Purdue University Graduate School
thesis-9.pdf (16.57 MB)

Transfer Trajectory Design Strategies Informed by Quasi-Periodic Orbits

Download (16.57 MB)
posted on 2023-12-04, 16:08 authored by Dhruv JainDhruv Jain

In the pursuit of establishing a sustainable space economy within the cislunar region, it is vital to formulate transfer design strategies that uncover economically viable highways between different regions of the space domain. The inherent complexity of spacecraft dynamics in the cislunar space poses challenges in determining feasible transfer options. However, the motion characterized by known dynamical structures modeled through the circular restricted three-body problem (CR3BP) aids in the identification of pathways with reasonable maneuver costs and flight times. A framework is proposed that incorporates a quasi-periodic orbit (QPOs) as an option to design transfer scenarios. This investigation focuses on the construction of transfers between periodic orbits. The framework is exemplified by the construction of pathways between an L2 9:2 synodic resonant Near-Rectilinear Halo Orbit (NRHO) and a planar Moon-centered Distant Retrograde Orbit (DRO). The innate difference in the geometries of the departure and arrival orbits of the sample case, along with the lack of natural flows towards and away from them, imply that links between these orbits may necessitate costly maneuvers. A strategy is formulated that leverages the stable and unstable manifolds associated with intermediate periodic orbits and quasi-periodic orbits to construct end-toend trajectories. As part of this strategy, a systematic methodology is outlined to streamline the determination of transfer options provided by the 5-dimensional manifolds associated with a QPO family. This approach reveals multiple local basins of solutions, both interior and exterior-types, characterized by selected intermediate orbits. The construction of transfers informed by the manifolds associated with QPOs is more intricate than those based on periodic orbits. However, QPO-derived solutions allow for the recognition of alternative local basins of solutions and often offer more cost-effective transfer options when compared to trajectories designed using periodic orbits that underlie the QPOs.


Degree Type

  • Master of Science in Aeronautics and Astronautics


  • Aeronautics and Astronautics

Campus location

  • West Lafayette

Advisor/Supervisor/Committee Chair

Kathleen Howell

Additional Committee Member 2

Carolin Frueh

Additional Committee Member 3

Kenshiro Oguri

Usage metrics



    Ref. manager