΩ0 +
√

6(2Γ− 1)(2− Γ)5/2 − 9ρΩ2
0

)
9Ω3

0

+
i
√

2
3

√
2− Γε

Ω0

])
,

φ4 = φ5

(
−
ε4
(√

6(2− Γ)3/2ρΩ0 +
√

6
√

2− Γρ2Ω3
0 − (Γ− 2)2(2Γ− 3)

)
3Ω3

0

+
ε2
(
2(Γ− 2)2 + 3Ω0

)
3Ω2

0

)
+

[
iε3
(
−3
√

6(2− Γ)3/2Ω0 +
√

6(2Γ− 3)(2− Γ)5/2 − 9ρΩ2
0

)
9Ω3

0

+
i
√

2
3

√
2− Γε

Ω0

]
,

with

δ1 =
1

9ΓΩ3
0

(
3
(
2Γ3 + Γ2 − 22Γ + 24

)
Ω0 + 3Ω2

0

(√
6
√

2− Γ(Γ + 2)ρ+ 6
)

−3
√

6
√

2− Γρ2Ω4
0 + 8(Γ− 2)3(Γ− 1)

)
,

δ2 =

(
3Ω2

0

(√
6
√

2− ΓΓρ+ 3
)
− 3
√

6
√

2− Γρ2Ω4
0 + 3(Γ− 2)2(2Γ + 3)Ω0 + 2(Γ− 2)3(2Γ− 3)

)
9Ω4

0

.
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If we choose φ5 = 1, an eigenvectors is given by

~φ =



φ1

φ2

φ3

φ4

φ5


=



i

[
ε3γ0 + ε

√
2
3

√
2−Γ

Γ

]
+ ε4δ0 −

ε2
(
− 2(Γ−2)Γ

Ω0
+ 4

Γ−5
)

3Γ

i

[
ε3γ1 + ε

√
2
3

√
2−Γ

Γ

]
+ ε4δ1 + ε2

(
2(Γ−2)

3Ω0
+ 1

Γ

)
i

[
ε3γ2 + ε

√
2
3

√
2−Γ

Ω0

]
+

ε2(2Γ2−6Γ+3Ω0+4)
3Ω2

0
+ ε4δ2

i

[
ε3γ3 + ε

√
2
3

√
2−Γ

Ω0

]
+ ε4δ3 +

ε2(2(Γ−2)2+3Ω0)
3Ω2

0

1



+O(ε5),

= ~φre + i~φim,

where the real and imaginary parts of ~φ are

~φre =



ε4δ0 −
ε2
(
− 2(Γ−2)Γ

Ω0
+ 4

Γ
−5
)

3Γ

ε4δ1 + ε2
(

2(Γ−2)
3Ω0

+ 1
Γ

)
ε4δ2 +

ε2(2Γ2−6Γ+3Ω0+4)
3Ω2

0

ε4δ3 +
ε2(2(Γ−2)2+3Ω0)

3Ω2
0

1


+O(ε5) and ~φim =



ε3γ0 + ε

√
2
3

√
2−Γ

Γ

ε3γ1 + ε

√
2
3

√
2−Γ

Γ

ε3γ2 + ε

√
2
3

√
2−Γ

Ω0

ε3γ3 + ε

√
2
3

√
2−Γ

Ω0

0


+O(ε4),

respectively. At Ω0(0) = 6(2−Γ)Γ2

Γ+16 , then we obtain

~φre =



ε2 14(Γ−2)
9Γ2 + ε4δ0

ε2 8(Γ−2)
9Γ2 + ε4δ1

−ε2 (Γ+16)(8Γ2−15Γ+16)
54(Γ−2)Γ4 + ε4δ2

−ε2 (Γ+16)(4Γ2−7Γ+16)
27(Γ−2)Γ4 + ε4δ3

1


+O(ε5), ~φim =



ε

√
2
3

√
2−Γ

Γ + ε3γ0

ε

√
2
3

√
2−Γ

Γ + ε3γ1

ε Γ+16
3
√

6
√

2−ΓΓ2
+ ε3γ2

ε Γ+16
3
√

6
√

2−ΓΓ2
+ ε3γ3

0


+O(ε4). (B.15)

By the implicit function theorem, we know that the solution for the eigenvector ~φ exists in

a neighborhood of ε = 0.

Let ~ξ = (ξ1, ξ2, ξ3, ξ4, ξ5)T be an eigenvector corresponding to the eigenvalue y5 =
−3Γ

2
.

To obtain the first order term of y5(ν), let

y5(ν) =
−3Γ

2
+ α1ν +O(ν4).
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By matching coefficients from the ν coefficient, we can obtain α1 as

α1 =
−72Γ4 + 3Γ3(32Ω− 75) + 12Γ2(25Ω− 6) + 4Γ(24− 41Ω)Ω− 32Ω2

36Γ(3Γ− 2Ω)2
.

Following the same procedure as above, and assuming ξ5 = 1+O(ν2) with Ω0(0) = 6(2−Γ)Γ2

Γ+16 ,

we obtain

ξ1 =
3
(
4Γ2 − 7Γ + 16

)2
2 (24Γ4 − 225Γ3 + 578Γ2 − 704Γ + 512)

+ ∆1,

ξ2 = −
3
(
4Γ2 − 7Γ + 16

)2
24Γ4 − 225Γ3 + 578Γ2 − 704Γ + 512

+ ∆2,

ξ3 =
2(Γ + 16)

(
4Γ2 − 7Γ + 16

)
(Γ− 2) (24Γ3 − 177Γ2 + 224Γ− 256)

+ ∆3,

ξ4 =
8Γ(Γ + 16)

24Γ3 − 177Γ2 + 224Γ− 256
+ ∆4,

where

∆1 =

(
18432Γ11 − 340032Γ10 + 4597120Γ9 − 28052424Γ8 + 107724121Γ7 − 275189568Γ6 + 518814528Γ5

)
ν

36Γ2 (24Γ4 − 225Γ3 + 578Γ2 − 704Γ + 512)2 (4Γ2 − 7Γ + 16)

+

(
−702376960Γ4 + 693731328Γ3 − 404226048Γ2 + 104857600Γ + 67108864

)
ν

36Γ2 (24Γ4 − 225Γ3 + 578Γ2 − 704Γ + 512)2 (4Γ2 − 7Γ + 16)
,

∆2 =

(
−9216Γ11 + 8448Γ10 + 209812Γ9 − 2042091Γ8 + 6841816Γ7 − 17479089Γ6 + 17802600Γ5

)
ν

9Γ2 (4Γ2 − 7Γ + 16) (24Γ4 − 225Γ3 + 578Γ2 − 704Γ + 512)2

+

(
4129664Γ4 − 55996416Γ3 + 66453504Γ2 − 41418752Γ− 8388608

)
ν

9Γ2 (4Γ2 − 7Γ + 16) (24Γ4 − 225Γ3 + 578Γ2 − 704Γ + 512)2
,

∆3 =
(Γ + 16)

(
36864Γ11 − 33792Γ10 − 783664Γ9 + 8351688Γ8 − 34925455Γ7 + 116460034Γ6

)
ν

54(Γ− 2)2Γ2 (−24Γ3 + 177Γ2 − 224Γ + 256)2 (4Γ2 − 7Γ + 16)2

+
(Γ + 16)

(
−251227200Γ5 + 445918720Γ4 − 571113472Γ3 + 662568960Γ2 − 507510784Γ + 301989888

)
ν

54(Γ− 2)2Γ2 (−24Γ3 + 177Γ2 − 224Γ + 256)2 (4Γ2 − 7Γ + 16)2
,

∆4 =

(
36864Γ10 + 30720Γ9 − 820048Γ8 + 7040984Γ7 − 26388649Γ6 + 84686624Γ5

)
(Γ + 16)ν

54(Γ− 2)Γ2 (4Γ2 − 7Γ + 16)2 (−24Γ3 + 177Γ2 − 224Γ + 256)2

+

(
−205072128Γ4 + 384548864Γ3 − 486998016Γ2 + 387973120Γ− 150994944

)
(Γ + 16)ν

54(Γ− 2)Γ2 (4Γ2 − 7Γ + 16)2 (−24Γ3 + 177Γ2 − 224Γ + 256)2
.
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If we substitute ν = ε2, then we obtain the eigenvector:

~ξ =



ξ1

ξ2

ξ3

ξ4

ξ5


=



3(4Γ2−7Γ+16)
2

2(24Γ4−225Γ3+578Γ2−704Γ+512)
+ ∆1(ε2)

− 3(4Γ2−7Γ+16)
2

24Γ4−225Γ3+578Γ2−704Γ+512
+ ∆2(ε2)

2(Γ+16)(4Γ2−7Γ+16)
(Γ−2)(24Γ3−177Γ2+224Γ−256)

+ ∆3(ε2)

8Γ(Γ+16)
24Γ3−177Γ2+224Γ−256

+ ∆4(ε2)

1


+O(ε4). (B.16)

Let ~Ψ = (Ψ1,Ψ2,Ψ3,Ψ4,Ψ5)T and ~τ = (τ1, τ2, τ3, τ4, τ5)T be the eigenvectors corresponding

to y3,4 = −Ω + λ1ε, where λ1 = ± i
√

Γ−2Γ√
2Ω−3Γ

is the linear term of the Taylor expansion of the

eigenvalue around ε. Two eigenvectors corresponding to these two eigenvalues are given by

~Ψ =



Ψ1

Ψ2

Ψ3

Ψ4

Ψ5


=



(36Γ4−129Γ3+355Γ2−448Γ+256)ε2

9Γ3(4Γ2−7Γ+16) + ψ1

(36Γ4−135Γ3+271Γ2−256Γ+256)ε2

9Γ3(4Γ2−7Γ+16) + ψ2

− (Γ+16)ε

3
√

2−ΓΓ2

√
12(2−Γ)Γ2

Γ+16 −3Γ
− (Γ+16)(36Γ4−207Γ3+395Γ2−608Γ−256)ε2

54(Γ−2)Γ4(4Γ2−7Γ+16) + ψ3

− 2
Γ + (Γ+16)ε

3
√

6−3ΓΓ2

√
−Γ(4Γ2−7Γ+16)

Γ+16

+ ψ4

1


+O(ε4),

(B.17)

where

ψ1 = −
(
−864Γ5 + 3084Γ4 − 8893Γ3 + 8016Γ2 − 3840Γ− 4096

)
ε3

54
√

6− 3ΓΓ3(Γ + 16)

(
−Γ(4Γ2−7Γ+16)

Γ+16

)3/2
,

ψ2 =

(
144Γ3 − 251Γ2 + 608Γ + 256

)
ε3

54
√

6− 3ΓΓ3

(
−Γ(4Γ2−7Γ+16)

Γ+16

)3/2
,

ψ3 =

(
216Γ6 − 2394Γ5 + 10153Γ4 − 18098Γ3 + 23712Γ2 + 2560Γ− 8192

)
ε3

324
√

6− 3Γ(Γ− 2)Γ5

(
−Γ(4Γ2−7Γ+16)

Γ+16

)3/2
,

ψ4 =

(
−252Γ6 + 2025Γ5 − 7237Γ4 + 12338Γ3 − 14496Γ2 − 2560Γ + 8192

)
ε2

54(Γ− 2)Γ5 (4Γ2 − 7Γ + 16)

−
(
216Γ5 − 1962Γ4 + 5941Γ3 − 10320Γ2 + 9984Γ + 4096

)
ε3

324
√

6− 3ΓΓ5

(
−Γ(4Γ2−7Γ+16)

Γ+16

)3/2
,
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and

~τ =



τ1

τ2

τ3

τ4

τ5


=



(−36Γ4+129Γ3−355Γ2+448Γ−256)ε2

9Γ3(4Γ2−7Γ+16) + κ1

(36Γ4−135Γ3+271Γ2−256Γ+256)ε2

9Γ3(4Γ2−7Γ+16) + κ2

(Γ+16)ε

3
√

6−3ΓΓ2

√
−Γ(4Γ2−7Γ+16)

Γ+16

− (Γ+16)(36Γ4−207Γ3+395Γ2−608Γ−256)ε2

54(Γ−2)Γ4(4Γ2−7Γ+16) + κ3

− 2
Γ −

(Γ+16)ε

3
√

6−3ΓΓ2

√
−Γ(4Γ2−7Γ+16)

Γ+16

+ κ4

1


+O(ε4),

(B.18)

where

κ1 =

(
864Γ5 − 3084Γ4 + 8893Γ3 − 8016Γ2 + 3840Γ + 4096

)
ε3

54
√

6− 3ΓΓ3(Γ + 16)

(
−Γ(4Γ2−7Γ+16)

Γ+16

)3/2
,

κ2 = −
(
144Γ3 − 251Γ2 + 608Γ + 256

)
ε3

54
√

6− 3ΓΓ3

(
−Γ(4Γ2−7Γ+16)

Γ+16

)3/2
,

κ3 = −
(
216Γ6 − 2394Γ5 + 10153Γ4 − 18098Γ3 + 23712Γ2 + 2560Γ− 8192

)
ε3

324
√

6− 3Γ(Γ− 2)Γ5

(
−Γ(4Γ2−7Γ+16)

Γ+16

)3/2
,

κ4 =

(
−252Γ6 + 2025Γ5 − 7237Γ4 + 12338Γ3 − 14496Γ2 − 2560Γ + 8192

)
ε2

54(Γ− 2)Γ5 (4Γ2 − 7Γ + 16)
,

+

(
216Γ5 − 1962Γ4 + 5941Γ3 − 10320Γ2 + 9984Γ + 4096

)
ε3

324
√

6− 3ΓΓ5

(
−Γ(4Γ2−7Γ+16)

Γ+16

)3/2
.

Let P = (~φre, ~φim, ~Ψ, ~τ , ~ξ) be the matrix formed by the eigenvectors. Then,

P−1CP =



0 =y+(Ω0) 0 0 0

=y−(Ω0) 0 0 0 0

0 0 y3(Ω0) 0 0

0 0 0 y4(Ω0) 0

0 0 0 0 y5(Ω0)


.
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B.5.4 Center Manifold reduction

We now compute P−1 from the matrix P that we obtain from replacing Ω0(0) = 6(2−Γ)Γ2

Γ+16

in the eigenvectors we obtained previously in Equations (B.15, B.17, B.18, B.16),

P =



φre 1 φim 1 Ψ1 τ1 ξ1

φre 2 φim 2 Ψ2 τ2 ξ2

φre 3 φim 3 Ψ3 τ3 ξ3

φre 4 φim 4 Ψ4 τ4 ξ4

φre 5 φim 5 Ψ5 τ5 ξ5


.

Consider the change of variables: (r, s, t, u, v)T = P−1(I1, I2, Q1, Q2, R)T . We can obtain the

expressions for I1, . . . , R in terms of (r, s, t, u, v) since P (r, s, t, u, v)T = (I1, I2, Q1, Q2, R)T .

I1 = I1(r, s, t, u, v) =
14(Γ− 2)rε2

9Γ2
+

√
2
3

√
2− Γsε

Γ
+

(
36Γ4 − 129Γ3 + 355Γ2 − 448Γ + 256

)
tε2

9Γ3 (4Γ2 − 7Γ + 16)

−
(
36Γ4 − 129Γ3 + 355Γ2 − 448Γ + 256

)
uε2

9Γ3 (4Γ2 − 7Γ + 16)
+ vc1,

I2 = I2(r, s, t, u, v) =
8(Γ− 2)rε2

9Γ2
+

√
2
3

√
2− Γsε

Γ

+

(
36Γ4 − 135Γ3 + 271Γ2 − 256Γ + 256

)
tε2

9Γ3 (4Γ2 − 7Γ + 16)
+

(
36Γ4 − 135Γ3 + 271Γ2 − 256Γ + 256

)
uε2

9Γ3 (4Γ2 − 7Γ + 16)
+ vc2,

Q1 = Q1(r, s, t, u, v) = −
(Γ + 16)

(
8Γ2 − 15Γ + 16

)
rε2

54(Γ− 2)Γ4
+

(Γ + 16)sε

3
√

6
√

2− ΓΓ2

+t

− (Γ + 16)ε

3
√

6− 3ΓΓ2

√
−Γ(4Γ2−7Γ+16)

Γ+16

−
(Γ + 16)

(
36Γ4 − 207Γ3 + 395Γ2 − 608Γ− 256

)
ε2

54(Γ− 2)Γ4 (4Γ2 − 7Γ + 16)



+u

 (Γ + 16)ε

3
√

6− 3ΓΓ2

√
−Γ(4Γ2−7Γ+16)

Γ+16

−
(Γ + 16)

(
36Γ4 − 207Γ3 + 395Γ2 − 608Γ− 256

)
ε2

54(Γ− 2)Γ4 (4Γ2 − 7Γ + 16)


+vc3,
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Q2 = Q2(r, s, t, u, v) = −
(Γ + 16)

(
4Γ2 − 7Γ + 16

)
rε2

27(Γ− 2)Γ4
+

(Γ + 16)sε

3
√

6
√

2− ΓΓ2

+t

(
(Γ + 16)ε

3
√

6− 3ΓΓ2

√
−Γ(4Γ2−7Γ+16)

Γ+16

+

(
−252Γ6 + 2025Γ5 − 7237Γ4 + 12338Γ3 − 14496Γ2 − 2560Γ + 8192

)
ε2

54(Γ− 2)Γ5 (4Γ2 − 7Γ + 16)
−

2

Γ

)

+u
(
−

(Γ + 16)ε

3
√

6− 3ΓΓ2

√
−Γ(4Γ2−7Γ+16)

