Purdue University Graduate School
Browse

Uniform upper bounds in computational commutative algebra

Download (703.8 kB)
thesis
posted on 2022-07-19, 16:47 authored by Yihui LiangYihui Liang

Let S be a polynomial ring K[x1,...,xn] over a field K and let F be a non-negatively graded free module over S generated by m basis elements. In this thesis, we study four kinds of upper bounds: degree bounds for Gröbner bases of submodules of F, bounds for arithmetic degrees of S-ideals, regularity bounds for radicals of S-ideals, and Stillman bounds. 


Let M be a submodule of F generated by elements with degrees bounded above by D and dim(F/M)=r. We prove that if M is graded, the degree of the reduced Gröbner basis of M for any term order is bounded above by 2[1/2((Dm)^{n-r}m+D)]^{2^{r-1}}. If M is not graded, the bound is 2[1/2((Dm)^{(n-r)^2}m+D)]^{2^{r}}. This is a generalization of bounds for ideals in a polynomial ring due to Dubé (1990) and Mayr-Ritscher (2013).


Our next results are concerned with a homogeneous ideal I in S generated by forms of degree at most d with dim(S/I)=r. In Chapter 4, we show how to derive from a result of Hoa (2008) an upper bound for the regularity of sqrt{I}, which denotes the radical of I. More specifically we show that reg(sqrt{I})<= d^{(n-1)2^{r-1}}. In Chapter 5, we show that the i-th arithmetic degree of I is bounded above by 2*d^{2^{n-i-1}}. This is done by proving upper bounds for arithmetic degrees of strongly stable ideals and ideals of Borel type.


In the last chapter, we explain our progress in attempting to make Stillman bounds explicit. Ananyan and Hochster (2020) were the first to show the existence of Stillman bounds. Together with G. Caviglia, we observe that a possible way of making their results explicit is to find an effective bound for an invariant called D(k,d) and supplement it into their proof. Although we are able to obtain this bound D(k,d) and realize Stillman bounds via an algorithm, it turns out that the computational complexity of Ananyan and Hochster's inductive proof would make the bounds too large to be meaningful. We explain the bad behavior of these Stillman bounds by giving estimates up to degree 3.

Funding

Research Grant from Purdue Research Foundation (PRF)

History

Degree Type

  • Doctor of Philosophy

Department

  • Mathematics

Campus location

  • West Lafayette

Advisor/Supervisor/Committee Chair

Giulio Caviglia

Additional Committee Member 2

Bernd Ulrich

Additional Committee Member 3

William Heinzer

Additional Committee Member 4

Linquan Ma

Usage metrics

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC