File(s) under embargo
21
day(s)until file(s) become available
The Evolving Neural Network Method for Scalar Hyperbolic Conservation Laws
This thesis introduces the evolving neural network method for solving scalar hyperbolic conservation laws. This method uses neural networks to compute solutions with an optimal moving mesh that evolves with the solution over time. The motivation for this method was to produce solutions with high accuracy near shocks while reducing the overall computational cost. The evolving neural network method first approximates initial data with a neural network producing a continuous piecewise linear approximation. Then, the neural network representation is evolved in time according to a combination of characteristics and a finite volume-type method.
It is shown numerically and theoretically that the evolving neural network method out performs traditional fixed-mesh methods with respect to computational cost. Numerical results for benchmark test problems including Burgers’ equation and the Buckley-Leverett equation demonstrate that this method can accurately capture shocks and rarefaction waves with a minimal number of mesh points.
Funding
DMS-2110571
History
Degree Type
- Doctor of Philosophy
Department
- Mathematics
Campus location
- West Lafayette