Γ+16

+

(
−252Γ6 + 2025Γ5 − 7237Γ4 + 12338Γ3 − 14496Γ2 − 2560Γ + 8192

)
ε2

54(Γ− 2)Γ5 (4Γ2 − 7Γ + 16)
−

2

Γ

)
+ vc4,

R = R(r, s, t, u, v) = r + t+ u+ v +O(ε4)(r + s+ t+ u+ v),

where,

c1 = v
((

54Γ2
(
−16Γ5 + 120Γ4 − 417Γ3 + 706Γ2 − 704Γ + 512

) (
4Γ2 − 7Γ + 16

)3
+
(
55296Γ13 − 990720Γ12 + 8595456Γ11 − 46743488Γ10 + 178857944Γ9

−508011990Γ8 + 1109812017Γ7 − 1892799736Γ6 + 2551247424Γ5 − 2668182528Γ4

+2090696704Γ3 − 1053818880Γ2 + 255852544Γ + 67108864
)
ε2
))
/(

36Γ2
(
4Γ2 − 7Γ + 16

) (
−16Γ5 + 120Γ4 − 417Γ3 + 706Γ2 − 704Γ + 512

)2)
,

c2 =
3
(
4Γ2 − 7Γ + 16

)2
16Γ5 − 120Γ4 + 417Γ3 − 706Γ2 + 704Γ− 512

+
((

18432Γ12 − 286464Γ11 + 2016064Γ10 − 9745264Γ9 + 34694316Γ8 − 97805364Γ7

+217236971Γ6 − 390283800Γ5 + 532818816Γ4 − 536637440Γ3 + 340918272Γ2

−116916224Γ− 8388608
)
ε2
)
/
(

9Γ2
(
−16Γ5 + 120Γ4 − 417Γ3 + 706Γ2 − 704Γ + 512

)2
(
4Γ2 − 7Γ + 16

) )
,

c3 = −
2(Γ + 16)

(
4Γ2 − 7Γ + 16

)
(Γ− 2) (16Γ4 − 88Γ3 + 241Γ2 − 224Γ + 256)

−
(

(Γ + 16)
(
82944Γ12 − 1138944Γ11 + 6872704Γ10 − 27056096Γ9 + 75436916Γ8

−167690721Γ7 + 299243246Γ6 − 460974272Γ5 + 511160832Γ4 − 345473024Γ3

−122552320Γ2 + 356515840Γ− 301989888
)
ε2
)
/
(

54(Γ− 2)2Γ2
(
4Γ2 − 7Γ + 16

)2
(
16Γ4 − 88Γ3 + 241Γ2 − 224Γ + 256

)2 )
,

c4 = −
16(Γ + 16)

16Γ4 − 88Γ3 + 241Γ2 − 224Γ + 256

−
(

(Γ + 16)
(
73728Γ11 − 1016832Γ10 + 6065152Γ9 − 23871536Γ8 + 65002792Γ7

−125948247Γ6 + 143738080Γ5 − 26974464Γ4 − 242728960Γ3

+449249280Γ2 − 387973120Γ + 150994944
)
ε2
)
/
(

27(Γ− 2)Γ3
(
4Γ2 − 7Γ + 16

)2
(
16Γ4 − 88Γ3 + 241Γ2 − 224Γ + 256

)2 )
.
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Let



f1(r, s, t, u, v, λ)

f2(r, s, t, u, v, λ)

f3(r, s, t, u, v, λ)

f4(r, s, t, u, v, λ)

f5(r, s, t, u, v, λ)


= P

−1



F1(I1(r, s, t, u, v), I2(r, s, t, u, v), Q1(r, s, t, u, v), Q2(r, s, t, u, v), R(r, s, t, u, v), λ)

F2(I1(r, s, t, u, v), I2(r, s, t, u, v), Q1(r, s, t, u, v), Q2(r, s, t, u, v), R(r, s, t, u, v), λ)

F3(I1(r, s, t, u, v), I2(r, s, t, u, v), Q1(r, s, t, u, v), Q2(r, s, t, u, v), R(r, s, t, u, v), λ)

F4(I1(r, s, t, u, v), I2(r, s, t, u, v), Q1(r, s, t, u, v), Q2(r, s, t, u, v), R(r, s, t, u, v), λ)

F5(I1(r, s, t, u, v), I2(r, s, t, u, v), Q1(r, s, t, u, v), Q2(r, s, t, u, v), R(r, s, t, u, v), λ)


.

. (B.19)

. From B.14 we obtain the expressions for fi(r, s, t, u, v, λ) when we substitute the expressions

for I1, . . . , R with I1(r, s, t, u, v), . . . , R(r, s, t, u, v) in Fi(I1, . . . , R) to obtain

F1

(
I1(r, s, t, u, v), I2(r, s, t, u, v), Q1(r, s, t, u, v), Q2(r, s, t, u, v), R(r, s, t, u, v), λ

)
,

for i = 1, . . . , 5. The expressions for fi(r, s, t, u, v, λ) have the following shape; however, the

coefficient values ai, . . . , ei are omitted due to size constraints.

f1(r, s, t, u, v, λ) = a1rs+ a2rt+ a3ru+ a4rv + a5r
2 + a6s

2 + a7t
2 + a8u

2 + a9v
2,

f2(r, s, t, u, v, λ) = b1rs+ b2rt+ b3ru+ b4rv + b5r
2 + b6s

2 + b7t
2 + b8u

2 + b9v
2,

f3(r, s, t, u, v, λ) = c1rs+ c2rt+ c3ru+ c4rv + c5r
2 + c6s

2 + c7t
2 + c8u

2 + c9v
2,

f4(r, s, t, u, v, λ) = d1rs+ d2rt+ d3ru+ d4rv + d5r
2 + d6s

2 + d7t
2 + d8u

2 + d9v
2,

f5(r, s, t, u, v, λ) = e1rs+ e2rt+ e3ru+ e4rv + e5r
2 + e6s

2 + e7t
2 + e8u

2 + e9v
2.

