Purdue University Graduate School
Browse

File(s) under embargo

4

month(s)

21

day(s)

until file(s) become available

WESTERN CORN ROOTWORM INFESTATION AND SOYBEAN NODULATION DETECTION AT EARLY STAGES WITH MISIROOT.pdf

thesis
posted on 2023-05-04, 17:26 authored by Tianzhang ZhaoTianzhang Zhao

Root phenotyping technology is an essential component of modern agriculture and plant science research. Conducting root-related research in a non-destructive manner is crucial for studying plant roots without damaging the plants themselves and allowing for time-series studies. The research aims to validate the efficacy of MISIRoot, an innovative root phenotyping technology, through the implementation of two projects. The first project focuses on the early detection of western corn rootworm, one of the most devastating corn rootworm species in North America, particularly in midwestern corn-growing areas. The second project focuses on the assessment of the soybean nodulation process, which is crucial for nitrogen fixation by Rhizobia living in the nodules on the soybean roots. The current state-of-the-art methods for western corn rootworm and soybean nodulation assessments still require the whole plant to be dug up, which causes irreversible destruction to the plant itself. Although recently developed root phenotyping methods such as minirhizotron, CT, and MRI scanners offer unique advantages in observing plant roots, their potential for field applications is currently limited.

Data collection for both projects was carried out using MISIRoot, a minimally invasive plant root phenotyping robot that works in situ within natural soil. The MISIRoot system mainly consists of an industrial-level robotic arm, a mini-size camera with a lighting set, a plant pot holding platform, and image processing software for root recognition and feature extraction. MISIRoot can take high-resolution color images of the roots in soil with minimal disturbance to the root and reconstruct the plant roots' three-dimensional (3D) structure at an accuracy of 0.1 mm.

For the first project, the MISIRoot system successfully distinguished the corn plants inoculated with western corn rootworm larvae from the healthy plants before the shoot section of the corn plants revealed significant differences. For the second project, the MISIRoot system successfully demonstrated its ability to differentiate soybean plants with and without nodules.

History

Degree Type

  • Master of Science

Department

  • Agricultural and Biological Engineering

Campus location

  • West Lafayette

Advisor/Supervisor/Committee Chair

Dr. Jian Jin

Additional Committee Member 2

Dr. Jianxin Ma

Additional Committee Member 3

Dr. Chong Gu

Usage metrics

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC