Purdue University Graduate School
Middleton_Thesis.pdf (563.14 kB)

The Role of PGC-1a Overexperssion in Skeletal Muscle Exosome Biogenesis and Secretion

Download (563.14 kB)
posted on 2020-07-30, 17:42 authored by Derek M MiddletonDerek M Middleton
Skeletal muscle functions as an endocrine organ. Exosomes, small vesicles containing mRNAs, miRNAs, and proteins, are secreted from muscle cells and facilitate cell-to-cell communication. Our recent work found greater exosome release from oxidative compared to glycolytic muscle. Peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α) is a key driver of mitochondrial biogenesis, a characteristic of oxidative muscle. It was hypothesized that PGC1α regulates exosome biogenesis and secretion in skeletal muscle. The purpose of this study is to determine if PGC-1α regulates skeletal muscle exosome biogenesis and secretion. On day 4 of differentiation, human primary myotubes from vastus lateralis biopsies from lean donors (BMI < 25.0 kg/m2) were exposed to adenovirus encoding human PGC-1α or GFP control. On day 6 of differentiation, culture media was replaced with exosome-free media. On day 8, cells were collected for mRNA and protein analysis, and culture media was collected for exosome isolation. Overexpression of PGC-1α increases regulators of exosome biogenesis in the endosomal sorting complexes required for transport (ESCRT) pathway: Alix (CON: 1.0 ± 0.2 vs. PGC-1α: 7.6 ± 3.8), TSG-101 (CON: 1.0 ± 0.1 vs. PGC-1α: 7.3 ± 2.1), CD63 (CON: 1.0 ± 0.17 vs. PGC-1α: 3.7 ± 0.4), Clathrin (CON: 1.0 ± 0.2 vs. PGC-1α: 11.6 ± 2.5), and the secretion pathway: Rab27b (CON: 1.0 ± 0.3 vs. PGC-1α: 3.2 ± 0.3), STAM (CON: 1.0 ± 0.3 vs. PGC-1α: 7.3 ± 0.6), and VTA1 (CON: 1.0 ± 0.1 vs. PGC-1α: 7.3 ± 2.4). Exosome count and total extracellular vesicle count were not significantly different from control. Overexpression of PGC-1α increases gene 9 expression of regulators of exosome biogenesis and secretion in human primary myotubes. In the future, in vitro studies assessing exosomal content from PGC-1 OE cells as well as in vivo effects of PGC-1 OE on exosome production and release should be investigated to further understand the role PGC-1 plays in exosome secretion.


Degree Type

  • Master of Science


  • Health and Kinesiology

Campus location

  • West Lafayette

Advisor/Supervisor/Committee Chair

Dr. Timothy P. Gavin

Additional Committee Member 2

Dr. Shihuan Kuang

Additional Committee Member 3

Dr. Daniel Hirai

Usage metrics



    Ref. manager