Then, we obtain the following new systems:

r′
s′

 =

 0 =y+(Ω0)

=y−(Ω0) 0

r
s

+

f1(r, s, t, u, v, λ)

f2(r, s, t, u, v, λ)

 , (B.20)

and 
t′

u′

v′

 =


y3(Ω0) 0 0

0 y4(Ω0) 0

0 0 y5(Ω0)



t

u

v

+


f3(r, s, t, u, v, λ)

f4(r, s, t, u, v, λ)

f5(r, s, t, u, v, λ)

 . (B.21)

Note that y3(Ω0), y4(Ω0), y5(Ω0) < 0. Now consider the following functions t = h3(r, s),

u = h4(r, s) and v = h5(r, s) such that

hj(0, 0) =
∂hj
∂r

(0, 0) =
∂hj
∂s

(0, 0) = 0, j = 3, 4, 5. (B.22)
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By the center manifold theorem [8], the functions t = h3(r, s), u = h4(r, s) and v = h5(r, s)

can be used to restrict the system (B.20, B.21) to a two dimensional system in r and s with

the parameter λ. We compute these functions using the following equation:


∂h3
∂r

∂h3
∂s

∂h4
∂r

∂h4
∂s

∂h5
∂r

∂h5
∂s



 0 =y+(Ω0)

=y−(Ω0) 0

r
s

+

f1(r, s, h3, h4, h5)

f2(r, s, h3, h4, h5)



−


y3(Ω0) 0 0

0 y4(Ω0) 0

0 0 y5(Ω0)



h3(r, s)

h4(r, s)

h5(r, s)

−

f3(r, s, t, u, v)

f4(r, s, t, u, v)

f5(r, s, t, u, v)

 = 0.

(B.23)

We compute the functions hi(r, s, λ) for i = 3, 4, 5 from (B.23) up to the second order. Also,

since the formula for α includes derivatives evaluated at (r, s, λ) = (0, 0, 0), thus we can

neglect the second order terms that have λ as a factor. Assume,

hj(r, s, λ) = κj1r
2 + κj2rs+ κj3s

2 +O(λ) +O([r, s|3). (B.24)

where O(|r, s|3) contains terms of order higher than 2 in r, s. If we substitute B.24 into B.23
we obtain a system of equations so we can solve for κji for j = 3, 4, 5 and i = 1, 2, 3. We
can solve for κji by looking at the coefficients of the three second order terms r2, rs, s2 and
treating λ as a variable. Thus, for h3 we have the following,

r2 :
11(Γ− 2)ε

9
√

6− 3Γ

√
−Γ(4Γ2−7Γ+16)

Γ+16

+
11
(
144Γ6 − 744Γ5 + 3157Γ4 − 7814Γ3 + 17856Γ2 − 18944Γ + 16384

)
ε2

243 (4Γ2 − 7Γ + 16)2 Γ2

+
6(2− Γ)Γ2κ31

Γ + 16
−
√

2

3

√
2− Γκ32ε = O(ε3),

rs :

(
486Γ4√

−Γ(4Γ2−7Γ+16)
Γ+16

−
18
√

3
(
144Γ6 − 744Γ5 + 3157Γ4 − 7814Γ3 + 17856Γ2 − 18944Γ + 16384

)
Γ2ε

√
2− Γ (4Γ2 − 7Γ + 16)2

−

√
−Γ(4Γ2−7Γ+16)

Γ+16

(Γ− 2) (4Γ2 − 7Γ + 16)4

(
41472Γ12 − 435456Γ11 + 2923776Γ10 − 13068576Γ9 + 43404398Γ8

−105474479Γ7 + 201874781Γ6 − 280752752Γ5 + 364375808Γ4 − 399220736Γ3 + 600768512Γ2

−527433728Γ + 486539264
)) 1

729
√

2Γ3
+ 2

√
2

3

√
2− Γκ31ε−

6(Γ− 2)Γ2κ32

Γ + 16
−

2

3

√
2
√

6− 3Γκ33ε = O(ε3),
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s2 : −
(
12Γ4 − 59Γ3 + 117Γ2 + 18Γ− 224

)
ε

6
√

6− 3Γ(Γ + 16)

√
−Γ(4Γ2−7Γ+16)

Γ+16

−
((

1728Γ9 − 14256Γ8 + 68532Γ7 − 194609Γ6 + 409587Γ5 − 469998Γ4 + 148640Γ3 + 1227264Γ2

−1646592Γ + 1835008
)
ε2

)
1

162(Γ + 16) (4Γ2 − 7Γ + 16)2 Γ2
+

√
2

3

√
2− Γκ32ε+

6(2− Γ)Γ2κ33

Γ + 16
= O(ε3).

Thus, if we solve the system of equations for κ3i, i = 1, 2, 3 we obtain the expression for

h3(r, s, λ):

h3(r, s, λ) =
(Γ + 16)

(
11Γ2 − 21Γ + 16

)
54
√

6− 3Γ(Γ− 2)Γ3

√
−Γ(4Γ2−7Γ+16)

Γ+16

r2ε2 +
(Γ + 16)

9
√

2(Γ− 2)Γ
√
−Γ(4Γ2−7Γ+16)

Γ+16

rsε

+

(
36Γ5 − 177Γ4 + 351Γ3 + 56Γ2 − 608Γ + 512

)
108
√

3(2− Γ)3/2Γ3

√
−Γ(4Γ2−7Γ+16)

Γ+16

s2ε+O(ε3) +O(|r, s|3) +O(λ).

We perform a similar procedure to obtain h4,5:

h4(r, s, λ) = −
(Γ + 16)

(
11Γ2 − 21Γ + 16

)
54
√

6− 3Γ(Γ− 2)Γ3

√
−Γ(4Γ2−7Γ+16)

Γ+16

r2ε2 − (Γ + 16)

9
√

2(Γ− 2)Γ
√
−Γ(4Γ2−7Γ+16)

Γ+16

rsε

−
(
36Γ5 − 177Γ4 + 351Γ3 + 56Γ2 − 608Γ + 512

)
108
√

3(2− Γ)3/2Γ3

√
−Γ(4Γ2−7Γ+16)

Γ+16

s2ε+O(ε3) +O(|r, s|3) +O(λ),

h5(r, s, λ) = −
56
(
16Γ4 − 88Γ3 + 241Γ2 − 224Γ + 256

)
(Γ− 2)2r2ε2

243Γ3 (4Γ2 − 7Γ + 16)
2

+
8
(
16Γ4 − 88Γ3 + 241Γ2 − 224Γ + 256

)
(Γ− 2)2rsε

27
√

3− 3Γ
2 Γ2 (4Γ2 − 7Γ + 16)

2

−
8
(
48Γ5 − 440Γ4 + 1691Γ3 − 3323Γ2 + 3232Γ− 2816

)
(Γ− 2)2s2ε2

243Γ3 (4Γ2 − 7Γ + 16)
2

+O(ε3) +O(|r, s|3) +O(λ).

By substituting the expressions for hj with j = 3, 4, 5 for t in B.21, we get the vector field

reduced to the center manifold point (λ = 0):

r′
s′

 =

 0 =y+(Ω0)

=y−(Ω0) 0

r
s

+

g1(r, s, 0)

g2(r, s, 0)

 ,
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where

g1(r, s, 0) = f1(r, s, h3(r, s, 0), h4(r, s, 0), h5(r, s, 0), 0),

= a1rs+ a2rh3 + a3rh4 + a4rh5 + a5r
2 + a6s

2 + a7h
2
3 + a8h

2
4 + a9h

2
5,

g2(r, s, 0) = f2(r, s, h3(r, s, 0), h4(r, s, 0), h5(r, s, 0), 0),

= b1rs+ b2rh3 + b3rh4 + b4rh5 + b5r
2 + b6s

2 + b7h
2
3 + b8h

2
4 + b9h

2
5.

B.5.5 Computation of the sign of α

We omit the coefficient values ai, bi with i = 1, . . . , 9 due to size constraints. Then, we
obtain

g1
rrr(0, 0, 0) =

56
(
256Γ6 − 1864Γ5 + 7258Γ4 − 13745Γ3 + 10376Γ2 − 2048Γ− 6144

)
243Γ3 (4Γ2 − 7Γ + 16)2

ε2 +O(ε3),

g1
rss(0, 0, 0) =

2

729(Γ− 2)Γ4 (4Γ2 − 7Γ + 16)2

(
3072Γ9 − 38480Γ8 + 248472Γ7 − 931785Γ6

+2115827Γ5 − 2643936Γ4 + 1445472Γ3 + 1154560Γ2 − 2383872Γ + 1179648
)
ε2 +O(ε3),

g2
rrs(0, 0, 0) =

4

6561
√

3(Γ− 2)4Γ4(Γ + 16) (4Γ2 − 7Γ + 16)3 (16Γ4 − 88Γ3 + 241Γ2 − 224Γ + 256)(
2
√

3(Γ− 2)3
(

663552Γ16 − 8368128Γ15 + 94353408Γ14 − 867281664Γ13

+5878685600Γ12 − 28924170352Γ11 + 105641521212Γ10 − 292808439595Γ9 + 624043036257Γ8

−1029494799504Γ7 + 1301803129344Γ6 − 1242933030912Γ5 + 858486865920Γ4

−393852485632Γ3 + 108749914112Γ2 − 8858370048Γ + 21474836480
))

ε2 +O(ε3),

g2
sss(0, 0, 0) =

1

6561(2− Γ)7/2Γ9 (4Γ2 − 7Γ + 16)2

√
2

3

(
147456Γ16 − 3228096Γ15 + 33644656Γ14

−217040020Γ13 + 963855265Γ12 − 3092085315Γ11 + 7310636951Γ10 − 12737306497Γ9

+16035426720Γ8 − 13774008064Γ7 + 6857110016Γ6 − 863544320Γ5 + 325533696Γ4

−3481796608Γ3 + 5209325568Γ2 − 3556769792Γ + 1073741824
)
ε2 +O(ε3),

g1
rs(0, 0, 0) =

2
(
8Γ4 − 60Γ3 + 213Γ2 − 280Γ + 384

)
ε

9
√

3− 3Γ
2

Γ (4Γ2 − 7Γ + 16)

+
2
√

2
(
8Γ4 − 60Γ3 + 213Γ2 − 280Γ + 384

) (
36Γ4 − 129Γ3 + 355Γ2 − 448Γ + 256

)
ε2

243(Γ− 2)Γ(Γ + 16)2

(
Γ(4Γ2−7Γ+16)

Γ+16

)3/2
+O(ε3),

g1
rr(0, 0, 0) = −

32
(
11Γ4 − 78Γ3 + 357Γ2 − 493Γ + 816

)
ε2

81Γ2 (4Γ2 − 7Γ + 16)
+O(ε3),

g1
ss(0, 0, 0) =

2
(
−16Γ5 + 212Γ4 − 867Γ3 + 2231Γ2 − 2512Γ + 3072

)
ε2

27Γ2 (4Γ2 − 7Γ + 16)
+O(ε3),
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g2
rs(0, 0, 0) = −

4

3
−

4
(
36Γ4 − 129Γ3 + 355Γ2 − 448Γ + 256

)
ε

27
√

6− 3ΓΓ(Γ + 16)

√
Γ(4Γ2−7Γ+16)

Γ+16

−
2

729(Γ− 2)Γ3(Γ + 16) (4Γ2 − 7Γ + 16)2

(
10368Γ10 − 89856Γ9 + 523296Γ8 − 2214822Γ7 + 6609656Γ6 − 13388811Γ5 + 16103040Γ4

−9588992Γ3 + 1044480Γ2 + 4718592Γ + 5242880
)
ε2 +O(ε3),

g2
rr(0, 0, 0) = −

44
√

2
3

√
2− Γε

9Γ
+O(ε2),

g2
ss(0, 0, 0) =

2(Γ− 2)(Γ− 7)ε

3
√

3− 3Γ
2

Γ
+O(ε2).

Thus, if we replace the previous expressions in the formula for α we have the following

form:

α =
1

16

(
g(1)
rrr + g(1)

rss + g(2)
rrs + g(2)

sss

)
− 1

16=y+(Ω0(0))

[
g(1)
rs

(
g(1)
rr + g(1)

ss

)
− g(2)

rs

(
g(2)
rr + g(2)

ss

)
− g(1)

rr g
(2)
rr + g(1)

ss g
(2)
ss

]∣∣∣∣
r=r=λ=0

.

Let

D1 =
1

ε2
(
g(1)
rrr + g(1)

rss + g(2)
rrs + g(2)

sss

)∣∣∣∣
r=r=λ=0

,

D2 =
1√

2/3(2− Γ)ε3

(
g(1)
rs

(
g(1)
rr + g(1)

ss

)
− g(2)

rs

(
g(2)
rr + g(2)

ss

)
− g(1)

rr g
(2)
rr + g(1)

ss g
(2)
ss

)∣∣∣∣
r=r=λ=0

.

Then, α = ε2

16(D1 −D2) < 0 for sufficiently small ε > 0. The software Mathematica was

used to verify the inequality.
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